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1 Introduction

Let G be a reductive group over k, and denote by g its Lie algebra. The Chevalley map

χ : g → g//G,

where g//G := Spec(k[g]G) denotes the invariant theoretic quotient of g by the adjoint action of G, is
of fundamental importance in the construction of the Hitchin system [4]. In particular, for g = gln, χ
sends a matrix to its characteristic polynomial.

In [7], Kostant exhibited a section of the Chevalley map for a general reductive group G under the
assumption that the characteristic of k does not divide the order of the Weyl group. As explained in
[8], this section can be used to construct sections of the Hitchin fibration and affine Springer fibers.
However, Kostant’s construction has two important detractions: on the one hand, it requires a bound
on the characteristic of the field that depends on the group G, which is usually not optimal for classical
groups, and on the other hand, it can be counter-intuitive for computations. To illustrate this latter
point, consider the case G = GL3(k), in which case g//G = A3 is the 3-dimensional affine space. The
Kostant section is the map sending

(a1, a2, a3) ∈ g//G →





a1
3

a21
6 + a2

2 −4a31
27 − a1a2

3 − a3

1 a1
3

a21
6 + a2

2
0 1 a1

3



 ∈ g

If you introduced this problem to an undergraduate student of linear algebra, of course, they would
not give you the answer above; they might instead suggest the map:

(a1, a2, a3) ∈ g//G →




0 0 −a3
1 0 −a2
0 1 −a1



 ∈ g

sending a characteristic polynomial to its companion matrix. The section to the Hitchin map that
Hitchin constructed in [4] is not strictly the same as the one of [8] in the sense that he does not rely on
the Kostant section but another section that feels more like a generalization of the companion matrix.
Instead of the companion matrix, a map g//G → g, we will construct a map g//G → [g/G], where [g/G]
is the quotient of g by the adjoint action of G in the sense of algebraic stack. This section will be called
the companion section, which is free of any choice. The present note aims to explicitly construct the
companion section for classical groups, including the symplectic and orthogonal groups and G2.

As applications of the companion sections, we will give elementary descriptions of affine Springer fibers
and Hitchin fibers for classical groups similar to the description of the Hitchin fibers in the linear case
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due to Beauville-Narasimhan-Ramanan. In addition to this elementary description of affine Springer
fibers and Hitchin fibers for classical groups, using the companion section instead of the Kostant
section allows us to save on the characteristic of the base field. Indeed, whereas the construction of the
Kostant section requires the characteristic of the base field not to divide the order of the Weyl group,
the existence of the companion section only requires that the characteristic of the base field is zero or
greater than 2 for symplectic and orthogonal groups, and is zero or greater than 3 for the group G2.

The emphasis of this work is on providing case-by-case explicit formulas for the companion section
for classical groups. It is also possible to construct the companion section uniformly. This will be the
subject of our subsequent work.

2 Tensors defining classical groups

We will recall the standard definition of classical groups as the subgroup of the linear groups fixing
certain tensors. This is very well known for symplectic and orthogonal groups but a bit less known for
G2, which in a certain respect could qualify as a classical group as well.

Let V be a 2n-dimensional vector space over a base field k, V ∗ its dual vector space. The linear
group GL(V ) acts on the space ∧2V ∗ of alternating bilinear forms on V with an open orbit. An
alternating bilinear form µ ∈ ∧2V ∗ is considered non-degenerate if it lies in this open orbit. This is
equivalent to requiring the induced map µ : V → V ∗ to be an isomorphism. The stabilizer of such
a non-degenerate alternating bilinear form is a symplectic group G. We note that µ ∈ ∧2V ∗ is non-
degenerate if ∧nµ ∈ ∧2nV ∗ is a non-zero vector of the 1-dimensional vector space ∧2nV ∗ and as a result,
G is contained in the special linear group SL(V ). Then, a G-bundle over a k-scheme S consists of a
locally free OS-module V of rank 2n equipped with an alternating bilinear form ∧2

SV → OS which is
non-degenerate fiberwise. We are more concerned with G-bundles than G itself, so choosing a specific
non-degenerate alternating form µ ∈ ∧2V ∗ is immaterial. We will write G = Sp2n.

Let V be a n-dimensional vector space over a base field k, V ∗ its dual vector space. The linear group
GL(V ) acts on the space S2V ∗ of symmetric bilinear forms on V with an open orbit. A symmetric
bilinear form µ ∈ S2V ∗ is considered non-degenerate if it lies in this open orbit. This is also equivalent
to the induced map µ : V → V ∗ being an isomorphism, which in turn is equivalent to the induced
map ∧nµ : ∧nV → ∧nV ∗ being an isomorphism of 1-dimensional vector spaces. We note that ∧nV
and ∧nV ∗ are dual as vector spaces so that for every choice of a basis vector ω ∈ ∧nV , we have a
dual basis vector ω∗ ∈ ∧nV ∗. A basis vector ω ∈ ∧nV is said to be compatible with µ if the equation
∧nµ(ω) = ω∗ is satisfied. This equation has exactly two non-zero solutions ω ∈ ∧nV , which differ by
a sign. The stabilizer of a non-degenerate symmetric bilinear form µ ∈ S2V ∗ is an orthogonal group
O(µ). The stabilizer of a pair (µ,ω) consisting of a non-degenerate symmetric bilinear form µ ∈ S2V ∗

and a compatible basis vector ω ∈ ∧nV is the special orthogonal group SO(µ,ω) which is the neutral
component of O(µ). We note that SO(µ,ω) = O(µ) ∩ SL(V ) so that the special orthogonal group can
also be defined as the stabilizer of a pair (µ,ω) as above but without requiring ω being compatible
with µ. The stabilizer of any such pair is a special orthogonal group G. A G-bundle over a k-scheme S
consists then in a locally free OS-module V of rank n equipped a symmetric bilinear form ∧2

SV → OS

which is non-degenerate fiberwise. As we are more concerned with G-bundles than G itself, choosing
a specific non-degenerate symmetric form µ ∈ ∧2V ∗ is immaterial. We will write G = SOn.

There is a simple tensor definition of G2 due to Engel [2]. Let V be a 7-dimensional vector space. The
linear group GL(V ) acts on the space ∧3V ∗ of non-degenerate trilinear forms on V with an open orbit.
We will follow Hitchin’s [5] in formulating the equation defining this open orbit . We will denote the
contraction ∧3V ∗ × V → ∧2V ∗ by µv for µ ∈ ∧2V ∗ and v ∈ V . For v1, v2 ∈ V and µ ∈ ∧3V ∗, we then
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have
µv1 ∧ µv2 ∧ µ ∈ ∧7V ∗.

By choosing a non-zero vector ι of the determinant ∧7V , µ gives rise to a symmetric bilinear form
ν ∈ S2V ∗

ν(v1, v2) = 〈ι, µv1 ∧ µv2 ∧ µ〉 (1)

which is non-degenerate if and only if µ lies in the open orbit of ∧3V ∗. We will say that µ is a non-
degenerate 3-form on V . The stabilizer of a non-degenerate 3-form is a group G2 ⋉ µ3(k) where µ3(k)
is the group of 3rd roots of unity in k; We obtain the connected component, a group of type G2, by
taking the intersection with SL(V ). A G2-bundle over a k-scheme S is thus a locally free OS-module
V of rank 7 equipped with an alternating trilinear form µ ∈ ∧3V∗ which is non-degenerate fiberwise
together with a trivialization of the determinant.

3 Spectral cover and the companion matrix

For all groups G discussed previously, including symplectic, special orthogonal, and G2, G is defined as
a subgroup of GLn fixing certain tensors. We call the inclusion G → GLn the standard representation
of G. We also have the induced inclusion of Lie algebras g → gln compatible with the adjoint actions
of G and GLn. We derive a morphism between the Chevalley invariant theoretic quotients

c = g//G → gln//GLn = cn

which is a closed embedding for symplectic groups, odd special orthogonal groups, and G2, but not for
even orthogonal groups. For GLn, we have a spectral cover sn → cn which is a finite flat morphism of
degree n so that Osn is a locally free Ocn-module of rank n given with a canonical endomorphism [x]
which is the usual companion matrix. The main result of this work can be formulated as follows:

Theorem 3.1. Let G be a symplectic group, odd special orthogonal group, or G2 group and G → GLn

its standard representation. Let c → cn be the induced map of Chevalley quotients which is a closed
embedding in these cases. Then the restriction Osn to c

V = Oc ⊗Ocn
Osn

as locally free Oc-module affords canonical tensors so that it has a canonical G-reduction and the
companion matrix for GLn defines a canonical map g//G → [g/G] which is a section of the natural
map [g/G] → g//G. This statement remains valid for even orthogonal groups after replacing c ×cn sn
by its normalization.

We prove the theorem by a case-by-case analysis. In particular, we will construct the explicit tensors
required in each case.

3.1 Linear groups

We first recall how the companion matrix is connected to the universal spectral cover in the case GLn.
In this case, the Chevalley quotient g//G is the n-dimensional affine space An and the map χ : g → g//G
is given by the characteristic polynomial χ(γ) = (a1(γ), . . . , an(γ)) where ai(γ) = (−1)itr(∧iγ). In
this case we have cn = Spec(An) where An = k[a1, . . . , an]. The spectral cover sn = Spec(Bn) where
Bn is the An-algebra

Bn = An[x]/(x
n + a1x

n−1 + · · ·+ an)
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which is a free An-module of rank n as the images of 1, x, . . . , xn−1 form an An-basis of Bn. We also note
that Bn is a regular k-algebra as it is isomorphic to the polynomial algebra of variables a1, . . . , an−1, x.
On the other hand, Bn is equipped with a An-linear operator [x] : Bn → Bn given by b → bx which
provides us with a An-point of [gln/GLn]. We have thus constructed a map [x] : cn → [gln/GLn] which
is a section to χ : [gln/GLn] → cn. In term of matrices with respect to the An-basis of Bn given by
1, x, . . . , xn−1, [x] is given by the usual companion matrix

x• =





0 · · · −an
1 0 · · · −an−1

· · · 0
0 1 −a1



 ∈ gln(A) (2)

The companion matrix thus gives us a map x• : c → g in the case G = GLn which is a section to the
characteristic polynomial map. However, it is often more useful to think of [x] as a map [x] : c → [g/G]
in the case G = GLn.

There is an issue with using the companion matrix to construct a section to the Hitchin map as
the companion map x• : c → g is not Gm-equivariant. We note, however, that the stack-valued map
[x] : c → [g/G] is almost Gm-equivariant in the sense that after a base change by the isogeny Gm → Gm

given by t → t2, it becomes equivariant because of the identity

ad(diag(tn−1, tn−3, . . . , t1−n))(γ) = t−2





0 0 · · · −t2nan
1 0 · · · −t2n−2an−1

· · ·
0 1 −t2a1



 . (3)

This explains why we have a section to the Hitchin map after choosing a square root of the canonical
bundle as in [4].

As we intend to use the companion matrix (2) to construct a canonical section to the Chevalley map
χ : [g/G] → c for classical groups, it is useful to further investigate the linear algebraic structure of Bn

as an An-module. We have a symmetric An-bilinear map ξ : Bn ⊗An Bn → An given by

ξ(b1 ⊗An b2) = trBn/An
(b1b2)

thus an element ξ ∈ S2
An

B∗
n. Because this element induces degenerate forms over the ramification locus

of Bn over An, we need a correction term to get a symmetric bilinear form that is non-degenerate
fiberwise.

This element defines a An-linear map also denoted by µ : Bn → B∗
n where B∗

n = HomAn(Bn, An).
We note that the An-module B∗

n is naturally a Bn-module and µ : Bn → B∗
n is Bn linear; thus, it is

uniquely determined by the image of 1 ∈ Bn that we will also denote by µ ∈ B∗
n. We will show that

B∗
n is a free Bn-module of rank 1, construct a generator of B∗

n and find an explicit formula for µ ∈ B∗
n

as a multiple of this generator.

Lemma 3.2. Let us denote by v0, . . . , vn−1 the basis of Bn given by the images of 1, x, . . . , xn−1 in Bn

and v∗0, . . . , v
∗
n−1 the dual basis of B∗

n. Then β∗ = v∗n−1 is a generator of B∗
n as a Bn-module. Let us

denote f ′ ∈ Bn = An[x]/(f) the image of the derivative

nxn−1 + (n− 1)a1x
n−2 + · · ·+ an−1 ∈ An[x]

of the universal polynomial f = xn + a1x
n−1 + · · ·+ an ∈ An[x]. Then we have µ = f ′β∗.
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Proof. First, the discriminant d of the universal polynomial f , defined as the resultant between f
and its derivative, is a nonzero element of the polynomial ring An. Indeed, d defines the ramification
divisor of the finite flat covering s → c, which is generically étale for there exist separable polynomials
in k′[x] of degree n with coefficients in any infinite field k′ containing k. We denote A′ = An[d

−1] the
localization of An obtained by inverting d, and B′ = Bn ⊗An A′. By construction, f ′ is an invertible
element of B′. The trace map trB′/A′ : B′ → A′ of B′ as free A′-module of rank n is now given by the
Euler formula [9]

Tr


xk

f ′


=


0 if k < n− 1

1 if k = n− 1

If v0, . . . , vn−1 denote the basis of B′ given by the images of 1, x, . . . , xn−1 in Bn and v∗0, . . . , v
∗
n−1 the

dual basis of (B′)∗, then we derive from the Euler formula that the identities

µ(vi) = f ′



v∗n−1−i +


j<i

a′i,jv
∗
n−1−j



 (4)

hold in B∗
n ⊗An A′ for some a′i,j ∈ A′. In particular, we have µ(v0) = f ′v∗n−1. As the localization map

B∗
n → B∗

n ⊗An A′ is injective, this identity also holds in B∗
n. It follows that µ = f ′v∗n−1 as desired.

As a consequence, we have a canonical nondegenerate bilinear form β∗ : Bn ⊗An Bn → An which is
symmetric with respect to which the An-linear operator [x] : Bn → Bn is self-adjoint. We will denote
symbolically

β∗ = f ′−1
µ.

Studying the Gm action on the form β∗ will also be useful in the sequel.

For G = SLn, the Lie algebra g = sln is the space of traceless matrices. We have c = Spec(A) where
A = k[a2, . . . , an]. We note that for a1 = 0, the companion matrix (2) is traceless and thus gives rise
to a A-point on sln. The companion map γ : c → g induces a map [γ] : c → [g/G]. The latter lays
over the point of BG with values in A corresponding to the SLn-bundle corresponding to rank n vector
bundle B equipped with the trivialization of the determinant given by the basis 1, x, . . . , xn−1. The
formula (3) shows that the map [γ] : c → [g/G] is equivariant with respect to the isogeny Gm → Gm

given by t → t2 for the diagonal matrix diag(tn−1, tn−3, . . . , t1−n) belonging to SLn.

3.2 Symplectic groups

In the case G = Sp2n, we have c = Spec(A) with A = k[a2, . . . , a2n]. The spectral cover s = Spec(B)
where

B = A[x]/(x2n + a2x
2n−2 + · · ·+ a2n)

is a free A-module of rank 2n, is equipped with an involution τ : B → B given τ(x) = −x. The
companion matrix (2) gives a A-linear endomorphism of B as a free A-module. For the companion
matrix to produce a section to the Chevalley map [g/G] → c in the symplectic case, we need to construct
a canonical nondegenerate symplectic form on the A-module B for which γ is anti-self-adjoint.

The standard representation Sp2n → GL2n induces a map on Chevalley bases c → c2n = Spec(A2n)
where A2n = k[a1, . . . , a2n] which identidies c with the closed subscheme of c2n defined by the ideal
generated by a1, a3, . . . , a2n−1. We have B = A ⊗A2n B2n where B2n is the finite free A2n-algebra
defining the spectral covering of c2n. If we denote B∗ = HomA(B,A) then we have B∗ = A⊗A2n B∗

2n

where B∗
2n = HomA2n(B2n, A2n). The generator β∗

2n of the free B2n-module B∗
2n defined in Lemma
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3.2 then induces a generator β∗ of B∗ as a free B-module of rank one which can also be viewed as the
bilinear form β∗ : B ⊗A B → A given by b1 ⊗A b2 = trB/A(f

′−1b1b2) after localization.

The bilinear form ω : B ⊗A B → A

ω(b1, b2) = β∗(b1, τ(b2)) = trB/A(f
′−1

b1τ(b2))

with the second identity only making sense after localization of A making f ′ invertible, is a non-
degenerate symplectic form for which [x] is anti-self-adjoint. Indeed, we have

ω(b1, b2) = −ω(b2, b1)

because τ(f ′) = −f ′ for f ′ ∈ A[x] is an odd polynomial as f ∈ A[x] is an even polynomial. The
equation ω(xb1, b2) + ω(b1, xb2) = 0 can be derived from τ(x) = −x.

It follows that we have a morphism
[x] : c → [g/G]

which deserves to be called the companion map for the symplectic group. To obtain a companion matrix
x• : c → g, it is enough to find a trivialization of the G-bundle associated with the non-degenerate
symplectic form ω : B ⊗A B → A. For most applications, particularly the Hitchin fibration, we only
need the section [x] : c → [g/G].

3.3 Odd special orthogonal groups

In the case G = SO2n+1, we have c = Spec(A) with A = k[a2, a4, . . . , a2n]. The spectral cover is
defined as s = Spec(B) where B = A[x]/(f) with f = xf0 and f0 = x2n + a2x

2n−2 + · · ·+ a2n. B is a
free A-module of rank 2n + 1. As in the symplectic case, we will define a symmetric non-degenerate
bilinear form B ⊗A B → A for which the multiplication by x is anti-self-adjoint.

The standard representation SO2n+1 → GL2n+1 gives rise to a map c → c2n+1 = Spec(k[a1, . . . , a2n+1])
which is a closed embedding defined by the ideal generated by a1, a3, . . . , a2n+1. We have B =
A ⊗A2n+1 B2n+1 where B2n+1 is the finite free A2n+1-module of rank 2n + 1 defining the spectral
cover in the case GL2n+1. We also have B∗ = A ⊗A2n+1 B∗

2n+1 where B∗ = HomA(B,A) and
B∗

2n+1 = HomA2n+1(B2n+1, A2n+1). Following the discussion in the linear case B∗
2n+1 is a free B2n+1

generated by the element β∗
2n+1 = (f ′)−1µ where µ is the trace form µ(b1 ⊗A b2) = tr(b1b2). It induces

a generator β∗ of B∗ as a B-module. We define the bilinear form ω : B ⊗A B → A by

ω(b1, b2) = β∗(b1, τ(b2)) = tr(f ′−1
b1τ(b2)). (5)

The form bilinear form ω is a nondegenerate bilinear form because β∗ is. It is symmetric because
τ(f ′) = f ′ as f ′ is an even polynomial. The equation ω(xb1, b2) + ω(b1, xb2) can be derived from the
fact τ(x) = −x.

By choosing a trivialization of the determinant, we obtain a companion map [x] : c → [g/G] for
G = SO2n+1.

3.4 Even special orthogonal groups

The case G = SO2n is slightly more difficult for the map c → c2n induced by the standard representation
of SO2n is not a closed embedding. Indeed, we have c2n = Spec(A2n) where A2n = k[a1, . . . , a2n] but
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c = Spec(A) where A = k[a2, . . . , a2n−2, pn] where pn is the Pfaffian satisfying p2n = a2n does not lie in
the image of A2n → A. If B2n is the spectral cover of A2n and B = A⊗A2n B2n then we have

B = A[x]/(x2n + a2x
2n−2 + · · ·+ a2n−2x

2 + p2n).

As indicated by Hitchin [4], the true spectral cover for even special orthogonal groups is not B but its
blowup B along the singular locus defined by x. We have

B = A[x, pn−1]/

xpn−1 − pn, x

2n−2 + a2x
2n−4 + · · ·+ a2n−2 + p2n−1



which is a free A-module of rank 2n and smooth as a k-algebra. We have an involution τ on B and B
given by τ(x) = −x and τ(pn−1) = −pn−1.

The dualizing sheaf ω B/A
is a free rank-one B-module, canonically isomorphic to B away from the

ramification locus. As a B-submodule of Fr( B) it is generated by the inverse of the different D B/A
which is given by the formula

D B/A
= det


−pn−1 f ′

−x 2pn−1



= (n− 1)x2(n−1) + (n− 2)a2x
2(n−2) + · · ·+ a2n−2x

2 + p2n−1.

In other words, the bilinear form B ⊗A
B → A given by

b1 ⊗A b2 → tr B/A
(D−1

B/A
b1b2)

is non-degenerate. As in the symplectic and odd special orthogonal cases, we now consider the sesquilin-
ear bilinear form

ω(b1, b2) = tr B/A
(D−1

B/A
b1τ(b2))

Then ω is a non-degenerate symmetric bilinear form because τ(D B/A
) = D B/A

, and it satisfies

ω(xb1, b2) = −ω(b1, xb2).

After a choice of trivialization of the determinant of B as a free A-module of rank n, the multiplication
by x gives rise to the companion section [x] : g//G → [g/G] for the odd special orthogonal group
G = SO2n+1.

3.5 The group G2

In the case G2, the invariant quotient is A = k[e, q] with deg(e) = 2 and deg(q) = 6. The spectral
cover s = Spec(B) of c = Spec(A) given by

B = A[x]/ (xf0) for f0 = x6 − ex4 +
e2

4
x2 + q

is a reducible cover of A with two components corresponding to the quotient maps

B → B′ = A[x]/(f0) and B → A = A[x]/(x).

The cover s′ = Spec(B′) of A is finite, flat of degree 6, and factors through two subcovers, of degrees
2 and 3, corresponding to the sub-A-algebras

A ⊂ A[y]/


y3 − ey2 +

e2

4
y + q


⊂ B′ where y = x2
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A ⊂ A[z]/

z2 + q


⊂ B′ where z = x


x2 − e

2



Let  ∈ B[q−1]∗ := HomA[q−1](B[q−1], A[q−1]) be dual to f0; δi ∈ B[q−1]∗ be dual to xi; and ηi ∈
B[q−1]∗ be dual to xiz for i = 1, 2, 3. Let trz denote the skew-symmetric bilinear form on B given by

trz(g, h) = TrFrac(B)/Frac(A)


g(x)h(−x)z

f(x)



We will denote by ρ the 3-form on B[q−1] given by

ρ := δ1 ∧ δ2 ∧ η3 + δ1 ∧ η2 ∧ δ3 + η1 ∧ δ2 ∧ δ3 − q · η0 ∧ η1 ∧ η2 +  ∧ trz (6)

A priori, the 3-form above is valued in A[q−1]. The next proposition tells us that it restricts to an
element of

3
AB∗.

Proposition 3.3. Restricting the 3-form ρ to B → B[q−1] induces a 3-form ρ ∈
3

AB∗. In other
words, ρ takes values in A when restricted to B.

Proof. Consider the A-basis of B given by

{1, xi, xiz : i = 1, 2, 3}.

This differs from the A[q−1]-basis
{f0, xi, xiz : i = 1, 2, 3}

of B[q−1] only by scaling f0. As ρ is valued in A on the A-linear span of the latter basis, it suffices to
check the contraction ι1ρ of ρ along 1 ∈ B is valued in A. We compute

ι1ρ = η1 ∧ η2 −
e

2
η2 ∧ η3 +

1

q
(trz − δ1 ∧ δ2 +

e

2
δ2 ∧ δ3 − ix3ztrz ∧ +

e

2
ixztrz ∧ )

= η1 ∧ η2 −
e

2
η2 ∧ η3 +

1
q
(trz − δ1 ∧ δ2 +

e

2
δ2 ∧ δ3)− ι1trz ∧ 



Rewriting the latter in terms of a dual basis ξi, i = 0, . . . , 6 for the A-basis {xi : i = 0, . . . , 6} of B, we
see that the expression in square brackets above is

ι1ρ = e3 ∧ e6 + e4 ∧ e5 −
3e

2
e5 ∧ e6

whose image lies in A.

As the previous proposition illustrates, working with the form ρ requires significantly more computa-
tional effort. As such, the latter two results will be checked primarily with computer algebra packages.
These computations were done in Macaulay2; explicit code for each calculation is referred to in Ap-
pendix A.

Proposition 3.4. Let ν be the bilinear form associated to ρ as in equation (1) and let ω ∈ S2
AB

∗ be
the symmetric, nondegenerate form given by the formula (5). Then, ν = −2432ω.

Proposition 3.5. The form ρ is compatible with the endomorphism [x], in the sense that

ρ(xb1, b2, b3) + ρ(b1, xb2, b3) + ρ(b1, b2, xb3) = 0.

As such, the form ρ together with a trivialization of the determinant gives a map [x] : c → [g2/G2].
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4 Special components

In the previous section, we gave explicit formulas for the tensors defining the reduction of the vector
bundle Oc×cnsn to G so that the companion section for GLn induces the companion section for classical
group G. These explicit formulas may feel like miracles, especially in the G2 case where a computer
algebra system is needed. In this section, we will derive them from the geometry of spectral covers,
which makes the construction more conceptual, especially in the G2 case. In subsequent work, we use
this approach to construct the companion section uniformly.

4.1 Special form and component associated with a subcover

Let A be a k-algebra, B a finite flat A-algebra of degree n generated by one element b ∈ B, and
A′ ⊂ B an A-subalgebra of B such that A′ is finite flat of degree m over A generated by one element
a′ ∈ A′ and B is a finite flat A′-algebra of degree d generated by b. Under these assumptions, we
have B ≃ A[x]/P (x) where P (x) is the characteristic polynomial of the A-linear b : B → B defined
as the multiplication by b. Similarly we have A′ ≃ A[x]/(P1(x)) where P1(x) is the the characteristic
polynomial of the A-linear operator a′ : A′ → A′, and B ≃ A′[x]/P2(x) where P2(x) is the characteristic
polynomial of the A′-linear operator b : B → B.

Assuming that the characteristic of k is greater than d, we want to construct an alternating d-form

ωA′ : ∧d
AB → A

supported on a special component of Spec(Sd
AB) isomorphic to Spec(A′). We explain what this means.

As far as we know, the concept of non-degeneracy for d-forms is not yet defined for d ≥ 3 and thus
we can prove the it only for d = 1 or d = 2. However, we expect that the form we construct is non-
degenerate for a reasonable definition of this concept. As to the special component,

d
AB is a module

over the ring of symmetric tensors (
d

AB)Sd . We will construct a surjective homomomorphism of
A-algebras (

d
AB)Sd → A′ which realizes Spec(A′) as an irreducible component of Spec((

d
AB)Sd)

if B is generically étale over A and A′ is a domain.

The homomorphism of A-algebras (
d

AB)Sd → A′ is constructed as follows. Let P2(x) = xd+a′1x
d−1+

· · ·+ a′d be the characteristic polynomial of the A′-linear map b : B → B. Then we have

B = A′[x]/(xd + a′1x
d−1 + · · ·+ a′d).

We consider the polynomial ring R = k[x1, . . . , xd] and the subring S of invariant polynomials under
the symmetric group Sd. We have

S = k[x1, . . . , xd]
Sd = k[α1, . . . ,αd]

with
αi = (−1)i



1≤j1<···<ji≤d

αj1 . . .αjd .

Since R and S are regular, and R is a finite generated S-module, R is a finite flat S-algebra of degree
d!. We consider the homomorphism of algebras S → A′ given by αi → a′i and the base change A′⊗S R
which is a finite flat A′-algebra of degree d! equipped with an action of Sd. We have (A′⊗SR)Sd = A′.
Moreover, for every i ∈ {1, . . . , d} we have a homomorphism of A′-algebras B → R ⊗S A′ given by
x → xi which together give rise to a surjective homomorphism of A′-algebras

d
A′ B → A′⊗SR, which

is Sd-equivariant. We derive a Sd-equivariant surjective homomorphism of A-algebras
d

A

B →
d

A′

B → A′ ⊗S R. (7)
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By taking the Sd-invariant, we obtain the desired homomorphism of algebras

Sd
AB = (

d

A

B)Sd → A′,

which is surjective because taking Sd-invariants is an exact functor under the characteristic assumption.

We will now construct a special d-form on B

ωA′ :

d

A

B → A

supported on the special component. As above, we have a surjective homomorphism of algebras
Sd-equivariant surjective homomorphisms of A-algebras ⊗d

AB → ⊗d
A′B → A′ ⊗S R which induces a

surjective A-linear maps of the alternating parts
d

AB →
d

A′ B → A′ ⊗S Rsgn where Rsgn is the
direct factor of R as S-module in which Sd acts as the sign character. It is known that Rsgn is a free
S-module generated by


1≤i<j≤d(xi − xj). We thus obtains a surjective A-linear map

d
AB → A′.

By composing it with the generator of HomA(A
′, A) constructed in 3.2 we obtain the special d-form

ωA′ :
d

AB → A which is supported by the special by construction.

Let us discuss the non-degeneracy of the special d-form ωA′ :
d

AB → A. For d = 1, this follows from
lemma 3.2. We can check that it is also non-degenerate everywhere for d = 2. For d ≥ 3, we don’t
know a general definition of non-degeneracy but it easy to see that the special form ωA′ is everywhere
non-zero. In dimension 6 and 7 where the definition of non-degeneracy is available, we will check that
the special d-form is everywhere non-degenerate by direct calculation.

4.2 Sp2n case

We recall in the case G = Sp2n, we have c = Spec(A) with A = k[a2, . . . , a2n]. The spectral cover
s = Spec(B) where

B = A[x]/(x2n + a2x
2n−2 + · · ·+ a2n)

is a free A-module of rank 2n, is equipped with an involution τ : B → B given τ(x) = −x. We consider
the subalgebra A′ of B consisting of elements fixed under τ

A′ = A[y]/(yn + a2y
n−1 + · · ·+ a2n).

We then have B = A′[x]/(x2 − y).

The construction of the special form and special component in 4.1 gives rise to an alternating form

ωA′ : ∧2
AB → A

supported in the special component c′ = Spec(A′) of (s×c s)//S2 where s = Spec(B) and c = Spec(A).
The homomorphism (7) Sym2

A(B) → A′ can be explicitly computed elements of the form:

b⊗A 1 + 1⊗A b → trB/A′(b).

In particular, x⊗A 1 + 1⊗A x be long to the kernel of Sym2
A(B) → A′, and in fact on can verify that

it is a generator of the kernel. Since x⊗A 1 + 1⊗A x annihilates ωA′ we have

ωA′(xb1, b2) + ωA′(b1, xb2) = 0

for every b1, b2 ∈ B. By lemma ??, the 2-form ωA′ is everywhere non-degenerate. We can also see by
explicit calculation that the form ωA′ is the same as the 2-form we constructed in subsection 3.2 by
means of the Euler formula.
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4.3 G2 case

In the case G2, the invariant quotient is A = k[e, q] with deg(e) = 2 and deg(q) = 6. The spectral
cover s = Spec(B) with

B = A[x]/ (xf0) for f0 = x6 − ex4 +
e2

4
x2 + q

is a reducible cover of A with two components corresponding to the quotient maps

B → B′ = A[x]/(f0) and B → A

We will define a canonical 3-form on B out of a 3-form and a 2-form on B′ associated to subalgebras

A ⊂ A′ = A[z]/

z2 + q


= k[e, y] ⊂ B′ = A′[x]/(x3 − e

2
x− z)

A ⊂ A′′ = A[y]/


y3 − ey2 +

e2

4
y + q


= k[e, z] ⊂ B′ = A′′[x]/(x2 − y).

Since both A′ and A′′ are regular algebras, they are finite flat A-modules of rank 2 and 3, respectively,
whereas B are finite flat A′-module and A′′-module of rank 3 and 2, respectively. The construction of
the special form associated with a subcover gives rise to

ωA′ : ∧3
AB

′ → A and ωA′′ : ∧2
AB

′ → A

supported on the special components c′ = Spec(A′) and c′′ = Spec(A′′) of s×
3
c //S3 and s×

2
c //S2,

respectively. By arguing as in the symplectic case, we see that ωA′ is annihilated by x ⊗A 1 ⊗A 1 +
1⊗A x⊗A 1+1⊗A 1⊗A x and ωA′ by x⊗A 1+1⊗A x. It follows that as alternating forms, they satisfy
the relations:

ωA′(xb1, b2, b3) + ωA′(b1, xb2, b3) + ωA′(b1, b2, xb3) = 0

ωA′′(xb1, b2) + ωA′′(b1, xb2) = 0

for all b1, b2, b3 ∈ B.

The form ωA′ agrees with the restriction of the form ρ calculated by Macaulay 2 when restricted to
B′ → B, with the inclusion given by multiplication by x: Indeed, the restriction of ρ takes value 1 on
each of:

z ∧ x ∧ x2, x ∧ zx ∧ x2, 1 ∧ x ∧ zx2

and −q on z ∧ zx ∧ zx2. This exactly detects the coefficient of z when these wedges are written in
terms of the A′ basis 1 ∧ x ∧ x2 for ∧3

A′B′, which matches ωA′ since the generator of HomA(A
′, A) as

an A′′ module detects the coefficient of A′.

We now build a 3-form on B out of the 3-form ωA′ and 2-form ωA′′ on B′. Since B = A[x]/(xf0),
B′ = A[x]/(f0) we have exact sequences of free A-modules

0 → A → B → B′ → 0 and 0 → B′ → B → A → 0

where the map A → B in the first sequence is given by 1 → f0 and the map B′ → B in the second
sequence is given by 1 → x. It follows an exact sequences

0 → A⊕B′ → B → Q → 0 and 0 → B → A⊕B′ → Q → 0
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where Q = A/(q) = B′/(x). It follows an exact sequence

0 → ∧3
AB

∗ → ∧3
A(B

′)∗ ⊕ ∧2
A(B

′)∗ → ∧2(B′)∗/(q) → 0

where the map ∧2
A(B

′)∗ → ∧2(B′)∗/(q) is the reduction modulo q, and the map ∧3
A(B

′)∗ → ∧2(B′)∗/(q)
is obtained by the composition

∧3
A(B

′)∗ → ∧3
AB

∗ → ∧2
AB

∗ → ∧2
A(B

′)∗ → ∧2
A(B

′)∗/(q)

where the first map is induced by the projection B → B′, the second is given by contraction with f0,
the third map is induced by the inclusion B′ → B sending 1 → x, and the final map is the quotient
map. Since q ∧2 (B′)∗ ≃ ∧2(B′)∗ is a free, rank 1 module over the special component of S2

A(B
′), there

is a unique generator as an A′′ module. The 3-form ωA′ and the 2-form ωA′′ do not have the same
image in ∧2

A(B
′)∗/(q); however, the form zωA′′ is and it gives a generator for the A′′ submodule of

2-forms compatible with ωA′ . The pair (ωA′ , zωA′′) comes from an element of ∧3
AB

∗ which agrees with
the 3-form calculated by Macaulay2.

5 Lattice description of affine Springer fibers of classical groups

Let us recall Kazhdan-Lusztig’s definition [6] of affine Springer fibers. Let G be a split reductive group
defined over a field k and g its Lie algebra. Let F = k((ϖ)) the field of Laurent formal series and
O = k[[ϖ]] its ring of integers. Let γ ∈ g(F ) be a regular semisimple element. The affine Springer
fiber associated with γ is an ind-scheme defined over k whose set of k-points is

Mγ(k) = {g ∈ G(F )/G(O)|ad(g)−1γ ∈ g(O)}.

We note that Mγ is non-empty only if the image a ∈ c(F ) lies in c(O) where c = g//G is the invariant
theoretic quotient of g by the adjoint action of G. As argued in [8], using the Kostant section, we can
define an affine Springer fiber Ma depending only on a instead of γ, which is isomorphic to Mγ .

For G = GLn, the affine Springer fiber Ma has a well-known lattice description. In this case, c = An.
If a = (a1, . . . , an) ∈ On, we form the finite flat O-algebra

Ba = O[x]/(fa)

where fa = xn + a1x
n−1 + · · ·+ an by the base change from the universal spectral cover. As γ ∈ g(F )

is a regular semisimple element, Ba ⊗O F is finite and étale over F . We have a well-known lattice
description of the affine Springer fiber Ma in this case. The set Ma(k) consists then of lattices V in
the n-dimensional vector space V = Ba ⊗ F which are also Ba-modules.

For computational purposes, it is desirable to have a lattice description of affine Springer fibers for
classical groups, which is as simple as in the linear case. This is possible due to the construction of the
companion matrix, and in fact, this was our original motivation.

In the cases we have investigated in the paper, i.e., symplectic, special orthogonal, and G2, we have
constructed a finite, flat spectral cover s = Spec(B) of the invariant theoretic quotient c = Spec(A)
which is étale over the regular semisimple locus of c. The degree d = deg(B/A) is the degree of the
standard representation which is 2n for Sp2n, 2n+1 for SO2n+1, 2n for SO2n and 7 for G2. In the case
SO(2n), we must consider the normalization B̃ of B. In each of these cases, we constructed a form ω,
which is

• a non-degenerate symplectic form ω : B ×B → A satisfying ω(xb1, b2) + ω(b1, xb2) = 0 for Sp2n
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• a non-degenerate symmetric form ω : B×B → A satisfying ω(xb1, b2)+ω(b1, xb2) = 0 for SO2n+1

• a non-degenerate symmetric form ω : B̃ × B̃ → A satisfying ω(xb1, b2) + ω(b1, xb2) = 0 for SO2n

• a non-degenerate alternating form ω : B ×B ×B → A satisfying

ω(xb1, b2, b3) + ω(b1, xb2, b3) + ω(b1, b2, xb3) = 0

for G2

We also constructed a trivialization of the determinant
d

AB = A in all these cases.

For every a ∈ c(O) ∩ crs(F ), we construct a finite flat O-algebra Ba by base change from the spectral
cover s → c. Because a ∈ crs(F ), the generic fiber Va = Ba ⊗O F is a finite étale F -algebra of degree
d. By pulling back ω, we get a form ωa which is a non-degenerate alternating F -bilinear form on
Va in the symplectic case, a non-degenerate symmetric F -bilinear form on Va in the orthogonal case,
and a non-degenerate alternating F -trilinear form on Va in the G2 case. Moreover, it extends to a
non-degenerate form valued in O on Ba in Sp2n, SO2n+1 and G2 cases and on B̃a in the SO2n-case.

Theorem 5.1. The set of k-points of the affine Springer fiber Ma is the set of O-lattices V of Va,
which are Ba-modules, such that the restriction of ωa has value in O and such that deg(V : Ba) = 0 in
Sp2n, SO2n+1, G2 cases and deg(V : B̃a) = 0 in the SO2n case.

6 Application to the Hitchin fibration

Let X be a smooth, projective curve over an algebraically closed field k and let G be a reductive group
over k with Lie algebra g. Fix a line bundle L on X such that either deg(L) > 2g − 2 or L = K is the
canonical bundle. Hitchin [4] introduced the moduli space M on X to be the moduli stack of Higgs
bundles whose k points are given by the set of Higgs bundles

M(k) = {(E,φ) : E → X is a G bundle, φ ∈ Γ(X, ad(E)⊗ L)}

More succinctly, M is the mapping stack M = Maps(X, [gL/G]) where gL = g ∧Gm L is the twisted
bundle of Lie algebras on X.

Recall that under mild hypotheses on the characteristic of k (char(k) > 2 for G = SOn and Sp2n and
char(k) > 3 for G = G2), the Chevalley isomorphism shows

g//G ≃ t//W ≃ An

is an affine space with Gm action by weights d1, . . . , dn. Let

A = Maps(X, gL//G) ≃ ⊗n
i=1Γ(X,L⊗di)

Hitchin studied the space M through the fibration that now bears his name:

h : M → A, (E,φ) → char(φ)

where char(φ) is given by composition with the quotient map [g/G] → g//G. Let Ma denote the fiber
of the map h over a point a ∈ A. In the case that G = GLn, di = i and char(φ) =


i aix

i is the
characteristic polynomial of φ, whose coefficients are then sections ai ∈ Γ(X,L⊗i).

The companion section [x] : g//G → [g/G] can be used to construct an explicit section to the Hitchin
map after extracting a square root of L. This section in many cases is almost the same as the section
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constructed by Hitchin [4] and [3], but can be different from the section constructed in [8] which is
based on the Kostant section. In every case, the Higgs bundle constructed from the companion section
will be built out of the structural sheaf of the spectral curve. Note that the following assumes basic
Gm equivariance properties of the relevant forms. For example, in the case of G = Sp2n, we have
constructed a canonical alternating form ω : ∧2

A B → A which satisfies ω(λξ) = λ1−2nω(ξ) for any
λ ∈ Gm and ξ ∈ ∧2

AB.

• for G = GLn, and a ∈ A we have a spectral cover pa : Ya → X embedded in the total space |L| of
L. We then associates with a the Higgs bundle Ea = pa∗OYa and the Higgs fields φ : EA → Ea⊗L
given by the structure of OYa as O|L|-module.

• for G = Sp2n, and a ∈ A, we have a spectral cover pa : Ya → X embedded in the total space
|L| of L. If Ea = pa∗OYa then we have a canonical symplectic form ∧2Ea → L⊗(1−2n). If L′ is
a square root of L then E′

a = Ea ⊗ L′⊗1−2n will be equipped with a canonical symplectic form
with value in OX and also equipped with a Higgs fields derived from the the structure of OYa as
a O|L|-module.

• for G = SO2n+1, and a ∈ A, we have a spectral cover pa : Ya → X embedded in the total space |L|
of L. IfEa = pa∗OYa then we have a canonical non-degenerate symmetric form S2Ea → L⊗(−2n)

so that the vector bundle E′
a = Ea⊗L⊗n affords a canonical no-degenerate symmetric form with

value in OX , and also equipped with a Higgs fields derived from the the structure of OYa as
a O|L|-module. It also affords a trivialization of the determinant depending on the choice of a
square root of L.

• for G = SO2n, and a ∈ A, we have a spectral cover pa : Ya → X embedded in the total space |L| of
L. Using the normalization of the universal spectral cover, we obtain a partial normalization Ỹa of
Ya. If Ea = pa∗OỸa

then we have a canonical non-degenerate symmetric form S2Ea → L⊗(2−2n)

so that the vector bundle E′
a = Ea ⊗ L⊗1−n affords a canonical no-degenerate symmetric form

with value in OX , and also equipped with a Higgs fields derived from the the structure of OYa

as a O|L|-module. It also affords a canonical trivialization of the determinant depending on the
choice of a square root of L.

• for G = G2, and a ∈ A, we have a spectral cover pa : Ya → X embedded in the total space |L|
of L. If Ea = pa∗OỸa

then we have a canonical non-degenerate 3-form ∧3Ea → L−9 so that the
vector bundle E′

a = Ea ⊗ L⊗3 affords a canonical non-degenerate 3-form with value in OX , and
also equipped with a Higgs fields derived from the the structure of OYa as a O|L|-module. It also
affords a canonical trivialization of the determinant depending on the choice of a square root of
L.

In [8], it is shown that over a large open subset of A, there is a close connection between Hitchin fibers
and affine Springer fibers given by the Product Formula. More precisely, let D =


α t

sα//W be the
divisor consisting of the union of the image of each root hyperplane in t; in particular, the complement
of D in c is the regular, semisimple locus crs. Fix a ∈ A such that a(X) ∕⊂ D, and let U ⊂ X be the
preimage of crs in X. Given trivialization of the line bundle D on some neighborhood of each point
v ∈ X \ U , we have a map 

v∈X\U
Mx,a → Ma.

from the product of affine Springer fibers at the points x ∈ X \ U to the Hitchin fiber, which consists

14



of gluing with the companion section restricted to U . It it induces a universal homeomorphism


γ∈X\U
Mγ,a ∧


γ Pγ(Ja) Pa → Ma.

The groups Pγ(Ja) and Pa are discussed in detail in [8]; we will not describe them here. This is proved
in [8] under the assumption that π0(Pa) is finite, and by Bouthier and Cesnavicius in [1] under the
only assumption that a(X) ∕⊂ D.

A Computer algebra code and G2 computations

In this appendix, we give the computer code used to compute the 3-form ρ in Section 3.5.

A.1 Construction of ρ

To construct ρ, we will use the connection between nondegenerate alternating 3-forms and cross prod-
ucts. Let V be a vector space with a nondegenerate, symmetric bilinear form ν.

Definition A.1. A cross product on (V, ν) is a bilinear map

c : V ⊗ V → V

satisfying the following three properties for all v1, v2 ∈ V :

1. (Skew symmetry) c(v1, v2) = −c(v2, v1);

2. (Orthogonality) ν(c(v1, v2), v1) = 0;

3. (Normalization) ν

c(v1, v2), c(v1, v2)


= det


ν(v1, v1) ν(v1, v2)
ν(v1, v2) ν(v2, v2)



The data of a cross product on (V, ν) is equivalent to the data of a nondegenerate 3-form on V whose
associated symmetric bilinear form (see equation (1)) is a scalar multiple of ν. Indeed, to a cross
product c, one associates the 3-form

ρ(v1, v2, v3) = ν

c(v1, v2), v3


(8)

while for any non-degenerate 3-form ρ, there is a unique cross product c satisfying equation (8).

Now, consider the free, rank 7 A-module B as in Section 3.5 equipped with the symmetric, nondegen-
erate form ω defined by the formula

ω(g1, g2) = trB/A


g1τ(g2)

f ′



as in the SO7 case. Here, τ(x) = −x is the natural involution on B, and the trace is taken after
inverting f ′ in A. To construct a 3-form on B which is nondegenerate over every k point of A, it
suffices to construct a cross product

c : B ⊗A B → B

for (B,ω). Moreover, the equation

ρ(xg1, g2, g3) + ρ(g1, xg2, g3) + ρ(g1, g2, xg3) = 0
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is equivalent to the condition

c(xg1, g2) + c(g1, xg2) = xc(g1, g2). (9)

To simplify computations further, we note that any form c : B ⊗A B → B satisfying the conditions of
Definition A.1 and equation (9) can be recovered from its trace:

tc : B ⊗A B → A, (g1, g2) → trB/A


c(g1, g2)



Indeed, if we express

c(xi, xj) =

6

l=0

c
(l)
i,jx

l

then c
(6)
i,j = tc(xi, xj) and

trB/A


xlc(xi, xj)


=

l

r=0


l

r


tc(xi+r, xj+l−r)

can be expressed in terms of c(m)
i,j for 6 − l ≤ m ≤ 6. This allows us to recover the coefficients c

(l)
i,j by

downward induction on l.

This idea is implemented in the following Macaulay2 code. There is a one-dimensional solution space,
which is specialized at a particular point to give the form stated in equation (6). Note that it is
immediate from the computer calculation that the form ρ is valued in B and satisfies the conclusion
of Proposition 3.5.

S=QQ[e,q];
F=frac(S);
R=F[p_(0,0) .. p_(6,6)]; -- ring with p_(i,j)=tc(x^i,x^j), 0\leq i,j\leq 6

-- The following three commands define tc(x^i,x^j) for i or j between 7 and 12 using
the relation x^7-e*x^5+e^4/4*x^3+q*x=0.

for l from 0 to 5 do [for k from 0 to 6 do p_(k,7+l)=e*p_(k,5+l)-(1/4)*e^2*p_(k,3+l)
-q*p_(k,1+l)];

for l from 0 to 5 do [for k from 0 to 6 do p_(7+l,k)=e*p_(5+l,k)-(1/4)*e^2*p_(3+l,k)
-q*p_(1+l,k)];

for l from 0 to 5 do [for k from 7 to 12 do p_(k,7+l)=e*p_(k,5+l)-(1/4)*e^2*p_(k,3+l)
-q*p_(k,1+l)];

-- I encodes orthogonality:
I = ideal(flatten for a from 0 to 6 list for k from 0 to 6 list sum(0..k,j->

binomial(k,j)*p_(k+j,a+k-j)));

-- J encodes skew symmetry:
J = ideal( flatten for a from 0 to 6 list for b from 0 to 6 list p_(a,b)+p_(b,a) );

-- The following encodes the normalization condition:
B=R[x]/(x^7-e*x^5+(1/4)*e^2*x^3+q*x);
-- determinant of norms of x^i,x^j:

f = (i,j) -> coefficient(x^6,(-1)^i*x^(2*i))*coefficient(x^6,(-1)^j*x^(2*j))
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- coefficient(x^6,(-1)^j*x^(i+j))*coefficient(x^6,(-1)^j*x^(i+j));
-- norm of c(x^i,x^j):

g = (i,j) -> coefficient(x^6, (p_(i,j)*(x^6-e*x^4+(1/4)*e^2*x^2+q)+sum(0..1,l->
binomial(1,l)*p_(i+l,j+1-l))*(x^5-e*x^3+(1/4)*e^2*x)+sum(0..2,l->binomial(2,l)
*p_(i+l,j+2-l))*(x^4-e*x^2+(1/4)*e^2)+sum(0..3,l->binomial(3,l)*p_(i+l,j+3-l))
*(x^3-e*x)+sum(0..4,l->binomial(4,l)*p_(i+l,j+4-l))*(x^2-e)+sum(0..5,l->binomial(5,l)
*p_(i+l,j+5-l))*(x)+sum(0..6,l->binomial(6,l)*p_(i+l,j+6-l))) * (p_(i,j)*
((-x)^6-e*(-x)^4+(1/4)*e^2*(-x)^2+q)+sum(0..1,l->binomial(1,l)*p_(i+l,j+1-l))*
((-x)^5-e*(-x)^3+(1/4)*e^2*(-x))+sum(0..2,l->binomial(2,l)*p_(i+l,j+2-l))*
((-x)^4-e*(-x)^2+(1/4)*e^2)+sum(0..3,l->binomial(3,l)*p_(i+l,j+3-l))*((-x)^3-e*(-x))
+sum(0..4,l->binomial(4,l)*p_(i+l,j+4-l))*((-x)^2-e)+sum(0..5,l->binomial(5,l)
*p_(i+l,j+5-l))*(-x)+sum(0..6,l->binomial(6,l)*p_(i+l,j+6-l))) );

-- K encodes the normalization condition:
K = ideal(flatten for i from 0 to 6 list for j from 0 to 6 list f(i,j)-g(i,j));

Q=R/(I+J+K); -- imposing the relations on our ring of variables
Q2=Q/ideal(p_(6,3)-1,p_(6,4),p_(6,5)-5*e/2); -- specializes to our particular form rho

-- Computation of c from tc:
P=Q2[x]/(x^7-e*x^5+e^2/4*x^3+q);
C=table(for k from 0 to 6 list k, for k from 0 to 6 list k, (i,j) -> (p_(i,j)*(x^6

-e*x^4+(1/4)*e^2*x^2+q)+sum(0..1,l->binomial(1,l)*p_(i+l,j+1-l))*(x^5-e*x^3+(1/4)
*e^2*x)+sum(0..2,l->binomial(2,l)*p_(i+l,j+2-l))*(x^4-e*x^2+(1/4)*e^2)+sum(0..3,
l->binomial(3,l)*p_(i+l,j+3-l))*(x^3-e*x)+sum(0..4,l->binomial(4,l)*p_(i+l,j+4-l))
*(x^2-e)+sum(0..5,l->binomial(5,l)*p_(i+l,j+5-l))*(x)+sum(0..6,l->binomial(6,l)*
p_(i+l,j+6-l)))); -- This is the matrix for c with respect to the basis x^i, i=0,..,6

netList C -- displays C

A.2 Nondegeneracy of ρ

Let ρ be the form computed in the previous section, stated explicitly in equation (6). Note that since we
specialized to a particular form in the previous section, it is not yet clear that this form is nondegenerate.
For this, we produce the following code in Macaulay2 to explicitly compute the associated bilinear form
is as in Proposition 3.4. The following uses some basic operations on permutations from the package
SpechtModule authored by Jonathan Niño in Macaulay2.

T=permutations {0,1,2,3,4,5,6};
n = (v,w) -> sum(0..7!-1, k-> permutationSign(T_k)*coefficient(x^6,v*(C_((T_k)_0))_((T_k)_1))

*coefficient(x^6,w*(C_((T_k)_2))_((T_k)_3))*coefficient(x^6,(-x)^((T_k)_4)
*(C_((T_k)_5))_((T_k)_6)) );

S=table(for k from 0 to 6 list k, for k from 0 to 6 list k, (i,j) -> n((-x)^i,(-x)^j);
netList S
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