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Abstract

We study the ramification on the cohomology of a smooth proper surface X in
mixed characteristic, in the particular case where X degenerates to a surface over
Fp with simple singularities, also known as rational double points. We find that the
associated monodromy action of inertia depends on a formal affine neighborhood
of the singularity, and under sufficient restrictions on characteristic p, it is tamely
ramified and generated by a conjugacy class representative of an appropriate Weyl
group related to the singularity. Along the way we extend to mixed characteris-
tic some results of Brieskorn and Slodowy concerning simultaneous resolutions of
surface singularities. We also compare our Weyl group actions to certain Springer
representations constructed by Borho and MacPherson, via the notion of relative
perversity as developed by Hansen and Scholze.
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1. Introduction

Let K be a complete discrete valuation field with valuation ring OK of mixed character-
istic (0, p). The celebrated Néron–Ogg–Shafarevich theorem, first proven for elliptic curves
and then generalized to abelian varieties by Serre–Tate ([ST68]), states that an abelian
variety X over K has good reduction, meaning that there exists a smooth proper model
X → Spec(OK) with generic fiber X, if and only if the natural action of GK = Gal(K/K)
on the étale cohomology group H1

ét(XK ,Qℓ) for ℓ ̸= p is unramified, i.e. it restricts to a
trivial action of inertia IK . Here IK is defined as the kernel of the surjection GK → Gk,
where Gk is the absolute Galois group of the residue field k.

1.1 Good reduction beyond abelian varieties. For a general smooth proper va-
riety X over K there is a subtler relationship between good reduction and ramification,
i.e. the nontriviality of the monodromy action of IK on Hn(XK ,Qℓ). A necessary condi-
tion for good reduction is that Hn(XK ,Qℓ) is unramified for all n and ℓ ̸= p, however
the converse often fails. For example, there are smooth curves X of genus g ≥ 2 with
unramified H1

ét(XK ,Qℓ), which nevertheless do not have good reduction over K or any
finite extension of K ([LM18], §2.4). Instead, Oda has established that, if X is a smooth
proper curve of genus g ≥ 2, it admits good reduction if and only if a certain GK-action
on the pro-ℓ completion of the geometric étale fundamental group πét

1 (XK)ℓ is unrami-
fied ([Oda95]). More recently, Liedtke–Matsumoto have shown that a K3 surface X with
unramified H2(XK ,Qℓ) admits good reduction after a finite unramified base extension,
under the stricter assumption that X admits a potentially semistable model ([LM18],
Thm. 1.3).

1.2 Bad reduction of surfaces and singularities. In this article, we will con-
sider degenerations (i.e. reductions) of a smooth proper surface X/K. More specifically,
we focus on Galois representation H2

ét(XK ,Qℓ) and relate the types of singularities that
may appear on reductions of X to the ramification of H2

ét(XK ,Qℓ). Any smooth surface
X admits an integral proper flat model X → Spec(OK): by Nagata’s compactification
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theorem ([Sta18, Tag0F3T]) there exists a proper scheme X → Spec(OK) with an open
immersion X ↪−→ X , and up to normalizing X and taking the closure of X in X we get that
X is reduced and dominates Spec(OK), so X is integral, proper and flat over Spec(OK).
The special fiber Xk is called the reduction (mod p) of X.

One can ask in general how ‘badly’ singular the reduction Xk is. When X is strictly
semistable, i.e. Xk is a simple normal-crossings (snc) divisor in X , Rapoport–Zink have
shown ([RZ82]) that the nearby cycles spectral sequence abutting to H2

ét(XK ,Qℓ) gives
rise to a weight filtration on H2

ét(XK ,Qℓ). Since the weight-monodromy conjecture holds
for surfaces in mixed characteristic (loc. cit., Satz 2.13), the weight filtration coincides up
to shift with the monodromy filtration induced from the IK-action. This allows one to
determine the full monodromy action on H2

ét(XK ,Qℓ) by computing the IK-action on the
graded pieces of the weight filtration. These graded pieces are related to the cohomology
of special fiber Xk, which admits a nice combinatorial description by the snc property.
For general semistable schemes, a cornerstone theorem concerning their ramification is
the unipotency of the IK-action ([SGA 7I]).

In a somewhat orthogonal direction, one can suppose instead that the proper smooth
surface X admits an integral model X with Xk having isolated singularities of a cer-
tain kind. Typically X will not be semistable, and so the monodromy action of IK on
H2

ét(XK ,Qℓ) is at worst quasi-unipotent ([SGA 7I], Exposé I). One can ask whether X
admits a potentially semistable or even smooth model, and how the monodromy depends
on the type of singularities of Xk. The interest in surface singularities over k ≃ Fp here
is twofold. Firstly, there has been recent progress on our understanding of positive and
mixed characteristic singularities; see [MS21] for a ring-theoretic approach using perfectoid
techniques. Secondly, the relationship with monodromy actions has not been explored a
lot beyond varieties acquiring ordinary double points, which have been classically studied
in [SGA 7II].

A recent result of D. Kim ([Kim20]) investigates the monodromy action on H2
ét(XK ,Qℓ)

related to an integral model X acquiring ordinary double points on the special fiber.
Via an explicit calculation of a suitable semistable model of X and the Rapoport–Zink
spectral sequence of [RZ82], it is shown that the monodromy action factors through
Gal(L/K) ≃ Z/2, the Galois group of the unique ramified quadratic extension L of
K. Thus IK acts trivially on H2(XK ,Qℓ) or through a nontrivial quadratic character,
dependent on a formal affine neighborhood of the singularity in X .

1.3 Overview of our work. In this paper, we establish a generalization of [Kim20]

to a natural class of surface singularities over k = Fp, that of rational double points.
These singularities are also known in the literature as simple (surface) singularities, ADE
singularities, Kleinian or du Val singularities. Rational double points have the benefit
of being amenable to mixed-characteristic extensions, while still being ‘mildly’ singular
with easily computable minimal resolutions. Moreover, there is a McKay correspondence-
type relation between rational double points and Lie algebras: each class of a rational
double point has a minimal resolution whose exceptional divisor possesses a dual graph
isomorphic to a Dynkin diagram of ADE type, and therefore such a class corresponds to

3

https://stacks.math.columbia.edu/tag/0F3T


a simple simply-laced Lie algebra (over C or Fp for sufficiently large p > 0; see Section
2.1 for details).

We aim to characterize the associated monodromy IK-actions for models X of X which
degenerate into surfaces Xk having rational double point singularities. Instead of finding
a semistable model of X, we investigate the possible formal affine neighborhoods of the
singularities of Xk in X via their explicit miniversal deformations. These miniversal
deformation equations are determined by XK̆ , so throughout this paper (unless stated

otherwise) we assume K = K̆ is the completion of its maximal unramified extension. In
particular the special fiber Xk and its singularity live over k = k.

We adapt classical results of Tjurina, Brieskorn and Slodowy ([Bri71], [Slo80b], [Tju70])
regarding so-called simultaneous resolutions of singularities to the mixed characteristic
setting, yielding thatX admits a smooth model X̃ after a finite base-change L/K. Results

of Artin ([Art74]) show that X̃ exists at worst in the category of algebraic spaces, and
its fibers are (algebraic) surfaces. Dependent on a restriction on the characteristic p (see
Definition 2.3) and on a formal affine neighborhood of each singularity, we can make the
monodromy IK-action precise:

Theorem 1.1. Suppose (K,OK , k) is the data of a complete DVR of mixed characteristic
(0, p) with p sufficiently good, and let X/K be a smooth proper surface with an integral
model X over OK so that Xk has a unique rational double point. Let W be the Weyl group
associated to the Dynkin diagram corresponding to the rational double point.

(i) The monodromy IK-action on H2
ét(XK ,Qℓ) factors through a cyclic subgroup ⟨w⟩ of

W , dependent up to conjugacy on a formal affine neighborhood of the singularity.

(ii) The Weyl element w acts on H2
ét(XK ,Qℓ) via a Springer W -representation, and X

achieves good reduction after a ramified base-change of degree ord(w).

(iii) In the case of An-singularities, for every Weyl conjugacy class there exists an ele-
ment w in the class and a model X degenerating to An-singular surface Xk so that
w acts as the monodromy operator on H2

ét(XK ,Qℓ).

In particular we recover the results of [Kim20], which in this terminology deal with A1-
singularities (ordinary double points). The main novelty here is to bridge the gap between
the characteristic zero and characteristic p cases of monodromy actions on cohomology,
since for big enough p the classification of rational double points over C and Fp is the
same. In particular we find that, if the action of monodromy is tame, then the monodromy
operator acts in the same way as the complex monodromy operator for such singularities.
As far as we know, there has not been a thorough investigation of the relationship between
conjugacy classes of Weyl groups and degenerations to (rational double point or otherwise)
singularities, even over C. We hope to further explore this relationship in the future.

We remark here that Theorem 1.1 naturally generalizes to Xk having any finite number
of rational double points, as we may choose disjoint formal affine neighborhoods at each
singularity. In this case, the monodromy acts as a product of Weyl group elements,
one for each singularity of a fixed Dynkin type. There are also possible applications
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of Theorem 1.1 to questions regarding monodromy characterizations of reductions of K3
surfaces in mixed characteristic, as part of the topic of derived equivalences of K3 surfaces
(see [HT17]); we hope to explore this direction in the future as well.

1.4 Outline of the proof. The main tools for the proof of Theorem 1.1 are a the-
orem of Berkovich ([Ber96]) and the Grothendieck–Springer resolution. Via Berkovich’s
argument we may relate the nearby cycles of special fiber Xk to the “formal” nearby
cycles of the completion of Xk at the singularity, and show that the monodromy ac-
tion on H2(XK ,Qℓ) depends on a formal neighborhood of the singularity. We may then
‘embed’ the local picture into the miniversal deformation of the singularity and use a
mixed-characteristic incarnation of the Grothendieck–Springer resolution.

Over C, the Grothendieck–Springer resolution (or Grothendieck alteration) π : g̃ → g
furnishes a connection between simple Lie algebras g and simple surface singularities,
which are exactly the (complex) RDPs. This connection was studied by Brieskorn in
the ’70s, following a conjecture of Grothendieck ([Bri71]), and full details were written
up in ([Slo80b]). The Grothendieck alteration may be thought of as an enhancement of
simultaneous resolutions of surface singularities on the algebro-geometric side, and as a
generalization of the Springer resolution Ñ → N on the representation-theoretic side.
Concretely, one may realize RDPs as generic points in the subregular nilpotent orbit of
the nilpotent cone N of g. In turn, g is connected to the singularity via its Dynkin
diagram, which is isomorphic to the dual graph of the exceptional divisor in the minimal
resolution of the singularity. These considerations still make sense for Chevalley algebras
over Spec(OK).
After a ramified base-change via the Weyl cover, we may simultaneously resolve all

singularities appearing on the nilpotent cone, and in particular we obtain a resolution
of the singularity in our model X by pulling back along an appropriate base-change on
Spec(OK). Using a recent notion of relative perversity from Hansen–Scholze ([HS23]),
we may describe the associated monodromy W -action of the Weyl cover as an action on
the relatively perverse sheaf Rπ∗Qℓ[dim g], which ends up being the Springer W -action
as constructed by Borho–MacPherson ([BM83]). Along the way we also derive an ℓ-adic
instance of the Springer correspondence and relate Springer theory to the study of nearby
cycles over a larger (i.e. > 1-dimensional) mixed-characteristic base. This gives a p-adic
picture analogous to the interaction between Springer theory and nearby cycles in the
complex setting. The upshot is that, in sufficiently large characteristic p, we may describe
explicitly the resulting ramification in the cohomology of X by factoring the IK-action
through a restriction of the Springer W -representation associated with the singularity of
Xk. In the case of An-singularities we can furthermore check by hand that the monodromy
IK-action can lie in any Weyl conjugacy class.

1.5 Connections with other work. Our results are parallel to results of Shepherd-
Barron ([SB01], [SB21]), who extended the Grothendieck–Springer resolution and some
related results of Brieskorn to “good” characteristic, via a different method and in the
context of groups instead of Lie algebras. Shepherd-Barron also extended arguments of
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Artin ([Art74]) regarding simultaneous resolutions to show that one also gets so-called
Weyl covers for Brieskorn’s resolutions in all characteristics. In small characteristic,
however, he notes that “one does not have a formula for the action of any reflection of
W” on the relevant cohomology groups ([SB21], Introduction). Our approach is instead
a natural extension of the methods described in ([Slo80b], [Slo80a]), and at the cost of
restricting the characteristic we may describe what the corresponding W -action must be.

1.6 Organization of paper. Section 2 contains some background on rational dou-
ble points, simultaneous resolutions and (miniversal) deformations of isolated singularities
in the mixed-characteristic setting. Section 3 covers the necessary Lie-theoretic notions
including the description of the nilpotent cone as a fiber of the adjoint quotient and
the Grothendieck–Springer resolution, in the context of Chevalley algebras over a mixed-
characteristic DVR. Section 4 extends results of Slodowy ([Slo80b]) regarding the con-
struction of suitable transverse slices to nilpotent orbits in Lie algebras. Finally Section
5 presents the main argument, involving tools from the study of perverse sheaves and
nearby cycles to determine our desired monodromy action in terms of certain Springer
representations of the Weyl group.

1.7 Notations and conventions. All rings are commutative with unity. OK de-
notes a complete mixed-characteristic discrete valuation ring of type (0, p), meaning frac-
tion field K has characteristic zero and residue field k is algebraically closed of charac-

teristic p > 0. Unless otherwise stated, we will assume K = K̆ = K̂unr is the completed
maximal unramified extension of K in a fixed separable closure K, so that OK may be
identified with the Witt vectors W (k) of k. The maximal tamely ramified extension of K
is denoted by Ktr. The inertia subgroup of GalK is IK = Gal(K/Kunr), the pro-p wild
inertia subgroup of IK is P = Gal(K/Ktr) and the tame inertia is defined as I/P , which
is topologically generated by one element.

On the geometric side we define (Spec(OK), Spec(K), Spec(k)) = (S, η, s) to be the
data of a (complete) trait, with generic point η and closed point s = s. Separable closures
are denoted with a bar, e.g. η = Spec(K). Residue fields of points x→ X of a scheme X
are denoted by k(x), e.g. K = k(η).

On the Lie-theoretic side, g, b, h will denote respectively a semisimple Lie algebra along
with a choice of Borel and Cartan subalgebra, and W = W (g) will denote the Weyl group
associated to (the Dynkin diagram of) g. The Coxeter number of g is denoted by Cox(g).
For an affine S-scheme X with an action of an S-group scheme G, X//G denotes the affine
GIT quotient with coordinate ring OS[X]G.

Unless otherwise stated, all cohomologies Hi are étale cohomologies Hi
ét.

Acknowledgements. I thank my advisor Matthew Emerton for his support and ideas
which hugely influenced this work, as well as for his extensive comments on prior drafts.
I would also like to thank Alexander Beilinson, Kazuya Kato, Eduard Looijenga, Antoni
Rangachev and Zhiwei Yun for helpful conversations and suggestions.
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2. Rational double points and their miniversal deformations

This section gives some relevant background on rational double points and simultane-
ous resolutions. Sections 2.3-2.5 describe explicitly the miniversal deformations of these
singularities. While the results are known to the experts, the associated deformation
problems in this setting have a mixed-characteristic base OK = W (k) instead of k, so for
completeness we develop the mixed characteristic case here.

2.1 Rational double points. Let X be an algebraic surface over an algebraically
closed field k. A rational singularity x ∈ X(k) is a normal singularity (i.e. OX,x normal)

for which there exists a resolution f : X̃ → X satisfying Rif∗OX̃ = 0 for i ≥ 1.

By Zariski’s Main Theorem, the reduced exceptional divisor E = f−1(x)red is a union of
smooth rational curves Ei, elucidating the term ‘rational singularity’ (see [Ba01], Lemma
3.8). Rational double points are a particular class of rational singularities pinning down
the self-intersections of the exceptional divisors Ei:

Definition 2.1. A normal surface singularity (X, x) is a rational double point (henceforth

RDP) if its minimal resolution f : X̃ −→ X has reduced exceptional divisor E = ∪Ei so
that all Ei are smooth rational curves with self-intersection E2

i = −2.

There are various equivalent characterizations of RDPs; for example, they are surface
singularities (X, x) whose Zariski tangent space mx/m

2
x has dimension 3 and OX,x has

multiplicity 2 (hence the term ‘double points’). The tangent space dimension here implies
RDPs are regularly embedded in codimension 1 and are hence hypersurface singularities.
Since smooth points have local rings of multiplicity 1 and tangent spaces of dimension
2, this characterization makes apparent that RDPs are the ‘mildest’ surface singularities
one can ask for.

Another property RDPs enjoy is that they are absolutely isolated, meaning they can be
resolved after a finite number of blowups at points; in fact, each blowup yields an RDP
of different type until they are all resolved (see [Sta18, Tag 0BGB]).

A crucial fact about RDPs is that in appropriate characteristic (see Definition 2.3
below) they are taut, i.e. completely determined up to isomorphism by the dual graph
of their minimal resolution. This is classical over C, and has been extended to positive
characteristic by [Art77]:

Theorem 2.2. Let X be a projective surface over k.

(i) ([Ba01], Thm. 3.32, [Art66]) If E is a connected curve on X with smooth rational
curve components Ei so that E2

i = −2, then the only possible dual graphs for E are
the Dynkin diagrams An, Dn, E6, E7 and E8.

(ii) ([Art77]) If x ∈ X(k) is an RDP and char(k) is very good (see Definition 2.3) then

up to analytic isomorphism ÔX,x ≃ k[[x, y, z]]/(f(x, y, z)), where f(x, y, z) and the
dual graph of the minimal resolution of x are given by the table below:
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f(x, y, z) Dual graph
z2 + x2 + yn+1 An
z2 + x2y + yn−1 Dn

z2 + x3 + y4 E6

z2 + x3 + xy3 E7

z2 + x3 + y5 E8

A polynomial f(x, y, z) defining an RDP is usually called a ‘normal form’. Since the
notion of ‘good characteristic’ will be ubiquitous in this paper, we record the definition
here.

Definition 2.3. Given a semisimple simply-laced Lie algebra g over k of characteristic
p > 0, so that its Dynkin diagram has components An, Dn or En, we say p is

(a) good with respect to g if p ̸= 2 if g has any Dn components, p ̸= 2, 3 if g has any
E6, E7 components and p ̸= 2, 3, 5 if g has any E8 components (note there are no p
restrictions for An components).

(b) very good with respect to g if it is good and for any An component we have p ∤ n+1

(c) sufficiently good with respect to g if p ∤ |W (g)| i.e. it does not divide the order of
the associated Weyl group.

For simple Lie algebras it is automatic that sufficiently good ⇒ very good ⇒ good.
We will revisit this definition in Remark 3.3 for a more intuitive explanation of these
restrictions.

Theorem 2.2 identifies RDPs with the corresponding simple simply-laced Lie algebras
of the specified Dynkin type, so we can refer to p being (very) good for the singularity,
the Lie algebra or the Dynkin diagram interchangeably. Theorem 2.2 is no longer true
when p is not good, and there is more than one equation describing an RDP with the
same dual graph; see ([Art77]) for details.

Remark 2.4. We have the following byproduct of the proof of Theorem 2.2. We may
resolve RDP x ∈ X(k) by iterated blowups along points, and at each step we get an RDP
of different Dynkin type. All the Dynkin diagrams corresponding to each RDP appearing
in the resolution process are subdiagrams of the Dynkin diagram of x. Conversely, all
subdiagrams of the Dynkin diagram of x correspond to these ‘intermediate’ RDPs during
the iterated blowup process.

2.2 Simultaneous resolutions. We next describe a particularly rare notion of re-
solving singularities of schemes in families. In order to be consistent with [Art74], we
enlarge the category of schemes to include separated algebraic spaces, though in practice
we will only resolve schemes.

Definition 2.5. Let f : X −→ S be a finite-type morphism of separated algebraic spaces.
A simultaneous resolution is a commutative diagram

8



X̃ X

S̃ S

f̃

π

f

ψ

where f̃ is smooth, π is proper, ψ is a finite surjection and for all geometric points s̃→ S̃
with image s = ψ(s̃)→ S, the induced morphism on the fibers

πs : X̃s̃ −→ Xs ×S S̃

is a resolution of the singularities of Xs,red. If S = Spec(k) is a point then we recover the

usual notion of a resolution π : X̃ → X of algebraic spaces over k ([Sta18, Tag 0BHV]).

Remark 2.6. One generally needs to impose some assumptions on the fibers, e.g. geo-
metrically reduced and excellent, in order for resolutions of singularities to exist in the
first place. There are also explicit examples of projective maps X → S whose simultane-
ous resolution X̃ is not a scheme (see Remark 2.12), so in general one needs to consider
algebraic spaces. In practice, however, f will be a morphism of henselianized (localized)
schemes and the schematic fibers will be equipped with the reduced-induced subscheme
structure, so we will not need to mention the above assumptions.

Example 2.7. We expound on why simultaneous resolutions rarely exist with the fol-
lowing examples (cf. [KM98], Ex. 4.27). Assume that f : X −→ S is flat, where S is a
smooth curve with a fixed closed point s, and that the generic fiber of f is smooth..

(i) If f is a family of curves so that Xs is a reduced singular curve then a simultaneous

resolution does not exist; any resolution will introduce an exceptional locus E in X̃
and E ∩ X̃s is a singular set in X̃s.

(ii) If f is a general family of varieties so that Xs has dimension ≥ 3 and is a complete
intersection with (at worst) isolated singularities, then X is Q-factorial ([SGA 2],
XI.3.13.(ii)) and hence it is well-known that X admits no small resolutions. There-

fore the exceptional locus will be a divisor and X̃s cannot be smooth as in the
previous example.

There are more examples of obstructions to constructing simultaneous resolutions and
it is difficult to come up with sufficiency conditions for their existence. In light of this,
it is a surprising theorem that, after a ramified base-change, simultaneous resolutions do
exist for families of surfaces acquiring RDP singularities. The following was independently
discovered by Brieskorn and Tjurina, then generalized by Brieskorn in the complex setting
and by Artin in the algebraic setting:

Theorem 2.8 ([Bri66],[Tju70], [Art74]). Let f : X −→ S be a flat morphism of schemes
and s a closed point of S so that Xs is a surface with a unique RDP x ∈ Xs. Let
f̂ : X(x) −→ S(s) be the induced map of the associated henselianized schemes X(x) and S(s).

Then there exists a finite surjection ψ : S̃ −→ S(s) of henselian schemes, branched over a

Cartier divisor ∆ ⊂ S(s), so that f̂ admits a simultaneous resolution f̃ : X̃ −→ S̃ fitting
into the following diagram:
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X̃ X(x) ×S S̃ X

S̃ S(s)

f̃

π1 π2

□ f̂

ψ

Here f̃ is smooth and π1, π2 form the Stein factorization of proper map π = π2 ◦ π1.
Cartier divisor ∆ is called the discriminant divisor (or the ramification locus) of map f̂ .

Remark 2.9. In the complex-analytic category one can replace the henselizations with
f̂ being a map of germs of singularities (X , x)→ (S, s).

Remark 2.10. Suppose X , S are complex schemes and S is affine. Brieskorn’s theorems
show that the Galois group of the finite cover S̃ → S is the Weyl group W of the Dynkin
diagram associated to the RDP in Xs (cf. Theorem 2.2). Moreover, the pullback ψ∗∆

of the discriminant divisor is a hyperplane arrangement in affine space S̃, determined
up to sign by the root system of the Dynkin diagram. These results do not follow from
the algebraic methods of Artin ([Art74]), but later results of Shepherd-Barron ([SB21])
showed that a “suitable polarization” of Artin’s simultaneous resolution functor ResX/S
yields that S̃ → S is a so-called Weyl cover in the algebraic setting too.

Example 2.11. Let S = Spec(OK) be a strictly henselian trait with residue characteristic
p ̸= 2, uniformizer π, closed point s = Spec(k) and generic point η = Spec(K). Let
X = V (x2 + y2 + z2 − πN) ⊆ A3

S (N ≥ 1) be a threefold, flat over S, with singular fiber
Xs over k; note the special fiber Xs = V (x2 + y2 + z2) ⊆ A3

k has an ordinary double point
at the origin.

Suppose N = 2n is even. Blowing up X along ideals (x, z±πn) gives two different small
resolutions X± −→ X ; smallness here is a consequence of both ideals defining non-Cartier
Weil divisors on X . Both X−,X+ are smooth over S with generic fibers (X±)η ≃ Xη over
K. Viewing Xs as a hyperplane section V (πN) ∩X and setting u = z − πn, the universal
property of blowing up gives

(X+)s ≃ Bℓ(x,u)(X )×X V (x2 + y2 + u2) = Bℓ(x,y,u)V (x2 + y2 + u2)

i.e. (X+)s −→ Xs is the minimal resolution of Xs,red, since a single blowup resolves the
ordinary double point. In this situation there exists a birational map f : X− 99K X+

induced by (x, z − πn)→ (x, z + πn); it is known as the Atiyah flop.

Suppose now N = 2n + 1 is odd. In this case X does not admit a simultaneous
resolution over S (e.g. when N = 1, the obstruction is the smoothness of total space
X ). To repeat the arguments of the previous paragraph we pass to the unique ramified
quadratic extension L = K(

√
π) of K so that XL = V (x2 + y2 + z2 + π2N

L ) now admits
small resolutions by blowing up along ideals (x, z ± πN). We thus have a simultaneous
resolution after base-change Spec(OL)→ Spec(OK), ramified over the closed point s.

Remark 2.12. Simultaneous resolutions need not exist in the category of schemes when
one considers more ‘global’ contexts of simultaneously resolving projective families. As
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Artin’s example in ([Art74], p. 330) shows, if X → Spec(OK) is a projective family so
that the generic fiber Xη is a quartic K3 surface of geometric Picard rank 1 (such K3
surfaces exist; see [vL07], Thm. 3.1), and the special fiber Xs a nodal quartic, then
localizing at the node we obtain a situation like that of Example 2.11 and neither X− nor
X+ are schemes. By ([Art74], Thm. 1) however, simultaneous resolutions of surfaces will
be at worst algebraic spaces whose fibers are schemes, since this is true for any smooth
2-dimensional algebraic space.

A second important point is that simultaneous resolutions are generally non-unique, e.g.
Example 2.11 yields two non-isomorphic resolutions X−, X+ related by a flop X− 99K X+.

2.3 Formal deformations of singularities. In what follows, let S = Spec(OK) be
a complete DVR with algebraically closed residue field k and uniformizer π. Let X → S
be a flat proper surface with special fiber Xk containing a unique RDP x. We may choose
affine coordinates so that the local ring of the singularity has the form

R0 = ÔXk,x ≃
k[[x, y, z]]

f(x, y, z)

with f(x, y, z) = 0 the normal form of the rational double point (2.2). We aim to describe

the possibilities of what ÔX ,x, the completed local ring of the model X at point x (viewed

as a point in X ) can look like, by interpreting ÔX ,x as an appropriate deformation of the
singularity. We next clarify the notion of deformations we will use.

Notation 2.13. Write V0 = Spec(R0) for the affine scheme of the singularity, and Artk
resp. Ârtk for the category of artinian local, resp. complete noetherian local rings with
residue field k. Both types of rings become canonically W (k)-algebras via the unique lift

of the natural surjection W (k) ↠ k. For R in Ârtk we set

Rn = R/mn+1
R , R = R/πR, Rn = R/(π,mn+1

R ) ≃ R/mn+1

R

so that Rn is in Artk and R resp. Rn are complete noetherian local, resp. artinian local
k-algebras; note R ≃ lim←−Rn and R ≃ lim←−Rn. We will also call

Tm(R) = mR/m
2
R, Tm(R)red = mR/(π,m

2
R) ≃ mR/m

2
R

the cotangent, resp. reduced cotangent spaces of R ∈ {Artk, Ârtk}; they are both natu-
rally k-vector spaces. To V0 we associate two deformation functors

DefV0 : Artk → Set, D̂efV0 : Ârtk → Set

R ∈ {Artk, Ârtk} 7−→ {isoclasses of deformations V → Spec(R)}
The tangent space DefV0(k[ε]) parametrizes so-called 1st-order deformations of V0 and has

a canonical k-vector space structure. For R in Ârtk we will call a deformation V → Spf(R)
of V0 formal, with the understanding that it arises as an inverse limit of deformations of
V0 over artinian local rings. We give a preliminary lemma on what such deformations can
look like.

11



Lemma 2.14 ([Har10], Thm. 9.2). Let V0/k be an affine hypersurface singularity defined
by polynomial f(x, y, z).

(i) For any small extension ϕ : Ri+1 → Ri in Artk and deformation Vi = Spec
(Ri[x,y,z]

I

)
of V0 we have I = (Fi) principal and any flat lift of Vi to a deformation Vi+1 →
Spec(Ri+1) is of the form

Spec
(Ri+1[x, y, z]

(Fi+1)

)
, Fi+1 ≡ Fi mod (kerϕ)

(ii) If R ∈ Ârtk then any formal deformation V → Spf(R) of V0 is of the form

Spf
(R[[x, y, z]]

(F )

)
, F ≡ f mod mR

Remark 2.15. In plainer language, Lemma 2.14 says that deformations of affine hy-
persurfaces are still hypersurfaces; more generally, it is true that deformations of local
complete intersections are also local complete intersections.

To the deformation theory of V0 we may associate the Lichtenbaum-Schlessinger func-
tors Ti(V0) = Exti(ΩR0 , R0), where T0(V0) is just the tangent module of R0. It is known
([Vis97], Prop. 6.4) that T1(V0) parametrizes first-order deformations of V0 and T2(V0)
contains an obstruction space for their liftings. By the explicit description of V0 we can
be more precise:

Lemma 2.16. We have DefV0(k[ε]) ≃ Ext1(ΩR0 , R0) ≃ R0/J where J = (fx, fy, fz) is the
Jacobian ideal, and Ext2(ΩR0 , R0) = 0. In particular, deformations of V0 are unobstructed.

Proof. The first isomorphism is ([Ser06], Thm. 2.4.1 (iv)). The conormal sequence asso-
ciated to V0 ↪−→ A3

k is

0 −→ (f)/(f)2 −→ ΩA3
k
⊗R0 −→ ΩR0 −→ 0

which is exact on the left by ([Vis97], Lemma 4.7) and so dualizing we get exact sequence

0 −→ Ω∨R0
−→ (ΩA3

k
⊗R0)

∨ d∗−→ ((f)/(f)2)∨
∂−→ Ext1(ΩR0 , R0) −→ 0 (2.1)

with ∂ surjective as ΩA3
k
⊗R0 is free over R0. The map (f)/(f)2 → ΩA3

k
⊗R0 is given by

the Jacobian matrix f 7→ df and (f)/(f)2 ≃ R0 is free of rank 1, hence the adjoint map
d∗ has image J = (fx, fy, fz). So via the boundary map ∂ we get Ext1(ΩR0 , R0) ≃ R0/J
and, as a byproduct of exact sequence (2.1), Ext2(ΩR0 , R0) = 0.

Definition 2.17. The k-vector space

T1(V0) = R0/J ≃
k[[x, y, z]]

(f, fx, fy, fz)

is called the Tjurina algebra of the singularity in V0. It has finite dimension since
V (f, fx, fy, fz) is supported on the unique singular point - in general, for isolated sin-
gularities, the Tjurina algebra is finite-dimensional.
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2.4 The Kodaira–Spencer map. This section follows ([Vis97], §6). Given a formal
deformation ϕ : V → Spf(R) of V0, we aim to attach to it a k-linear map Tm(R)

∨
red →

T1(V0) defined in the following steps.

An element of Tm(R)
∨
red corresponds to a map R → k[ε] which, by W (k)-linearity and

ε2 = 0, factors through a map R→ R1; write ϕ1 for the base-change of ϕ along this map.
Set

ϕ0 : V0 ×k Spec(R1) −→ Spec(R1)

to be the trivial deformation of V0 over R1 so that ϕ0, ϕ1 ∈ DefV0(R1). By Lemma
2.14, both ϕ0, ϕ1 embed as hypersurfaces in A3

R1
, defined by ideals I0, I1 ⊂ R1[[x, y, z]]

respectively. If I = (f) is the ideal of V0 in k[[x, y, z]], we may lift a section F ∈ I to
sections F0 ∈ I0, F1 ∈ I1. By virtue of the square-zero extension

0 −→ mR1
−→ R1 −→ k −→ 0

the difference F0−F1 lies in mR1
⊗kk[[x, y, z]], and its image [F0−F1] under k[[x, y, z]] ↠ R0

depends only on the choice of F . Hence F 7→ [F0 − F1] yields an element

ν ∈ Homk[[x,y,z]](I,mR1
⊗k R0) ≃ mR1

⊗k HomR0(I/I
2, R0) = mR1

⊗k ((f)/(f)2)∨

Homomorphism ν is well-defined in general for any two deformations of V0 over an
artinian R; see ([Vis97], Prop. 2.8) for more details. We will only be using it in the
following definition.

Definition 2.18. The Kodaira–Spencer map is a k-linear map KSϕ : Tm(R)
∨
red −→ T1(V0)

defined as the image of homomorphism ν described above under map

id⊗ ∂ : mR1
⊗k ((f)/(f)2)∨ −→ mR1

⊗k Ext1(ΩR0 , R0) ≃ Homk(Tm(R)
∨
red,T

1(V0))

where ∂ is the boundary map induced from the conormal exact sequence (2.1) of V0 ↪−→ A3
k.

By construction, map ν depends only on ϕ, hence the Kodaira–Spencer morphism de-
pends only on ϕ - it is well-defined by ([Vis97], Prop. 4.11) and satisfies various functorial
properties (loc. cit., Prop. 6.10). We note the following:

Proposition 2.19 ([Vis97], Prop. 6.11). Let ϕ : V → Spf(R) be a formal deformation
of V0 and for α ∈ (mR/m

2
R)
∨ ≃ Hom(R, k[ε]) let fα : R→ k[ε] be the corresponding map.

Then the induced 1st-order deformation f ∗αϕ : V1 = V ×R Spec(k[ε])→ Spec(k[ε]) defines
a conormal exact sequence via V0 ↪−→ V1, and KSϕ(α) ∈ T1(V0) is this extension class.

2.5 Miniversal deformations in mixed characteristic. We can now describe a
class of deformations of V0 from which all others are induced in a certain ‘minimal’ way.
Recall that if ϕ : V → Spf(R) is a formal deformation of V0 and hR = Hom(R,−) :

Ârtk → Set is the Hom functor of R, then ϕ induces a natural transformation

hR → D̂efV0
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Definition 2.20.

(i) ϕ is versal when this natural transformation is formally smooth, i.e. if B ↠ A in

Ârtk then the map
hR(B)→ hR(A)×D̂efV0 (A)

D̂efV0(B)

induced from the obvious commutative diagram is a surjection.

(ii) ϕ is miniversal if it is versal and the Kodaira–Spencer map KSϕ is an isomorphism.

By Lemma 2.16 and the definitions in Notation 2.13, it is clear that this definition
of miniversality coincides with the more common one (see e.g. [Har10], §15). We also
note that versality is usually stated in terms of artinian local rings, but one can deduce
versality in the above (more general) case from the artinian one ([Vis97], Lemma 7.3).

Proposition 2.21 (Schlessinger criteria, [Har10] Thms. 16.2, 18.1). DefV0 admits a miniver-
sal deformation if and only if the tangent space DefV0(k[ε]) is finite-dimensional. In par-
ticular there exists a miniversal deformation when V0 has isolated singularities.

Proposition 2.22. If ϕ : V → Spf(R) is a formal deformation of V0 such that R is a
power series algebra over W (k) and the Kodaira-Spencer map KSϕ is an isomorphism,
then ϕ is miniversal.

Proof. Suppose R = W (k)[[t1, · · · , tn]] and KSϕ is an isomorphism. By Proposition 2.21
there exists a miniversal formal deformation ψ : W → Spf(S), yielding by versality
a homomorphism f : S → R and hence a map df : Tm(S)red → Tm(R)red, dual to
the differential map of reduced tangent spaces. Since KSϕ,KSψ are isomorphisms and
KSψ = KSϕ ◦ df by the functoriality of the Kodaira–Spencer construction ([Vis97], Prop.
6.10 (b)), df is an isomorphism.

It remains to show f is an isomorphism. We will use df to construct a map g : R→ S
so that the dual differentials of (non–reduced) cotangent spaces

D(f ◦ g) : mR/m
2
R → mR/m

2
R, D(g ◦ f) : mS/m

2
S → mS/m

2
S (2.2)

are surjective, then by functoriality of differentials ([Vis97], Lemma 7.5) f ◦ g and g ◦ f
will be isomorphisms so that in particular f is an isomorphism.

To construct g: Observe Tm(R)red ≃ k[t1, · · · , tn]/(t1, · · · , tn)2 has generators t1, · · · , tn.
As df is an isomorphism, we can pick basis {gi, · · · , gn} of mS/(π,m

2
S) so that df(gi) = ti

and lift them to a set of representatives gi ∈ mS. On artinian quotients we define

gm : Rm =
W (k)[t1, · · · , tn]
(π, t1, · · · , tn)m

−→ Sm, t
(m)
i 7−→ g

(m)
i

where t
(m)
i , g

(m)
i denote the images of ti, gi under R → Rm, S → Sm respectively. Since

R ≃ lim←−Rm, S ≃ lim←−Sm this defines a homomorphism g = lim←− gm : R → S mapping
ti 7→ gi, which by construction induces a surjection dg : mR/m

2
R
↠ mS/m

2
S
. In turn dg

induces surjections mm
R
/mm+1

R
↠ mm

S
/mm+1

S
and as the source and target of this map are
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respectively the kernels of Rm+1 → Rm and Sm+1 → Sm, we inductively get surjections
Rm ↠ Sm; the base case is R1 ≃ k⊕mR/m

2
R
↠ S1 ≃ k⊕mS/m

2
S
. Since Rm = Rm/πRm,

by Nakayama’s lemma we get that the lifts gm : Rm → Sm are surjective, and since
Rm, Sm are artinian local rings we get g = lim←− gm surjective, hence the dual differential
Dg : mR/m

2
R → mS/m

2
S is surjective. Repeating the exact same argument for f : S → R

yields a surjection Df : mS/m
2
S → mR/m

2
R. Thus the maps in (2.2) are surjective and we

are done.

We now come to the crux of this section: describing the miniversal deformations of V0.

Proposition 2.23 (see [Vis97], Example 7.17). Let r = dimk T
1(V0), R = W (k)[[t1, · · · , tr]]

and choose elements g1, · · · , gr in W (k)[[x, y, z]] so that {g1, · · · , gr} forms a basis of
T1(V0). Consider the hypersurface V = V (F ) ⊂ A3

R defined by the vanishing of power
series

F (x, y, z, t1, · · · , tr) = f(x, y, z) +
r∑
i=1

tigi(x, y, z) ∈ W (k)[[x, y, z, t1, · · · , tr]] (2.3)

Then V → Spec(R) induces a miniversal deformation of V0.

Proof. In view of Proposition 2.22, it suffices to show the Kodaira–Spencer map KSϕ is
an isomorphism; we may set n = r in the proof of Proposition 2.22 since n there was
defined to be the dimension of Tm(R)red ≃ T1(V0). Let Tm(R)red = ⟨t1, · · · , tr⟩ ≃ mR1

for ti the images of indeterminates ti mod (π,m2
R) and by abuse of notation denote the

(dual) basis of Tm(R)red also by ti, then we claim KSϕ(ti) = gi so that KSϕ maps a basis
to a basis and hence is a k-linear isomorphism.

Now Proposition 2.19 says that ti corresponds to a map f : R1 → k[ε] mapping ti 7→
ε, tj ̸=i 7→ 0 via duality on k-vector space mR1

and KSϕ(ti) is the extension class in T1(V0)

of the pullback of deformation ϕ via R → R1 → k[ε] to the 1st-order deformation f ∗ϕ,
i.e.

Spec
( W (k)[[x, y, z, t1, · · · , tr]]
f(x, y, z) +

∑r
i=1 tigi(x, y, z)

⊗fk[ε]
)
≃ Spec

( k[ε, x, y, z]

f(x, y, z) + εg̃i(x, y, z)

)
f∗ϕ−→ Spec(k[ε])

where g̃i is the image of gi in k[ε, x, y, z]. To compute this extension class we trace through
the definition of the Kodaira-Spencer map: we have two first-order deformations, ϕ1 = f ∗ϕ
and the trivial deformation ϕ0 : V0×k Spec(k[ε])→ Spec(k[ε]), with corresponding lifts of
f ∈ (f) ⊂ k[x, y, z] being f + εg̃i and f , viewed as elements of k[ε, x, y, z]. Then map ν
in the definition of the Kodaira–Spencer map sends f 7→ [f + εg̃i− f ] = [εg̃i] ∈ (ε)⊗k R0,
hence in the quotient (ε)⊗k R0 → R0 → R0/J = T1(V0) (where J is the Jacobian ideal)
we get exactly the class gi. Thus KSϕ(ti) = gi.

Example 2.24. Let R0 be the local ring of an An−1 singularity f(x, y, z) = x2 + z2 + yn.
A basis of the Tjurina algebra in good characteristic (see Definition 2.3) is given by

k[[x, y, z]]

(f, fx, fy, fz)
≃ k[[y]]

yn−1
≃

n−2⊕
i=0

k · yi
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so that T1(Spec(R0)) has dimension r = n−1 and we may choose gi(x, y, z) = yi−1. Then

F (x, y, z) = x2 + z2 + yn + tn−1y
n−2 + · · ·+ t2y + t1

is a miniversal deformation of Spec(R0) with base W (k)[[t1, · · · , tn−1]].

We return to the setting in the beginning of Section 2.3, namely X/S is a flat proper
surface with special fiber Xk containing an RDP x ∈ Xk(k).

Corollary 2.25. For ÔX ,x the completed local ring of X at x→ Xk ⊂ X we have

ÔX ,x ≃
W (k)[[x, y, z]]

F (x, y, z)
(2.4)

for some polynomial F (x, y, z) that is the pullback of (2.3) under W (k)[[t1, · · · , tr]] →
W (k) induced by versality. Here f(x, y, z) is the normal form of singularity x, r is the
dimension of the Tjurina algebra of the singularity and the ti are specialized to elements
in the maximal ideal mW (k) = (π) of W (k).

Proof. This is immediate from Proposition 2.23 once we establish (2.4) for some power
series F (x, y, z) ∈ W (k)[[x, y, z]], which is the content of Lemma 2.14.

Remark 2.26. While a priori we speak of miniversal deformations as maps of formal
schemes V → Spf(R), we can regard the miniversal deformation of Proposition 2.23
as an algebraic deformation over henselian scheme Spec(W (k)[[t1, · · · , tr]]). This is more
generally due to a theorem of Elkik which states that formal deformations of affine schemes
with isolated singularities are algebraic ([Elk74]). Thus, by replacingX with an affine étale
neighborhood of the singularity in Corollary 2.25, we may and do consider the (miniversal
or otherwise) deformations of RDPs as usual scheme morphisms over a henselian base.

3. The geometry of the Grothendieck alteration

We now collect the necessary Lie-theoretic prerequisites in order to define miniversal
deformations of RDP singularities in terms the adjoint quotient of Lie algebras. The
main goal is to define and study the classical Grothendieck–Springer resolution over base
Spec(OK) instead of C (Section 3.5). To this end, Sections 3-3.3 extend the relevant
notions of nilpotent, semisimple and (sub)regular elements to the setting of Chevalley
algebras over OK .

3.1 Chevalley bases and Chevalley algebras. Throughout this section we work
over base S = Spec(OK), where OK is a mixed-characteristic complete DVR with alge-
braically closed residue field k and fraction field K; the corresponding closed and generic
points of S are respectively s and η.

We recall the existence of Chevalley bases. Let gη be a semisimple Lie algebra over
algebraically closed field K of characteristic zero, h a fixed Cartan subalgebra and Φ the
corresponding root system with a basis ∆ of simple roots. Via the Cartan decomposition

gη = h⊕
⊕
α∈Φ

gα,η
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one may choose {eα ∈ gα,η | α ∈ Φ} forming a Z-basis for each 1-dimensional space gα,η
and {hβ ∈ h | β ∈ ∆} fundamental coroots subject to certain compatibility relations
([Hum72], §25.2). Set {eα, hβ} forms a Chevalley basis with corresponding Chevalley
Z-algebra

gZ =
⊕
β∈∆

Zhβ ⊕
⊕
α∈Φ

Zeα

One can also construct an associated group scheme G over Z, the Chevalley group, playing
the role of the Lie group of gZ; ([Hum72], §25.4) discusses the adjoint case but we may
always take G to be the simply-connected cover of the adjoint group. We may further
base-change to OK so that g becomes a free OK-module and G is a group scheme over S.
We call g a Chevalley algebra of ADE type if gη is simple of ADE type.

From now on we fix a simple, simply-connected, split Chevalley group scheme G/S
and a torus and Borel T ↪−→ B. We have B = T ⋊Ru(B) where Ru(B) is the unipotent
radical, a smooth normal subgroup S-scheme in B, and so T ≃ B/Ru(B). We write g, h, b
and nb respectively for the Chevalley algebras of G, T,B and Ru(B), so that h, b, nb form
respectively a Cartan, a Borel and the nilradical of the Borel.

One still has a notion of the adjoint action of G on g ([Con14], §5.1) and hence the
adjoint action of T decomposes g into weight spaces

g = h⊕
⊕
α∈Φ

gα (3.1)

where each gα is a rank 1 free OK-module and Φ consists of characters α : T → Gm.

3.2 Root data and adjoint Weyl actions. Retaining the assumptions and no-
tations of Section 3.1, let T/S be a maximal torus of split group scheme G and let
r = dimS(T ) = rkS(g) be the rank of the associated Chevalley algebra g. By the split
hypothesis there exists a free Z-module X∗(T ) of rank r so that

T ≃ Hom(X∗(T ),Gm)⊗Z OK , i.e. h ≃ Lie(T ) ≃ X∗(T )∨ ⊗Z OK

Set X∗(T ) = X∗(T )∨ for the Z-dual. The Cartan decomposition of g (see Equation (3.1))
yields a set Φ ⊂ X∗(T )\{0} of roots α : T → Gm,OK

and a corresponding set of coroots
α∨ ∈ Φ∨ ⊂ X∗(T )\{0}.

Definition 3.1. The 4-tuple (X∗(T ),Φ, X∗(T ),Φ
∨) is a root datum for (G, T ) and the

quotient W = WG(T ) = NG(T )/T is the Weyl group associated to (G, T ).

See ([Con14], Prop. 5.1.6) for a proof that the 4-tuple in Definition 3.1 satisfies the
conditions of being a root datum; the Weyl group W is identified with the usual Weyl
group associated to Φ and is in particular generated by the set of reflections

{sα = id− α∨ ⊗Z α | α ∈ Φ}

From this description it follows that W is a finite and constant group scheme over S.

We record here two natural actions of the Weyl group on affine spaces, which will be
useful for us later on.
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Definition 3.2. Let W be the Weyl group associated to (G, T ) and h = Lie(T ).

(i) The adjoint action Ad : G → End(g) restricts to an action NG(T ) × h → h, since
Adg(h) ∈ h for g ∈ NG(T )(OK) and h ∈ h(OK). In particular the adjoint T -action
on h is trivial since T is abelian, and so the adjoint action descends to the adjoint
Weyl action W → End(h), w 7−→ Adnw for a lift nw ∈ NG(T ) of w ∈ W . As G is
simple, we may identify h ≃ h∨ ≃ X∗(T )⊗Z OK so that the adjoint Weyl action is
identified with the natural reflection action of W on X∗(T )⊗Z OK .

(ii) There natural action of W on G/T via (gT ) · w = gnwT for a lift nw ∈ NG(T ) is
the right multiplication action of W . This also yields a natural action on G/T ×S h
via (gT, h) ·w = (gnwT,Adn−1

w
(h)), which we will make use of later (see Proposition

3.17).

Remark 3.3 (Good primes and torsion primes). Given a reduced root system Φ ⊂ X∗(T ),
a prime p is said to be torsion for a simply-connected Lie group G if there exists a Z-closed
root subsystem Φ′ ⊆ Φ so that the quotient of Z-lattices ZΦ∨/Z(Φ′)∨ has p-torsion. An
equivalent definition of a good prime is that there is no Z-closed root subsystem Φ′ ⊆ Φ
so that ZΦ/ZΦ′, so that the good primes are exactly the non-torsion primes ([Slo80b],
§3.12). Similarly, a prime p is very good if it is good and p does not divide |(ZΦ∨)∗/ZΦ|.
See (loc. cit., §3.6) for a table of the values of |(ZΦ∨)∗/ZΦ| in the case of g simple simply-
laced; it turns out that the only good but not very good case of prime p occurs when
p | n+ 1 and g is of Type An.

3.3 Nilpotent and semisimple elements of Chevalley algebras. We now come
to the definition of the nilpotent scheme and nilpotent sections. Recall that, when g is a
Lie algebra over k, the nilpotent variety Ng is a reduced closed subscheme of g that is the
Zariski closure of the nilpotent elements, and by Galois descent Ng is also well-defined
over non-algebraically closed fields.

Proposition 3.4 ([Cot22b], Thm. 4.12). For a Chevalley OK–algebra g, there exists a
unique closed S-subscheme N sch

g ⊂ g that is reduced and (N sch
g )s ≃ Ngs for geometric

points s→ S. Here the right-hand side denotes the usual nilpotent variety over a field.

Proof. Existence is shown more generally in ([Con14], Thms. 4.6 and 4.12) so we only
discuss uniqueness in our particular case. Suppose X, Y are closed reduced S–subschemes
in AS so that on geometric fibers Ys ≃ Xs ↪−→ An

k and both Xs, Ys are reduced, then we
claimX ≃ Y . The Zariski closureXη ofXη is reduced asXη is an open reduced subscheme
of X, hence so is X ′ = Xη ∪Xs. Since both X ′, X are reduced closed subschemes of An

S

with the same points, X ′ = X. A similar argument for Y yields

Y = Y η ∪ Ys ≃ Xη ∪Xs = X
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Since nilpotent schemes behave well under base–change, we will refer to the nilpotent
scheme N sch

g as Ng for any Chevalley OK-algebra. We can also define:

Definition 3.5. An OK–valued section x ∈ g(OK) is fiberwise nilpotent if xs ∈ Ng(k)
and xη ∈ Ng(K). Equivalently x is an OK–valued section of Ng.

For x ∈ g(OK), we can define the centralizer CG(x) as follows. Through the adjoint
action Ad : G× g→ g we obtain a functor CG(x) so that on OK–algebras R,

CG(x)(R) = {g ∈ G(R) | Adg(x) = x}

By ([Cot22b], Lemma 2.1), CG(x) is represented by a closed S–subgroup scheme of G,
which we denote by CG(x); over algebraically closed fields, the reduced scheme underlying
CG(x) is the usual centralizer.

Definition 3.6. A section x ∈ g(OK) is regular if its centralizer subscheme CG(x) satisfies
dim(CG(x)s) = dim(CG(x)η) = r where r = rank(G). By upper-semicontinuity of fiber
dimension for group schemes, it suffices to have dim(CG(x)s) = r since dim(CG(x)) ≥ r
for semisimple G (see [Hum95], §1.6).

Definition 3.7. For a Lie algebra g over an algebraically closed field we call x ∈ g
subregular if dim(CG(x)) = r+2. For non-regular elements x one has dim(CG(x)) ≥ r+2
so that subregular elements are are the next “closest” to being regular; see ([Hum95],
§4.11) for more details.

If g is now a Chevalley OK–algebra, a nilpotent section x ∈ Ng(OK) is called fiberwise
subregular if both xs ∈ Ng(k), xη ∈ Ng(K) are subregular nilpotent elements; if we do
not require x to be (fiberwise) nilpotent then subregularity in this setting may not make
sense (cf. Example 3.9).

Definition 3.8 ([BC22], §4.1.5, [SGA 3II] Exposé XIV.2). An element x ∈ g(OK) is
called fiberwise semisimple if xs ∈ g(k(s)) is semisimple for all geometric points s → S.
An element x ∈ g(OK) is called regular semisimple if it lies in some Cartan h ⊂ g and for
all geometric points s we have

hs =
⋃
n≥0

(ker(adnxs))

This union may be thought of as the centralizer of x so that it has fiberwise dimension
equal to rank(gs). Regular semisimple elements form an open set grs ⊂ g.

By ([SGA 3II], Exposé XIV.2), set grs is S–fiberwise dense in g and its construction
commutes with base-change, whence it gives the usual notion of regular semisimple ele-
ments of Lie algebras over a field, i.e. x ∈ gk so that CG(x)

◦ is a maximal torus in Gk.
This also makes the density of the semisimple locus in g apparent.

Similar methods as in ([Cot22b], Lemma 2.1) yield that the functor of regular sections in
g is represented by an open subscheme greg ⊂ g over S. In the case of good characteristic,
([BC22], Lemma 4.1.6) gives grs ⊂ greg so that both are S–fiberwise dense in g.
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Example 3.9. We discuss a couple of pathologies that may occur in Chevalley algebras,
which justify the various “fiberwise” conditions in the previous definitions.

(i) The subregular notion need not behave well in fibers. Let

x =

0 1 0
0 0 p
0 0 0

 ∈ sl3(OK), p = char(k) > 3

then xη ∈ sl3(k(η)) is regular nilpotent but special fiber xs ∈ sl3(k) is subregular.
In general we get that x stays in the same (adjoint) nilpotent orbit if it satisfies a
purity assumption in the sense of [Cot22a], i.e. constant centralizer dimension on
the fibers — see (loc. cit., Prop. 5.10).

(ii) Regular semisimple elements (see Definition 3.8 below) can become nilpotent regular
or non-regular elements. Let p > 2 and

x =

(
p 1
0 −p

)
, y =

(
p 0
0 −p

)
(in sl2(OK))

then xη, yη are regular semisimple but xs is regular nilpotent and ys is subregular
nilpotent. For x, even though dimOK

(CG(x)) is locally constant, centralizer CG(x)
is not flat.

3.4 The adjoint quotient. This section and the next are based on some Lie-
theoretic observations in [Ric17] and ([BC22], §4), which hold in greater generality than
base scheme S = Spec(OK). In our situation however we may provide simplified proofs
and constructions suitable to our purposes.

We retain the notations and assumptions of Section 3.1 for Chevalley group G and
Chevalley algebra g. As an integral scheme, g has coordinate ring SymOK

(g∨). The adjoint
action Ad : G → End(g) yields the categorical quotient g//G = Spec((SymOK

(g∨))G),
whose coordinate ring consists of the adjoint G–invariants. Since the restriction of the
adjoint action of G to h factors through the Weyl group W = NG(T )/T , we get a map
SymOK

(g∨)G → SymOK
(h∨)W ; its schematic version is the Chevalley map h//W → g//G.

The natural inclusions SymOK
(g∨)G ↪−→ SymOK

(g∨) and SymOK
(h∨)W ↪−→ SymOK

(h∨)
yield categorical quotient maps

ψ : h −→ h//W, χ : g −→ g//G

Map ψ is a finite branched cover, and χ is known as the adjoint quotient. For the
properties of the counterparts of these morphisms over algebraically closed fields, we
refer to [Slo80b], §3.10, §3.12 and §3.14. We note here that, by virtue of the Jordan
decomposition, two elements x1, x2 ∈ g(k) have χ(x1) = χ(x2) if and only if xss1 ∈ AdG(xss2 )
for their semisimple parts, so that g//G may be thought of as the space of semisimple
conjugacy classes of G in g and χ maps x to the class of its semisimple part [xss].
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Proposition 3.10 ([BC22], Thms. 4.1.10 and 4.1.14). Suppose that G, g, h,W are as
above, r = rk(G) and that char(k) = p is very good for G. Then the Chevalley map
is an isomorphism h//W ≃ g//G ≃ Ar

OK
and the formation of categorical quotient g//G

commutes with base-change.

Note the conditions of both Theorems 4.1.10 and 4.1.14 of [BC22] are satisfied; p being
(very) good implies G root-smooth in the terminology of (loc. cit.) and the étale-local
assumption on S is trivial since OK equals its strict henselization.

Before we investigate the adjoint quotient χ we need a preliminary lemma.

Lemma 3.11 ([Ric17], 4.1.3). Let f : X → Y be a morphism of finite-type S–schemes
with X flat over S. If the base-changed morphism fs : Xs → Ys is smooth over the closed
point s→ S then f is smooth.

Proof. From the fibral criterion of flatness ([Sta18, Tag 00MP]) we get f flat. The smooth
locus U ⊆ X is open and dense, so we are done if it contains all closed points x→ X. For
such an x, the residue field k(f(x)) of f(x)→ Y has characteristic p. Since fs is smooth,
x is a smooth point of X ×S Spec(k(f(x))→ s. Hence x lies in U .

Proposition 3.12. Let χ : g −→ g//G be the adjoint quotient morphism as above.

(i) χ is flat and its restriction χreg : greg → g//G is a smooth surjection.

(ii) The geometric fibers of χ are normal of codimension r, and the nilpotent scheme is
Ng ≃ χ−1(0).

Proof. Most of the proof is in ([BC22], 4.1.18, 4.2.6) but in our case of S = Spec(OK) we
may be more specific. For (i), note that g//G commutes with base-change (Proposition
3.10) so we may pass to geometric fibers s, η, whence the respective adjoint quotients
χη, χs have (geometric) irreducible fibers of codimension r ([Slo80b], §3.10(iv) and §3.14).
Since g//G is smooth and the fibers have the same dimension, we get χ flat by miracle
flatness ([Sta18, Tag 00R4]). Now note that greg is nonempty and S–fiberwise dense in g,
hence it is reduced and therefore flat over S. To show that χreg : greg → g//G is smooth we
can reduce via Lemma 3.11 to showing χreg

s : gregs → gs//Gs is smooth, which follows from
([Slo80b], §3.10 Thm. (vi)). For the surjectivity of χreg we refer to ([Ric17], Thm. 4.3.3),
where a Kostant section1 S ⊂ greg is constructed so that S ≃ g//G via χ.

We next consider (ii). Let h ∈ g//G ≃ h//W be an OK–section with geometric generic
and special fibers hη, hs. By ([Slo80b], §3.10 Thm. (ii)) we have that gregs ∩ χ−1s (hs) is
open and dense in χ−1s (hs), and a similar statement holds for gregη ∩ χ−1η (hη), thus greg

intersects fiber χ−1(h) in an open, S–fiberwise dense set. In particular, fibers χ−1(h) are
generically smooth, hence flat over S. Since the geometric fibers χ−1s (hs), χ

−1
η (hη) are

normal ([Slo80b], §3.10 Thm. (v)), we get χ−1(h) normal over S by ([Mat86], Thm. 23.9).
In particular, for the nilpotent scheme Ng we have established that Ng(K) = χ−1η (0) and
Ng = χ−1s (0), and furthermore bothNg and χ

−1(0) are reduced. We concludeNg ≃ χ−1(0)
as schemes.

1One can think of the Kostant section as a Slodowy slice transverse to the unique regular nilpotent
orbit at a regular representative x ∈ g(OK); see Sections 4.1 and 4.3 for the theory of slices over Spec(OK).
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Proposition 3.13. Quotient map ψ : h → h//W is finite flat, the natural W–action on
hrs = grs ∩ h is free and CG(h) ≃ T for any h ∈ hrs(OK).

Proof. Finiteness of ψ is automatic asW is finite, and we have ψ flat by the fibral criterion
of flatness and miracle flatness; note that the criteria apply because both h and h//W are
smooth ([Slo80b], §3.15 Remark (ii)). To show that the W–action on hrs is free, it suffices
to show that the natural map W ×S hrs → hrs ×S hrs, (w, h) 7→ (w(h), h) is a scheme
monomorphism, and by ([EGA IV4], 17.2.6) it suffices to check so on closed points of S.
So we can reduce to the algebraically closed field case, where by ([Ric17], Lemma 2.3.3)
we have that W acts freely on hrss and moreover CGs(hs) ≃ Ts for hs ∈ hrss (k). For an
alternative (equivalent) viewpoint see ([KW13], §VI.7).

From the above proposition we obtain a finite étale cover ψrs : hrs → hrs//W , and W
acts freely-transitively on its fibers. Therefore:

Corollary 3.14. Morphism ψrs : hrs → hrs//W is a Galois cover with Galois group W .

3.5 Relative Grothendieck–Springer resolutions. We retain the notations and
assumptions of Section 3.1 for Chevalley group G/S and Chevalley algebra g. The free
OK-module b obtains a B-module structure via the adjoint action of B on b and we can
therefore form the following associated bundle (also known as adjoint bundle)

g̃ := G×B b = G×S b//B, b · (g, x) = (gb−1,Adb(x)) for b ∈ B, g ∈ G, x ∈ b (3.2)

with the induced B-action on G×S b indicated on the right.

Lemma 3.15. g̃ is a smooth Zariski-locally trivial G–torsor over G/B with fiber b.

Proof. Note that any two Borels B1, B2 in G are conjugate étale-locally on S ([Con14],
5.2.11) so G/B exists as a smooth projective S–scheme ([Con14], 2.3.6) and its generic and
special fibers are correspondingly the flag varieties ofGη andGs. In this case π : G→ G/B
makes G into a B–torsor on G/B, inducing π̃ : g̃→ G/B, [g, x] 7→ π(g) so that g̃ is a fiber
bundle over G/B with fiber b. Adjoint bundle g̃ is furthermore equipped with a G-action
induced from the (left) G–action on G/B, so that π̃ is G–equivariant.

We get that g̃ is a scheme by pulling an open affine cover {Ui} of G/B to an open affine
cover π̃−1(Ui) of g̃, the affineness of π̃ being a consequence of ([Jan03], §5.14). Now we
can construct Zariski-local sections G/B ⊃ Ui → G for the (a priori étale-locally trivial)
B–torsor π. It suffices to construct a composition series of S–subschemes for B so that
successive quotients are Gm or Ga, since Gm and Ga–torsors are Zariski-locally trivial if
and only if they’re étale-locally trivial ([SGA 1], XI.5.1). Since B = T ⋊ Ru(B), and
T ≃ Gr

m,OK
while Ru(B) ≃

∏
α>0 Uα decomposes into “root groups” Uα ≃ Ga (i.e. so that

Lie(Uα) = gα) we can build our composition series as in ([Con14], 5.1.16).

Local triviality implies G×G/B Ui ≃ B×Ui and we can lift to Zariski-local sections for
g̃ since Ui ×G/B g̃ ≃ (Ui ×G/B G)×B b ≃ Ui × b. Now g̃ is smooth since b is (see [Jan03]
§5.16), so g̃ is indeed a Zariski-locally trivial smooth G–torsor.
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We have a closed immersion g̃ ↪−→ G×B g ≃ G/B×S g into a trivial G–torsor over G/B
(which can be checked on the fibers of S), yielding an equivalent description of g̃ as

g̃ = {(B′, x) ∈ G/B ×S g | x ∈ Lie(B′)}

From this description, we can define a dominant morphism

π : g̃ −→ G/B ×S g −→ g, [g, x] 7−→ (gB,Adg(x)) 7−→ Adg(x) (3.3)

It follows that π is proper since G/B is projective over S. The formation of g̃ com-
mutes with base-change on S and on geometric points s, η we obtain maps πs : g̃s → gs
and πη : g̃η → gη as base-changes of (3.3). The maps πs, πη are commonly known as
Grothendieck–Springer resolutions as defined e.g. in ([Slo80a], §3.3). They are particular
types of simultaneous resolutions (see Section 2.2).

Lemma 3.16. π : g̃ −→ g is finite over the open dense locus greg ⊂ g.

Proof. As the formations of g̃, π commute with base-change we may check this over the
closed point s, where it suffices to show x ∈ greg(k) if and only if x is contained in finitely
many Lie algebras of Borel subgroups Bs ⊂ Gs; this is found in ([Slo80b], §3.8, §3.14).
We thus get quasi-finiteness, hence finiteness of π|greg since it comes from base-changing
the proper map π.

Since π is proper, dominant and generically finite, we may call it the Grothendieck
alteration. Another map of interest is χ̃ : g̃→ h, constructed as follows: given our choice
of Borel B, b/nb = Lie(B/Ru(B)) is the “universal Cartan” and χ̃ is (B′, x) 7→ x mod nb.
More precisely, there exists a short exact sequence of torsors

0 −→ G×B nb −→ g̃ −→ G×B Lie(B/Ru(B)) −→ 0

induced from nb ↪−→ b, since all terms are locally trivial over S. Now B acts trivially on
Lie(B/Ru(B)) as the latter is an abelian subalgebra, so that

G×B Lie(B/Ru(B)) ≃ G/B × Lie(B/Ru(B)) ≃ G/B × h

and χ̃ is the projection of g̃→ G/B × h onto the second factor. Note χ̃ is flat by miracle
flatness and the fibral criterion of flatness ([Sta18, Tag 00MP]), hence smooth by Lemma
3.11 as χ̃s is identified with the smooth morphism g̃s → hs defined in ([Slo80a], §3.3).

Proposition 3.17. Keeping notations as above, the morphisms π and χ̃ fit into a com-
mutative diagram

g̃ g

h h//W

χ̃

π

χ

ψ

(3.4)

so that, S–fiberwise, πs and πη induce the Grothendieck–Springer resolutions on gs resp.
gη. In particular, restriction g̃rs := π−1(grs) → grs is a W–torsor, g̃reg := π−1(greg) ≃
greg ×h//W h and χ̃ : g̃rs → hrs is W–equivariant.
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Proof. The maps πs, πη are the respective Grothendieck–Springer resolutions for gs, gη by
the discussion preceding Lemma 3.16. For the commutativity of (3.4) it suffices to have
the map b→ h//W (induced by inclusion and χ) factoring through

b
pr−→ b/nb ≃ h

ψ−→ h//W

since χ̃ is induced by map pr. Thus, it suffices to check this on global sections, whence

SymOK
(h∨)W SymOK

(h∨)

SymOK
(g∨)G SymOK

(g∨) SymOK
(b∨)

≃

Over field-valued points we note χ̃([g, h + n]) = h for h ∈ h, n ∈ nb, and so the
commutativity of the diagram amounts to the fact that the semisimple part of Adg(h+n)
is conjugate to h ([Slo80a] §3.3).
We next prove the statements involving g̃rs, g̃reg as follows. Define X = G/T ×S hrs,

equipped with the W–action of Definition 3.2 (ii). We aim to show g̃rs ≃ X, which also
defines a W–action on g̃rs. By ([EGA IV4], 17.9.5) it suffices to show the corresponding
map over k and K is an isomorphism, whence it holds by the proof of ([KW13], Thm.
9.1)2. Moreover X//W ≃ grs over k and K, so this isomorphism extends over S again by
([EGA IV4], 17.9.5).

To show W acts transitively on the S–fibers of g̃rs → grs, it suffices as before to pass
to geometric fibers and use g̃rs ≃ X. Say (g1T, h1), (g2T, h2) ∈ X mapping to Adg1(h1) =
Adg2(h2) ∈ grs. Then Adg−1

2 g1
(h1) = h2 so nw = g−12 g1 ∈ NG(T ) since nw conjugates the

two centralizers CG(h1), CG(h2), which are both T as h1, h2 ∈ hrs. Letting w = [n−1w ] ∈ W
we obtain (g1T, h1) · w = (g2T, h2), establishing that W acts freely transitively on the
fibers. Thus g̃rs → grs is a W–torsor.

Now greg ×h//W h is smooth over S since greg → h//W is (by Proposition 3.12), and its
restriction greg×S hrs is furthermore aW–torsor over grs by base-changing alongW–torsor
hrs → hrs//W . Then morphism g̃rs = g̃reg|grs→ greg×S hrs is W–equivariant as both source
and target map to h via projection, so we have an isomorphism of W–torsors over grs,
which extends to all of greg by uniqueness of normalizations; see ([BC22], 4.2.12). In light
of the specified W–action on g̃rs, we likewise obtain that χ̃g̃rs is W–equivariant.

4. Integral Slodowy slices

We now extend Slodowy’s construction of transverse slices ([Slo80b], §5) to our setting
of Chevalley OK–algebras, with the intention of proving a Grothendieck simultaneous
resolution statement for slices (Section 4.6). Throughout, G will be an affine group
scheme, in particular either a Lie group over an algebraically closed field or a split, simple,
simply-connected Chevalley group over S = Spec(OK). T ⊂ B denote a fixed choice of
torus and Borel, and the corresponding Lie algebras over k or S are h ⊂ b ⊂ g.

2Note the terminology of ([KW13]) differs from the standard one - what they call “regular” is regular
semisimple in our terminology.
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4.1 Remarks on Slodowy slices. We review the theory of transverse slices to
G–orbits from ([Slo80b], §5) in a slightly more general setting.

Definition 4.1. Let G act on an integral scheme X over S. A transverse Slodowy slice
to the orbit G · x of x ∈ X is a locally closed subvariety S ⊆ X so that x ∈ S(OK), the
action morphism α : G × S → X, α(g, s) = g · s is smooth and the dimension of S is
minimal with respect to these two conditions.

Based on their definition, we can deduce some useful properties of Slodowy slices.

Lemma 4.2 ([Slo80b], §5.1 Lemma 3). Suppose X is smooth and affine with the adjoint
action of Chevalley group G over S, Y is another S-scheme with trivial G-action and
f : X → Y is a G-invariant morphism. Let x, y ∈ X(OK) lie in the same G-orbit in X
and assume that centralizers CG(x), CG(y) are smooth. Suppose S1,S2 are Slodowy slices
transverse to the orbit at x resp. y. Then (S1, x), (S2, y) are ètale-locally isomorphic over
Y . In particular the henselizations of S1 at x and S2 at y are isomorphic.

Proof. We may assume x = y (since y = g · x for some g ∈ G). As CG(x) is smooth,
Lie(CG(x)) ⊂ g is identified with the Chevalley subalgebra of adx-invariants ([Con14],
2.2.4), inducing an S-splitting g = Lie(CG(x))⊕ g1 for some complementary OK-module
g1. Then the rest of the proof of ([Slo80b], §5.1, Lemma 3) goes through: choose a
projection p : G → g étale at the identity (cf. loc. cit., §5.1 Lemma 1’s proof) and set
G1 = p−1(V ), G2 = {g−1 | g ∈ G1} inside G. By construction, the induced action maps
µi : Gi×Si → X are étale at (1, x) and hence so are the base–changed maps arising from
cartesian diagrams

(G1 × S1)×X S2 S2 (G2 × S2)×X S1 S1

G1 × S1 X G2 × S2 X
µ1 µ2

We furthermore have (G1 × S1)×X S2 ≃ (G2 × S2)×x S1 via (g, s) 7→ (g−1, g · s). Hence
we can choose a neighborhood of (1, x) inside this space, with étale maps to S1,S2.

Remark 4.3. The condition of centralizer CG(x) being smooth over S is satisfied in the
case X = g and x ∈ g(OK) a fiberwise subregular nilpotent section (cf. Definition 3.6) -
note that by ([Cot22a], Thm. 1.1), the centralizer satisfies all relevant ‘purity’ assumptions.

Lemma 4.4 ([Slo80b] §5.1, Lemma 2). If G acts on schemes X, Y with respective action
maps αX , αY , S ⊂ X is a locally closed integral subscheme and f : X → Y is a G-
equivariant morphism, then the following diagram is cartesian and the top arrow is smooth
if the bottom arrow is smooth:

G× (S ×Y X) X

G× S Y

id×f

αX

f

αY
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4.2 Jacobson–Morozov in characteristic p. The aim of the next few sections is
to construct a suitable Slodowy slice S over S, transverse to a chosen S–fiberwise nilpotent
element x ∈ g. The goal is to use slice S to describe a miniversal deformation of RDP
xs ∈ N ∩S and a simultaneous resolution for slices (see Section 4.6). We first make some
remarks on sl2–representation theory in characteristic p > 0, following ([Slo80b], §7.1).

Definition 4.5. Let k be algebraically closed of characteristic p and fix a standard basis
{h, x, y} for sl2(k). A representation ρ : sl2 → gln is called good (in the sense of ([Slo80b],
§7.1)) when ρ(x)p−1 = ρ(y)p−1 = 0; for p = 0 we posit that all sl2–representations are
good.

If V is an n-dimensional (n < p) k-vector space with basis {v1, · · · , vn}, we can define
an irreducible sl2–representation ρn on V as follows:

ρn(x)v1 = 0, ρn(y)vn = 0

ρn(x)vi+1 = i(n−i)vi mod p, ρn(y)vi = vi+1, ρn(h)vi = (n−2i+1)vi mod p for i ≤ n−1

Theorem 4.6 ([Slo80b], §7.1). Any good sl2-representation ρ is completely reducible and
decomposes into a sum of good irreducible sl2–representations of the above form. For each
n < p there is a unique n–dimensional good irreducible representation.

Denote by Vn the unique n–dimensional good irreducible sl2–representation. Vn de-
composes further into weight spaces Vn(k), which are 1-dimensional eigenspaces for the
action of ρn(h) as multiplication by k and −n + 1 ≤ k ≤ n − 1. Then the nilpotent
endomorphisms ρn(x), ρn(y) respectively induce isomorphisms Vn(k)

∼→ Vn(k + 2) and
Vn(k)

∼→ Vn(k − 2); they also respectively annihilate the highest weight space Vn(n − 1)
and the lowest weight space Vn(−n+ 1).

Theorem 4.7 (Jacobson–Morozov, [ST18] Thm. 1.1). Let G be a simple Lie group over
k with Lie algebra g. Suppose p = 0 or p > Cox(g). For each nilpotent x ∈ g(k) there is
a completion to an sl2–triple {h, x, y} coming from a faithful representation ρ : sl2 → g
with x = ρ(x0), y = ρ(y0), h = ρ(h0) for {h0, x0, y0} the standard basis of sl2(k). The
triple {h, x, y} is unique up to CG(x)–conjugation and the composite representation ad◦ρ :
sl2 → gl(g) is a good representation.

Remark 4.8. According to [ST18], restriction p > Cox(g) is optimal for the uniqueness of
sl2-triple {h, x, y} up to conjugation, and it improves previous bounds such as 4Cox(g)−2
appearing in [Slo80b].

4.3 Slodowy slices via Jacobson–Morozov. Let G denote a split, simple, simply-
connected Chevalley group of Type An over S with Chevalley algebra g. Consider the
setting of Section 4.1, with G acting on X = g via the adjoint action and x ∈ g(OK) an
S-fiberwise subregular nilpotent element; this condition ensures both generic and special
fibers xη, xs remain in the respective (unique) subregular nilpotent orbit of gη, gs. In view
of Lemma 4.2 we may construct a suitable Slodowy slice at x, transverse to the (adjoint)
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subregular nilpotent orbits of gη, gs and any other Slodowy slice at x will be étale-locally
isomorphic to it. Moreover this allows us to replace x with another representative in its
nilpotent orbit, so we may assume x has a ‘standard’ form.

Proposition 4.9. Assume p > Cox(g). There is a choice of subregular nilpotent represen-
tative x ∈ g(OK) extending to a section of sl2-triples {h, x, y} ⊂ g(OK) i.e. {hη, xη, yη}
and {hs, xs, ys} are sl2-triples respectively in gη and gs.

Proof. It is clear by the restrictions (see Theorem 4.7) that fiberwise subregular x in-
duces unique sl2-triples in Lie algebras gη, gs up to the action of Lie(CG(x)) ⊂ g(OK).
Subregular nilpotent elements in Type An have standard Levi form in characteristic zero,
i.e. they are regular nilpotent in a Levi subalgebra l corresponding to a parabolic p ⊆ g
determined by a subset of simple roots I ⊂ ∆. In this case, if we denote the simple roots
as ∆ = {α1, · · · , αn}, the corresponding Levi and subregular representative are

l = hη ⊕
n−1⊕
i=1

gαi,η, xsubreg =
n−1∑
i=1

eαi
(4.1)

where Chevalley basis elements eαi
are viewed as root vectors in gη (see Section 3.1).

By the discussing preceding this proposition we may replace our subregular x with the
“standard” representative x = xsubreg in Equation (4.1), which has this form because it is
a regular representative in l (see e.g. [Ric17], Lemma 3.1.1); as vectors eαi

form a Z–basis
for g, clearly x ∈ g(OK) still.
We now complete x to an sl2–triple {x, y, h}. By ([CM93], §3.6) an element h =∑
aihαi

∈ hη satisfies [h, eαi
] = dieαi

if and only if the weights of the Dynkin diagram
corresponding to x are (d1, · · · , dn). Up to relabeling we have di = 2 for i ̸= n, dn = 0
(see loc. cit., 3.6.4). Therefore condition [h, x] = 2x yields a system of equations

n∑
j=1

aj
⟨αj, αi⟩
⟨αj, αj⟩

=
n∑
j=1

ajCj,i = di, 1 ≤ i ≤ n (4.2)

where C is the Cartan matrix of g. This gives a unique h withOK–coefficients if and only if
det(C) = n+1 is invertible in OK , which is granted by the restriction p > Cox(g) = n+1.
For y =

∑
bie−αi

, a simple calculation using the Chevalley relations yields

n−1∑
i=1

aihαi
= h = [x, y] =

[ n−1∑
i=1

eαi
,
n−1∑
i=1

bie−αi

]
=

n−1∑
i=1

bihαi

so coefficients bi = ai are still in OK . Since [h, y] = −2y follows from [h, x] = 2x, we have
constructed an sl2-triple in g(OK); one can check that ai mod p ̸= 0 so that the mod p
reductions {h, x, y} still form a subregular sl2-triple in gs.

Lemma 4.10. Fix an integral sl2-triple {h, x, y} as in Proposition 4.9. Then OK-module
g/adx(g) is free of rank r + 2.

27



Proof. By assumption x ∈ g(OK) so adx(g) ⊂ g and quotient g/adx(g) is an OK-module.
Consider {hη, xη, yη} as an sl2-triple in the K-Lie algebra gη, then the dimension of K-
vector space gη/adxη(gη) is the dimension of the centralizer Cgη(xη), which is r + 2 by
subregularity. So g/adx(g) is a rank r + 2 module, possibly with torsion.

Now consider the mod p sl2-triple {hs, xs, ys} inside gs. Since p > Cox(g), gs is a good
sl2–representation decomposing into irreducible good sl2–representations Vd1 , · · · , Vdr .
Each irreducible representation Vdi decomposes further into di 1–dimensional eigenspaces

Vdi(−di + 1), · · · , Vdi(di − 1)

for the action of adhs and by sl2–theory adxs maps Vdi(k) isomorphically to Vdi(k+2) (cf.
Section 4.2). So

gs/adxs(gs) ≃
r⊕
i=1

Vdi(−di + 1) (4.3)

is the direct sum of all lowest weight eigenspaces. Furthermore as adx annihilates all
highest weight eigenspaces Vdi(di − 1), the number of irreducible components of sl2-
representation g (and hence the dimension of gs/adxs(gs) equals r + 2, the dimension
of the centralizer of subregular xs.

Since forming module quotients commutes with base–change, identification (g/adx(g))⊗
k ≃ gs/adxs(gs) implies equidimensionality of the fibers of g/adx(g), hence it is flat over
OK and therefore it is a free rank r + 2 module.

Corollary 4.11. Retaining the notation of Lemma 4.10, if a denotes a free OK-submodule
of g complementary to adx(g) then S = x+ a is a Slodowy slice transverse at x fiberwise
to the nilpotent orbits of xs and xη.

Proof. The choice of such an a is possible via Lemma 4.10 since g/adx(g) is free. We
observe in the special fiber S := S ⊗ k = xs+ as that as is a complement to adxs(gs) in gs
and hence isomorphic to

⊕
i Vdi(−di + 1) (in the notation of the proof of Lemma 4.10).

It forms a Slodowy slice in the traditional sense by ([Slo80a], §2.4) and is transverse at xs
to the subregular orbit. The action map µ : G× S → g is smooth, since by Lemma 3.11
it suffices to check smoothness on the special fiber, where µ : Gs × S → gs is precisely
the smooth action map of Slodowy slice S. Since dim(S) = dim(S) by flatness, we have
checked that S satisfies all conditions of a transverse Slodowy slice.

We may identify a ≃ ker(ady) so that S = x + ker(ady) by Corollary 4.11; this is the
standard formula for Slodowy slices.

4.4 Spaltenstein slices. We now consider Chevalley algebras of type Dn or En
3. In

this case we may construct a transverse Slodowy slice which works for all good character-
istics, thus improving on the restriction p > Cox(g). Following [Spa84], let G be a simple
simply-connected split group scheme over S with corresponding Chevalley algebra g as

3The construction in this section should work for An types as well, thereby eliminating the need for
explicit sl2–triples; see ([BMR08], 7.1.4).
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before, and fix a maximal torus, Borel T ⊂ B in G and a fiberwise subregular nilpotent
x ∈ g(OK).
It is known (cf. [CM93], §8.2 and §8.4) in the simply-laced cases Dn, En that x is a dis-

tinguished nilpotent and so by the classification of nilpotent orbits in good characteristic
there exists a unique distinguished parabolic P ⊂ G which contains B and corresponds to
the orbit of x; for the notions of distinguished elements and subgroups we refer to [Spa84]
and ([CM93], §8). We may therefore define a 1–parameter subgroup λ : Gm,S −→ T so
that, with respect to a root basis ∆ ⊂ Φ of G and root system ΦP ⊂ Φ of P we have

⟨α, λ(t)⟩ =

{
0, α ∈ ∆, −α ∈ ΦP

2, α ∈ ∆, −α ̸∈ ΦP

where ⟨−,−⟩ : X∗(T ) × X∗(T ) → Z is the pairing induced from perfect duality on the
(co)character lattices.

Theorem 4.12 ([Spa84]). Let λ : Gm,S −→ T be constructed as above and let g =
⊕

i g(i)
be the Z–graded decomposition of g into eigenspaces for the induced Gm–action

g(i) = {x ∈ g(OK) | Adλ(t)(x) = tix ∀ t ∈ Gm(OK)}

Then x ∈ g(2) and there exists an affine Gm–stable subspace a ⊂ g complementary to
[x, g], so that S = x+a is a Slodowy slice, transverse at x fiberwise to the nilpotent orbits
of xs, xη.

We will call such slices S Spaltenstein to differentiate them from the slices constructed
in Corollary 4.11 via Jacobson–Morozov. The proof in (loc. cit.) carries over to OK
since rk[x, g] = dimk[xs, gs] as a consequence of dimk CGs(xs) = dimOK

CG(x), and one
concludes that [x, g] is a direct factor of g, hence it is free as in Lemma 4.10. Furthermore
g(i) ⊂ [x, g] for i > 0 so there exists an affine Gm–stable complement a ⊂

⊕
i≤0 g(i) i.e.

a = g/[x, g]. The action map µ : G × S → g, (g, s) 7→ Adg(s) for S = x + a is smooth
in a neighborhood of (1, 0), so by virtue of the homogeneous Gm–action it is smooth (see
e.g. [Slo80b], §7.4 Cor. 1).

Remark 4.13. We can also extend Proposition 4.9 to the Dn and En cases by writing
down a suitable subregular representative x ∈ g(OK), (e.g. [CM93], §5. produces such an
x for g of type Dn), and then finding h, y is a computational exercise in the vein of the
proof of Proposition 4.9. We chose to consider Spaltenstein slices here so that we can
relax the assumption p > Cox(g) to just p being a good prime.

4.5 Gm–actions and Gm–deformations. Suppose we have constructed a suitable
transverse slice S at a fixed fiberwise subregular nilpotent x ∈ g(OK); if g is of type An,
the slice is S = x + ker(ady) for {x, y, h = [x, y]} forming an integral sl2–triple, while
for the other simply–laced types S is a Spaltenstein slice constructed as in Section 4.4.
The goal of this section is to discuss some Gm–actions on slices S and relate them to the
notion of Gm-equivariant deformations.
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We first define a 1–parameter subgroup λ : Gm,S → T when g is of type An, similar to
Section 4.4. Let x be a fiberwise subregular nilpotent section of g and complete it to an
sl2–triple {x, y, h} over S (Section 4.3). Then {xs, ys, hs} defines a good sl2-representation
on gs (Theorem 4.7). Let Vdi be an irreducible summand of this representation, the unique
irreducible good sl2-representation of dimension di, and let {v1, · · · , vdi} be a basis. There
exits a Gm-action on Vdi by linearly extending

t · vk = tdi−2k+1vk t ∈ Gm, k ≤ di (4.4)

Definition 4.14. If g ≃
⊕

i Vdi is the decomposition of g into irreducible good sl2-
representations, there is a uniquely defined Gm-action λ : Gm → Aut(g) which operates
on each summand Vdi by the rule (4.4). It commutes with the Lie bracket of g and
hence factors through a 1–parameter subgroup, still denoted λ. We call λ a 1–parameter
subgroup adapted to xs.

This decomposition holds over OK since gη ≃ gs. Moreover, by abuse of notation we
denote by Vdi the OK–module generated by the Z–basis {v1, · · · , vdi} for the k–vector
space Vdi in (4.4). Note that λ(Gm) ⊆ T and the action of adhs decomposes g into
eigenspaces

g =
⊕
i∈Z

g(i), g(i) = {v ∈ g | Adλ(t)(v) = tiv ∀ t ∈ Gm}

which also function as eigenspaces for the λ-action ([Slo80b] §7.1, §7.3). In particular
x ∈ g(2) and λ coincides with the 1–parameter subgroup constructed for Spaltenstein
slices S (Theorem 4.12).

Definition 4.15. Let λ be as above andm : Gm → Aut(g) be the usual left–multiplication
action.

(i) The action
µ : t · v = m(t2)Adλ(t−1)(v), v ∈ g

fixes the element x and preserves the Slodowy slice S. Moreover it is a contracting
action on S, i.e. it extends to an action A1

S → Aut(S) with 0 · s = x for all s ∈ S.

(ii) Let S̃ be the preimage of S under the Grothendieck alteration π. Define an action
on g̃ via

µ̃ : t · [g, v] = [λ(t−1)g, t2v], t ∈ Gm(OK), g ∈ G(OK), v ∈ g(OK)

This action preserves S̃.

By the definition of µ, µ̃ we have that the Grothendieck alteration π : S̃ −→ S is
Gm,S–equivariant, and a simple calculation yields that χ̃ : S̃ → h is also Gm,S–equivariant
when h ≃ Ar

S is equipped with contracting Gm,S–action t ·h = t2h; in this case, the action
contracts h to the origin.
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We next equip h//W with a Gm,S–action so that the adjoint quotient χ : S → h//W
becomes Gm,S–equivariant. By ([Dem73], §6 Théoréme 3 and Corollaire), if p is a good
prime4 then Sym(X∗(T ))W is a graded polynomial OK-algebra with homogeneous gener-
ators χ1, · · · , χr of (homogeneous) degrees d1, · · · , dr, and furthermore

Sym(X∗(T )⊗Z k)
W ≃ Sym(X∗(T ))W ⊗Z k

Thus the degrees di of the generators χi are the same as their mod p versions, which
are recorded in ([Slo80b], Table in p. 112). As T is split we also have

h ≃ Spec(SymOK
(X∗(T ))), h//W ≃ Spec(SymOK

(X∗(T ))W ) ≃ Spec(OK [χ1, · · · , χr])

Define a Gm,S–action on h//W by linearly extending t · χi = t2diχi. The following propo-
sition carries over to the relative setting without change.

Proposition 4.16 ([Slo80b], §7.4 Prop. 1). The adjoint quotient χ : S −→ h//W is
Gm,S–equivariant with respect to action µ on S and the above action on h//W .

Remark 4.17. Note that the Gm,S–action µ defined on S has the opposite weights of
the Gm,S–actions defined in ([Ric17], §4.3) and ([BC22], §4.2.4) for the Kostant slice S.
Both constructions are essentially equivalent; we chose this formulation so as to get a
contraction on h and stay consistent with the weight conventions discussed in ([Slo80b],
§7.4) and ([Spr84], §2).

We now explain the notion of Gm-deformations. Suppose X0 is a singular hypersurface
with a Gm-action so that it is Gm-equivariantly isomorphic to V (f) for some weighted–
homogeneous polynomial f(x1, · · · , xn). Here weighted homogeneity means that there
exists a tuple (d, k1, · · · , kn) so that for any monomial

ai1,··· ,inx
i1
1 · · ·xinn

appearing in f we have
∑

j ijkj = d. In this case we can study the Gm–equivariant
deformation theory of X0 ≃ V (f) by replacing the objects and maps of the associated
deformation functors in Section 2.3 with (formal) schemes equipped with a Gm,S–action
and Gm,S–equivariant morphisms. In particular we may speak of Gm,S–miniversal defor-
mations.

It is not obvious that Gm,S–miniversal deformations exist. The following theorem is
based on the existence of general miniversal deformations and is proven by checking the
definition of miniversality after equipping all objects with a Gm–action.

Theorem 4.18 ([Slo80b], §2.5 Thm). Suppose f ∈ k[x, y, z] is weighted–homogeneous
and defines a hypersurface V (f) with isolated singularities in A3

k. Then there exists a
Gm,S–miniversal deformation of V (f) over S = Spec(W (k)).

4Actually, p non-torsion suffices; see Remark 3.3.
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Example 4.19. Let us compare the Gm–actions for a specific RDP surface. Polyno-
mial f(x, y, z) = z2 + x2 + y4 defines an A3–singularity (Theorem 2.2) and is weighted–
homogeneous with weights (2, 1, 2). Its miniversal deformation is given by

V (F ) −→ Spec(OK [[t1, t2, t3]]), F (x, y, z, a, b, c) = z2 + x2 + y4 + t1y
2 + t2y + t3

(see Example 2.24). Polynomial F is weighted–homogeneous with weights (2, 1, 2, 2, 3, 4)
and as a result base Spec(OK [[t1, t2, t3]]) admits a Gm,S–action with weights (2, 3, 4), while
total space V (F ) admits a Gm,S–action with weights (2, 1, 2, 2, 3).

On the other hand, for the subregular orbit in sl4 (the unique Lie algebra of type
A3), one may compute its decomposition into good irreducible sl2–representations (see
[Slo80b], §7.4 Example) as

sl4 ≃ V4 ⊕ V2 ⊕ V ′2 ⊕ V ′′2 ⊕ V0

where sl2–modules Vi have highest weight i. By inspecting the weights of the µ-action
of Definition 4.15 we get weights (6, 4, 4, 4, 2); note that in both Sections 4.3 and 4.4, a
basis for S (up to translation with x) is given by a choice of lowest weight vectors for each
irreducible sl2–summand, and there is an identification S ≃ Spec(OK [x1, · · · , xr+2]) by
choosing xi to be dual to the lowest–weight vectors. This is why we get the aforementioned
weights (cf. [Slo80b], p. 110). For h//W we have that the homogeneous degrees of the
fundamental generators are (2, 3, 4) (see [Slo80a], Table in p. 112); this also follows directly
from reading off the degrees of symmetric polynomials σ2, σ3, σ4.

Note that if we double the weights of the Gm–action on V (F ), then up to reordering
variables the miniversal deformation ϕ : V (F ) → Spec(OK [[t1, t2, t3]]) and χ : S → h//W
are both Gm,S–equivariant with the same Gm–weights on source and target.

The previous example illustrates a more general principle, which we will clarify in
Theorem 4.21 in the next section.

4.6 Grothendieck alterations for transverse slices. We retain the assumptions
of Section 4.5 and fix a Slodowy slice S at a fiberwise subregular nilpotent section x of g
(either by the Jacobson–Morozov method or the Spaltenstein method). Let π : S̃ −→ S
be the restriction of the Grothendieck alteration on S and define Gm,S–actions µ, µ̃ on

S, S̃ as in Section 4.5.

Proposition 4.20. Consider the following commutative diagram induced by restricting
diagram (3.4)

S̃ S

h h//W

χ̃res

π

χres

ψ

(4.5)

to S and its preimage S̃ under the Grothendieck alteration. Then this diagram induces
S-fiberwise a simultaneous resolution of the singularities of χ : S → h//W .
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Proof. Let α : G×S → g, α̃ : G×S̃ → g̃ denote the respective restrictions of the adjoint
action of G on g and g̃. By G–invariance of the adjoint quotient χ and its resolution χ̃,
their restrictions to S, S̃ yield commutative diagrams:

G× S g G× S̃ g̃

S h//W S̃ h

α

p2 χ

α̃

p2 χ̃

χres χ̃res

(4.6)

As χ◦α is flat and p2 is flat and surjective, χres is flat ([Sta18, Tag 02JZ]). Since π : S̃ → S
comes from base-changing proper morphism g̃ → g, it is also proper. Applying Lemma
4.4 to π : g̃→ g we get that α̃ : G×S̃ → g̃ smooth, so as p2, χ̃ are smooth, it follows that
χ̃res is smooth as well. We may therefore base–change to the special fiber by Lemma 3.11
(since formation of diagram (4.5 commutes with base–change) and check that we have a
simultaneous resolution for S → hs//W , where S = S ⊗ k is a Slodowy slice over k. In
this setting, the statement is true by ([Slo80b], §5.3 Corollary).

For ease of notation we will henceforth refer to χres, χ̃res as χ and χ̃ respectively, when no
confusion can arise. We now relate Proposition 4.20 (i.e. diagram (4.5)) to the miniversal
deformation of an RDP singularity and its minimal resolution. What follows is essentially
the main theorem of [Slo80b]; the study of miniversal deformations of minimal resolutions
in this context is due to [Pin80].

Theorem 4.21. Let χ : S −→ h//W denote the localization of map χ obtained by

henselianizing S and h//W at x and 0 respectively. Let S̃ be the preimage of S under

the Grothendieck alteration and χ̃ : S̃ −→ h the associated map as in diagram (4.5).
Assume p = char(k) > n + 1 if g is of Type An, otherwise assume p is good for g. Then
χ is a Gm,S–miniversal deformation of the RDP xs ∈ (N ∩ S)(k) and χ̃ is a miniversal
deformation of the minimal resolution of xs.

Proof. Let r be the rank of RDP xs and consider morphism χ first. By Proposition 2.23
there exists a miniversal (algebraic) deformation of xs, which we denote as ϕ : V (F ) →
Spec(R) for some F ∈ OK [[x, y, z, t1, · · · , tr]] and R = OK [[t1, · · · , tr]]. By Theorem 4.18
there exists aGm,S–action on V (F ) and Spec(R) making ϕ aGm,S–miniversal deformation.

We know that χ−1(0) = N ∩S has an RDP singularity at xs and χ is Gm,S–equivariant
with respect to action µ on S and the “Weyl exponents” action on h//W (Proposition 4.16),
hence by miniversality we get a Gm,S–equivariant morphism f : h//W −→ Spec(R). It
suffices to show f is an isomorphism, and by the fibral isomorphism criterion ([EGA IV4],
Cor. 17.9.5) it suffices to show fs : hs//W −→ Spec(R⊗k) is an isomorphism over geomet-
ric point s = Spec(k). So we reduce to showing the statement over k of sufficiently good
characteristic, whence it follows from ([Slo80b], §8.7 Thm) by comparing the Gm–weights
on each of hs//W and Spec(R⊗k). For χ̃, the statement holds by ([SB01], Thm. 3.4).

Remark 4.22. Shepherd-Barron in ([SB01], Thm. 4.6) has also shown the above theorem
via different methods and in good characteristic; the proof similarly contains a passage
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from characteristic zero to positive characteristic. In particular we may assume that p is
good for Theorem 4.21 to be true.

Remark 4.23. The statement a priori concerns formal miniversal deformations, but
since we are dealing with affine (isolated) singularities these deformations are algebraic
(see Remark 2.26). We may therefore consider the henselianized versions of χ, χ̃ when
we refer to the simultaneous resolution diagram (4.5) and without loss of generality write
h//W ≃ Spec(OK [[t1, · · · , tr]]).

5. The monodromy Weyl action

We now come to the central part of the article, the description of monodromy actions
in terms of Weyl groups. We discuss the relevant W -actions in Section 5.6, along with
the proof of the main theorem. In order to construct said W -actions, multiple tools from
the theory of nearby cycles and (relative) perverse sheaves need to be combined, so we
explain these concepts next.

5.1 Classical nearby cycles. Throughout this section we work in the small étale
topos setting. Our base scheme is a strictly henselian trait S = Spec(OK) with closed
point s = Spec(k) and generic point η = Spec(K). We denote geometric points with a
bar, e.g. η, with the understanding that the underlying residue field is separably closed
(e.g. η = Spec(Ksep)). Whenever appropriate we assume OK is complete.

Given a finite-type S-scheme X, we denote by Db(X) the bounded derived category
of Qℓ-sheaves on X, where ℓ ̸= p = char(k). Most of the formalism below is usually
developed first for finite coefficient rings Z/ℓn, but standard reductions via inverse limits
and taking (−)⊗Zℓ

Qℓ yield the same statements for Qℓ-coefficients, so we choose not to
belabor this point.

Definition 5.1. Let X → S be a finite-type S-scheme with generic fiber Xη, geometric
generic fiber Xη and special fiber Xs. Denote the respective inclusions by

Xη Xη X Xs

j

j i

(i) The nearby cycles functor is RΨX : Db(Xη)→ Db(Xs), F 7−→ i∗Rj∗(Fη), where Fη
is the pullback of F to Xη. Complex RΨX(F) is naturally equipped with an action
of inertia I = Gal(η/η) = GalK ([SGA 7II], Exposé XIII §1.3).

(ii) For F ∈ Db(X), adjunction map F → Rj∗(Fη) gives an exact triangle

i∗F ϕ−→ RΨX(F) −→ RΦX(F)
[1]−→ (5.1)

defining the vanishing cycles functor RΦ : Db(X)→ Db(Xs) as the cone of map ϕ.
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Nearby and vanishing cycles have various functorial properties. For example, if f :
X → Y is a morphism of S-schemes inducing maps fη : Xη → Yη and fs : Xs → Ys
between the geometric generic and special fibers, there are natural maps

RΨY (Rfη∗Fη) −→ Rfs∗RΨX(F), F ∈ Db(X) (5.2)

f ∗sRΨY (F) −→ RΨX(f
∗
ηFη), F ∈ Db(Y ) (5.3)

Map (5.2) is an isomorphism when f is proper, and map (5.3) is an isomorphism when
f is smooth. Moreover the natural I-action extends to RΦX(F), making exact triangle
(5.1) I-equivariant ([SGA 7II], Exposé XIII, 2.1.7.1, 2.1.7.2, 2.1.2.4).

Given an S-scheme X with F ∈ Db(X) and a point x ∈ Xs, let X(x) denote the strict
henselization of X at x→ X. Then the stalks of the nearby cycles are computed as

(RΨXF)x ≃ RΓ(X(x) ×S η,Fη)

We adopt the terminology of Illusie (cf. [Ill17], §1.3) in saying that X(x) represents an
ℓ-adic Milnor ball and generic fiber X(x)×S η represents an ℓ-adic Milnor fiber, consistent
with the classical fact that stalks of (complex) nearby cycles compute the cohomology of
Milnor fibers.

Example 5.2. A more direct relationship with the classical Milnor fiber can be seen as
follows. Assume X is a flat relative surface over S, smooth outside an isolated rational
singularity on the special fiber x→ Xs, then RΦXQℓ is supported on the physical point x
and we obtain (R0ΦXQℓ)x ≃ (R0ΨXQℓ)x/Qℓ ≃ 0 and (RiΦXQℓ)x ≃ (RiΨXQℓ)x for i > 0.
In this case we have ([SGA 7II], Exposé XVI)

(RiΦXQℓ)x ≃

{
Λr, i = 2

0, i ̸= 2

where r ≥ 1 is the dimension of the stalk as a Qℓ-vector space. This can be thought of
as the ℓ-adic analogue of the topological Milnor fiber being a bouquet of n-spheres, hence
having only top cohomology.

Since we will only deal with nearby cycles of families X → S acquiring isolated ratio-
nal singularities, it is worth re-emphasizing that RiΨXQℓ ≃ RiΦXQℓ for i > 0. Hence
any statements regarding stalks of nearby cycles should be compatible with analogous
statements in the complex setting, where people usually consider so-called “vanishing
homology”.

Remark 5.3. In the case that x is a hypersurface singularity locally defined by the
vanishing of a weighted–homogeneous polynomial f(x, y, z) (such as the normal form of
an RDP as defined in Theorem 2.2), we have that the dimension of the Tjurina algebra
dim(T1) (see Definition 2.17) equals the Milnor number µ = length(Ext1(Ω1

X/S,OX)).
If the I-action on RΨXQℓ is tamely ramified, meaning the action factors through tame
quotient I ↠ It ≃ I/P , we have r = µ = dim(T1). More generally the Deligne–Milnor
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conjecture states that dim(T1) = r + Sw(R2ΨXQℓ), where the Swan conductor term
measures the wild ramification of the nearby cycles ([SGA 7II], Exposé XVI, Conj. 1.9).

We will see that under our restrictions on the characteristic p, for a surface family X/S
acquiring RDP singularities we have RΨXQℓ ≃ (RΨXQℓ)

P (the wild inertia invariants)
i.e. RΨXQℓ are identified with the tame inertial nearby cycles RΨtr

XQℓ = i
∗
Rjtr∗ Qℓ, where

jtr : Xηtr ↪−→ X is induced from inclusion ηtr = Spec(Ktr)→ S.

5.2 Nearby cycles on formal schemes. In this section we assume S = Spec(OK)
is a complete local trait. In [Ber96], Berkovich constructs a nearby cycles functor vari-
ant for a class of formal schemes over Spf(OK), which includes finite-type schemes X/S
completed along a closed subscheme of the special fiber Y ⊆ Xs ([Ber96], §1). Denote by

X the formal completion X̂Y . Its special fiber Xs is identified with finite-type scheme Y ,
and the generic fiber Xη is a rigid-analytic space over K.

There exists an equivalence between formal schemes étale over X and formal schemes
étale over Xs ([Ber96], Prop. 2.1.(i)) and so composing the associated functor Xs → X
with the generic fiber functor X→ Xη induces a map of sites ν : (Xη)qét −→ (Xs)ét. The
source endows Xη with its quasi -etale site, where the quasi-etale covers of analytic spaces
are defined in the sense of ([Ber94], §3). There exists also a natural morphism of sites
µ : (Xη)qét −→ (Xη)ét.

Definition 5.4. For an étale sheaf F ∈ Db(Xη), RΨBer
X (F) = Rν∗µ

∗(F) defines the
Berkovich nearby cycles functor RΨBer

X : Db(Xη) −→ Db(Xs). It is a sheaf naturally
equipped with a Gal(η/η) = GalK-action ([Ber96], Rem. 2.6).

The crux of this construction is a comparison theorem with the algebraic nearby cycles
defined on X/S: the rough idea is that RΨXQℓ|Y depends only on the formal completion
X along Y , hence on a formal neighborhood of Y . The comparison theorem below is
stated for étale sheaves of torsion prime to p, though as we have remarked before the
statement works for Qℓ as well.

Theorem 5.5 ([Ber96], Thm. 3.1, Cor. 3.5). Let X , Y,X be as above. Let F be an étale

constructible sheaf on Xη with torsion prime to p, and denote by F̂ its pullback to Xη.
Suppose Y/S is proper (e.g. finite). Then there exist canonical isomorphisms

RnΨXF|Y≃ RnΨBer
X (F̂), RΓ(Y,RΨXF) ≃ RΓ(Xη,F)

compatible with the action of Gal(η/η) on either side.

Corollary 5.6. Suppose X is a proper flat surface over S with smooth generic fiber Xη
and special fiber Xs having exactly one RDP x ∈ Xs(k). Then the Gal(η/η)-action on
H2

et(Xη,Qℓ) depends only on a formal affine neighborhood of x in X .

Proof. Let

ÔXs,x ≃
k[[x, y, z]]

f(x, y, z)
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be the completed local ring at the RDP singularity, f the normal form describing the
RDP. By Corollary 2.25

ÔX ,x ≃
OK [[x, y, z]]
F (x, y, z)

, F (x, y, z) ≡ f(x, y, z) mod p

for some polynomial F (x, y, z) that is the pullback of a miniversal equation of the RDP
as in Corollary 2.25. Now by the comparison of Berkovich (Theorem 5.5), we obtain a
canonical Galois-equivariant isomorphism

(R2ΨXQℓ)x ≃ H2((Spf(ÔX ,x))η,Qℓ) (5.4)

where the generic fiber of the formal completion of X along x is Xη = Spf(ÔX ,x))η, a rigid-
analytic variety over η, and the right-hand side denotes Berkovich’s ℓ-adic cohomology
for analytic spaces ([Ber96], §3). Now let Y → S denote the affine relative surface

Y = Spec
(OK [x, y, z]
F (x, y, z)

)
, Ys = Spec

( k[x, y, z]
f(x, y, z)

)
having the same RDP at y → Ys as x → Xs. We have ÔY,y ≃ ÔX ,x and so (5.4) gives
(R2ΨXQℓ)x ≃ (R2ΨYQℓ)y Galois-equivariantly. To compare this with the Galois action
H2

ét(Xη,Qℓ), we use the nearby cycles spectral sequence:

Eij
2 = Hi(Xs,RjΨXQℓ) =⇒ Hi+j(Xs,RΨXQℓ) ≃ Hi+j(Xη,Qℓ)

Since R2ΨXQℓ is a skyscraper sheaf supported on x, the E2-page is

H0(Xs,R2ΨXQℓ) 0 0

0 0 0

H0(Xs,Qℓ) H1(Xs,Qℓ) H2(Xs,Qℓ)

d2

hence the spectral sequence degenerates at E2 and E
p,q
2 = grFp H

p+q(Xη,Qℓ) for the abutt-

ment filtration F •. Looking at the nontrivial graded pieces yields E0,2
2 = H2(Xη,Qℓ)/E

2,0
2

i.e. we obtain H2
ét(Xη,Qℓ) ≃ (R2ΨXQℓ)x ⊕ H2(Xs,Qℓ) with trivial inertia action on

H2(Xs,Qℓ) and the induced monodromy Gal(η/η)-action on the stalks of RΨXQℓ; the lat-
ter claim follows from the Galois-equivariance of the E2-page of the spectral sequence.

5.3 Nearby cycles on a Grothendieck topos. Since we will need to describe
nearby cycles of ℓ-adic sheaves over bases of dimension > 1, we collect here their general
formalism and properties in amenable situations. In order to do this, we will need the
language of oriented toposes; for a modern English reference, see ([Ill17], §1).
We retain the conventions of Section 5.1 and consider S-schemes f : X → S, g : Y → S.

Bounded derived category of étale sheaves Db(X) is assumed to have coefficient ring Z/ℓn,
but the statements below will also work for Qℓ-coefficients.
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Definition 5.7. The left oriented 2-product topos X
←
×S Y is the Grothendieck topos

defined in a universal way by the data of 2-commutative diagram

X
←
×S Y Y

X S

p1

p2

g
τ
f

(5.5)

where X, Y and S denote the étale toposes associated to the schemes and τ : g◦p2 → f ◦p1
is a 2-morphism. From these data we get a defining site for X

←
×S Y with the following

covering families: for maps U → V ← W étale over X → S ← Y put {Ui → V ← W} a
covering of U → V ← W where {Ui} → U is a covering, and {U → V ← Wi} a covering
of U → V ← W where {Wi} → W is a covering. The third type of families is given by
coverings {U → V ′ ← W} of U → V ← W for which the induced square

V ′ W ′

U V W

□

is cartesian; note the individual maps V ′ → V , W ′ → W need not be coverings in this
case ([Ill17], 1.1.1).

Maps between such oriented toposes X ′
←
×S′ Y ′ −→ X

←
×S Y are defined by the data

of maps {X ′ → X,S ′ → S, Y ′ → Y } and appropriate 2-morphisms between these maps
([Ill17], 1.1.2).

A special case is is (Y, g) = (S, id), where the oriented product X
←
×S S is called the

vanishing topos of X/S. The points of the vanishing topos consist of triples (x, η, sp)
where x → X, η → S are geometric points together with a specialization morphism
sp : η → S(f(x)).

Definition 5.8 (Nearby cycles over general bases).

(i) There exists a unique morphism Ψ : X −→ X
←
×S S compatible with diagram (5.5),

by the universal property of products. The derived pushforward

RΨf = RΨ∗ : D
b(X) −→ Db(X

←
×S S)

is the nearby cycles functor relative to f .

(ii) Let (x, η, sp) be a point of X
←
×S S with x over a geometric point s → S, η ∈ S

and sp : η → S(s) a fixed specialization. There exists a unique map S(η) → S(s)

compatible with the specialization and map η → S(η) ([Sta18, Tag 08HR]). We
therefore have natural inclusions

is : Xs ↪−→ X(s) = X ×S S(s), jsη : X(η) = X ×S S(η) → X(s)

and RΨs
η = i∗sRj

s
η∗ : D

b(X(η)) −→ Db(Xs) is the sliced nearby cycles functor.
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The two nearby cycles are related as follows: one identifies topos Xs

←
×S η as sheaves on

Xs together with a Gal(η/η)-action, and by functoriality we have a morphism of toposes

←
i (s,η) : Xs = Xs

←
×S η −→ Xs

←
×S S

←
is−→ X

←
×S S

Then RΨs
η = (

←
i (s,η))

∗RΨf . See ([Ill17], §1.3 and §1.4) for details. We mention in passing
that one can also define a vanishing cycles functor RΦf in the topos setting, but we will
not use it; the construction is given in (loc. cit., 1.2.4).

Nearby cycles in this generality still satisfy functorial properties. An important example
is the case of S–schemes f : X → S and g : Y → S and a map h : X → Y of S–schemes.
Then the induced commutative diagram

X X
←
×S S Xs

Y Y
←
×S S Ys

h

Ψf

←
h

←
i X,(s,η)

hs

Ψg

←
i Y,(s,η)

(5.6)

yields RΨg(Rh∗F) ≃ R
←
h∗RΨfF for F ∈ Db(X); furthermore, if h is proper, then forma-

tion of R
←
h∗ commutes with base–change on X and S, so that in particular diagram (5.6)

induces an isomorphism (see [Org06], Lemme 8.1.1)

RΨs
g,η(Rh∗F) = (

←
i Y,(s,η))

∗RΨg(Rh∗F) ≃ R(hs)∗(
←
i X,(s,η))

∗RΨfF = R(hs)∗RΨ
s
f,ηF (5.7)

There are natural generalizations of ℓ–adic Milnor fibers to this setting (cf. Section 5.1).

Given a point (x, η, sp) of X
←
×S S with x over s and a sheaf F ∈ Db(X), the stalks of

nearby cycles may be computed via ([SGA 4], Exposé VII, §5.8) as

RΨs
η(F)x ≃ RΨf (F)(x,η,sp) ≃ RΓ(X(x) ×S(s)

S(η),F) (5.8)

The scheme X(x) ×S(s)
S(η) is called the Milnor tube at (x, η, sp); it contains Milnor fiber

X(x) ×S(s)
η as a closed subscheme.

Example 5.9. We relate these constructions to the classical nearby cycles. Let S be a
strictly henselian trait with closed point s, generic point η and geometric generic point η.
Note S(s) = S and S(η) = η. For f : X → S of finite type we have

X
←
×S S = (Xη

←
×S S) ∪ (Xs

←
×S S) = Xη ∪Xs ∪ (Xs

←
×S η)

where the last (nontrivial) topos on the right is identified with sheaves on Xs together
with a Gal(η/η)-action. The classical nearby cycles RΨX(F) for F ∈ Db(Xη,Λ) are

RΨX(Fη) = RΨf (F)|Xs
←
×Sη
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and are therefore identified with the sliced nearby cycles RΨs
η(F). The restriction map is

induced from Xs → X and η → S. Moreover, for a geometric point x → Xs, the Milnor
tube X(x) ×S S(η) ≃ X(x) ×S η is identified with the Milnor fiber.

In general, nearby cycles RΨfF need not be well-behaved; for example, it may not be
constructible. Furthermore, base-changing via S ′ → S yields cartesian squares

X ′ X X ′ X

S ′ S X ′
←
×S′ S ′ X

←
×S S

g

f ′ f Ψf ′

g

Ψf

←−
g

and the associated base-change map

(
←−
g )∗RΨfF −→ RΨf ′(g

∗F)

is not always an isomorphism: see ([Ill17], 1.7(d)) for a classical example of Deligne which

shows that for the origin blowup f : Ã2
k → A2

k, RΨfQℓ is not constructible and does not
commute with base-change on A2

k. Moreover, for any point in the exceptional divisor and
a nonzero point on A2

k, the associated Milnor tube is not of finite type.

Nevertheless, a special case where all the above assertions are true is the following.

Theorem 5.10 (Deligne, [Ill17] 1.7.(c)). Let f : X → S be separated and finite-type,
and F ∈ Db

c(X). Let Z be the complement of the largest open set U ⊆ X so that f |U is
universally locally acyclic over S. If Z → S is quasifinite, then RΨfF is constructible
and its formation commutes with any base-change S ′ → S.

Remark 5.11. We call (f,F) Ψ-good in this case. It follows from the theorem that the
sliced nearby cycles RΨs

η(F) are also constructible and commute with base-change; in
particular the cohomology of Milnor tubes as computed in (5.8) restricts isomorphically
to the cohomology of Milnor fibers:

(RΨfF)(x,η,sp)
∼−→ RΓ(X(x) ×S(s)

η,F) (5.9)

5.4 Relative perverse sheaves and the Grothendieck alteration. We retain
the conventions of Section 5.1. In this section we will discuss a recent notion of relative
perverse t-structures on Db

c(X) for S–schemes X, which is compatible (in a sense) with
the absolute perverse t-structures on the geometric fibers i.e. Db

c(Xη) and Db
c(Xs). As

before we may assume the underlying coefficient field to be Qℓ.

Following [HS23], we define a full subcategory of Db(X)

p/SD(X)≤0 := {F ∈ Db(X) | F|Xs
∈ pD(Xs)

≤0 for all geometric points s→ S} (5.10)

where (pD≤0, pD≥0) denotes the absolute perverse t-structure for schemes over fields. In
the particular case of S = Spec(OK), one just restricts F to Xη and Xs and checks
perversity in the usual absolute sense.
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It can be shown that (5.10) forms the connective part of a t-structure on Db(X) and the
goal is then to show that the coconnective part p/SD(X)≥0 has the required description
in analogy with (5.10) and further induces a t-structure on the bounded derived category
of constructible complexes Db

c(X).

Theorem 5.12 ([HS23], Thm. 6.1). Let f : X → S be a finite-type S–scheme. The full
subcategories (p/SD≤0,p/S D≥0) of Db(X) define a unique t-structure on Db(X), the relative
perverse t-structure, so that

(i) A sheaf F ∈ Db(X) is in p/SD(X)≤0, resp. p/SD(X)≥0, if and only if F|Xs
∈

pD(Xs)
≤0 and F|Xη

∈ pD(Xη)
≤0, resp. F|Xs

∈ pD(Xs)
≥0 and F|Xη

∈ pD(Xη)
≥0.

(ii) For any morphism g : S̃ → S with induced base-change g̃ : XS̃ → X, pullback
functor g̃∗ : Db(X) → Db(XS̃) is t-exact with respect to the relative perverse t-
structure, hence commutes with the associated truncations (τ≤0, τ≥0).

(iii) For any open and closed decomposition j : U ↪−→ X and i : Z ↪−→ X into S-schemes,
the relative perverse t-structure on Db(X) is obtained by gluing (recollement) from
the relative perverse t-structures on Db(U) and Db(Z).

We note that (ii) and (iii) are formal consequences of (i), once the perverse t-structure
properties have been established. We also note that if S = Spec(k) is a field and X is a
finite-type k-scheme, the relative perverse t-structure is identified with the usual (middle)
perverse t-structure on Db(X), while if X = S then the relative perverse t-structure
coincides with the standard t-structure on Db(S). In view of (ii), relative perverse sheaves
on X pull back to absolute perverse sheaves on Xη and Xs.

We apply the notion of relative perversity to the setting of Chevalley algebras g over
S = Spec(OK) and their associated bundles g̃. Recall the setting of Sections 3.4 and 3.5,
so that in particular g is a simple simply-laced Chevalley OK-algebra and p = char(k) is
very good for g. The Grothendieck alteration π : g̃ −→ g restricts to a Galois W -torsor
πrs : g̃rs −→ grs over the regular semisimple locus (Proposition 3.17).

For Lie algebras g over algebraically closed field k, the above fact is classically known
and furthermore it implies that the (absolute) perverse sheaf

F = Rπ∗Qℓ[dim g]

is equipped with a W -action, constructed by Borho–MacPherson (who attribute it orig-
inally to Lusztig) in the following way: π is a small morphism so in particular F is an
IC sheaf, i.e. the intermediate extension of local system G = πrs

∗ Qℓ ([BM83], §1.8). Sheaf
G is W -equivariant and W acts by “deck transformations”, so by the functoriality of
the intermediate extension functor, this W -action uniquely extends to F (loc. cit., §2.6
Proposition5).

We next show that this result of Borho–MacPherson extends to the relative Grothendieck
alteration π in the setting of Chevalley OK-algebras, where now F is relatively perverse

5Note that Borho–MacPherson state a more general version here, in terms of a parabolic subgroup
P ⊂ G; we need only take P to be a Borel for our purposes.
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and in particular an “intermediate extension” object in Db(g). By an IC sheaf in this
setting we mean that, if j : grs ↪−→ g is the inclusion of the open dense subscheme of
regular semisimple elements, then F ≃ j!∗G.

Theorem 5.13. Let π : g̃ −→ g denote the Grothendieck alteration of Chevalley OK-
algebra g. Then:

(i) Complex F = Rπ∗Qℓ[dim g] ∈ Db
c(g) is relatively perverse.

(ii) Complex F is an IC sheaf.

Proof. Denote by j : gη ↪−→ g and i : gs ↪−→ g the respective open and closed immersions
of the geometric generic and special fibers, with the understanding that gη is Lie algebra
gη = gK so that the constructions of Sections 3.4 and 3.5 make sense for it too. Part (i)
is immediate from Theorem 5.12 since proper base-change gives

F|gη= j∗Rπ∗Qℓ[dim g] ≃ R(πη)∗Qℓ[dim g]

and F|gs≃ R(πs)∗Qℓ[dim g] as the formation of g̃ commutes with base-change on S in good
characteristic. Thus, both restrictions are perverse sheaves on gη and gs, respectively; in
fact they are IC sheaves by the reasoning in ([BM83], §1.8).
For (ii), let j′ : grs ↪−→ g and i′ : g′ = g \ grs ↪−→ g denote respectively the open and

closed immersions of the regular semisimple elements and their complement. Denote by
pH0 the composition τ≤0 ◦ τ≥0 of the relative perverse truncation functors, which is itself
a cohomological functor, and set G = j′∗F . We wish to show

F ≃ j′!∗(G) = im(pH0(j′!G)→ pH0(j′∗G))

Note that G is a lisse sheaf on grs via proper base-change along cartesian diagram

g̃rs g̃

grs g

πrs

j̃′

π

j′

That is, j′∗F ≃ πrs
∗ Qℓ[dim g] and πrs is a Galois W -torsor (Proposition 3.17), so that

πrs
∗ Qℓ[dim g] is lisse by algebraic Ehresmann ([Mil13], Thm. 20.2). Moreover F = pH0(F)

(via the perversity established in (i)) sits in long exact sequences

· · · −→ pH0(j′!G) −→ F −→ pH0(i′∗i
′∗F) [1]−→ · · · (5.11)

· · · −→ pH0(i′∗i
′!F) −→ F −→ pH0(j′∗G)

[1]−→ · · · (5.12)

which are respectively coming from the standard triangles (in the derived setting)

j′!j
′∗F → F → i′∗i

′∗F [1]→, i′∗i
′!F → F → j′∗j

′∗F [1]→ (5.13)
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Set C1 = i′∗i
′∗F = Cone(j′!G → F) and C2 = i′∗i

′!F [1] = Cone(F → j′∗G). In order to show
F ≃ j′!∗G it suffices to show F ↪−→ pH0(j′∗G) and pH0(j′!G) ↠ F i.e. the respective kernel
and cokernel vanish. So it suffices to have pH0(C1) = 0 and pH−1(C2) = 0.

A brief note on why checking the above two conditions is enough: suppose pH0(j′!G) ↠
F , then via right-exactness of i′∗ we have pH ◦ (i′)∗ right-exact ([Ach21], Lemma A.7.14)
so that pH0(i′∗ ◦ pH0(j′!G)) ↠ pH0(i′∗F). Now pH0 ◦ i′∗ ◦ pH0 ◦ j′! is left-adjoint to

pH0 ◦ j′∗ ◦ pH0 ◦ i′∗ ≃ pH0 ◦ j′∗ ◦ i′∗ = 0

where the penultimate equivalence is due to the perverse t-exactness of j′∗ and i′∗. Hence
pH0(i′∗F) = τ≥0(i′∗F) = 0, meaning i′∗F ∈ p/SD(g′)≤−1. The dual argument for F ↪−→
pH0(j′∗G) gives i′!F ∈ p/SD(g′)≥1, altogether giving the familiar IC sheaf conditions for F
as a result of recollement ([BBD82], 1.4.24).

Consider pH0(C1) first; it is enough to show j∗pH0(C1) = i∗pH0(C1) = 0 since if pH0(C1)
had nonempty support, the support would intersect the supports of either of these com-
plexes. Now j∗ is perverse t-exact by Theorem 5.12 (ii), so applying j∗ to the first triangle
in (5.13) and then taking pH0, which commutes with j∗, we obtain

· · · −→ pH0(j∗j′!G) −→ j∗F −→ pH0(j∗C1)
[1]−→ · · · (5.14)

Since grs represents the open subfunctor in g of regular semisimple elements, the following
diagram is cartesian

grsη grs

gη g

j′η

jrs

j′

j

(5.15)

where jrs : grsη → grs is induced from η → S and j′η : grsη → gη is the open immersion
induced from j′. Hence base-change yields j∗j′! ≃ j′η!j

rs∗ and

jrs∗G = jrs∗j′∗F ≃ j′∗η (j
∗F) = j

′∗
η (R(πη)∗Qℓ[dim g])

so that the long exact sequence (5.14) is

· · · −→ pH0(jη!(R(πη)∗Qℓ[dim g])|grsη ) −→ R(πη)∗Qℓ[dim g] −→ pH0(j∗C1)
[1]−→ · · · (5.16)

Now the second-left arrow in (5.16) is surjective since R(πη)∗Qℓ[dim g] is an IC sheaf,
and j∗pH1(j′!j

′∗F) = 0 since j′!j
′∗ is right t-exact, again by recollement ([BBD82], Prop.

1.4.12). We therefore get j∗pH0(C1) ≃ pH0(j∗C1) = 0. A similar argument yields
i∗pH0(C1) = 0, via long exact sequence

· · · −→ pH0(i∗j′!G) −→ i∗F −→ pH0(i∗C1)
[1]−→ · · · (5.17)

and i∗j′!G ≃ j′s!i
rs∗G ≃ j′s!R(πs)∗Qℓ[dim g]|grss coming from base-change along diagram
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grss grs

gs g

j′s

irs

j′

i

(5.18)

where irs is induced from s → S and j′s is the base-change of j′. We therefore yield
pH0(C1) = 0. For pH−1(C2) we argue in an analogous manner, namely we apply t-exact
functors j∗, i∗ to the right triangle in (5.13) and show j∗pH−1(C2) = i∗pH−1(C2) = 0. For
j∗pH−1(C2) = 0 the reasoning is parallel to showing j∗pH0(C1) = 0, since j∗j′∗ ≃ j′η∗j

rs∗

via flat base-change along diagram (5.15); once again we reduce to j∗F being an IC sheaf
and pH−1(j′∗j′∗F) = 0 as j′∗j

′∗ is left t-exact ([BBD82], Prop 1.4.12). Now t-exactness of
i∗ yields exact sequence

· · · −→ i∗pH−1(C2) −→ i∗F −→ pH0(i∗j′∗G)
[1]−→ · · · (5.19)

induced from the right triangle in (5.13), but we cannot immediately conclude by a stan-
dard base-change theorem. Consider instead the open/closed decompositions

g̃rs
j̃′−→ g̃

ĩ′←− g̃′ := g̃ \ g̃rs

g̃rss
j̃′s−→ g̃s

ĩ′s←− g̃′s = g̃s \ g̃rss
induced from the respective decompositions on g, gs and their Grothendieck alterations
π, πs. Together with ĩ : g̃s → g̃, ĩrs : g̃rss → g̃rs, these maps fit into commutative diagrams

g̃rss g̃rs g̃′s g̃′

g̃s g̃ g̃s g̃

j̃′s

ĩrs

j̃′ ĩ′s

ĩ|g̃′s

ĩ′

ĩ ĩ

(5.20)

by the same token as before. We aim to show i∗j′∗G ≃ j′s∗i
rs∗G. Via the Grothendieck alter-

ation π, diagram (5.18) and the left diagram in (5.20) fit into the following commutative
cube diagram (5.21), all of whose faces are cartesian:

g̃rss g̃rs

g̃s g̃

grss grs

gs g

ĩrs

πrs
s

j̃′s
πrs

j̃′
ĩ

πs
irs

j′s j′

i

π
(5.21)
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Here πrs, πrs
s denote the obvious restrictions of π. Now, suppressing that π∗ is derived

for notation purposes, i∗j′∗G becomes

i∗ ◦ j′∗ ◦ j′∗ ◦ π∗Qℓ[dim g] ≃ i∗ ◦ j′∗ ◦ πrs
∗ ◦ j̃′∗Qℓ[dim g]

≃ i∗ ◦ π∗ ◦ j̃′∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ ĩ∗ ◦ j̃′∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ ĩ∗ ◦ j̃′∗Qℓ[dim g]

via proper base-change along the right-face and front-face diagrams, and similarly j′s∗i
rs∗G

becomes
j′s∗ ◦ irs∗ ◦ j′∗ ◦ π∗Qℓ[dim g] ≃ j′s∗ ◦ irs∗ ◦ πrs

∗ ◦ j̃′∗Qℓ[dim g]

≃ j′s∗ ◦ πrs
s∗ ◦ ĩrs∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ j̃′s∗ ◦ ĩrs∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ j̃′s∗Qℓ[dim g]

via proper base-change along the right-face and back-face diagrams. Then i∗j′∗G ≃ j′s∗i
rs∗G

precisely when ĩ∗j̃′∗Qℓ ≃ j̃′s∗Qℓ, ignoring the dimension shifts. To show this, take the
standard exact triangle (on g̃)

ĩ′∗̃i
′ !Qℓ −→ Qℓ −→ j̃′∗Qℓ

[1]−→ (5.22)

We have ĩ′ !Qℓ ≃ Qℓ[−2](−1) by Lemma 5.14, which we prove right after this theorem.
Applying the t-exact functor ĩ∗ : Db

c(g̃) → Db
c(g̃s) induces the following diagram from

triangle (5.22) and the two diagrams in (5.20), where the vertical arrows are base-change
morphisms:

ĩ∗̃i′∗Qℓ[−2](−1) Qℓ ĩ∗j̃′∗Qℓ

ĩ′s∗̃i|∗g̃′sQℓ[−2](−1) Qℓ j̃′s∗Qℓ

≃ ≃

+1

h

+1

The left vertical arrow is an isomorphism by proper base-change, and so is the middle
vertical arrow, hence h is also an isomorphism (eg. by the five lemma). We conclude that
i∗j′∗G ≃ j′s∗i

rs∗G and so the long exact sequence (5.19) is

· · · −→ i∗pH−1(C2) −→ R(πs)∗Qℓ[dim g] −→ pH0(j∗sR(πs)∗Qℓ[dim g]|grss )
[1]−→ · · · (5.23)

so that i∗pH−1(C2) = 0 as R(πs)∗Qℓ[dim g] is an IC sheaf. This yields F ≃ j′!∗G = j′!∗j
′∗F

so F is indeed an IC sheaf on g.

Lemma 5.14. Let g be a Chevalley OK–algebra so that gη and gs are simple Lie algebras
of the same Dynkin type, and fix a torus h and Borel b. Let χ̃ : g̃ → h be the adjoint
bundle associated to (b, h) and write ĩ′ : g̃\g̃rs → g̃ for the inclusion of the complement of
the preimage of grs under the Grothendieck alteration. Then ĩ′!Qℓ ≃ Qℓ[−2](−1).

Proof. Call g̃′ = g̃\ g̃rs, then we aim to show that g̃′ is smooth over S. We first show it
is flat. As a consequence of Proposition 3.17, restricting χ̃ to χ̃′s : g̃

′
s → hs ≃ Ar

k we have
that every fiber is smooth over k, so we get flatness of χ̃s as follows: if y = χ̃′s(x), the
associated local homomorphism OAr,y → Og̃′s,x has regular source and a regular fiber ring
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F = Og̃′s,x/myOg̃′s,x, so we may pick a regular system of parameters (x1, · · · , xr) for OAr,y

and (y1, · · · , ys) in Og̃′s,x so that their images in F form a regular system of parameters.
We have

dim(Og̃′s,x) = dim(OAr,y) + dim(F )

so (x1, · · · , xr, y1, · · · , ys) generates the maximal ideal of Og̃′s,x and so Og̃′s,x is regular.
Then by miracle flatness ([Sta18, Tag 00R4]) we get χ̃′s flat. Since every fiber of χ̃′s is
smooth and reduced, we get in fact that χ̃′s is smooth, hence g̃′s is smooth over k and a
similar analysis yields g̃′η smooth over K.

The same local algebra argument in the previous paragraph yields g̃′ flat over S, with a
minor modification on the local rings: if Spec(OK)→ g̃′ is an OK-valued section mapping
the closed point to x ∈ g̃′, then it suffices to show the induced local homomorphism
OK → Og̃′,x is flat, which follows from ([Mat86], Thm. 23.7 (ii)6) as Og̃′,x ⊗ k ≃ Og̃′s,xs .
Now as the generic and special fiber are smooth we get that g̃′ is also smooth over S. Then
the proof of ([Ach21], Thm. 2.2.13) shows pair (g̃′, g̃) is smooth of relative codimension 1,
so that ĩ′!Qℓ ≃ Qℓ[−2](−1), completing the claim.

Corollary 5.15. Let S ⊂ g be a relative Slodowy slice at a fiberwise subregular nilpo-
tent OK-section x ∈ Ng(OK). Let πS : S̃ := π−1(S) −→ S be the restriction of the

Grothendieck alteration to S̃. Then FS = RπS∗Qℓ[dimS] is a relative IC sheaf.

Proof. The arguments of Theorem 5.13 carry over to this setting as soon as we have that
the version of πS over a geometric point of Spec(OK) is a small morphism. So we reduce
to the case of k an algebraically closed field, x ∈ Ng(k) a subregular nilpotent element
in Lie algebra g over k, and S the canonical Slodowy slice at x, transverse to its orbit
(‘canonical’ here means that, in light of Lemma 4.2, any such Slodowy slice has locally
the form of the slice described in ([Slo80b], §7.4)).
In this setting we know S is transverse to every adjoint G-orbit ([Slo80b], §7.4 Corol-

lary). Take a stratification of g into locally closed subsets

g = X−1 ⨿ (X0 \X−1)⨿
∐
n≥1

Xn, X−1 = grs, Xn = {x | dim(π−1(x)) = n} (n ≥ 0)

which, after a possible refinement, induces a stratification on S. By transversality, S ∩
Xn = ∅ since S meets only the regular and subregular orbit in Ng, so S = S1 ⨿ S2 ⨿ S3
where Si = S ∩Xn−2, and for any y ∈ Si we have

dim(π−1S (y)) ≤ 1

2
(dim(S)− dim(Si))

with equality if and only if i = 0 (where we get the dense open stratum S ∩ grs. The
only nontrivial case is y ∈ S3 as dim(π−1S (y)) = 1; since by Theorem 4.21 we have that
S −→ h//W realizes a miniversal deformation of surface singularity x ∈ Ng ∩ S, locus S3
consists of the nearby singularities lying over discriminant divisor ∆ ⊂ h//W , hence by
flatness dim(S3) = r − 1. The above inequality therefore is just 1 < 3

2
.

6Note that the assumption that B is flat in loc. cit. is not needed; see Theorem 51 on the modernized
edition at https://aareyanmanzoor.github.io/assets/matsumura-CA.pdf.
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5.5 Weyl–Springer actions. We retain the definitions and assumptions of Sec-
tion 3.1. In the setting of Proposition 3.17 and Theorem 5.13, we have seen that the
Grothendieck alteration π restricted to πrs : g̃rs −→ grs is a finite étale W -torsor so that
G = Rπ∗Qℓ|grs ≃ πrs

∗ Qℓ is a lisse sheaf on grs. To describe the W -action on it, we define
an auxiliary geometric vector bundle related to g̃ as follows. Let

g̃T := {(gT, x) ∈ G/T ×S g | x ∈ Adg(h)} ↪−→ G/T ×S g (5.24)

Here quotientG/T is represented by a smooth quasi-affine S-scheme via ([Con14], Thm. 2.3.1).
Projection to the second factor in (5.24) yields a morphism ρ : g̃T −→ g; note ρ is not
necessarily proper like π, since G/T is in general only fiberwise quasi-affine. Projection to
the first factor yields a morphism g̃T −→ G/T , and the arguments of Lemma 3.15 (except
Zariski-local triviality) carry over to show:

Lemma 5.16. g̃T is a smooth étale-locally trivial G-torsor over G/T with fiber h.

Define a right W -action on g̃T via (gT, x) · w = (gnwT, x) where nw ∈ NG(T ) is a lift
of w. The map

G/T ×S h −→ g̃T , (gT, h) 7→ (gT,Adg(h)) (5.25)

is a W -equivariant isomorphism, where the left-hand side is equipped with the W -action
described in Definition 3.2 (ii). We also define a morphism ϕ : G/T ×S grs −→ G/B×S grs
via (gT, x) 7→ (gB, x) and set g̃rsT = {(gT, x) ∈ g̃T | x ∈ grs}.

Lemma 5.17. Restricting ϕ to G/T ×S hrs induces an isomorphism g̃rsT ≃ g̃rs.

Proof. It is clear that G/T×S hrs ≃ g̃rsT via the isomorphism in (5.25) since grs = AdG(h
rs).

As before, by the fibral isomorphism criterion ([EGA IV4], 17.9.5) it suffices to pass to
geometric points η and s of base S and show we have an isomorphism over K and k. This
is the content of ([Jan04], §13.4 Lemma); we only explain the bijection input over field k.

If (gT, h) ∈ g̃rsT (k) then h ∈ gLie(T )g−1 i.e. gTg−1 ⊆ CG(h) = T , so g ∈ NG(T )
and we may write ρ−1(h) = {(nwT, h) | w ∈ W}. Similarly if (gB, h) ∈ g̃rs(k) we have
h ∈ Lie(gBg−1) so h ∈ Lie(T ′) for some maximal torus T ′ ⊆ gBg−1. At the same time
T ′ ⊆ CG(h) = T so T ′ = T and T, g−1Tg are conjugate in B, say via b ∈ B(k). It follows
that gb = nw ∈ NG(T ) so gB = nwB and π−1(h) = {(nwB, h) | w ∈ W}. Hence ϕ maps
ρ−1(h) bijectively to π−1(h).

Corollary 5.18. ρrs : g̃rsT → grs is a finite étale W -torsor and G = πrs
∗ Qℓ ≃ ρrs∗ Qℓ.

Proof. This is a direct consequence of Proposition 3.17 since ρrs = πrs ◦ ϕ and πrs is a
finite étale W -torsor. By Lemma 5.17 we have a W -equivariant isomorphism g̃rsT ≃ g̃rs so
G ≃ πrs

∗ ◦ ϕ∗Qℓ = ρrs∗ Qℓ.

The upshot of this construction is that we may define the W -action on G explicitly via
its description as ρrs∗ Qℓ. The stalk of constant sheaf Qℓ at any geometric point x→ g̃rsT is
generated by a distinguished basis element vx, and for w ∈ W we have an isomorphism
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iw : w∗Qℓ → Qℓ so that the map on stalks is vx·w−1 7−→ vx via the right W -action on g̃rsT .
Applying finite map ρrs∗ to all iw and using ρrs ◦ w = ρrs we have

ρrs∗ Qℓ = (ρrs ◦ w)∗Qℓ ≃ ρrs∗ w∗Qℓ
iw−→ ρrs∗ Qℓ (5.26)

where the rightmost map is denoted iw again by abuse of notation. By functoriality this
is an automorphism of ρrs∗ Qℓ and on each stalk at ρrs(x) we have

(ρrs∗ Qℓ)ρrs(x) = ⟨vx·u−1 | u ∈ W ⟩

so that (5.26) maps basis vectors vx·u−1
iw7−→ vx·(u−1w). One checks iw1w2 = iw1 ◦ iw2 and so

we obtain an algebra homomorphism

Qℓ[W ] −→ End(ρrs∗ Qℓ) ≃ End(πrs
∗ Qℓ)

Via the intermediate extension functor we get an induced action on F = Rπ∗Qℓ as follows;
recall here that j′ : grs ↪−→ g, i′ : g \ grs ↪−→ g are the open/closed decompositions of g
coming from the gluing construction.

Lemma 5.19. Sheaf F ≃ j′!∗G is W -equivariant via canonical isomorphism

EndPerv(grs)(G) ≃ EndPerv(g)(j
′
!∗G)

Proof. Both perverse sheaf categories here are assumed to come from the relative perverse
t-structures defined in Section 5.4. Via adjunction

Hom(G,G) = Hom(j′∗j′!G,G) ≃ Hom(j′!G, j′∗G) ≃ Hom(pH0(j′!G), pH0(j′∗G)) (5.27)

where the last (canonical) isomorphism follows from j′!G ∈ p/SD≤0, j′∗G ∈ p/SD≥0. Since
i′∗ is t-exact, for any E in Perv(g \ grs) we have

Hom(pH0(j′!G), i′∗E) = Hom(j′!G, i′∗E) = Hom(i′∗ ◦ j′!G, E) = 0

so pH0(j′!G) has no nontrivial quotient objects from i′∗Perv(g \ grs). Similarly, by the
gluing construction we have i′! ◦ j′∗ = 0 hence pH0(j′∗G) has no nontrivial subobjects from
i′∗Perv(g \ grs). So by the definition of j′!∗G, the right-hand side in (5.27) is precisely
End(j′!∗G) and the W -equivariance follows formally (see e.g. [KW13], §III.15.3).

Definition 5.20.

(i) For a general OK-section x of the nilpotent scheme Ng, we denote by

Bx := π−1(x) = g̃ ×g imx

its projective Springer fiber with the reduced subscheme structure coming from g̃.
Here imx is the closure of the image of section x : Spec(OK)→ Ng.
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(ii) The Springer representations are Hi(Bx,Qℓ) equipped with a W -action inherited
from the W -action on F = Rπ∗Qℓ constructed above, by taking stalks and proper
base-change.

If we consider the special fiber xs ∈ Ng(k) of x, then by Proposition 3.17 we get that
the special fiber of Bx is Bxs , the usual Springer fiber corresponding to a nilpotent element
of gs. Since Bx is projective over O, and the proper base-change isomorphism is canonical
([Fu11], Thm. 7.3.1), we obtain an isomorphism of W -modules

Hi(Bx,Qℓ) ≃ Hi(Bxs ,Qℓ)

where the right-hand side has the classical Springer action of W defined via the method
of Borho–MacPherson ([BM83], §2.6). In fact, in very good characteristic more is true:

Lemma 5.21. We have Hi(Bxs ,Qℓ) ≃ Hi(Bxη ,Qℓ) canonically as Galois modules.

Proof. Let f : Bx → Spec(OK) be the projective structure map and let ν : B̃x → Bx be
the normalization; concretely we have∐r

i=1(P1
S)i = B̃x Bx =

⋃r
i=1(P1

S)i

S = Spec(OK)

ν

f̃
f

where structure map f̃ is proper and smooth. In particular Rif̃∗Qℓ is a local system on
S and so on stalks we have

(Rif̃∗Qℓ)s
∼−→ (Rif̃∗Qℓ)

I
η ≃ (Rif̃∗Qℓ)η (5.28)

Here the first isomorphism is the cospecialization map given by the data of an étale sheaf
on S. Now by proper base–change (as f̃ and the special and generic fiber counterparts

f̃s, fs, f̃η, fη are all proper) we have

Hi(Bxs ,Qℓ) ≃ Ri(fs)∗Qℓ
∼→ Ri(f̃s)∗Qℓ ≃ (Rif̃∗Qℓ)s

Hi(Bxη ,Qℓ) ≃ Ri(fη)∗Qℓ
∼→ Ri(f̃η)∗Qℓ ≃ (Rif̃∗Qℓ)η

Hence, together with isomorphism (5.28) we have Hi(Bxs ,Qℓ) ≃ Hi(Bxη ,Qℓ) canonically.
The case of interest here is i = 2, whence

H2(Bxs ,Qℓ) ≃
r⊕
i=1

Qℓ(−1) ≃ H2(Bxη ,Qℓ)

where the I–action factors through the mod ℓn cyclotomic characters on the Tate twists,
hence is trivial as K = Kunr. The essential ingredient here is that x is fiberwise subregular
and characteristic p is very good, so that both the generic and special subregular Springer
fibers are the same arrangement of r projective lines ([Yun17], §1.3.8).
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The above lemma may be interpreted as a ‘shadow’ of the more general principle that,
even though a priori our base scheme is Spec(OK), the adjoint quotient χ and its “re-
solved” version χ̃ have the same properties over K and over k of very good characteristic.

We now make a few remarks on the nature of Springer representations. The surpris-
ing fact about them is that the W–action on Hi(Bx,Qℓ) is not induced by a “physical”
W–action on the Springer fiber. Nevertheless, Springer ([Spr76], Thm. 6.10) defined a nat-
ural correspondence between Hi(Bx,Qℓ) and representations of Weyl group (by a manner
different from Borho–MacPherson).

Theorem 5.22 (Springer correspondence). Assume G is a simple, simply–connected,
simply–laced Lie group G over algebraically closed field k of good characteristic, and let
x ∈ N (k) be a nilpotent element and C = CG(x)/CG(x)

◦ be the connected component
group of its centralizer. Set n = dim(Bx) and let χ be the character of an irreducible
representation of C. There is a natural graded W -action on H•(Bx,Qℓ) commuting with
the C-action, and in particular

H2n(Bx,Qℓ) ≃
⊕
χ∈Ĉ

χ⊗ Vx,χ

where each non-zero χ-isotypic component Vx,χ is an irreducible W -representation. Fur-
thermore each irreducible representation of W appears as a Vx,χ for a unique (up to con-
jugacy) pair (x, χ).

The convention we use here is that the trivialW -representation corresponds to x regular
nilpotent and trivial χ, and the sign W -representation corresponds to x = 0, where one
investigates the cohomology of the full flag variety B. This is the opposite convention of
[Spr76] but coincides with [BM83]; in fact the Springer representations we consider differ
from [Spr76] by a twist of the sign character.

In our setting, x is subregular (so n = 1) and C is trivial for the ADE-type Lie algebras
since the centralizer is connected ([Slo80b], §7.5 Lemma 4). In this case it is known (see
e.g. [Yun17], §1.5.17) that the corresponding Springer representation on H2(Bx,Qℓ) ≃ Qr

ℓ

is isomorphic to the irreducible reflection representation ofW on h∨, which in the An-case
(where W = Sn+1) is just the standard Sn+1-representation.

5.6 Monodromy Weyl actions and the proof of the main theorem. We now
go back to the setting of Sections 5.1 and 5.2, assuming in particular S = Spec(OK) is a
complete trait and char(k) is very good. Since we require notation from previous sections
as well, we gather here the relevant objects.

Notation 5.23. Let X/S be an integral proper flat surface with smooth generic fiber Xη
and singular special fiber Xs containing a unique RDP xs ∈ Xs(k). Let r be the rank of
the Dynkin diagram associated to the RDP (Theorem 2.2 (ii)).

If g is the rank–r simple Chevalley OK-algebra associated to RDP xs, we may identify xs
with a generic point of the unique subregular orbit inside the nilpotent cone of the Lie k-
algebra gs ([Slo80b], §6.4 Thm.). Extend xs to a fiberwise subregular element x ∈ g(OK)
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(Definition 3.7) and let S be the affine relative Slodowy slice which is transverse at x in
the sense of Section 4.1.

Unless noted otherwise, Sh, resp. S̃h denote the geometric fibers of χ, resp. χ̃ over geo-
metric points (i.e. field-valued points) h→ h//W and h→ h. The respective generic and

special fibers will be denoted (S)η and (S)s, and similarly for S̃ so that we can distinguish
them from the geometric fibers of χ, χ̃.

By Corollary 5.6 the monodromy action of I = Gal(η/η) on H2(Xη,Qℓ) depends only

on Spec(ÔX ,xs), which by Remark 2.26 we can view as an algebraic deformation of the

affine singularity Spec(ÔXs,xs) over base S. In other words, by Theorem 4.21 we have two
cartesian diagrams

X(xs) = Spec(ÔX ,xs) S Z = S ×h//W h h

S h//W S h//W

χ ψ

ϕ ϕ

(5.29)

where ϕ is induced by miniversality, and the right diagram is the pullback of ϕ along finite
cover ψ. Here χ is a map of henselianized schemes, h and W are part of the Lie algebraic
data associated to RDP xs (see Section 4.6) and by Remark 4.23 we may identify the
miniversal base as

h//W ≃ Spec(OK [[t1, · · · , tr]])

Lemma 5.24. Let X/S, xs ∈ Xs(k) and ψ : h→ h//W be as above.

(i) There exists a finite ramified extension L/K and its associated trait SL = {ηL, s},
which is minimal with respect to the following property: the base-change XL/SL ad-
mits a local affine model of the RDP singularity xs ∈ Xs(k) which has a simultaneous
resolution.

(ii) If Bxs is the exceptional divisor of the minimal resolution of Xs induced by the
simultaneous resolution of XL, then the stalks of the nearby cycles are

(RΨXQℓ)xs
∼−→ RΓ(Bxs ,Qℓ) (5.30)

and the isomorphism is Gal(η/η)-equivariant.

Proof. For part (i), note that S → h//W maps s 7→ 0 ∈ h//W (k) and η 7→ hrs//W (K) since
the generic fiber Xη is smooth. Thus, Z is a finite flat, generically étale S-scheme and
so in particular it is S-affine, say Z = Spec(R) for some OK-algebra R. By assumption
R⊗OK

K is a finite étale K-algebra, whence

R⊗OK
K ≃

∏
i

Li

is a finite product of finite separable extensions Li/K, totally ramified since K = K̆.
From the right diagram in (5.29) we obtain a cartesian diagram
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∐
i Spec(Li) hrs

η hrs//W

ψrs

where ψrs is a Galois W -cover, hence we get a transitive W -action on
∐

i Spec(Li). So all
extensions Li/K are isomorphic and we may fix one L = Li with Galois group Gal(L/K) =
W1 ⊆ W , the stabilizer of Spec(L) inside

∐
Spec(Li).

Since R is excellent, we can replace it with its normalization R −→ R̃ ≃
∏

iOLi
which

is finite over R. In particular we get a map

SL = Spec(OL) −→ Z̃ = Spec(R̃) −→ h

and via Theorem 4.21 we may produce a fiber product from this map and the ‘versal’
simultaneous resolution χ̃ : S̃ −→ h. In other words, define Y via the cartesian square

Y = SL ×h S̃ S̃

SL h

χ̃ (5.31)

By the universal property of pullbacks we get a unique map

πL : Y −→ X(xs),L = X(xs) ×S SL ≃ Spec(ÔX ,xs ⊗OK
OL)

We show πL is the desired simultaneous resolution, i.e. that Y simultaneously resolves
the RDP singularity of the local affine neighborhood X(xs),L in XL. Scheme Y is smooth
over SL via pullback in (5.31) and πL is proper as the base–change of proper morphism

π : S̃ → S ×h//W h along SL → h. Lastly we need only pass to the special fiber and note
that, via proper base–change, the induced map (πL)s : Ys → (X(xs),L)s = (X(xs))s is just

the minimal resolution of surfaces S̃0 → S0, where the subscript denotes the fiber over
zero, so we are done.

To show that L/K has minimal degree, letM/K be any finite extension so that XM has
a local model of the singularity over SM = Spec(OM) admitting a simultaneous resolution.
Via diagram (5.29) we obtain a non-zero morphism

SM −→ Z̃ ≃
∐
i

Spec(Li) −→ SL

exhibiting M as an extension of L as well.

Finally, we show (ii). Part (i) together with ([Art74], Thms. 1 and 2) implies that over

base SL there exists a simultaneous resolution π̃L : X̃ → XL, where X̃ is an algebraic
space; note π̃L is obtained from the ‘local model’ resolution πL of (i). Since the fibers

of X̃ are smooth 2–dimensional, they are schemes themselves, thus in particular RΨX̃Qℓ
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makes sense as a sheaf on X̃s. Since the map of generic fibers (π̃L)ηL : X̃ηL → (XL)η is an
isomorphism by construction, proper base-change gives

RΨXQℓ = RΨXL
((π̃L)η∗Qℓ) ≃ R(π̃L)s∗RΨX̃Qℓ ≃ R(π̃L)s∗Qℓ

as X̃ is smooth. Passing to the stalk at singularity xs ∈ Xs(k) yields (5.30) since the
exceptional divisor is π̃−1L (xs) by definition.

We now advance towards defining a W -action on the nontrivial nearby cycles stalk
(RΨXQℓ)xs ≃ RΓ(Bxs ,Qℓ) mimicking the monodromy Weyl action defined in ([Slo80a],
§4.2 and §4.3); we will eventually identify this new action with the Springer W -action as
it is given in Theorem 5.22.

By Lemma 5.17 we have that

χ̃rs : g̃rs ≃ G/T ×S hrs −→ hrs

is just the projection to the second factor, whence we can restrict the simultaneous reso-
lution diagram (3.4) to obtain a cartesian square

g̃rs grs

hrs hrs//W

χ̃rs

πrs

χrs

ψrs

where the horizontal maps are Galois W -torsors. The content of the following lemma
ensures the square stays cartesian when we restrict the Grothendieck alteration to the
Slodowy slice (or, equivalently, when we restrict diagram (4.5) to the regular semisimple

locus). Below we set Srs = S ×g grs and S̃rs = S̃ ×g̃ g̃
rs7.

Lemma 5.25 ([Spr84], Lem. 3). The following diagram is cartesian.

S̃rs Srs

hrs hrs//W

χ̃rs

πrs

χrs (5.32)

The desired W -action will in a sense follow from the “monodromy” of diagram (5.32).
We first note a ‘homotopical’ lemma for ℓ-adic cohomology. It is originally due to Springer
([Spr84], Prop. 1) but Laumon has generalized it to the relative scheme setting ([Lau03],
Lemme 5.5), and this is the version we use.

Lemma 5.26. Let f : X → S be an S-scheme endowed with a Gm,S-action contracting X
to a section p : Y ≃ S and let F be a Gm-equivariant sheaf on X. Then Rf∗F ≃ p∗F|Y .

7One needs to ensure these fiber products are nonempty. To this end, one observes that Sη and Ss
intersect only regular and subregular orbits, which are nonempty ([Slo80b], §5.5).
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Lemma 5.27. If S̃0 is the fiber of χ̃ over the zero OK-section of h, then we have canonical
isomorphisms

Hi((S̃)η,Qℓ)
∼−→ Hi((S̃0)η,Qℓ)

∼−→ Hi(Bxη ,Qℓ) (5.33)

Hi((S̃)s,Qℓ)
∼−→ Hi((S̃0)s,Qℓ)

∼−→ Hi(Bxs ,Qℓ) (5.34)

Proof. Recall that, by Definition 4.15, S, S̃ and h are equipped with appropriate Gm,S-
actions so that both Rπ∗Qℓ and Rχ̃∗Qℓ are Gm,S-equivariant sheaves; the first and last

actions contract S and h to x and the origin, respectively. Let f : S̃ → S and g : S → S
be the structure morphisms over S = Spec(OK), then by the Leray spectral sequence

Epq
2 = Rpg∗(R

qπ∗Qℓ) =⇒ Rp+qf∗Qℓ

By Lemma 5.26, since the Gm,S-action on S contracts it to the fiberwise nilpotent sub-
regular section x ≃ S (with image im(x) ⊂ S), we have Epq

2 = 0 for p > 0 and

Rqf∗Qℓ ≃ E0q
2 = Rqπ∗Qℓ|im(x) (5.35)

Let j : η ↪−→ S and i : s ↪−→ S be the inclusions of the geometric generic and special points
of the trait. By properness of π and base-change, (5.35) yields

j∗Rqf∗Qℓ ≃ j∗xηR
qπ∗Qℓ ≃ Hq(Bxη ,Qℓ) (5.36)

i∗Rqf∗Qℓ ≃ i∗xsR
qπ∗Qℓ ≃ Hq(Bxs ,Qℓ) (5.37)

where jxη : xη ↪−→ S and ixs : xs ↪−→ S are the inclusions of the generic and special fibers of
section x into S. Now the absolute version of the aforementioned Leray spectral sequence
Epq

2 = Hp(S,Rqπ∗Qℓ) =⇒ Hp+q(S̃,Qℓ) yields isomorphisms

Hq((S̃)η,Qℓ)
∼−→ Hq(Bxη ,Qℓ), Hq((S̃)s,Qℓ)

∼−→ Hq(Bxs ,Qℓ) (5.38)

by ([Spr84], Lemma 2), since (S)η and (S)s are Slodowy slices over K resp. k in the usual
sense ([Slo80b], §5.1). Proper base-change maps are canonical, hence all isomorphisms
in (5.36), (5.37) and (5.38) are canonical. Applying the same Leray spectral sequence

argument to the map π0 : S̃0 −→ S0, which is still Gm,S-equivariant (loc. cit., Lemma 2),

we obtain after base–change again that Hi((S̃0)η,Qℓ) ≃ Hi(Bxη ,Qℓ) and Hi((S̃0)s,Qℓ) ≃
Hi(Bxs ,Qℓ), so that altogether we get the canonical isomorphisms (5.33), (5.34) induced

from inclusions Bx ↪−→ S̃0 ↪−→ S̃.

Proposition 5.28. For a geometric point h→ hrs//W we have Hi(Sh,Qℓ)
∼−→ Hi(Bxs ,Qℓ).

Proof. Note that h necessarily specializes to 0 ∈ h//W (k). We first investigate the case
where the residue field of h is k, following [Spr84]: let h be a lift of h along W -cover

ψ : h → h//W and let L be the line connecting h and 0 in h, χ̃L : S̃L −→ L the Gm-

equivariant restriction of χ̃ to L. Note S̃L is Gm-stable by the action µ̃ defined in Section
4.5 (factoring through Gm,S → Gm,k).
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We claim E := Riχ̃L∗Qℓ is a lisse sheaf. E|L\{0} is locally constant since the map

Gm × S̃h −→ S̃L \ S̃0 given by (t, s) 7→ µ̃(t, s) is an étale covering. Now by ([Sta18, Tag
03Q7]) the stalk at zero is

E0 = Hi(S̃L ×L L(0),Qℓ), L(0) = Spec(Osh
L,0)

Applying the argument of Lemma 5.27 to Gm-equivariant map χ̃L (i.e. looking at its

associated Leray spectral sequence) we observe (Riχ̃L∗Qℓ)0
∼→ Hi((S̃)s,Qℓ) and hence

E0 ≃ Hi((S̃0)s,Qℓ) by Lemma 5.27, Equation (5.34).

As L(0) is a DVR there is a unique generic (geometric) point ηL of L(0) with specialization
ηL → 0. We then have

EηL ≃ Hi(S̃ηL ,F) ≃ Hi(S̃L ×L L(0),Qℓ)

with the first isomorphism due to E|L\{0} being locally constant, and the second isomor-
phism due to χ̃L being smooth and ([SGA 41

2
], p. 56). Altogether we get that cospecial-

ization E0 → Eη is bijective, so by the criterion for local constancy of sheaves ([Sta18, Tag

0GJ7]) we conclude that E is lisse. In particular Hi(S̃h,Qℓ) ≃ Hi((S̃0)s,Qℓ) ≃ Hi(Bxs ,Qℓ).

We have S̃h ≃ Sh via Lemma 5.32, since the Grothendieck alteration induces an isomor-
phism over the regular semisimple locus, so altogether we get the desired isomorphism.

The case of h having zero-characteristic residue field works similarly by using Lemma
5.27, which yields Hi(Sh,Qℓ) ≃ Hi(Bxη ,Qℓ). By Lemma 5.21 we are therefore done.

We isolate from the proof a Weyl action of interest. Let αh : H
i(Sh,Qℓ)→ Hi(Bxs ,Qℓ)

denote the isomorphism of Proposition 5.28. By Lemma 5.25, h→ hrs is a lift of h and so
Sh ≃ S̃h. In the proof of Proposition 5.28 we constructed an isomorphism Hi(S̃h,Qℓ) ≃
Hi(Bxs ,Qℓ) and so in particular Hi(S̃h,Qℓ) ≃ Hi(S̃w·h,Qℓ), where w · h → hrs is a w–
translate of h under the reflection W–action on hrs. Thus h = ψ(h) = ψ(w · h) and

Hi(S̃w·h,Qℓ) ≃ Hi(Sh,Qℓ), altogether giving the composite automorphism

Hi(Bxs ,Qℓ)
α−1
h−→ Hi(Sψ(h),Qℓ) ≃ Hi(Sψ(w·h),Qℓ)

αw·h−→ Hi(Bxs ,Qℓ) (5.39)

Corollary 5.29. The Gal(L/K)-action on H2(Bxs ,Qℓ) is the restricton of the “mon-
odromy” W–action coming from the automorphisms αw·h ◦ α−1h in (5.39).

Proof. By Lemma 5.24 there exists a finite extension L/K so that the singularity of
X/S admits a simultaneous resolution. We therefore have that the monodromy action
of Gal(η/η) factors through finite quotient Gal(L/K), and we get a map Spec(OL) → h
with closed point s 7→ 0 and generic point ηL 7→ h ∈ hrs; let h be the geometric point over
h (NB. this is different than h defined in Proposition 5.28; here h→ hrs).

We also set χ′ : S ′ → h to be the base–change of χ along ψ : h → h//W . The
singularity xs ∈ Xs(k), viewed as the generic point in the subregular orbit of S0, is fixed
by the W–cover, so that χ′ is still a map of henselianized schemes (S ′ completed at xs
and h completed at 0).
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Let RΨ0
hQℓ ∈ Db(S ′0) be the sliced nearby cycles corresponding to data (xs, h, sp) with

sp : h → 0 (Definition 5.8). If i : S ′0 ↪−→ S ′ and j : S ′ ×h h(h) → S ′ are the respective
immersions, with j induced by the specialization map sp, we have

RΨ0
hQℓ = i∗Rj∗Qℓ

Now the Grothendieck alteration π : S̃ → S has Stein factorization S̃ → S ′ → S; we
denote S̃ → S ′ also by π. Then π is proper, and so the formation of

R
←
π∗ : D

b(S̃
←
×h h) −→ Db(S ′

←
×h h)

commutes with base–change on S ′ and h (see Section 5.3). Note that χ̃ : S̃ → h is
smooth, so RΨχ̃Qℓ ≃ Qℓ ([Ill17], Ex. 1.7(b)) and in particular base–changing to S ′0 → S ′
and 0→ h yields (cf. Equation (5.2))

RΨ0
hQℓ ≃ R(π0)∗Qℓ (5.40)

Here π0 : S̃0 → S ′0 is the induced minimal resolution of surface S ′0, and the left-hand

side is RΨ0
h(R(π(h))∗Qℓ) ≃ RΨ0

hQℓ since π(h) : S̃ ×h h(h) → S ′ ×h h(h) is an isomorphism

by construction. Moreover the stalk of RΨ0
hQℓ at xs is equipped via (5.40) with the

monodromy W -action specified after the proof of Proposition 5.28.

On the other hand, by Proposition (3.12) χ′ is smooth (hence locally acyclic) outside
the finite set of isolated singularities of each fiber. Therefore by Theorem 5.10 the sliced
nearby cycles RΨ0

hQℓ are Ψ-good, i.e. they commute with any base-change on h. Base-
changing to Spec(OL) ↪−→ h yields the following computation of Milnor tube cohomology
(see Remark 5.11 and Equation (5.8))

(RΨ0
hQℓ)xs ≃ RΓ(S ′ ×h h(h),Qℓ)

∼−→ RΓ(S ′ ×h h,Qℓ) ≃ (RΨXQℓ)xs (5.41)

where the middle restriction isomorphism is a consequence of Ψ-goodness and the last
isomorphism follows upon identifying S ′ ×h Spec(OL) ≃ X(xs). The right-hand side of
(5.41) is naturally equipped with the monodromy Gal(L/K)-action (Section 5.1), so via
this restriction we see that the Gal(L/K)–action on H2(Bxs ,Qℓ) comes from restricting
the monodromy W -action on H2(Bxs ,Qℓ).

Remark 5.30. Implicit in Corollary 5.29 is the fact that the monodromy W -action on
H2(Bxs ,Qℓ) comes from the action of πét

1 (h
rs//W ) on the stalks H2(S̃h,Qℓ) of local system

R2χ̃∗Qℓ, as explained in ([Spr84], §5). This retrieves the cohomological version of the
monodromy results in ([Slo80a], §4.2-4.3). In the complex situation, Slodowy proves a
stronger result, i.e. that Bxs is homotopy-equivalent to a general fiber of χ̃ and so we get
a W -action on the homotopy type of Bxs . By comparison, we obtain a weaker result here
because we cannot pass to the differentiable category the way Slodowy does over C.

So far we have defined two W -actions on H2(Bxs ,Qℓ), the Springer W -action and the
monodromy W -action. We next show that they coincide, by adapting the argument
of ([Hot81], §1.9) to our ℓ-adic setting. Since Bxs is defined over k, in the following
proposition we may work over k instead of S.
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Proposition 5.31. The Springer and monodromy W -actions on H2(Bxs ,Qℓ) coincide.

Proof. Let h→ 0 be a specialization from a point in hrs//W (k) and consider its associated

cospecialization map H2((S0)s,Rπ∗Qℓ)
cosp−→ H2(Sh,Rπ∗Qℓ). Since Rπ∗Qℓ|Sh≃ πrs

∗ Qℓ and
πrs is a finite étale W -cover, we have

H2(Sh,Rπ∗Qℓ) = H2(Sh, πrs
∗ Qℓ) ≃ H2

( ∐
w∈W

S̃w·h,Qℓ

)
≃ H2((S̃0)s,Qℓ)⊗Qℓ[W ]

where h is a chosen lift of h in hrs yielding all other lifts w · h, and the last isomorphism
follows from Proposition 5.28. The right-hand side is further identified with Hi(Bxs ,Qℓ)⊗
Qℓ[W ] via Lemma 5.27, equipped with the monodromy W -action on the left. On the
other hand by proper base-change we have

H2((S0)s,Rπ∗Qℓ) ≃ H2(Bxs ,Qℓ) ≃ H2((S̃0)s,Qℓ)

with the latter isomorphism again due to Lemma 5.27, and the right-hand side is equipped
with the Springer W -action coming from the left-hand side and the Springer W -action
on Rπ∗Qℓ. These W -modules fit together into diagram

H2(Sh,Rπ∗Qℓ)
⊕

w∈W H2(S̃w·h,Qℓ) H2(Bxs ,Qℓ)⊗Qℓ[W ]

H2((S0)s,Rπ∗Qℓ) H2((S̃0)s,Qℓ) H2((S̃0)s ×W ·h,Qℓ) ≃ H2(Bxs ,Qℓ)⊗Qℓ[W ]

≃ ≃

cosp

≃ i

≃
where the bottom-right isomorphism is the Künneth map, the bottom row has H2(Bxs ,Qℓ)
equipped with the Springer W -action and the top row has H2(Bxs ,Qℓ) equipped with
the monodromy W -action. The image of i is by definition H2(Bxs ,Qℓ) ⊗ Qℓ[W ]W ≃
H2(Bxs ,Qℓ), so the right vertical isomorphism identifies the monodromy and Springer
W -actions on H2(Bxs ,Qℓ).

We conclude this section with the proof of parts (i) and (ii) of the Main Theorem 1.1.

Proof of Theorem 1.1 (i), (ii). By assumption p = char(k) is sufficiently good, so
p ∤ |Gal(L/K)| and hence the monodromy action of Gal(η/η) is tame, hence generated
by the Kummer character tℓ. We may therefore identify Gal(L/K) = ⟨tℓ⟩ with a cyclic
subgroup ⟨w⟩ of W , and so by Proposition 5.31, Theorem 5.22 and Corollary 5.6 we
have that the monodromy action on H2(XK ,Qℓ) is the restriction to ⟨w⟩ of the reflection
action of W on h∨ ≃ H2(Bxs ,Qℓ). This retrieves (i), and by construction we achieve good
reduction after base-change L/K, yielding (ii) as well.

Corollary 5.32. Suppose the base S = Spec(OK) of model X intersects the discriminant
divisor ∆ ⊂ h//W transversely, then Gal(L/K) is a multiple of the Coxeter number.
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Proof. As a consequence of Theorem 1.1 we have an equivalent description of the action
of monodromy in the complex case and the tame mixed-characteristic case. We may thus
identify the fundamental homogeneous generators of OK [h]W with coordinates on h//W ≃
Spec(OK [[t1, · · · , tr]]) so that the highest degree of a fundamental generator is Cox(g).
Then the line Spec(OK) is transverse to the discriminant if and only if all W -invariant
polynomials of degree < Cox(g) vanish on Spec(OK) ([Slo80a], p. 38). Conversely any
Coxeter element w ∈ W acting as a reflection on h ≃ h∨ has a 1-dimensional eigenspace
for eigenvalue ζN , N = Cox(g), which is mapped to a transversal line in h//W under a
degree-Cox(g) cover. Since L is a field extension on which X/S admits a simultaneous
resolution, we have that Cox(g) = ord(w) | Gal(L/K).

A rephrasing of the above Corollary says that if S transversely intersects the discrimi-
nant locus, then the monodromy Gal(η/η) acts through a Coxeter class in W .

5.7 Explicit monodromy actions on degenerations. This section concerns part
(iii) of Theorem 1.1. For certain types of singularities we may directly compute (up to
conjugacy) the elements acting as monodromy operators on H2(Xη,Qℓ). We assume the
situation in Notation 5.23 once more, i.e. we work over a complete trait S = Spec(OK) and
consider flat proper surfaces X/S so that Xs has a singularity of type An and p = char(k)
is sufficiently good for the singularity (p > n + 1). After coordinate change we have an
affine neighborhood of the singularity (see Example 2.24)

Spec
( OK [[x, y, z]]
x2 + z2 + yn+1 + unπanyn−1 + · · ·+ u2πa2y + u1πa1

)
−→ Spec(OK) (5.42)

where ui ∈ O×K . In this case W = Sn+1 and the W -cover h −→ h//W is given in
coordinates by

Spec
(OK [[s1, · · · , sn+1]]

s1 + · · ·+ sn+1

)
−→ Spec(OK [[t1, · · · , tn]]),

(s1, · · · , sn+1) 7−→ σi(s1, · · · , sn+1), i = 2, · · · , n+ 1 (5.43)

where σi are the symmetric polynomials of i-th degree (see [Tju70], §3 or [Bri66], §2.7).
The full monodromy groupW acts on H2(Bx,Qℓ) ≃ Qn

ℓ via the standard symmetric Sn+1-
representation. We also know in this case ([Tju70]) that the base-changed miniversal
family over h is given by

V = {x2 + z2 + (y − s1) · · · (y − sn+1) = 0}

after suitably multiplying variables si by units in OK . Family V may then be simultane-
ously resolved by means of the graph of the map

V −→ P1 × · · · × P1, (x, y, z) 7−→
([
x :

k∏
i=1

(y − si)
])n+1

k=1
(5.44)

We describe here a general principle that will allow us to pass between the mixed-
characteristic setting of Spec(K) and the equal-characteristic setting of Spec(k((t))). The
following is a direct application of Abhyankar’s lemma ([SGA 1], §XIII.5).
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Lemma 5.33. Let T = Spec
(OK [[t, u]]
tu− π

)
and Spec(OK), Spec(k[[t]]) → T be the fiber

maps induced respectively from u 7→ 1, u 7→ 0. Restricting to the open dense scheme
T
[
1
t

]
≃ Gm,OK

and the associated maps Spec(K) → Gm,OK
← Spec(k((t))) yields an

isomorphism of (tame) étale fundamental groups

πtame
1 (Spec(K), η)

∼−→ πét
1 (Gm,OK

, η)
∼←− πtame

1 (Spec(k((t))), s)

Under our restrictions on the characteristic, the ramified covers of K that we consider
are automatically tame, so in what follows we may view family (5.42) as a family over
Spec(k[[t]]) with parameter t instead of π for the purposes of ramification theory. We use
this fact implicitly in the statements below.

Proposition 5.34. Suppose we have a factorization x2+z2+(yr1−v1πb1) · · · (yrk−vkπbk)
of the family in (5.42) so that ri, bi ≥ 1, (ri, bi) = 1 and vi ∈ O×K. Then the associated
model achieves good reduction after a totally ramified base-change of order lcm(r1, · · · , rk)
and the element w ∈ Sn+1 acting as the monodromy operator has cycle-type (r1, · · · , rk).

Proof. Let f(y) = (yr1 − v1πb1) · · · (yrk − vkπbk) ∈ OK [y]. By assumption f(y) = yn+1 for
the mod π polynomial, and by the Newton polygon of f we get slopes µi = − bi

ri
, which

may appear with multiplicity (equal to the number of factors of form yri−πbi). Since OK
is henselian and the degrees ri are coprime to bi we get that each factor is irreducible by
Gauss’s lemma, hence the degree of its splitting field is divisible by ri. On the other hand
ri < p and O contains all roots of unity prime to p so the splitting field degree is exactly
ri, yielding an ri-cycle in Sn+1.

Since any element of Sn+1 can be written as a product of disjoint cycles and disjoint
cycles commute, we observe that f(y) splits after an extension of degree lcm(r1, · · · , rk),
corresponding to an element of cycle-type (r1, · · · , rk) as we may reorder the factors in
decreasing order of ri. The base-changed model then admits a (small) resolution of the
form (5.44) where the si correspond to the roots of f(y); in other words we get a smooth

model obtained as a base-change of S̃ → h to Spec(OL), where OL/OK is the unique
totally ramified extension of OK of degree lcm(r1, · · · , rk). Conjugacy classes in Sn+1

bijectively correspond to cycle-types of this form, which proves the last statement.

Corollary 5.35 (Part (iii) of Theorem 1.1). Any conjugacy class in Sn+1 may act as the
monodromy operator on a surface family degenerating to an An-singularity.

For An-singularities, we derive another proof of Corollary 5.32 using the explicit equa-
tion of the miniversal deformation.

Corollary 5.36. Assume Spec(OK) intersects the discriminant divisor ∆ transversely,
then for the resulting model with an An-type singularity at the special fiber we have that
monodromy acts a Coxeter element.

Proof. We assume again that there is an affine étale neighborhood of the singular point
in X of the form {x2 + z2 + f(y) = 0} for f(y) = yn+1 + unπ

anyn−1 + · · ·+ u2π
a2y+ u1π

a1
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with ai ≥ 1 (otherwise the proof of Proposition 5.34 shows that we get a singularity of
Am-type for m < n when we reduce mod π). Viewing Spec(OK) as a line inside h//W , it
intersects ∆ transversely exactly when it is not tangent to the tangent cone of ∆. The
tangent cone is V (σn+1) for σn+1 the (n+ 1)-th symmetric polynomial generator of Sn+1.
When the affine étale neighborhood of the singular point in X is smooth, we satisfy the
non-tangency condition.

By the Jacobian criterion we see that the point corresponding to ideal (x, y, z, π) is
singular if and only if a1 ≥ 2 so we have a1 = 1. In this case f(y) is Eisenstein, hence
irreducible in OK by Gauss’s lemma. The Galois group of its splitting field therefore
contains an element of order n+ 1 i.e. an (n+ 1)-cycle, and it is cyclic, hence generated
by an (n+ 1)-cycle. We thus get the conjugacy class of Coxeter elements in Sn+1.

We can compute a few low-degree examples to see all possible monodromy operators.

Example 5.37.

(i) In the A1 case, the possible affine neighborhoods are given by {x2 + z2 + f(y) = 0}
with f(y) = y2 − πN for N ≥ 1. If N = 2n+ 1 is odd, f(y) is irreducible and splits
after a base-change of order Z/2; the resulting model

{x2 + z2 + (y − π2n+1)(y − π2n+1) = 0}

admits a small resolution (see Example 2.11) and via the standard representation
we get that the Coxeter element σ ∈ S2 acts as (−1). If N = 2n is even, we have a
factorization {x2+z2+(y−πn)(y+πn) = 0} and hence obtain good reduction without
base-change, corresponding to the trivial conjugacy class in S2. This retrieves the
main theorem of [Kim20] for the case of one ordinary double point on the special
fiber.

(ii) In the A2 case, we obtain an affine neighborhood as before with f(y) = y3+πay+πb,
a, b ≥ 1 (including ∞ for the case of vanishing coefficients). The particular case
f(y) = y3 − π gives a map Spec(OK) → h//W transverse to the discriminant,
hence we obtain good reduction after a base-change of order Z/3; indeed, passing to
L = Q̆p( 3

√
p) factors f(y) completely, and we can resolve each fiber akin to (5.44).

The corresponding Coxeter element acts on a 2-dimensional subspace of H2(Xη,Qℓ)

as

(
0 −1
1 −1

)
, up to conjugation.

Case f(y) = y3 − π3 factors without base-change, hence we directly obtain good
reduction and trivial monodromy. Case f(y) = y3 − πy = y(y2 − π) factors after
a quadratic base-change again, yielding monodromy acting as a transposition on a

2-dimensional subspace of H2(Xη,Qℓ). As before, the associated matrix is

(
−1 1
0 1

)
up to conjugation.

We conclude with a conjectural statement, which is work in progress.
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Conjecture 5.38. For singularities of type Dn or En one may construct an integral
model of some proper smooth surface X/K so that the monodromy operator may lie in
any conjugacy class of W .

The Dn case should work similar to the An case, since we can describe conjugacy
classes of the Weyl group W as certain partition classes. The more interesting cases are
the exceptional ones (E6, E7, E8) for which there is no known unified description (at least
to the author) of the conjugacy classes of W .
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by Vladimir Maşek and revised by the author.
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[Vis97] A. Vistoli. The deformation theory of local complete intersections.
arXiv e-prints, pages alg–geom/9703008, Mar. 1997, alg-geom/9703008.
doi:10.48550/arXiv.alg-geom/9703008.

[vL07] R. van Luijk. K3 surfaces with Picard number one and infinitely many rational
points. Algebra Number Theory, 1(1):1–15, 2007. doi:10.2140/ant.2007.1.1.

[Yun17] Z. Yun. Lectures on Springer theories and orbital integrals. In Geometry of
moduli spaces and representation theory, volume 24 of IAS/Park City Math.
Ser., pages 155–215. Amer. Math. Soc., Providence, RI, 2017.

66

http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://arxiv.org/abs/alg-geom/9703008
http://dx.doi.org/10.48550/arXiv.alg-geom/9703008
http://dx.doi.org/10.2140/ant.2007.1.1

	Introduction
	Good reduction beyond abelian varieties.
	Bad reduction of surfaces and singularities.
	Overview of our work.
	Outline of the proof.
	Connections with other work.
	Organization of paper.
	Notations and conventions.

	Rational double points and their miniversal deformations
	Rational double points.
	Simultaneous resolutions.
	Formal deformations of singularities.
	The Kodaira–Spencer map.
	Miniversal deformations in mixed characteristic.

	The geometry of the Grothendieck alteration
	Chevalley bases and Chevalley algebras.
	Root data and adjoint Weyl actions.
	Nilpotent and semisimple elements of Chevalley algebras.
	The adjoint quotient.
	Relative Grothendieck–Springer resolutions.

	Integral Slodowy slices
	Remarks on Slodowy slices.
	Jacobson–Morozov in characteristic p.
	Slodowy slices via Jacobson–Morozov.
	Spaltenstein slices.
	Gm–actions and Gm–deformations.
	Grothendieck alterations for transverse slices.

	The monodromy Weyl action
	Classical nearby cycles.
	Nearby cycles on formal schemes.
	Nearby cycles on a Grothendieck topos.
	Relative perverse sheaves and the Grothendieck alteration.
	Weyl–Springer actions.
	Monodromy Weyl actions and the proof of the main theorem.
	Explicit monodromy actions on degenerations.


