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My research focuses on the geometry of moduli spaces of Higgs bundles and Hitchin type
fibrations. My central project is joint work with Benedict Morrissey studying the geometry of
Hitchin fibrations associated to symmetric spaces. While the majority of this document deals with
this project, I also include a brief report on some joint work with Ngô Bảo Châu studying spectral
covers and invariant tensors for classical groups, including the case of G2.

1 The Hitchin Fibration for Symmetric Spaces and Relative Fun-
damental Lemmas

In this section, I discuss a research program around my joint work with Benedict Morrissey on the
geometry of the Hitchin fibration for symmetric spaces. This geometry lies at the intersection of
numerous areas of mathematics, including differential geometry, algebraic geometry, mathematical
physics and number theory. My research takes an algebro-geometric perspective, with potential
applications to arithmetic and the theory of automorphic forms.

1.1 Background and Introduction

For a smooth, projective, complex curve C and reductive group G, Corlette and Simpson introduced
the notion of Higgs bundles to classify reductive representations of the fundamental group π1(C)
into G(C) [3, 22]. The moduli space of G Higgs bundles MG is a hyperkähler variety and exhibits
interesting and deep duality phenomena stemming from physics and mirror symmetry.

In [6], Hitchin introduced a beautiful fibration

hG : MG → AG

over an affine space AG of half the dimension of MG, which is a global analogue of the characteristic
polynomial of a matrix. Hitchin used spectral covers of C to argue that connected components of
the fibers of hG are generically abelian varieties and that MG is a completely integrable system.

In [17] and [18], Ngô develops the geometry of hG from a more invariant theoretic point of view,
working over fields k of more general characteristic. His ultimate goal was to relate point counts
over finite fields of fibers of hG with certain expressions of orbital integrals in order to establish the
Fundamental Lemma of Langlands, Shelstad, and Waldspurger. The essential ingredients for doing
so included a product formula relating Hitchin fibers to local analogues and a support theorem
inspired by Goresky and McPherson.

Let us now work again over C and consider a real form GR ⊂ G(C). It is a natural question
to ask which Higgs bundles correspond to representations of π1(C) whose image lies in GR. This
was answered by García-Prada, Gothen, and Iriera in [4]; namely, in a construction dating back
to Cartan, any real form of G determines a unique holomorphic involution θ on G, and hence an
associated symmetric space X = G/(Gθ)◦. One can associate to X a moduli space MX of Higgs
bundles for the symmetric space, and it is MX that classifies representations of π1(C) in GR under
the Corlette-Simpson correspondence.

Similar to the classical case, there is a fibration

hX : MX → AX



over an affine space AX whose geometry is governed roughly by the representation of G acting on
the cotangent bundle T ∗X. However, the fibration hX exhibits two novel behaviors:

• There may be exceptional components. For example, in Schapostnik’s thesis [21] for the
symmetric space X = GL2n / GLn × GLn, fibers are generically identified with a disjoint
union of 2ℓ copies of the Picard stack classifying line bundles on a spectral curve for an
explicit ℓ.

In addition, there are special “Hitchin components” in the case of a split involution that have
been studied from the perspective of character varieties.

• The connected components may still fail to be abelian. For example, Hitchin and Schapostnik
give a symmetric pair for which the fibers of hX over a generic a are identified with the space
of rank two vector bundles on a spectral curve [7].

My joint work with Benedict Morrissey in [15] seeks to understand the geometry of the Hitchin
fibration for symmetric spaces by explicitly computing an invariant theoretic structure first observed
in [5] and by introducing a new method of studying regular centralizers. Our work explains the
unfamiliar behaviors above from their shadows in invariant theory.

The Hitchin fibration for X is an important example in the Relative Langlands Program of
Sakellaridis, Venkatesh and Ben-Zvi. In particular, I expect it to be the geometric structure under-
lying a Relative Fundamental Lemma, which has been proven in certain cases and conjectured more
generally in work of Spencer Leslie [9, 11, 12]. The geometry for symmetric spaces is significantly
simpler than geometry for spherical varieties in general, and therefore, it presents a wonderful
testing ground for conjectures in larger generality. For example, certain geometric structures for
symmetric spaces can be described in high codimension, and cases for which arithmetic is difficult
(like those with type N roots or those for which regular centralizers are nonabelian) may still be
approached through the invariant theoretic formalism we study.

1.2 New Results

In this section, I will summarize my joint work with Benedict Morrissey in [15]. Throughout
this section, we work over an algebraically closed field k with certain mild restrictions on its
characteristic.

Let greg denote the set of elements of the Lie algebra g whose centralizer in G is of minimal
dimension. For G = GLn, this is the set of matrices which have at most one Jordan block of
any given eigenvalue. One important perspective taken in [18] is that the geometry of the Hitchin
fibration for G Higgs bundles can be abstracted to properties of the Chevalley map

χG : greg/G → g//G

from the stack quotient greg/G to the GIT quotient g//G = Spec k[g]G. For instance, this map is a
gerbe banded by a smooth commutative group scheme over g//G, and as a consequence, the generic
fibers of the Hitchin fibration are abelian varieties.

Now, fix an involution θ on G. Let K = (Gθ)◦ be the connected component of the fixed points
of θ acting on G, and let g = k ⊕ p be the Cartan decomposition of g into +1 and −1 eigenspaces
of θ, respectively. Let H be a closed subgroup of G such that

K ⊂ H ⊂ NG(K)

For technical reasons, it is important that we work in the slightly more general setting of (G, θ, H)
Higgs bundles, which are associated to the representation of H acting on p. As in the case of G



preg( H =

p//H =

Figure 1: (Left) The orbits of H = S(Gm × Gm) acting on preg ≃ A2 \ {0} for the symmetric space X =
SL2 /S(Gm ×Gm). Note the two orbits, drawn in blue and red, whose closure includes the (non-regular) closed orbit
{0}. The regular quotient for this symmetric pair (pictured right) is the affine line with doubled origin.

Higgs bundles, we define the regular locus preg in p to be the set of elements of p whose centralizer
in H is of minimal dimension. This may not agree with the notion of regularity in g. Then, the
geometry of the (G, θ, H) Hitchin fibration is determined by the geometry of the Chevalley type
map

χ : preg/H → p//H

from the stack quotient preg/H to the GIT quotient p//H = Spec k[p]H .
It was observed by [5] that χ is no longer a gerbe. Indeed, the action of H = K on p for the

symmetric space X = SL2 /S(Gm × Gm) is the hyperbolic action of Gm on A2, for which there
are two regular orbits whose closure includes the origin; see Figure 1. In [5], García-Prada and
Peón-Nieto prove the existence of an alternative quotient, which we will call the regular quotient
of preg by H and will denote by preg(H, by rigidifying the stack preg/H. The existence of a regular
quotient has since been proven in far greater generality in forthcoming work of Morrissey and Ngô,
where it plays an important role in the study of generalized Hitchin systems [16].

Our first, and central, result is a complete description of preg( H.

Theorem 1. (H.-Morrissey)
1. Any symmetric pair is isogenous to a product of symmetric pairs (Gi, θi, Hi) where Gi is

either simple or a product Gi,1 × Gi,1 with involution swapping factors. The regular quotient
for (G, θ, H) is the product of the regular quotients for the (Gi, θi, Hi).

2. For any (G, θ, H) with G simple except for the split form on SO4n, there is a Zariski open
U ⊂ preg//H such that the regular quotient is given by gluing two copies of p//H along U .

3. There is an inductive process to determine the gluing locus U explicitly.

The key steps in the proof of part (ii) are as follows. Levy proves the existence of sections of
the map

preg → p//H

through any nilpotent element in preg [13]. Choose sections through each of the finitely many
regular nilpotent H orbits. One can use the Gm action on p//H to show that the regular quotient
is isomorphic to a collection of copies of p//H, indexed by the set of regular nilpotent H orbits in



p//H =

p̃//H =

Figure 2: The cameral cover for the symmetric space X = SL3 /S(Gm × GL2). In this case, p̃reg classifies Borels of
H.

preg, glued wherever the sections become conjugate. When G is simple and (G, θ, H) is not the
split form on SO4n, the number of such orbits is either 1 or 2 (see [13]). Finally, an Levi induction
argument reduces to computing the number of regular nilpotent H orbits for symmetric pairs on
associated Levi subgroups.

We also determine the regular quotient for the split form on SO4n above, but its form is slightly
more complicated due to the presence of 4 nilpotent H orbits in preg.

As an immediate corollary of Theorem 1, we generalize results of Schapostnik [21] for symmetric
pairs (G, θ, H) for which there exist spectral covers. Moreover, this explains conceptually a source
of special components appearing in [21], coming from lifting along the nonseparated cover

preg( H → preg//H.

As another corollary of our results, Morrissey has proven a Fourier-Mukai duality predicted by
mathematical physics for the quasisplit form on GL2n [14].

Our work also describes the regular centralizer group scheme Ireg
H ⊂ H × preg. Past work in

[10] and [5] has focused on studying regular centralizers in the quasisplit case, i.e. when Ireg
H is

abelian, by using a version of the Grothendieck-Springer map classifying Borels of G satisfying a
compatibility condition with respect to θ. Our method replaces this with a cover p̃reg of preg which
is the incidence variety classifying parabolic subgroups of H of a certain type. While p̃reg does
classify Borels of H in certain familiar quasisplit examples, for example for the symmetric spaces
X = GL2n / GLn × GLn and X = GL2n+1 / GLn × GLn+1, the use of parabolics is necessary even
for quasisplit forms, for example for X = SO2n+2 / SOn+2 × SOn.

In a case-by-case argument over all quasisplit forms except the quasisplit form on E6, this
produces a cover

p̃//H → p//H

from which p̃reg is obtained as a base change. The key technical difficulty is that the space p̃reg, and
hence p̃//H, is not irreducible. In particular, the number of irreducible components is measured
by the quotient of two Weyl groups: one associated to a torus obtained as a centralizer of a
regular, semisimple element and one associated to the center of the corresponding Levi subgroup.
For example, in the case of the symmetric space X = SL3 /S(Gm × GL2), the components are
measured by the difference between the Weyl group WH = S2 of H = S(Gm × GL2) and the trivial
group WC = {1} associated to the subtorus

C = {A = diag(x, x, y) : x, y ∈ k, det(A) = 1}.

In the case of a quasisplit form not of type E6, this means an explicit description of the regular
quotient can be given as it relates to the Galois descent of a constant torus on p̃//H. It is expected
that this should hold for the form E6 and that an analogous statement should hold for forms with
nonabelian centralizers with minimal modification of our current argument.



1.3 Future Work

While I expect to take on additional questions during the course of a postdoc, I outline here two
initial lines of inquiry that I expect to be attainable in the time frame of a postdoc: Generalizing
results to the case of nonabelian regular centralizers and initiating work on a support theorem for
the Hitchin system of a symmetric pair.

The former goal should result in generalizations of the work of Schapostnik and Hitchin [7], in
which fibers of the map

hX : MX → AX

for the symmetric space X = GL2n / Sp2n are described as moduli spaces of rank 2 bundles on a
spectral curve over a generic locus of the base AX . This is a particularly surprising phenomena as it
provides the first examples of generalized Hitchin systems with nonabelian regular centralizers that
can be described explicitly. Much remains unknown about Higgs bundles for these pairs, though
Branco’s thesis [2] suggests that there may still be nontrivial duality statements to be made. It is
also the author’s hope that this helps extend the work of [16], which is developing a framework in
which to study generalized Hitchin systems and which does not at present apply to this class of
examples.

As we have noted, the generalized Hitchin system for a symmetric space is the key geometric
object of interest in a Relative Fundamental Lemma. Using the work of [18] as a guide, there is
a natural program of study in proving such a result. Namely, in his proof of the Fundamental
Lemma, Ngô studied the perverse cohomology groups of the pushforward along the Hitchin map
hG of the constant sheaf Qℓ on a suitable open subset of MG

1. This object decomposes into simple
pieces, each of which is the IC sheaf of a local system on some closed subset of the Hitchin base.
The key result describes the supports of these simple constituents. We propose to study a relative
version of this support theorem.

Question. For quasisplit X, describe the supports of the IC sheaves appearing in the decomposition
of the pushforward of the constant sheaf Qℓ along the relative Hitchin fibration hX .

Finally, symmetric spaces are a first example of spherical varieties, and therefore have a natural
place inside the framework of the Relative Langlands program pioneered by Sakellaridis, Venkatesh,
and Ben-Zvi [1]. A Relative Fundamental Lemma would be a powerful tool in establishing arith-
metic results predicted by this theory. Moreover, it is expected that further geometric results can
be gleaned from the geometric picture of Hitchin systems for symmetric spaces, with applications
to relative duality. For example, it is expected that the Fourier-Mukai dual of MX with respect
to the Poincaré bundle on MG is related to the dual group and associated representation used in
[20, 1].

2 Companion Matrix Constructions and Invariant Tensors for Clas-
sical Groups

In this section, I will discuss a research program around joint work with Ngô Bảo Châu [19] which
is not my main research focus, but remains of interest. This work originated in the study of
sections of the Hitchin fibration coming from companion matrix constructions. In particular, we
were motivated in finding canonical invariant tensors for the groups G = Sp2n, SOn, and G2, and
giving an algebro-geometric explanation for their existence. In the future work section below, I
discuss some exciting directions growing out of these relatively simple ideas.

1The “anisotropic” locus, over which the map hG is proper



2.1 Introduction

Let G be a reductive group over k, and denote by g its Lie algebra. The Chevalley map

χ : g → g//G,

where g//G := Spec(k[g]G) denotes the invariant theoretic quotient of g by the adjoint action of
G, is of fundamental importance in the construction of the Hitchin fibration. In particular, for
g = gln, χ sends a matrix to its characteristic polynomial.

In [8], Kostant exhibited a section of the Chevalley map for a general reductive group G under the
assumption that the characteristic of k does not divide the order of the Weyl group. As explained in
[18], this section can be used to construct sections of the Hitchin fibration and can be used to define
affine Springer fibers. However, Kostant’s construction has two important detractions: on the one
hand, it requires a bound on the characteristic of the field that depends on the group G, which
is usually not optimal for classical groups, and on the other hand, it can be counter-intuitive for
computations. To illustrate this latter point, consider the case G = GL3, in which case g//G = A3

is the 3-dimensional affine space. The Kostant section is the map sending

(a1, a2, a3) ∈ g//G 7→


a1
3

a2
1

6 + a2
2 −4a3

1
27 − a1a2

3 − a3

1 a1
3

a2
1

6 + a2
2

0 1 a1
3

 ∈ g

If you introduced this problem to an undergraduate student of linear algebra, of course, they would
not give you the answer above; they might instead suggest the map:

(a1, a2, a3) ∈ g//G 7→

0 0 −a3
1 0 −a2
0 1 −a1

 ∈ g

sending a characteristic polynomial to its companion matrix. The section to the Hitchin map that
Hitchin constructed in [6] is not strictly the same as the one of [18] in the sense that he does not rely
on the Kostant section but another section that feels more like a generalization of the companion
matrix. Instead of the companion matrix, a map g//G → g, we construct a map g//G → [g/G],
where [g/G] is the stack quotient of g by the adjoint action of G. This section is completely
canonical and works in characteristic not 2 for G = Sp2n and SOn and in characteristic not 2 or 3
for G = G2.

Let G = GLn, and let An = k[g]G be the coordinate ring of the GIT quotient. In characteristic
not 2, we have

An ≃ k[t]W = k[a1, . . . , an]

where ai is the degree i elementary symmetric polynomial. We consider

Bn = k[t]Sn−1 = An[x]/(f(x))

where f(x) = xn−a1xn−1+· · ·+(−1)nan is a generic characteristic polynomial. For sn = Spec(Bn),
the corresponding morphism

sn → cn

is the universal spectral cover. Then, Bn is a free, rank n module over An equipped with the
multiplication-by-x endomorphism whose characteristic polynomial is f(x). This gives the data of
an An point of the stack [g/G] corresponding to a section of χ.



For G symplectic, special orthogonal, and G2, G is defined as a subgroup of GLn fixing certain
tensors. We call the inclusion G → GLn the standard representation of G. We also have the
induced inclusion of Lie algebras g → gln compatible with the adjoint actions of G and GLn. The
main result of our work can be formulated as follows:

Theorem 2. Let G be a symplectic group, odd special orthogonal group, or G2 group and G → GLn

its standard representation. Let c → cn be the induced map of Chevalley quotients which is a closed
embedding in these cases. Then the restriction Osn to c

V = Oc ⊗Ocn
Osn

as locally free Oc-module affords a canonical tensor defining a G-reduction and the companion
matrix for GLn defines a canonical map g//G → [g/G] which is a section of the natural map
[g/G] → g//G. This statement remains valid for even orthogonal groups after replacing c ×cn sn by
its normalization.

While these forms can be constructed case-by-case, they afford an algebro-geometric description.
Let us take the case of G = Sp2n as an example. The spectral cover s = c ×cn sn comes equipped
with an involution τ over c, and hence factors through a subcover

s
2−→ s/τ

n−→ c

where the degrees are shown above the arrows. This intermediate cover determines an irreducible
component

s/τ
∼−→ ∆τ ⊂ Sym2

c (s)

of the symmetric power of s relative to c. The canonical tensor on V is obtained by considering
alternating 2-forms which are supported on the distinguished component ∆τ : The collection of
such alternating forms is a free, rank 1 sheaf on ∆τ , and one obtains the canonical tensor on V as
a generator of this sheaf as a OV module. The explicit form of this alternating 2-form is given by
Euler’s form

⟨h1, h2⟩ = Tr
(

h1(x)h2(−x)
f ′(x)

)
where Tr denotes the trace map from the function field of s to the function field of c.

In the case of G = G2, the spectral cover is a degree 6 cover which admits two factorizations.
The first is similar to the symplectic case, whereas the second is a factorization through a degree
3 cover of c. The latter determines a distinguished component of the symmetric power Sym3

c (s),
from which the canonical 3-form can be derived in a similar fashion to the symplectic case. The
explicit tensor, recorded in our paper [19], has not yet appeared in the literature.

2.2 Future Work

For any semisimple Lie algebra g, the bracket on g is recovered by the data of the Killing form b
together with the Cartan 3-form t defined by

t(x, y, z) = b(x, [y, z]).

We expect that the methods outlined above can be applied in this more general setting to recover
both b and t from the root data in a process involving little choice. In place of the distinguished
components arising from spectral covers, we will have components determined by the vanishing
of sums of roots; for example, in the case of 3-forms, t is supported on a component of a certain



Figure 3: Some triangles of roots summing to zero in the root diagram for G2.

symmetric power given by triples of roots (α, β, γ) such that α+β+γ = 0. (See Figure 3.) Such con-
structions are also expected to produce a canonical section to the Chevalley map χ : [g/G] → g//G,
although our methods will still require that the characteristic of k be larger than the order of the
Weyl group. We expect that completing the relevant arguments may involve some derived algebraic
geometry to correctly define the module of forms with support on a distinguished component.

References
[1] David Ben-Zvi, Yiannis Sakellaridis, and Akshay Venkatesh. Relative Langlands Duality.

[2] Lucas C Branco. Higgs bundles, Lagrangians and mirror symmetry. arXiv preprint
arXiv:1803.01611, 2018.

[3] Kevin Corlette. Flat G-bundles with canonical metrics. Journal of differential geometry,
28(3):361–382, 1988.

[4] Oscar García-Prada, Peter B Gothen, and Ignasi Riera. The Hitchin-Kobayashi correspon-
dence, Higgs pairs and surface group representations. arXiv preprint arXiv:0909.4487, 2009.

[5] Oscar García-Prada and Ana Peón-Nieto. Higgs bundles, abelian gerbes and cameral data.
arXiv: Algebraic Geometry, 2019.

[6] Nigel Hitchin. Stable bundles and integrable systems. Duke mathematical journal, 54(1):91–
114, 1987.

[7] Nigel Hitchin and Laura P Schaposnik. Nonabelianization of Higgs bundles. Journal of Dif-
ferential Geometry, 97(1):79–89, 2014.

[8] Bertram Kostant. Lie group representations on polynomial rings. American Journal of Math-
ematics, 85(3):327–404, 1963.

[9] Spencer Leslie. The endoscopic fundamental lemma for unitary Friedberg-Jacquet periods.
arXiv preprint arXiv:1911.07907, 2019.



[10] Spencer Leslie. An analogue of the Grothendieck–Springer resolution for symmetric spaces.
Algebra & Number Theory, 15(1):69–107, 2021.

[11] Spencer Leslie. On the stabilization of relative trace formulae: Descent and the fundamental
lemma. Advances in Mathematics, 394:108026, 2022.

[12] Spencer Leslie. Endoscopy for symmetric varieties. 2023. Presented at ICMAT’s Conference
on the Hitchin system, Langlands duality and mirror symmetry on the 25th of April.

[13] Paul Levy. Involutions of reductive Lie algebras in positive characteristic. Advances in Math-
ematics, 210(2):505–559, 2007.

[14] Benedict Morrissey. Mirror symmetry for the Hitchin fibration associated to U(n, n). Forth-
coming.

[15] Benedict Morrissey and T. Hameister. The geometry of the Hitchin fibration for symmetric
spaces. Forthcoming.

[16] Benedict Morrissey and Bảo Châu Ngô. Reqular quotients and Hitchin type fibrations. Forth-
coming.

[17] Bảo Châu Ngô. Fibration de Hitchin et endoscopie. Inventiones mathematicae, 164(2):399–453,
2006.

[18] Bảo Châu Ngô. Le lemme fondamental pour les algebres de Lie. Publications Mathématiques
de l’IHÉS, 111(1):1–169, 2010.

[19] Bảo Châu Ngô and T. Hameister. The companion matrix for classical groups. In review,
August 2023.

[20] Yiannis Sakellaridis and Akshay Venkatesh. Periods and harmonic analysis on spherical vari-
eties. Société mathématique de France, 2017.

[21] Laura P Schaposnik. Spectral data for G-Higgs bundles. PhD thesis, Oxford University, 2013.

[22] Carlos T Simpson. Nonabelian Hodge theory. In Proceedings of the International Congress of
Mathematicians, volume 1, pages 747–756, 1990.


	The Hitchin Fibration for Symmetric Spaces and Relative Fundamental Lemmas
	Background and Introduction
	New Results
	Future Work

	Companion Matrix Constructions and Invariant Tensors for Classical Groups
	Introduction
	Future Work


