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1. Introduction

The Hitchin fibration is a geometric space appearing in a wide range of mathematical works including
automorphic forms, mathematical physics, and non abelian Hodge theory. The Hitchin fibration for
symmetric pairs (also referred to in the literature as the G(R)-Hitchin fibration, or the Hitchin fibration
for real Higgs bundles) is an analogue of the Hitchin fibration that also appears in many of these fields.
Essentially it corresponds to replacing the adjoint action of G on g by the action of H on p, where (p, H)
is a symmetric pair.

In particular we note that it appears in non abelian Hodge theory when the moduli space of reductive
representations from π1(X) (X a Riemann surface) to G(C) is replaced by G(R) (a real form of some
reductive algebraic group over C) [10]. In mathematical physics it is associated to boundary conditions in
theories of class S, and to N = 4, d = 4 supersymmetric Yang–Mills theory considered on a 4 manifold
which is of the form X × [0, 1] × R. This leads to the image of this version of the Hitchin moduli space, in
the Hitchin moduli space for G being the support of a BAA brane. Finally it is related to infinitesimal
forms of relative trace formulas for symmetric spaces G/H.
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As such it is an important open problem to describe the geometry of the Hitchin fibration for symmetric
pairs as precisely as possible. For technical reasons at some points we have to restrict to quasisplit
symmetric pairs in many parts of this paper, in particular with respect ot describing the analogue of the
group scheme of regular centralizers. We will remove this assumption in later work. In the case of the
usual Hitchin fibration the geometry of the fibration is a deeply researched topic, with the most general
statements for arbitrary reductive algebraic groups contained in [8] and [23]. In the symmetric pair case
there is a large literature including [31, 32, 14, 33, 34, 5] studying these via spectral covers. We use
cameral cover methods as in [8, 23] to describe the geometry of the Hitchin fibration for symmetric pairs
extending the earlier work of [25, 26, 18, 11].

1.1. Related Work. There are many papers describing fibers of the Hitchin fibration for symmetric pairs
via spectral covers including [31, 32, 14, 33, 34, 5, 6, 2, 26]. Note that the papers [14, 5, 6, 2] treat cases
where the symmetric pair is not quasisplit. In the case of the symmetric pair associated to the real form
U(n, n) or equivalently H = K = GL(n) ×GL(n) ↪→ GL(2n) = G we provide a direct description of the
equivalence between the description of [33] and our description via cameral covers in section ??.

When it comes to the use of cameral covers this is considered in general in [11], and in the case of
SU(n, n+ 1) in [26]. Finally the cameral cover approach to Hitchin type fibrations relies fundamentally on
the Gröthendieck–Springer resolution, an analogue of this for quasisplit symmetric pairs with H = Gθ is
considered in [18, 11]. We want to outline how the results of our paper relate to this previous work. The
paper [11] of O. Garcia–Prada and A. Peón–Nieto includes results describing some parts of the Hitchin
fibration for quasisplit symmetric pairs of the form (p,K), (p, Gθ), and (p, NG(K)). S. Leslie [18] develops
a quasisplit Gröthendieck–Springer resolution for symmetric pairs where certain Borels of G are used. We
take a different approach to the Gröthendieck–Springer resolution in this paper using instead parabolics
of the group K. Leslie uses this to describe regular centralizers for quasisplit symmetric pair (p, Gθ), and
we expect that this could be generalized to other symmetric pairs (p, H).

For quasisplit (p,K) [11] show that there is a space preg(I G (to our knowledge this is the first use we
know of what is called the regular quotient in this paper and [21]), with respect to which the stabilizer
group I descends to a group scheme J , this is also the first place where we are aware of the use of a regular
quotient. The fact that this can be a non-separated cover of the GIT quotient is seen in examples. New
to this paper is the explicit description of the geometry of preg(I G.

For quasisplit (p, Gθ) the regular centralizer scheme I is shown in [11] to descend to a group scheme
J → p//Gθ ∼= a//Wa. Furthermore an explicit description of the restriction of this to regular semisimple
locus is given. Leslie [18] gives a description of J via Weil restriction of a finite extension of a torus over
the entire space a//Wa.

Finally in [11] the case of quasisplit (p, NG(K)), J is described in terms of fixed points of an involution
on the regular centralizers of the adjoint action of G on g. Furthermore the gerbe preg/NG(K) →
p//NG(K) ∼= a//Wa is described as fixed points for an involution on the Donagi–Gaitsgory description [8]
of the gerbe of regular Higgs bundles (in the usual sense).

We avoid the two above methods because for the following reasons. The second of these can not be
easily generalized to H ̸= NG(K). The first we avoid because (i) we want to use this paper as an example
of the more general approach of [21], and (ii) we want as many as possible of our methods here to generalize
to the case of tempered spherical varieties which we will consider in forthcoming work together with Z.
Luo.

We use throughout foundational work on symmetric pairs and their invariant theory in particular
[17, 19, 35, 28].

We note also that some constructions are analogous to those used in the study of the multiplicative
Hitchin fibration via the Vinberg monoid in [4, 3, 7, 38], where the phenomenon of there being multiple
regular orbits corresponding to a single point of the GIT quotient also occurs.
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More generally the paper of Ngô B.-C. and the second author [21] considers regular quotients in higher
generality, and we use this both explicitly and implicitly. Finally in joint work of the authors with Z. Luo,
we hope to extend the results of this paper to the setting p/K is replaced with T ∗X/G for X a spherical
variety, and replacing the quasisplit condition by tempered when necessary. Note that this recovers most
of the cases considered in this paper upon considering X = G/H a symmetric space.

1.2. Future Work. There are some aspects of the geometry of the Hitchin fibration for symmetric pairs
where our understanding is behind that of for the usual Hitchin fibration. Some points that will be
addressed in future work follow.

1.3. Notation and Conventions.

1.3.1. Reductive Groups. For a scheme M acted on by an algebraic group G we denote the stack quotient
by M/G, and the GIT quotient by M//G.

• G- a reductive algebraic group.
• g - the Lie algebra of G.
• θ: An involution G → G.
• Gθ – scheme of fixed points of the involution theta.
• K := (Gθ)0

• H a group satisfying K ⊂ H ⊂ NG(K).
• p, The −1 eigenspace of the action of θ on g.
• Φ is the root system of G.
• W - the Weyl group of G.
• a - A Cartan subspace in p, see definition 2.4
• Φr is the set of restricted roots, see definition 2.6.
• Wa - the little Weyl group, see definition 2.8
• N ⊂ g is the nilpotent cone.
• Np := N ∩ p.
• preg – the subscheme of regular points of p, see 2.23
• IE → p is a group scheme defined in Definition 3.8.
• κi : a//Wa → preg is a Kostant–Rallis section.
• Si is the image of the Kostant–Rallis section.
• pκi,H is the subset of preg consisting of the H-orbit of the Kostant–Rallis section κi, see section

3.2.
• F ∗ - a subgroup of A controlling the quotient NG(K)/K, defined in Proposition 2.13.
• C− - the connected component (F ∗)0.
• r - the restriction map Φ → Φr ∪ {0}, see definition 2.6.
• L - a Levi subgroup of G, often of the form in definition 3.36
• φL - the comparison map a//Wa,L → a//Wa, see Proposition 3.38.
• χL - is the morphism χL : preg

L (HL ×a//Wa,L
UL → preg(H of Lemma 3.40.

• iL - the embedding pL → p.
• symn - the space of symmetric n× n matrices.

1.3.2. Geometry.

• p̃//H is defined in section 3.2.
• (Todo: The regular quotient!)

1.3.3. Hitchin Fibration.

• r : Areg → A is the map from the regular Hitchin base to the Hitchin base.
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2. Background on Symmetric Pairs

Let G be a reductive group over an algebraically closed field k, and g its Lie algebra. Throughout, we
make the following assumption on the characteristic of k:

ℓ = char(k) is good for G and the character and cocharacter lattices X∗(A)/ZΦ̌r and X∗(A)/ZΦr

associated with the restricted root system (defined in 2.6) have no ℓ-torsion

Let θ be an algebraic involution on G, i.e. an algebraic map θ : G → G such that θ2 = 1.
Let K = (Gθ)◦ denote the neutral component of the invariant subgroup. The involution θ induces a

Cartan decomposition g = k ⊕ p, where k and p denote the (+1) and (−1) eigenspaces of θ, respectively.
The adjoint action of G on g restricts to an action of Gθ on p; in particular, any subgroup of Gθ acts on p.

Definition 2.1. A symmetric pair with respect to the involution θ is the data of a closed subgroup
H ⊂ G such that K ⊂ H ⊂ NG(K).

Remark 2.2. In characteristic p we will often need to add the condition that H is smooth. This is not
automatic, as can be seen by the example of considering H = µp ⊂ Gp

m (with the involution being
inversion) in characteristic p.

2.1. Maximal θ-split Tori, the Little Weyl Group, and the Restricted Root System. In this
section, we define the restricted root system associated to a symmetric pair. This root system is the
crucial ingredient in the classification of simple symmetric pairs. See [37], chapter 26 for a more detailed
exposition.

We start by considering root systems of G for θ-stable tori. A complicating fact in the theory of
symmetric pairs is that, although all maximal tori of G are conjugate, conjugation will not respect the
involution θ restricted to a torus. In this paper, we will be primarily focused on the following class of tori
of G.

Definition 2.3. A θ-split torus A of G is a torus of G such that θ(a) = a−1 for all a ∈ A.

Let A be a fixed θ-split torus of G which is maximal among such tori. It is not true in general that
A is a maximal torus of G; it is the case that a = Lie(A) is a maximal abelian subalgebra of p. These
subalgebras are important enough to warrant their own name.

Definition 2.4. A Cartan of p is a maximal, abelian subalgebra a in p.

Cartans of p and maximal θ-split tori A of G are in bijection via the exponential map. We will always
fix a and A in the sequel; this choice is justified by the following Proposition.

Proposition 2.5. ([37], Lem 26.15) All maximal θ-split tori A are conjugate.

We will abuse notation slightly and call any extension of A to a maximal torus of G a maximally θ-split
torus.

Fix T ⊃ A a maximally θ-split torus as above. Let Φ be the set of roots of G with respect to T .

Definition 2.6. The set of restricted roots is

Φr := {α|a ∈ a∗ : α ∈ Φ, α|a ̸= 0}.

We denote by r : Φ → Φr ∪ {0} the restriction map taking α 7→ α|a.

Theorem 2.7. ([37], Lem 26.16) Φr forms a (possibly nonreduced) root system.

Definition 2.8. The little Weyl group, denoted Wa, is the Weyl group associated to the root system Φr.

Proposition 2.9. ([37], Prop. 26.19) There is an isomorphism Wa ≃ NG(a)/CG(a). In particular, the
latter acts as a reflection group on a.
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As the root system Φr may be nonreduced, we recall the associated reduced root system.

Definition 2.10. To a nonreduced root system Φ, we define the (reduced) root system

Φred :=
{
α ∈ Φ: 1

2α ̸∈ Φ
}

which we call the reduced root system associated to Φ.

We note that the Weyl group Wa associated to Φr is the same as the Weyl group of the reduced root
system Φred

r .
It is useful to note that that the root system Φred

r on a can be seen as the root system associated to a
reductive algebraic group. In fact, such a group is given by the Gaitsgory-Nadler group, introduced for
symmetric varieties in [22] and generalized in [9] and [16]. This dual group plays an important role in
Langlands duality phenomena, for example as in [30].

Proposition 2.11. ([30], Theorem 3.3.1) To any spherical variety, there exists a subgroup G∨
X ⊂ G∨

with maximal torus the canonical torus A∗
X , canonical up to conjugation by the canonical torus T∨ ⊂ G∨.

Fix a Killing form identifying g ≃ g∗. In the special case of a symmetric variety X = H\G, we can
take A∗

X such that the killing form identifies Lie(A∗
X) ⊂ g∗ with a ⊂ g

Proof. The identification of a with Lie(A∗
X) and the root system of the dual group G∨

X is done in Theorem
6.7 of [15]. □

Definition 2.12. The dual group G∨
X of the symmetric space X = H\G is the subgroup G∨

X ⊂ G∨

corresponding to the dual root data to (∆red
r ,Φred

r ).

For our purposes, it will be useful to understand the discrepancy between K, Gθ, and NG(K). In the
following Proposition, by I2 for I a group, we mean the collection I2 = {a2 : a ∈ I}, this is a group when
I is abelian.

Proposition 2.13. (a) The normalizer is given explicitly by

NG(K) = {g ∈ G : gθ(g−1) ∈ Z(G)}

(b) We have NG(K) = F ∗K where F ∗ = {a ∈ A : a2 ∈ Z(G)}. Note that F ∗ depends on the choice of A.
Furthermore, (F ∗)◦ = C− is the connected subgroup of Z(G) whose Lie algebra is the (−1) eigenspace
of Z(G).

(c) There is a short exact sequence

1 → Gθ → NG(K) τ−→ (F ∗)2 → 1

where τ(g) = gθ(g−1).
(d) The group Gθ/K = π0(Gθ) is a discrete group.
(e) Any closed subgroup H in NG(K) containing K has H◦ reductive.

Proof. Part (a) follows from the proof of Lemma 1.1 of [35]. Part (b) is Lemma 8.1 in [28]. Part (c)
follows immediately from (b). Part (d) is clear as Gθ is finite type. Part (e) is directly from Lemma 8.1 of
[28]. □

We have a Chevalley-style result on the GIT quotient p//K := Spec k[p]K .

Theorem 2.14. ([19], Theorem 4.9 and Corollary 4.10) The natural inclusion map a → p induces a
isomorphisms a//Wa ≃ p//K ≃ p//NG(K). In particular, for any closed K ⊂ H ⊂ NG(K), we have
a//Wa ≃ p//H. Note in particular that this map is Gm-equivariant under the homothety actions on both a

and p.

Corollary 2.15. There is a natural identification of the GIT quotients p//K ≃ g∨
X//G

∨
X .
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Proof. The lefthand side is isomorphic to a//Wa by Theorem 2.14 while the righthand side is isomorphic
to a∗

X//WGX
where a∗

X ⊂ g∨
X is a Cartan of GX . By Proposition 2.11, we can choose a Killing form on

g that identifies a∗
X ⊂ g∨

X ⊂ g∨ and a ⊂ g. Since GX by definition has its root system the dual of Φred
r ,

there is a canonical isomorphism WGX
≃ Wa. The identification above now follows. □

The invariant theory of this GIT quotient is well studied. We will make use of the following fact.

Lemma 2.16. ([19], Lemma 4.11) We can write k[a]Wa = k[f1, . . . , fr] for r = dim(a) algebraically
independent homogeneous polynomials f1, . . . , fr or degrees m1, . . . ,mr, respectively, which we will call
the exponents of the root system Φr. Moreover, the sum of these exponents can be computed as∑

i

mi = r + #Φred
r

2 .

Proof. Follows from taking degree of the left hand and right hand side of the equality in [19], Lemma
4.11, noting that the length of the longest element in Wa is given by the number of positive roots in the
reduced root system. □

2.2. Examples. In the following, we label examples in the notation H ⊂ G with the involution being
implied.

Example 2.17. The Diagonal Case. Let G1 be a reductive group, and consider G = G1 × G1 with
involution

θ(g, h) = (h, g)
swapping the two factors. Then, K = G1 is the diagonal copy of G1 in G1 ×G1, and we have the Cartan
decomposition

g = {(X,X) : X ∈ g1} ⊕ {(X,−X) : X ∈ g1}.
A Cartan in p is a Cartan t ⊂ g1 of G1 embedded in p by

a = {(X,−X) : X ∈ t}.

while a maximal θ-split Cartan is given by

t = {(X,Y ) : X,Y ∈ t}.

Note that in this example, this maximal θ-split Cartan is also maximal θ-fixed. The restricted root system
of (G1 ×G1, G1) is given by the root system for G1.

Example 2.18. The Case GLn × GLn ⊂ GL2n. Let G = GL2n and consider the involution

θ(X) = In,nXIn,n where In,n =
(
In 0
0 −In

)
We have K = Gθ = GLn × GLn ⊂ GL2n embedded block diagonally, and the Cartan decomposition

g = k ⊕ p =
{(

A 0
0 B

)}
⊕

{(
0 C

D 0

)}
.

A Cartan in p is given by

a =
{(

0 δ

δ 0

)
: δ is diagonal

}
A maximally θ-split torus is

t = zg(a) =
{(

η δ

δ η

)
: δ, η are diagonal

}
The restricted root system is computed as

Φr = {±(δ∗
j ± δ∗

k)|j ̸= k and 1 ≤ j, k ≤ n} ∪ {±2δ∗
j |1 ≤ j ≤ n}

where δ∗
j denotes the dual basis element to the j-th coordinate of δ in a.
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Example 2.19. The Case SOn × SOn ⊂ SO2n. Let G = SO2n with the involution

θ(X) = In,nXIn,n where In,n =
(
In 0
0 −In

)
(compare with Example 2.18). Then, K = SOn × SOn ⊂ SO2n is embedded block diagonally. Note that
this is an index 2 subgroup in Gθ = S(On ×On). The Cartan decomposition is

g = k ⊕ p =
{(

A 0
0 B

)
: A,B ∈ son

}
⊕

{(
0 C

−Ct 0

)}
We fix a Cartan in p

a =
{(

0 δ

−δ 0

)
: δ is diagonal

}
The restricted root system is

Φr = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ n}

where δ∗
j denotes the dual basis element to the j-th coordinate of δ in a and i is the imaginary unit.

Example 2.20. The Case SOm × SO2n−m ⊂ SO2n, m < n. Fix m < n, and consider the case of G = SO2n

with the involution

θ(X) = Im,2n−mXIm,2n−m where Im,2n−m =
(
Im 0
0 −I2n−m

)
Then, K = SOm × SO2n−m ⊂ SO2n is embedded block diagonally, and the Cartan decomposition is

g = k ⊕ p =
{(

A 0
0 B

)
: A ∈ som, B ∈ so2n−m

}
⊕

{(
0 C

−Ct 0

)
: C is a 2m× 2n−m matrix

}
We choose

a =




0m×n−m δ 0m×n−m

0n−m×m

−δ
0n−m×m

 : δ is diagonal m×m


Note that this extends to a Cartan of SO2n given by

t =
{(

0 δ

−δ 0

)
: δ is diagonal n× n

}
and that the root system for SO2n with respect to t is

Φ = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ n}

As m < n the restricted root system is given by

Φr = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗
j : 1 ≤ j ≤ m}.

Example 2.21. The Case SOm × SO2n−m+1 ⊂ SO2n+1, m ≤ n. Fix m ≤ n and consider the case of
G = SO2n+1 with the involution

θ(X) = Im,2n−m+1XIm,2n−m+1 where Im,2n−m+1 =
(
Im 0
0 −I2n−m+1

)
Then, K = SOm × SO2n−m+1 ⊂ SO2n+1 is embedded block diagonally, and the Cartan decomposition is

g = k ⊕ p =
{(

A 0
0 B

)
: A ∈ som, B ∈ so2n−m+1

}
⊕

{(
0 C

−Ct 0

)
: C is a 2m× 2n−m+ 1 matrix

}
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We choose

a =




0m×(n−m) δ 0m×(n−m+1)

0(n−m)×m

−δ
0(n−m+1)×m

 : δ is diagonal m×m


which sits inside the Cartan of SO2n+1

t =


 0 δ 0m×1

−δ 0
01×m

 : δ is diagonal n× n


The root system with respect to the Cartan t is

Φ = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ n} ∪ {±iδ∗
j : 1 ≤ j ≤ n}

In particular, we conclude that the restricted root system is the type Bm root system

Φr = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗
j : 1 ≤ j ≤ m}.

Example 2.22. The Case GLn ⊂ Sp2n. Let G = Sp2n with the involution

θ(X) = In,nXIn,n where In,n =
(
In 0
0 −In

)
We have

K =
{(

g

g−t

)
: g ∈ GLn

}
⊂ Sp2n

We fix a Cartan in p

a =
{(

0 δ

δ 0

)
: δ is diagonal

}
Note that a is also a Cartan of Sp2n, making this a split symmetric pair. The restricted root system is
thus equal to the root system of Sp2n:

Φr = {±δ∗
j ± δ∗

k : 1 ≤ j < k ≤ n} ∪ {±2δ∗
j : 1 ≤ j ≤ n}

where δ∗
j denotes the dual basis element to the j-th coordinate of δ in a.

2.3. Regularity and the Quasi-Split Condition.

Definition 2.23. We denote by I ⊂ p ×H the group scheme of centralizers over p, i.e.

I = {(X,h) : h ·X = X}.

An element X ∈ p is called regular if dim(IX) is minimal1. Let preg ⊂ p denote the open subscheme of
regular elements in p.

Remark 2.24. Note that since H is a finite extension of K, the notion of regularity does not depend on
the choice of subgroup H–only on the involution θ.

Proposition 2.25. ([19], Lemma 4.3) For any x ∈ p, x is regular if and only if dimZG(x) = dim a +
dimZK(A).

We call an element x ∈ p semisimple if x is semisimple in g. That this definition is correct is motivated
in part by the following compatibility.

Lemma 2.26. Any x ∈ p admits a decomposition x = s+ n for s, n ∈ p, s semisimple, n nilpotent, and
n ∈ ZG(s).

1We note that this is not quite the same as the definition of [21]. However under the assumptions we make on the
charactersitic of our field this is equivalent to the definition in loc cit.
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Proof. See Lemma 2.1 in [19]. □

Proposition 2.27. Let x ∈ p have decomposition x = s + n as in Lemma 2.26, and put L = ZG(s)0,
l = Lie(L), and pL = l ∩ p. Then L is θ-stable and x is regular in p if and only if n is regular as an
element of pL.

Proof. We follow an identical argument to the proof of Proposition 9.12 in [28]. We assume without loss of
generality that s ∈ a so that A ⊂ L. By Proposition 2.25, x is regular if and only if dimZK(x) = dimZK(A)
and n is regular in L if and only if dimZK∩L(n) = dimZK∩L(A). We have ZK(x)0 = (ZK(s) ∩ZK(n))0 =
ZK∩L(n)0, so that dimZK(x) = dimZK∩L(n). Since x ∈ A, ZK(A) = ZK∩L(x), so the result follows. □

Lemma 2.28. ([19], Lemma 4.2) We have Lie(ZG(A)◦) = zg(a).

As in the Lie algebra g, the regular, semisimple locus is dense and easy to understand.

Lemma 2.29. Let prs ⊂ p denote the subscheme of regular, semisimple elements in p.
(a) Let x ∈ p. Then, x is semisimple if and only if x is contained in a Cartan of p.
(b) The regular, semisimple locus prs is dense in p.
(c) If x ∈ a is regular, semisimple, then zg(x) = zg(a).

Proof. (a) and (b) follow immediately from [19], Corollary 2.10 and Theorem 2.11. (c) follows from [19],
Lemma 4.3. □

The action of H on p does not have abelian centralizers in general. In the sequel, we will restrict
ourselves to the special subclass of forms with this property, namely those which are quasi-split.

Definition 2.30. We say a symmetric pair (p, H) is quasi-split if preg ⊂ greg; that is, the notion of
regularity in p under the action of H and g under the action of G coincide.

Remark 2.31. The quasi-split condition does not depend on the choice of subgroup H, only on the
involution θ.

Proposition 2.32. The following are equivalent:
(1) (p, H) is quasi-split;
(2) ZG(A) = T is a maximal (maximally θ-split) torus;
(3) I|preg is a commutative group scheme;

Proof. The centralizer ZG(A) includes a maximal θ split torus T ; it is abelian if and only if ZG(A) = T .
The pair (p, H) is quasi-split if and only if for all x ∈ areg, we have

dimZG(x) = rank(G)

so that all inclusions in T ⊂ ZG(A) ⊂ ZG(x) are equalities. Hence, (1) and (2) are equivalent.
Assume (1) and (2) hold now. Then if x ∈ preg, I|preg is contained in the regular centralizer group

scheme in G, which is abelian. Hence, (3) holds.
Conversely, if (3) holds, then by Lemma 2.29, there exists x ∈ preg such that zg(A) = zg(x). Then

dim zg(A) = dim zg(x) = r is the rank of G and by Lemma 2.28 ZG(A), we conclude that ZG(A) is a
maximal torus. □

Proposition 2.33. ([18], Lemma 1.6) For θ quasi-split, the little Weyl group Wa is naturally a subgroup
Wa ⊂ W .

Let T be a maximal θ-split torus, Φ the root system of G with respect to T , and Φr the restricted root
system with restriction map

r : Φ → Φr ∪ {0}
As noted in Section 2.1, roots of G may, a priori, restrict to zero in a ⊂ t. For quasi-split forms, this does
not happen as shown in the following lemma.

9
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Lemma 2.34. For (G, θ) quasi-split, the set r−1(0) is empty; that is, no root in Φ restricts to zero on a.

Proof. Fix θ-stable Cartan t = t0 ⊕ a where t0 ⊂ tK is the (+1) eigenspace of θ on t. Suppose that α ∈ Φ
restricts to zero on a. Let (X,Y ) ∈ k ⊕ p = g be an eigenvector with eigencharacter α. Then, using the
compatibility of the bracket on g with the Cartan decomposition, we have, for all t ∈ t0 and a ∈ a,

α(t)(X,Y ) = α(t+ a)(X,Y ) =
(
ad(t)(X) + ad(a)(Y ), ad(a)(X) + ad(t)(Y )

)
. (2.1)

In particular, ad(a)(Y ) is independent of a, so Y ∈ cp(a). But since the form is quasi-split, cp(a) = a ⊂
cp(t0). [c.f. Levy, Lemma 2.3] Hence, ad(t)(Y ) = 0 and equation 2.1 implies that

ad(a)(X) = α(t)Y

for all t ∈ t0 and a ∈ a. This can only be true if both sides of the expression are uniformly zero, so α = 0
is not in Φ, a contradiction. □

Fix a Cartan t ⊇ a of g extending a. In general for an involution θ with symmetric pair (p,K), there is
a finite, ramified cover a//Wa → t//W produced by the map of GIT quotients p//K → g//G. This map is
unramified precisely in the quasi-split case:

Lemma 2.35. ([24], Theorem 3.6) If the involution θ is quasi-split, then the map a//Wa → t//W is
unramified.

We record here an identity that will be important for dimension counts later.

Lemma 2.36. ([28], Lemmas 3.1 and 3.2) We have the identity

dim k − dim p = dimZK(a) − dim a.

In particular, if the form is quasi-split, then

dim k − dim p = r − 2rθ

where r is the rank of the group G and rθ = dim a is the rank of the involution.

2.4. Nilpotent Orbits. In this section, we review results of [17], [35], and [19] on nilpotent K-orbits.
Recall that K acts on the nilpotent cone Np = N ∩ p of p. The nilpotent cone is not necessarily

irreducible, reflecting the fact that there is not necessarily a single K-orbit of regular nipotents in p.

Theorem 2.37. ([19], Theorem 5.1) Each irreducible component of Np contains a unique regular K-orbit
as an open, dense subset. In particular, irreducible components of Np are in 1-1 correspondence with
connected components of Nreg

p , i.e. Irr(Np) = π0(Nreg
p ).

Corollary 2.38. The space Np\Nreg
p is of codimension ≥ 1 in Np.

The number of K-conjugacy classes of regular nilpotents was studied by [35] over C and by [19] in good
characteristic.

Proposition 2.39. ([19], Proposition 6.21) The number of regular nilpotent orbits (and hence the number
of irreducible components of the nilpotent cone) is exactly two for each of the cases (listed as pairs
(G,H = K)):

• (GL2n,SO2n);
• (GL2n,GLn × GLn);
• (SO2n+1,SO2m × SO2(n−m)+1), 2m < 2(n−m) + 1;
• (Sp2n,GLn);
• (SO2n,SO2m × SO2(n−m)), m ̸= n/2;
• (SO4n,GL2n);
• (SO4n+2,SO2n+1 × SO2n+1);
• (G,SL8), for G simple of type E7;

10
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• (G,G′ × Ga), for G simple of type E7 and G′ simple of type E6;

In addition, the form (SO4n,SO2n × SO2n) has exactly 4 regular nilpotent orbits. All other symmetric
pairs with G simple and H = K have irreducible nilpotent cone in p, and hence a single regular nilpotent
orbit.

Remark 2.40. Among the above involutions, only the following are quasi-split:

• (GL2n,SO2n);
• (GL2n,GLn × GLn);
• (SO2n+1,SOn × SOn+1);
• (G,SL8), for G simple of type E7;
• (SO4n,SO2n × SO2n) (which has 4, not 2, nilpotent orbits)

Remark 2.41. Note that (F ∗)2 acts trivially on N
reg
p . For any symmetric pair (G,H), by Proposition 2.13,

we have H = C ·H ′ where C ⊂ (F ∗)2 and K ⊂ H ′ ⊂ Gθ. The H-orbits on N
reg
p are therefore given by

(Nreg
p /K)/π0(H ′) = (Nreg

p /K)/π0(H).

If one sets H = NG(K), then the classification of regular, nilpotent orbits becomes trivial.

Theorem 2.42. ([19], Theorem 5.16) The normalizer group NG(K) acts transitively on the set of regular
nilpotents.

In particular, for H = NG(K) as in Remark 2.41, it is necessarily true that π0(H) acts transitively on
N

reg
p /K.
For our purposes later, we will also need the classification of nilpotent orbits for the diagonal case.

Lemma 2.43. The diagonal case G1 ⊂ G1 ×G1 of Example 2.17 has a single nilpotent K orbit on N
reg
p .

Proof. There is an isomorphism of stacks p/K ≃ g1/G1 given by projecting onto the first variable. In
particular, this map preserves regularity and induces an isomorphism N

reg
p /K ≃ Nreg/G1 where N is the

nilpotent cone in G1. Since any complex group G1 has a unique regular G1 orbit, the lemma follows. □

We will study the map p → a//Wa produced by Theorem 2.14 in some detail; it will provide the
underlying structure of the Hitchin fibration for symmetric pairs. In this spirit, we now prove this map’s
flatness.

Lemma 2.44. The map p → p//K ≃ a//Wa is flat, as is the map preg → p//K.

Proof. This is a morphism between two smooth schemes. Hence, by miracle flatness, it suffices to show that
the fibers are equidimensional. Let U ⊂ a//Wa be the subset of x ∈ a//Wa whose fiber in p is dim(K) − rθ

dimensional, with rθ = dim(a) the rank of the group. Then U contains 0 ∈ a//Wa as Theorem 2.37
guarantees dim(Np) = dim(K) − rθ, and U is stable under the action of Gm as the map is Gm equivariant.
Moreover, U contains the open complement of the image of the root hyperplanes ∪αHα ⊂ a of a. Hence,
U = a//Wa and the map is flat. □

2.5. Generalities on Kostant-Rallis Sections. In this subsection, we review the theory of Kostant
Rallis sections, as introduced in [17] and generalized in [19]. We work in the generality of [19]; in particular,
in this section, it is important that char(k) = p is good for G, namely if we let ∆ be a basis for the root
system Φ of G and if we express the longest element of Φ relative to ∆ as α̌ =

∑
β∈∆ mββ, then p is good

for G if and only if p > mβ for all β ∈ ∆.
In positive characteristic, associated characters replace the sl2 triples used in [17]. As this paper

will only rely on the existence of sections, we leave such the theory of associated characters and their
relationship to the more explicit sl2 triples to Appendix 4.

11
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Lemma 2.45. ([19], Corollary 6.29) Let e ∈ N
reg
p be a regular nilpotent. Then there exists a slice

e+ v ⊂ preg contained in the regular locus of p such that the map

e+ v → p//K

is an isomorphism whose fiber over 0 ∈ p//K is e.

Remark 2.46. In general, the space v ⊂ p is constructed by taking a normal associated character λ to
e (see Definition 4.6) and then constructing a certain Lie subalgebra g∗ ⊂ g with corresponding Cartan
decomposition g∗ = k∗ ⊕ p∗. The slice is given by taking v to be an Ad(λ) graded complement to [k∗, e]
inside of p∗.

If we suppose that the characteristic of k is either zero or greater than the Coxeter number of G,
then the results of Appendix 4 give a bijection between H-conjugacy classes of assocaited characters and
H-conjugacy clsses of sl2 triples. In this case, we can complete e ∈ N

reg
p to a normal sl2 triple (e, h, f) (see

Definition 4.1) uniquely up to CK(e)◦ conjugacy, and we can take e+ v = e+ cp(f) as in [17], Theorem 11.

We will need a bit more on the differential of the action map

H × S → preg.

To do so, we will need the following auxiliary construction, introduced by [17] in characteristic zero and by
[19] in characteristic p; namely, the following asserts the existence of a subgroup G∗ ⊂ G which is θ stable,
for which θ acts as a split form, and which is sufficiently large to contain the image of Kostant-Rallis
sections of G. This construction will only be used to prove Lemma 2.48 and will not be used elsewhere in
the paper.

Lemma 2.47. ([19], Thm 6.18, Cor 6.26, Lem 6.27 and Lem 6.29) Fix a maximal abelian a ⊂ p for
the symmetric pair (G,H) and fix e ∈ N

reg
p . Then there exists a reductive sub-Lie algebra g∗ ⊂ g and

reductive group G∗ with Lie(G∗) = g∗ with the following properties:
(1) g∗ ⊂ g is θ stable, and the involution θ∗ = θ|g∗ lifts to an involution θ∗ on G∗.
(2) Let p∗,K∗ denote the analogous constructions for θ∗ acting on g∗. Then, a ⊂ p∗ and the involution

θ∗ on G∗ is split, i.e. a ⊂ g∗ is a Cartan of g∗.
(3) The restriction map produces an isomorphism of GIT quotients p∗//K∗ ≃ p//K.
(4) The regular locus in p and the regular locus in p∗ agree, i.e. preg ∩ p∗ = (p∗)reg

(5) e ∈ p∗ and in Lemma 2.45, one can chose v ⊂ p∗. In particular, the Kostant-Rallis section to

preg → p//K

of Lemma 2.45 has image in (p∗)reg and so also gives a section to

(p∗)reg → p∗//K ≃ g∗//G∗.

(6) The group G∗ satisfies the “standard hypotheses”: i.e. p is good for G∗; the derived subgroup of G∗

is simply connected; and there exists a G∗-equivariant, nondegenerate, symmetric bilinear form
κ : g∗ × g∗ → k.

Lemma 2.48. Fix e ∈ N
reg
p and consider the section S := e+v as in Lemma 2.45. We assume further that

the cocharacter lattice X∗(A)/ZΦ∗
r of the restricted root system has no p torsion for p the characteristic of

k. Let
H × S → preg

be the action map for the adjoint action of H on S ⊂ preg. Then the differential of this map at (1, e) is
surjective.

Proof. The differential of the above map at (1, e) is identified with the map

k ⊕ v → p, (x, v) 7→ [x, e] + v.

12
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Replacing (G, θ) with (G∗, θ∗) and using Lemma 2.47, we may assume that the symmetric pair is split
(and in particular, quasisplit) and that G satisfies the standard hypotheses as well as the condition that
X∗(A)/ZΦ∗

r has no p torsion. Therefore, the result follows by [29], Lemma 3.1.3, by intersecting with
p. □

3. The regular quotient

3.1. Generalities on the regular quotient. One motivation for the introduction of the regular quotient
is introduced by Ngô B.-C. and the second author in [21], is to allow generalization of the invariant theory
of the adjoint action of G on g which is used in the analysis of the Hitchin fibration in [8, 23]. The key
point is that the regular quotient Mreg(I′ G is a space such that the quotient stack Mreg/G is a gerbe
over Mreg(I′ G.

We first recall the definition of the regular quotient from [21]. We also introduce some of the basic
properties before giving an elementary description in our case. We stress that the majority of this paper
can be read merely knowing that the regular quotient of the action of H on p is a space parameterizing
the H-orbits of maximal possible dimension, and the characterization given by Proposition 3.3. Theorem
3.19 shows that under our assumptions on p we have that preg is precisely the open subscheme such that
the stabilizers are of minimal dimension.

Let M be an affine variety acted on by a reductive algebraic group H. Let IM ⊂ M ×H be the group
scheme over M of stabilizers of the H-action. Following [21] the regular locus is the subset maximal
open subscheme Mreg → M such that Lie(IMreg ) → Mreg is a vector bundle. We note that this is an
H-scheme. Secondly we note that in characteristic zero the k-points of Mreg are precisely those such
that the stabilizer of m in H is of the minimal possible dimension. We will be using (M,H) = (p, H) a
symmetric pair.

Assume that I0
M |Mreg ⊂ I ′ ↪→ IM |Mreg is a smooth subgroup scheme over Mreg, that is G-equivariant.

Definition 3.1 (Regular Quotient [21]). Let M , I ′, and H be as above. We define the regular quotient
M(I′ H to be the stack quotient of the groupoid in algebraic spaces

(Mreg ×H)/I ′ ⇒Mreg.

Note that this does depend on the precise choice of I ′ used. It is describing a rigidification by I ′ of the
stack quotient Mreg/H.

By definition M(I′ H satisfies a 2-coequalizer property for the diagram (Mreg ×H)/I ′ ⇒Mreg.
The regular quotient has the following properties [21]:

Proposition 3.2 (Properties of Regular Quotient from [21]). The regular quotient has the following
properties:

• If I ′ is abelian then it descends to a group scheme J → Mreg(I′ H.
• I ′ descends to a band in the sense of Giraud [13] Jband → Mreg(I′ H.
• The map Mreg/H → Mreg(I′ H is a gerbe banded by Jband; when I ′ is abelian it is a J-gerbe.

The second property is in fact a defining property of the regular quotient:

Proposition 3.3 ([21]). Let I ′ = IM |Mreg , and V be a scheme such that each fiber of Mreg → V consists
of a single G-orbit. Then V = Mreg(I′ G.

We will use this property to describe preg(I′ H, for I ′ = Ip|preg . For the other choices of I ′ we consider
we will also need to use the following theorem.

Proposition 3.4 ([21]). Let H ⊂ H ′, such that H is a normal subgroup. Suppose that the H action on
M and on Mreg extends to a H ′ action. Suppose that I ′ is also H ′-equivariant, and a normal subgroup of
N ×H ′.

Then the map Mreg(I′ H → Mreg(I′ H ′ is a principal H ′/H-bundle.

13
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3.1.1. Equivariant Case. Suppose there is also a action of Gm
2 on M commuting with the action of H. In

addition to the assumptions of the previous section (I ′ → Mreg is smooth over Mreg and G-equivariant),
we also assume that I ′ is Gm-equivariant.

Then [21] show the following:

Proposition 3.5 ([21], Gm-equivariant version of 3.2). For M , H, I ′ and Gm as above we have that:
• If I ′ is abelian then it descends to a group scheme J → (Mreg(I′ H)/Gm.
• I ′ descends to a band Jband → (Mreg(I′ H)/Gm.
• The map Mreg/(H × Gm) → (Mreg(I′ H)/Gm is a gerbe banded by Jband, when I ′ is abelian it is

a J-gerbe.

Proposition 3.6 ([21], Gm-equivariant version of Proposition3.4). Let M , H, I ′ and Gm be as above.
Let H ⊂ H ′, such that H is a normal subgroup. Suppose that the H action on M and on Mreg extends
to a H ′ action. Suppose that I ′ is also H ′-equivariant. Finally suppose that the actions of H ′ and Gm

commute.
Then the map (Mreg(I′ H)/Gm → (Mreg(I′ H ′)/Gm is a principal H ′/H-bundle.

In other words the map (Mreg(I′ H) → (Mreg(I′ H ′) is Gm-equivariant.
In the setting of Proposition 3.3 there is at most one action of Gm on V such that the map Mreg → V

is equivariant. This shows:

Proposition 3.7 ([21], Equivariant version of Proposition 3.3). Let I ′ = IM |Mreg , and V be a scheme such
that each fiber of Mreg → V consists of a single G-orbit, and the morphism Mreg → V is Gm-equivariant.
Then V ∼= Mreg(I′ G, and the morphism is Gm-equivariant.

3.1.2. The Case of Symmetric Pairs. We now give a brief overview of the quotients we will consider. We
will of course be using (M,H) = (p, H) where (p, H) is a symmetric pair as in section 2. This is equipped
with a commuting action of the group Gm which acts on the vector space p by scaling.

There are multiple possible choices of I ′ in this setting, and we will use several different choices. Let C
be the set of irreducible components of the nilpotent cone Np. There is an action of π0(H) = H/H0 on
C. Let E be a normal subgroup of π0(H). Let H0 ⊂ HE ⊂ H be the normal subgroup of H such that
π0(HE) = E.

Definition 3.8. For E, HE as above let IE denote the stabilizer scheme of the action of HE on p, and
Ireg

E denote the restriction of this to preg. We also sometimes denote this as Ireg
HE

.

These are the group schemes we will use to define the regular quotient for symmetric pairs. We show in
the next section that the subgroup scheme Ireg

E ⊂ p ×HE of stabilizers is a smooth group scheme over
preg.

Lemma 3.9. The subgroup scheme Ireg
E ⊂ preg ×HE of stabilizers is H-equivariant with respect to the

action on preg ×H given by the adjoint action and conjugation respectively.

Proof. This is immediate from the definition. □

Lemma 3.10. The subgroup scheme Ireg
E is Gm-equivariant.

Proof. This is immediate because IE is the stabilizer group scheme of the action of HE on p, and the
action of Gm commutes with the action of HE . Hence IE is Gm-equivariant, so Ireg

E is Gm-equivariant. □

Proposition 3.11. If (p, H) is quasi-split then the subgroup scheme Ireg
E is abelian.

Proof. Since (p, H) is quasi-split, we have preg ⊂ greg. Consequently, Ireg
E is a subgroup scheme of I|preg

where I is the group scheme of centralizers for G. Since I|greg is abelian, the result follows. □

2The paper [21] considers the case of a commuting action of an arbitrary reductive group, but we will here state the
results for the case of Gm

14



THE HITCHIN FIBRATION FOR SYMMETRIC PAIRS T. HAMEISTER AND B. MORRISSEY

Hence the general results on regular quotient give us that:

Proposition 3.12. Let (p, H) be a symmetric pair, and E as above.
Then Ireg

E descends to bands Jband → preg(Ireg
E

H, and Jband → (preg(Ireg
E

H)/Gm.
Then

preg/H → preg(Ireg
E

H

is a gerbe banded by Jband, and

preg/(H × Gm) → preg(Ireg
E

(H × Gm)

is a gerbe banded by Jband.
If (p, H) is quasisplit then Ireg

E descends to a smooth commutative group schemes JE → preg(Ireg
E

H,
and JE → (preg(reg

IE
H)/Gm.

The gerbes preg/H → preg(Ireg
E

H and preg/(H × Gm) → preg(Ireg
E

(H × Gm) are a JE-gerbe and
JE-gerbe respectively.

Proof. Immediate from Proposition 3.2 and Proposition 3.5. □

We can now give a brief overview of how we will describe the quotient preg(Ireg
E

H. We reduce to the
case where E = π0(H), in which case we will simply denote Iπ0(H) by I (when H is clear from the context).
More specifically we have:

Corollary 3.13 (Corollary of Proposition 3.4).

preg(Ireg
E

H = (p(Ireg
E

HE)/(H/HE).

Note that H/HE = π0(H)/E.

Proof. Immediate from Proposition 3.4. □

3.2. Regular quotient and smoothness of stabilizer group schemes via Kostant–Rallis Sections.
In this section we describe the regular locus preg as the union of the H-orbits of potentially multiple
Kostant–Rallis sections. We use this to deduce smoothness of several of the group schemes considered
in the previous section in a way completely analogous to the case of the adjoint action of G on g as
considered in [12, 29]. We then have that the regular quotient in the case where I ′ = Ireg

E and E = π0(H)
can be obtained by gluing together multiple copies of the GIT quotient together. An explicit description
of the gluing will be described in the subsequent sections. This is a modification of an argument for the
case of the Vinberg monoid found in Proposition 2.12 of [3] and Equation 2.7 and Lemma 2.2.8 of [7]. We
will then give a direct argument that Ireg

E descends to the regular quotient.

Lemma 3.14 (Analogue of Lemma 2.2.8 of [7], see also Proposition 2.12 of [3] ). Let U ⊂ preg be stable
under the H × Gm-action. If U ∩ N = Nreg then U = preg.

The following proof is identical to that of [7], we provide it here for completeness.

Proof. We let F := preg\U . By assumption this is a Gm ×H subscheme of p. Let χ|F denote the restriction
of χ : p → a//Wa to F .

We let V ⊂ F be the inverse image under χ|F of the subset {x ∈ a//Wa|dim(χ−1
F (x)) < dim(H) −

dim(a)}. This is an open subscheme of F by upper semicontinuity. Furthermore it includes 0 ∈ p by
Lemma 2.38. As V is preserved by Gm and 0 is in the closure of every Gm-orbit of F we have that V = F .

By Lemma 2.44 we have that each fiber of χ is of dimension dim(p)−dim(a). Suppose that x ∈ preg ∩F ,
then as F is stable under H, the dimension of the orbit of x (which is inside F ) is dim(p) − dim(a). This
contradicts F being of codimension ≥ 1 in each fiber. □
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We now recall that, by Theorem 2.37, for each irreducible component S ∈ Irr(Np) there is a unique
regular K-orbit of p in S. Furthermore, by Lemma 2.45, there is a (not unique) Kostant–Rallis section
κS : a//Wa → preg such that κS(0) ∈ S.

Pick a set of representations {Si|i ∈ I} for the π0(H)-orbits in Irr(Np). For each representative pick a
Kostant–Rallis section κi. Let Si be the image as used to define the Kostant–Rallis section in section 2.5.
We then have a morphism

(H × Si)/IH → preg,

which is quasifinite and an isomorphism over the regular semisimple locus preg,ss. Hence it is birational.
As preg is normal, Zariski’s main theorem implies that this morphism is an open embedding. Hence we
can define pκi,H to be the open subscheme of preg which is the image of this morphism.

Proposition 3.15.
preg = ∪i∈Ip

κi,H .

Proof. This is an immediate consequence of Lemma 3.14 applied to U = ∪i∈Ip
κi,H . □

3.2.1. Application to smoothness of Ireg
E , I ′

K and I0
K . We start by proving a Lemma.

Lemma 3.16. If H is smooth then the morphism H × Si → pκi,H is smooth and surjective.

Proof. This morphism is surjective by Lemma 2.48, so it is sufficient to prove that it is smooth.
The morphism is H-equivariant and Gm-equivariant. Hence the morphism is smooth in a H × Gm-

invariant open neighbourhood of (1, κi(0)). The only such neighbourhood is H × Si, hence the morphism
is smooth. □

Proposition 3.17. The composition χ|pκi,H : pκi,H ↪→ p → p//H is smooth and surjective.

Proof. This is identical to the proof of Proposition 3.3.3 of [29], namely the composition H×Si → pκi,H →
p//H ∼= Si is identified with the projection to Si. Hence [1] Tag 02K5 imples χ|pκi,H is smooth and
surjective. □

We denote by ISi
:= Ireg

H ×preg Si the restriction of Ireg
H to Si.

Proposition 3.18. The map ISi → Si is smooth.

Proof. This proof of Proposition 3.3.5 of [29] carries over to this setting. For completeness we sumarize:
As schemes over Si we have isomorphisms

ISi
∼= Si ×p×Si

(H × Si) ∼= Si ×p×p//HSi (H × Si) ∼= Si ×p (H × Si).

Hence as H × Si → preg ↪→ p is smooth we have that ISi
→ Si is smooth. □

Theorem 3.19. If H is smooth then the group schemes Ireg
E → preg, I ′

K and I0
K are smooth.

Note that for (G, θ) quasisplit in characteristic 0 this is proved for IGθ in [11]. In Theorem 4.7 of [18]
this is generalized to the case where p > 2 and p is such that Ireg → greg (that is to say the regular
centralizers for the adjoint action of G on g) is smooth (see condition C.3 of [29] for such conditions).

Proof. By Proposition 3.15 it is sufficient to show that for each i ∈ I (recall this denoted the represented
the representatives of the π0(H)-orbits in Irr(Np)) the morphism Ireg

W |pκi,H → pκi,H is smooth.
As these are open subschemes of Ireg

H it is sufficient to show that for each i ∈ I we have Ireg
H |pκi,H → pκi,H

is smooth.
The proof is now identical to Corollary 3.6 in [29], we provide it only for completeness. The diagram

H × ISi
Ireg

H |pκi,H

H × Si pκi,H

16
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is Cartesian. Hence Lemma 3.16 implies that H × ISi
→ Ireg

H is smooth and surjective. Furthermore
the Lemma 3.16 and Proposition 3.18 tell us that the composition H × ISi

→ pκi,H is smooth. Hence
Ireg

H |pκi,H → pκi,H is smooth by Tag 0K25 of [1]. □

3.2.2. Application to the regular quotient. Let p̃//H be the union of I copies of a//Wa where we glue the
copies labelled by i and j on the subscheme U ⊂ a//Wa where the sections κi and κj are conjugate. Note
that a priori. it is not clear that the gluing is done in a fashion compatible with the Gm-action, and thus
it is not clear that p̃//H has a Gm-action coming from the Gm-actions on a//Wa.

Theorem 3.20. Assuming that H is smooth we have a Gm-equivariant isomorphism of schemes

p̃//H
∼=−→ preg(Ireg

H
H,

where the Gm-action comes on p̃//H comes from the Gm-action on each copy of a//W . Furthermore this
isomorphism commutes with the (Gm)-equivariant morphisms to p//H.

Remark 3.21. Note that the left hand side is definable regardless of whether or not H is smooth while the
right hand side is only known to be definable when H is smooth.

Proof. This argument is essentially identical to a similar argument in the Vinberg monoid case found in
[21]. The non-equivariant version isomorphism follows immediately from Proposition 3.3. and the fact
that the map p → p//K ∼= a//Wa is Gm-equivariant.

These identifications commute with the morphism to p//H, because these are the unique morphisms to
p//H such that the diagrams

preg p preg p

preg(I′ H p//H p̃//H p//H

commute.
We hence have a Gm-action on p̃//H via the identification with the regular quotient. Because the

morphism p̃//H → p//H is Gm-equivariant we hence must have that this Gm action comes from the
Gm-action on each copy of a//Wa.

The equivariant isomorphism result now follows immediately, or via Proposition 3.7. □

3.2.3. Direct Proof of Gerbe Structure. We now prove some of the results of proposition 3.12 without the
use of results from [21]. We also note that the proofs of these results is identical to those of both the
Lie algebra case (e.g. [23]) and to those for regular quotients in [21], as such we only include these for
completeness.

Proposition 3.22. The maps
preg/H → p̃//H ∼= preg(Ireg

H
H

and
(preg/H)/Gm → (p̃//H)/Gm

∼= (preg(Ireg
H

H)/Gm

are smooth gerbes.

Proof. It is enough to show this for the case of (preg/H)/Gm → (p̃//H)/Gm, the remaining case will follow
by pullback to ˜preg//H. Consider the pullback off this map along preg → (p̃//H)/Gm. We have a section
of the pullback given by the diagonal section

preg → preg ×(p̃//H)/Gm
preg → preg ×

p̃//H/Gm
(preg/H).

This gives an identification of preg ×
p̃//H/Gm

(preg/H) with BIπ0(H), concluding the proof. □
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Proposition 3.23. If (p, H) is quasisplit then Ireg
π0(H) descends to a smooth group scheme

Jπ0(H) → p̃//H ∼= preg(Ireg
H

H,

and descends further to a smooth group scheme

Jπ0(H) → (p̃//H)/Gm
∼= (preg(Ireg

H
H)/Gm.

The proof used to define the group scheme of regular centralizers (this can be found in e.g. [23]) for a
Lie algebra generalizes immediately to this setting, and indeed to the general setting of regular quotients
with I ′ abelian. We include it for completeness.

Proof. Consider the coequalizer diagram

preg ×
p̃reg/H

preg ⇒ preg.

et π1, π2 be the two projection maps. Let act : H × preg → preg ×
p̃reg/H

preg ⇒ preg be the map
(h, x) 7→ (x, adh(x)).

We can identify act∗π∗
1Iπ0(H) and act∗π∗

2Iπ0(H) as follows. Given (x, g) ∈ preg ×
p̃reg/H

preg we can pick
g ∈ G conjugates act∗π∗

1Iπ0(H) to act∗π∗
2Iπ0(H) We then have that because Iπ0(H) is abelian, and the map

act is an Iπ0(H)-bundle, the identification of act∗π∗
1Iπ0(H) and act∗π∗

2Iπ0(H) descends to an identification
of We can identify π∗

1Iπ0(H) and π∗
2Iπ0(H) on preg ×

p̃reg/H
preg. Hence Iπ0(H) descends to a smooth group

scheme on preg. □

Proposition 3.24. If (p, H) is and H is smooth then the map

preg/H → p̃//H ∼= p(Ireg
H

H

is a Jπ0(H)-gerbe. Similarly the map

(preg/H)/Gm → (p̃//H)/Gm
∼= (p(Ireg

π0(H)
H)/Gm

is a Jπ0(H)-gerbe.

Proof. It has already been shown that these spaces are gerbes. Hence as we have identifications χ∗JE
∼= Ireg

E

and χ∗JE
∼= Ireg

E (for the maps χ : preg → p̃//H, and χ : preg → (p̃//H)/Gm) we have that these are JE

and JE gerbes respectively. □

Remark 3.25. It is important to note that generalizations and refinements of several of the above results
are expected. We point out a few of these now.

If p̃//H ∼= p//H (or equivalently there is only one regular nilpotent H-orbit), then we can use a Kostant–
Rallis section κ to pull back Ireg

H to get a group scheme κ∗Ireg
H on p̃//H. If (p, H) is quasisplit, but we do

not assume that H is smooth, we can still get that p∗(κ∗Ireg
H ) ∼= Ireg

H (for p : preg → p̃//H).
Secondly under the same assumption that there is one regular nilpotent H-orbit, we can consider κ∗Ireg

H

when H is smooth, but (preg, H) is not quasisplit. Note that we can also use G[2]
m -equivariance (that is to

say we consider the usual Gm-action, but we precompose by the squaring map Gm → Gm) to get a group
scheme on [(p̃//H)/G[2]

m ].
In this case p∗(κ∗Ireg

H ) is Ireg
H . This in particular provides a group that [preg/H ×G[2]

m ] → [(p̃//H)/G[2]
m ]

is a gerbe for.
As such it is an important question to see whether there are sections of preg → p̃//H and [preg/G[2]

m ] →
[p̃//H/G[2]

m ] which would allow generalization of these considerations to arbitrary symmetric pairs (with H
smooth).

Finally one could ask whether there are then descriptions of the group scheme κ∗Ireg
H via Weil restriction.

We note that the work of Hitchin–Schaposnik [14] and Branco [6] strongly suggests that in certain examples,
one can describe at least a connected component of the Weil restriction of SL2 from a spectral cover.
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3.3. Overview of Explicit Description of the Regular Quotient. Suppose that we are trying to
describe the geometry of the regular quotients preg(IE

H, preg(I′
K
K, or preg(I0

K
K. We ultimately provide

two different descriptions.
The first appears in Theorem 3.29, where we describe the regular quotient in terms of certain quotients

of component groups.
The second is done by the following multistep procedure:

• Firstly for preg(IE
H reduce describing this to describingpreg(Ireg

HE

HE where HE for the E involved
in the definition of IE . This is done by Corollary 3.13. For preg(I′

K
K, or preg(I0

K
K we have that

by Proposition ?? we can reduce to the case of describing preg(Ireg
K

K, which is a special case of
describing preg(Ireg

HE

HE .

• Secondly we reduce to the case of simply connected simple groups and the case H = G1
∆
↪−→ G1 ×G1

of Example 2.17, using Theorem 3.35.
• Thirdly we reduce understanding the orbits above a point in a//Wa to the case of nilpotent cones

of certain Levi’s, that we call distinguished Levi’s, in Theorem 3.42 and Proposition 3.45.
• We use the immediately preceding point to describe the structure for simple, simply connected

groups and the case of Example 2.17. Except for the case of SO(n)×SO(n) ↪→ SO(2n) (considered
in Example 3.56) this is not complicated due to the fact that there are at most 2 regular H-orbits
in the nilpotent cone. The resulting explicit description of the regular quotient is included as
Theorem 3.46. This description is as p(Ireg

H
H ∼= a//Wa

∐
U a//Wa for an explicitly described open

U ⊂ a//Wa.

In section 3.7 we explicitly compute the regular quotient in some cases. In the case of Example 2.17 we
show that the regular quotient is simply a//Wa in Example 3.50.

We explicitly compute U for H = K = GLn × GLn ⊂ GL2n = G (Example 2.18) in Example 3.51.
We explicitly compute U for the split form K = SOn ⊂ SLn in Example 3.53.
Finally we consider the case of K = SO(n) × SO(n) ↪→ SO(2n) in Example 3.56, again using the

results of section 3.4.

3.4. The Action of NG(K)/Z− ·K on the Regular Quotient.

Lemma 3.26. The regular centralizer group scheme Ireg
H is affine for any K ⊂ H ⊂ NG(K).

Proof. The regular centralizer scheme Ireg
H is a subgroup of the constant group scheme H × preg → preg is

affine defined by vanishing of commutators. Hence, Ireg
H is a closed subgroup of H × preg over preg, and so

is affine. □

Let A ⊂ G× prss be the family over prss whose fiber over X ∈ prss is the maximal θ-split torus AX

such that Lie(AX) = zg(X) ∩ p. (Note, the existence and uniqueness of such a torus A ⊂ G is given in
[19], Lemma 0.1.)

Moreover, we let F ∗ ⊂ A denote the family over prss whose fiber over X ∈ prss is the subgroup

{a ∈ AX : a2 ∈ Z(G)} ⊂ AX

Recall from Proposition 2.13, Part (a) that, for a given choice of A, we have NG(K) = F ∗ ·K where F ∗ is
chosen with respect to A. We use this to determine the structure of Ireg

NG(K)/I
reg
K .

Lemma 3.27. Fix a choice of X ∈ prss determining A and F ∗ ⊂ A. Moreover, let Z− denote the subgroup
of the center Z = Z(G) on which θ acts by inversion.

(1) We have an isomorphism over prss(
Ireg

NG(K)/Z− · Ireg
K

)∣∣∣
prss

≃
∐

a∈F ∗/Z−·(F ∗∩K)

prss (3.1)

19
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(2) The isomorphism (3.1) extends to an isomorphism

Ireg
NG(K)/Z− · Ireg

K ≃
∐

a∈F ∗/Z−·(F ∗∩K)

Ua (3.2)

where Ua → preg is the inclusion map for an open set prss ⊂ Ua ⊂ preg.

Proof. The inclusion Ireg
NG(K) ⊂ NG(K) × preg defines a map

Ireg
NG(K)/Z− · Ireg

K →
(
NG(K)/Z− ·K

)
× preg (3.3)

with target a constant group scheme with discrete fiber. For any fixed Y ∈ prss, let AY be the fiber of A

at Y and F ∗
Y ⊂ AY be the fiber of the group scheme F ∗ over Y . Then, it is clear from Proposition 2.13

that Ireg
NG(K),Y = F ∗

Y · Z− · Ireg
K,Y . Therefore, the fiber of the map (3.3) at Y is identified with the identity

map

F ∗
Y /Z− · (F ∗

Y ∩K) → F ∗
Y /Z− · (F ∗

Y ∩K)

In particular, (3.3) is an isomorphism over the regular, semisimple locus, proving part (1).
For (2), we claim that the map (3.3) remains an injection over preg. In particular, this amounts to the

following claim:
Claim: Let Y ∈ preg. For any g1, g2 ∈ Ireg

NG(K),Y , if g1 = hg2 for h ∈ K, then in fact h ∈ Ireg
K,Y .

Proof of Claim. Since g1 and g2 centralize Y , we have

Y = ad(hg2) · Y = ad(h)Y

Hence, h ∈ IG,Y ∩K = Ireg
K,Y . □

It follows that the map (3.3) describes the quotient Ireg
NG(K)/Z− · Ireg

K as the disjoint union of open
subsets of preg extending the sheets

(
NG(K)/Z− ·K

)
× prss. □

Lemma 3.28. The group NG(K) acts transitively on the fibers of the map preg → p//K.

Proof. Theorem 3.20 reduces this to the NG(K) action on the zero fiber N
reg
p . Theorem 2.42 proves this

case. □

Theorem 3.29. Consider the natural action of the constant group scheme NG(K) := NG(K) × p//K on
preg over p//K.

(1) A choice of Kostant-Rallis section κ : p//K → preg gives an identification

preg ≃ NG(K)/κ∗Ireg
NG(K),

as schemes over p//K.
(2) The regular quotient preg(Ireg

H
H is identified with the quotient

preg(Ireg
H

H ≃
NG(K)/H

κ∗(Ireg
NG(K)/I

reg
H ) =

NG(K)/Z− ·H
κ∗(Ireg

NG(K)/Z− · Ireg
H )

Proof. By acting on the image of the Kostant–Rallis section κ we gain a surjective morphism NG(K) → preg.
This clearly factors through an isomorphism NG(K)/κ∗Ireg

NG(K) → preg.
Part (2) then follows by considering the transitive NG(K) action on the right hand side of the description

of preg(H given in Theorem 3.20. □
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3.5. Reduction to the Simple, Simply Connected Case. We begin by reducing to the case of G
simple, simply connected. We begin by lifting along covering maps.

Lemma 3.30. ([19], Lemma 1.3) Let Ĝ → G be the simply connected cover of a simple group G, and let
θ be an involution on G. Then, θ lifts uniquely to an involution on Ĝ.

Recall that any reductive group G admits a central isogeny

ξ : Z(G)0 ×Gder → G

where Gder is semisimple and Z(G)0 is a torus. Then Gder can be written as a product Gder =
∏

j Gj

where each Gj is simple. We consider the cover

q : Ĝ = Z(G)0 ×
∏

j

Ĝj → Z(G)0 ×
∏

j

Gj

where Ĝj is the universal cover of Gj and q is the product of the universal covering maps. Denote by ξ̂
the composition q ◦ ξ : Ĝ → G.

Lemma 3.31. The involution θ on G lifts along ξ̂ to an involution θ̂ on Ĝ with respect to which Ĝ admits
a decomposition

Ĝ = Z(G)0 ×
∏

j

Ĝj (3.4)

where each Ĝj is preserved by the involution θ̂ and is either simple or a product of two isomorphic simples
with θ̂ acting by permuting the factors.

Proof. Denote the composition
ξj : Gj ↪→ Z(G)0 ×Gder → G

The map ξj is an inclusion. By simplicity of Gj , we have that ξj(Gj) ∩ θ(ξj(Gj)) is either ξj(Gj) or the
identity. In the former case, θ restricts to an involution on ξj(Gj), and there is a unique lifting along
the embedding ξj to an involution on Gj . By Lemma 3.30, this lifts uniquely along the cover q|Ĝj

to an
involution on Ĝj ⊂ Ĝ.

In the case that ξj(Gj) intersects trivially with Gj , ξj(Gj) is carried to another simple normal subgroup
of G. Such subgroups are enumerated by the images ξi(Gi) for i ̸= j; we fix i ̸= j so that θ(ξj(Gj)) = ξi(Gi).
Then, θ acts on ξi(Gi) × ξj(Gj) by automorphisms ξi(Gi) → ξj(Gj) and ξj(Gj) × ξi(Gi) which compose
to the identity. These maps lift to maps Ĝi → Ĝj and Ĝj → Ĝi, and so for such pairs (i, j) for i ≠ j, θ
lifts to an involution on Ĝi × Ĝj ⊂ Ĝ. □

We now use this to reduce the description of the regular quotient to the case where either G is simple,
simply connected, or G = G1 ×G1 where G1 is simple, simply connected and θ swaps the two copies of
G1.

Lemma 3.32. For the isogeny ξ : Ĝ → G as in Lemma 3.31, we have ξ−1(Z(G)) = Z(Ĝ).

Proof. Suppose that ẑ ∈ Z(Ĝ) and let g ∈ G. Since ξ is surjective, there exists ĝ ∈ Ĝ such that ξ(ĝ) = g.
Then,

ξ(ẑ)g = ξ(ẑĝ) = ξ(ĝẑ) = gξ(ẑ)

Hence, Z(Ĝ) ⊂ ξ−1(Z(G)).
Conversely, if z ∈ Z(G) and ẑ ∈ ξ−1(z), then for any ĝ ∈ Ĝ, we have

ξ(ẑĝ) = zξ(ĝ) = ξ(ĝ)z = ξ(ĝẑ)

Hence, the data of ẑ determines a continuous map

Ĝ → ker(ξ), by ĝ 7→ ẑ−1ĝ−1ẑĝ

Since Ĝ is continuous and ker(ξ) is finite, it follows that the image of this map is {1}, and so ẑ ∈ Z(Ĝ). □
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Proposition 3.33. Let ξ : Ĝ → G be the isogeny of Lemma 3.31, and let K̂ =
(
(Ĝ)θ

)◦. Then, we have
ξ−1(NG(K)

)
⊂ NĜ(K̂).

Proof. Let θ̂ be the lift of θ to Ĝ from Lemma 3.31. We have a commutative diagram

Ĝ
θ̂
//

ξ

��

Ĝ

ξ

��

G
θ
// G

Recall that by Proposition 2.13

NG(K) = {g ∈ G : gθ(g−1) ∈ Z(G)}

Let g ∈ NG(K), and take ĝ ∈ ξ−1(g). Then,

ξ
(
ĝθ̂(ĝ−1)

)
= gξ(θ̂(ĝ−1)) = gθ(g−1) ∈ Z(G)

Therefore, by Lemma 3.32,
ĝθ̂(ĝ−1) ∈ ξ−1(Z(G)) = Z(Ĝ).

We conclude ξ−1(NG(K)
)

⊂ NĜ(K̂), as desired. □

Lemma 3.34. For any isogeny ξ : Ĝ → G, we have K̂ ⊂ ξ−1(K).

Proof. Note that the lifting of Lemma 3.31 satisfies ξ−1(Gθ) ⊃ Ĝθ̂. Taking connected components, we have
an inclusion ξ−1(Gθ)◦ ⊃ K̂. Now, since the preimage of a connected component is a union of connected
components, we have

(
ξ−1(Gθ)

)◦ ⊂ ξ−1(K), so we conclude the result. □

Theorem 3.35. Let (p, H) be a symmetric pair corresponding to (G, θ). Let Ĝ = Z(G)0 ×
∏

j Ĝj be as
in Equation 3.4 of Lemma 3.31. Let (pj ,Kj) be the symmetric pair (with Kj) connected corresponding
to (Gj , θj). Let Hj = ξ−1(H) ∩ Gj. Then (pj , Hj) is a symmetric pair, and there is a Gm-equivariant
isomorphism

(preg(Ireg
H

H) ∼= ((Lie(Z(G)0) ∩ p)//(ξ−1(H) ∩ Z(G)0) ×
∏

j

preg
j (Ireg

Hj

Hj

Proof. Firstly let Ĥ = ξ−1(H). By Lemma 3.34 and Proposition 3.33, (p, Ĥ) is a symmetric pair of (Ĝ, θ̂).
Furthermore we note that by the decomposition of Equation 3.4 we have that Ĥ = (Z(G)0 ∩H) ×

∏
j Hj .

Since θ̂ respects the decomposition of Equation 3.4, K̂ and NĜ(K̂) decompose as products

K̂ = (K̂ ∩ Z(G)◦) ×
∏

j

K̂j and NĜ(K̂) = (NĜ(K̂) ∩ Z(G)◦) ×
∏

j

NĜj
(K̂j).

Hence, (pj , Hj) is a symmetric pair.
Since the action of Ĥ on p factors through H with finite quotient, the regular locus of these two actions

agree. Furthermore, the group scheme of centralizers Î in Ĥ decomposes as a product of centralizers,
so preg = z(g) ×

∏
j p

reg
j , where preg

j is the regular locus of pj under the action of Hj . This gives a
decomposition of stacks

preg/H ≃ z(g)/(H ∩ Z(G)0) ×
∏

j

preg
j /Hj .

Note we also get an isomorphism of GIT quotients:

preg//H ∼= z(g)//(H ∩ Z(G)0) ×
∏

j

preg
j //Hj .

Both of the above identifications are Gm-equivariant.
Pick a section of z(g)reg → ((Lie(Z(G)0) ∩ p)//(ξ−1(H) ∩ Z(G)0), and for each j pick a set of Kostant–

Rallis sections for (pj , Hj) as in Proposition 3.15. For any choice of one section for each pj , and the
chosen section of z(g)reg, adding these sections together gives a section of preg over preg//H. Suppose
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we get l sections in total. We note that these sections are H conjugate if and only if they are ξ−1(H)
conjugate. Exactly the same arguments as used in Theorem 3.20 show that preg(Ireg

H
H is given by gluing

together l copies of a//Wa
∼= p//H on the open sets where these are conjugate. This immediately gives the

identification of the Proposition. □

3.6. Reduction to Levi Subgroups. From now on, we assume that G is simple, simply connected. We
keep notation as in Section 2.1. In particular, we fix a maximal θ-split torus T of G. Let S ⊂ Φr be a
subset of restricted roots with the following properties:

(1) (Primitivity) For any α ∈ S, if cα ∈ Φr for c ∈ Q then cα ∈ S.
(2) (Sub-root System) S is a sub-root system of Φr.

Such S ⊂ Φr are exactly those coming from subsets of root hyperplanes in a as follows: For any collection
of root hyperplanes H1, . . . ,Hk ⊂ a such that ∩k

i=1Hi is not contained in any other root hyperplane, take
S to be the collection of all restricted roots α ∈ Φr which vanish on one of the Hj .

Definition 3.36. Let LS be the connected Levi subgroup of G whose Lie algebra is the sum

lS = t +
∑

β∈r−1(S)

gβ

where r is the restriction map r : Φ → Φr ∪ {0} as in definition 2.6. We refer to LS as a distinguished Levi.

We denote KL, pL, aL, AL, etc. for the corresponding objects in the Levi L = LS , and HL := H ∩ L.
Note that T ⊂ L, so that AL = A and aL = a. We will relate the structure of the stack p/H to the stack
pL/HL.

Remark 3.37. Note that if one takes H = K, it is not true in general that HL = KL. For example,
consider the symmetric pair corresponding to the diagonally embedded SL2 × SL2 ⊂ SL4 (see example
2.18). Then, one choice of Levi L of the above form corresponds to the Lie algebra

l =
{(

A B

B A

)
: Tr(A) = 0

}
.

One computes

K ∩ L =
{(

g

g

)
: det(g) = ±1

}
.

In particular, K ∩ L is disconnected. By definition, KL = (Lθ)◦ = (K ∩ L)◦ is the digaonally embedded
copy of SL2.

We relate the Weyl groups and GIT quotients as follows.

Proposition 3.38. The little Weyl group Wa,L of the Levi L is a subgroup of Wa. Let DL ⊂ a be the
union of hyperplanes hα in a such that α ̸∈ Φr,L and let π : a → a//Wa be the projection map. The map of
GIT quotients

φL : a//Wa,L → a//Wa

is étale away from π(DL) ⊂ a//Wa.

Proof. Recall that Wa is generated by reflections given by roots in the restricted root system Φr, and
similarly for Wa,L with the restricted roots system for the Levi, Φr,L. [See Richardson, Lemma 4.5.] We
claim that Φr,L is a subroot system of Φr corresponding to roots in L. Indeed, by construction aL = a, and
the root system of L with respect to a maximally θ-split torus T is a subroot system of G with respect to
T . Therefore, restricting to a gives a subroot system Φa,L of Φa. It follow that Wa,L ⊂ Wa is a subgroup.
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Now, consider the map φ as above. The projection π factors through φ, giving covers π and π′ as
below.

a

π′

��

π

%%

a//Wa,L φL

// a//Wa

As both sides are quotients of a, the ramification locus of φ is exactly those images π(a) ∈ a//Wa such
that a ∈ aw for some w ∈ Wa \Wa,L. But for any w ∈ Wa with minimal presentation w = s1 . . . sn for
simple reflections sj , the fixed locus is aw =

⋂
hj where hj is the hyperplane fixed by sj . In particular,

from our earlier description of Wa,L, it follows that φ is ramified exactly on those π(a) such that a ∈ hα

for some α ∈ Φr \ Φr,L. □

Definition 3.39. Let φL, π, π′, and DL be as above. We let U be the complement of π(DL) in a//Wa

and UL the complement of π′(DL) in a//Wa,L.
Similarly, let U enh and U enh

L denote the corresponding preimages in preg(H and preg
L (HL, respectively.

Let iL : pL → p be the inclusion map and let

p : p → p//H and pL : pL → pL//HL

be the projection maps.

Lemma 3.40. There is a morphism

χL : preg
L (Ireg

HL

HL ×a//Wa,L
UL → preg(Ireg

H
H.

Proof. For any x ∈ p−1
L (UL), (IG)x = (IL)x and hence (IHL

)x = (IH)x ∩ (IL)x. Hence the map φ sends
regular elements of p−1

L (UL) ⊂ pL to regular elements of p. The result follows. □

Lemma 3.41. We have a canonical isomorphism χ∗
LJ |UL

≃ JL|UL
.

Proof. Now, there is a map JL|UL
→ χ∗

LJ from the inclusion HL ⊂ H. To show this is an isomorphism on
UL, it suffices to check on fibers. Let y ∈ UL have preimage x ∈ preg

L . Then, we can identify (JL)y = (IHL
)x

and (φ∗J)y = (IH)x, where the result now follows. □

Theorem 3.42. The morphism χL induces an isomorphism

preg
L (HL

∣∣
Uenh

L

→ preg(H
∣∣
Uenh ×a//Wa

(a//Wa,L)

Proof. Suppose that p1, p2 ∈ U enh
L are HL conjugate. Then, there is a T torsor C ⊂ L conjugating p1 to

p2 and since T ⊂ L is also a maximal torus of G, this must also be the set of elements of G conjugating p1

to p2. Hence the map is injective.
For surjectivity, we must show that for any p ∈ U enh, (H · p) ∩ preg

L ̸= ∅. Let x ∈ Uenh. Then by Lemma
2.26, we express x = s+ n.

We first claim that s conjugate to some s′ ∈ pL. Indeed, we will prove the stronger statement that any
two semisimple s, s′ in the same fiber of p → preg//K are K-conjugate. By Lemma 2.29, part (a) and
Proposition 2.5, we are reduced to the case where s, s′ ∈ a are in the same Cartan of p. In this case, the
restriction of the map p → preg//K can be identified with a → a//Wa, and s, s′ lying in the same fiber is
equivalent to them differing by the action of Wa. Since any w ∈ Wa has representatives in K, this is true.

Now, let h ∈ K be such that s′ = hsh−1 ∈ pL. Then, we have

hnh−1 ∈ Lie(hZG(s)h−1) = Lie(ZG(hsh−1)) = zg(hsh−1)

where the final equality follows from Lemma 2.28. Then, since s lies away from the root hyperplanes not
associated to L, zg(hsh−1) ⊂ l is a subset of the Lie algebra of L. We conclude that h conjugates x to pL.

The claim now follows as preg
L = preg ∩ pL. □
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Theorem 3.43. The map ψ : preg
L /HL → φ∗(preg/H) is an isomorphism when restricted to U enh

L .

Proof. Recall that preg/H is a gerbe over preg(H banded by J , and similarly, preg
L /HL is a gerbe over

preg
L (HL banded by JL. Hence, to conclude, it suffices to note that the map ψ|U is a map of JL ≃ φ∗J

gerbes. □

To conclude, we will reduce to computations of regular nilpotent orbits. To do this we will use
Proposition 3.45.

Lemma 3.44. Let (G, θ) be a semisimple group with involution θ. Then the intersection of all root
hyperplanes of the restricted root system is

∩α∈Φr
Hα = 0 ∈ a.

Proof. For every root hyperplane Hα in a, let Sα denote the set of all hyperplanes of t which restrict to
Hα. Let S denote the set of all hyperplanes in t which contain a. Note that for every root hyperplane
H ⊂ t, H ∩ a is either a root hyperplane in a or is all of a. Hence, S and Sα as α varies gives a partition
of all root hyperplanes of t. We conclude that⋂

α∈Φr

Hα = a ∩
⋂

α∈Φr

Hα ⊂

( ⋂
H∈S

H

)
∩
⋂
α

( ⋂
H∈Sα

H

)
=

⋂
H⊂t : root hyperplane

= {0} □

Proposition 3.45. Let (p, H) be a symmetric pair associated with (G, θ). Let p : a → a//Wa. Let
Y = ∩αHα ⊂ a be the intersection of all root hyperplanes in a. There is then an isomorphism of stacks
over p(Y ):

p/H ×a//Wa
p(Y ) ∼= Np/H × p(Y )

Restricting to regular elements gives:

preg/H ×a//Wa
p(Y ) ∼= N

reg
p /H × p(Y )

Proof. As in Lemma 3.31 we denote Ĝ ξ−→ G the product of Z(G)0 and the simply connected covers of Gj .
We then have by Lemma 3.31 that θ lifts to an involution θ̂ on Ĝ. Furthermore this restricts to involutions
θZ(G)0 and θGder on Z(G)0 and Gder respectively. Let Ĥ = ξ−1(H). By the proof of Lemma 3.31 we have
that (p, Ĥ) is a symmetric pair.

We then have that a is the same for G and for Ĝ. Furthermore we also have that the restricted root
hyperplanes and hence Z is the same. We have that a = (Lie(Z(G)0) ∩ p) × aGder As such we have that
YG = (Lie(Z(G)0) ∩ p) × YGder .

Let HGder = Ĥ ∩ Gder. We then have that Ĥ = (H ∩ Z(G)0) × HGder . We note that p/Ĥ =
(((Lie(Z(G)0) ∩ p)/(H ∩ Z(G)0)) × (pGder/H). Furthermore with respect to this decomposition, the
morphism to a//Wa

∼= ((Lie(Z(G)0) ∩ (p)) × aGder//WGder,a corresponds to the morphisms pGder/Ĥ →
aGder//WGder,a and ((Lie(Z(G)0) ∩ p)/(H ∩ Z(G)0) → (Lie(Z(G)0) ∩ p). Hence we have that

p/Ĥ ×a//Wa
p(Y ) ∼= (((Lie(Z(G)0) ∩ p)/(H ∩ Z(G)0) × Np

Gder
/HGder ,

where we are using Lemma 3.44.
We note that Np

Gder
= Np (the latter does not depend on whether G or Ĝ is considered). As H ∩Z(G)0

is acting trivially we have that

p/Ĥ ×a//Wa
p(Y ) ∼= p(Y ) × Np/Ĥ.

To describe p/H rather than p/Ĥ. We can then recover the wanted identification by rigidification. We
have that p/Ĥ×a//Wa

p(Y ) ∼= (p∩ q−1(p(Y )))/Ĥ where q : p → a//Wa. Let Z1 = Ker(Ĥ → H) considered
as an Ĥ-equivariant subgroup scheme of the the stabilizer scheme of both the Ĥ action on (p∩ q−1(p(Y ))),
and of that on p(Y ) × Np, where the action on the first factor is trivial. Then we have that

(p ∩ q−1(p(Y )))/H ∼= (p ∩ q−1(p(Y )))(Z1
Ĥ ∼= (p(Y ) × Np)(Z1

Ĥ ∼= (p(Y ) × Np)/H,
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giving the first isomorphism.
Restricting to regular elements gives us

preg/H ×a//Wa
p(Y ) ∼= N

reg
p /H × p(Y )

because all steps of the proof were compatible with restricting to regular elements. □

We conclude the description of the enhanced quotient p(IH
H for G simple. Recall from Theorem 3.20

that it suffices to describe the gluing on p̃//H explicitly. To describe the gluing on the intersection of some
hyperplanes ∩iHi, we take the Levi L associated to the Hi. Then, by Theorem 3.42 and Proposition 3.45
the number of sheets of p̃//H over ∩iHi is determined by the regular K-orbits of the nilpotent cone for L,
N

reg
pL

. This is determined by the list in Proposition 2.39. For all simple groups except SOn × SOn ⊂ SO2n,
there are at most 2 regular nilpotent orbits, so it suffices to describe only the number of sheets in fibers of
the map preg(Ireg

H
H → preg//H. For the SOn × SOn ⊂ SO2n case, one also needs to compute the gluing

pattern of the 4 sheets at the origin as it degenerates. Some results on this case are given in Example 3.56.
More formally:

Theorem 3.46. Let (p, H) be a symmetric pair corresponding to a simple group G,such that (K,G) ̸=
(SO(n) × SO(n) ⊂ SO(2n)). Let U = ∪LUL, where UL as in Definition 3.39 and L ranges over the
subgroups L of the form in Definition 3.36, such that (NpL

) has a single regular HL-orbit3. We then have
that p(IH

H ∼= a//Wa

∐
U a//Wa, and this identification is Gm-equivariant.

Remark 3.47. We note that if Np has one irreducible component by Proposition 2.39 we can just directly
state that p(IH

H ∼= a//Wa.

Proof of Theorem 3.46. This follows immediately from Theorem 3.20. □

We note that the remaining case of (K,G) = (G1, G1 × G1) there is no nonseparrated structure as
shown in Example 3.50. Finally the following proposition show that the regular semisimple locus is always
in the open set U of Theorem 3.46

Proposition 3.48. The map preg(IH
H → preg//H ≃ a//Wa is an isomorphism on the complement of the

image of all root hyperplanes in a.

Proof. The complement of hyperplanes in a//Wa is the space of semisimple, regular elements ars ⊂ a. Let
x ∈ preg lie over the image of s ∈ ars in ars//Wa. Then by Lemma 2.26 we have the Jordan decomposition
x = s+ n. Since s is regular and n is regular nilpotent in its centralizer, by Proposition 2.27 we must
have n = 0. Then, the result follows as there is a unique (closed) orbit of semisimple elements in each
fiber of the map preg → a//Wa. □

Theorem 3.49. Let (p, H) be a symmetric pair corresponding to a simple group G,such that (K,G) ̸=
(SO(n) × SO(n) ⊂ SO(2n)).

Then p(Ireg
H

H ∼= a//Wa

∐
U a//Wa where U is the complement of a closed subvariety which is the union

of intersections of root hyperplanes.

Proof. This follows immediately from Theorem 3.46 and Proposition 3.48. □

3.7. Examples.

Example 3.50. Consider the diagonal case G1
∆
⊂ G1 ×G1 from Example 2.17. In this case, we have an

isomorphism of stacks
p/G1 → g1/G1

3We note that this can be worked out using Proposition 2.39, together with, if necessary, computing π0(HL) and its
action on irreducible components of NpL .
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by projecting onto the first factor. The latter quotient is well studied over the regular locus. In particular,
it is shown in [8, 23] that the map

greg
1 /G1 → greg

1 //G1

is a gerbe for the descent of Ireg
G1

to greg
1 //G1. The regular quotient greg

1 (Ireg
G1

G1 is therefore just the GIT
quotient greg

1 //G1. We verify below that this agrees with our inductive construction.
Fix a maximal torus T in G1 and recall that a Cartan in p is given by

a = {(X,−X) : X ∈ t},

while the restricted root system agrees with the root system on G1. The distinguished Levi subgroup
associated to the sub root system (αi,−αi) is of the form L ≃ L1 × L1 for L1 the connected Levi of G1

with
l1 = t ⊕

∑
i

(g1)αi

The involution θ acts on L1 × L1 by swapping factors. But by Lemma 2.43, there is a single regular
nilpotent HL orbit for this form. Hence, there is no non-separated structure anywhere on preg(Ireg

G1
G1.

Example 3.51. We revisit Example 2.18. Recall H = K = GLn × GLn ⊂ GL2n = G,

a =
{(

0 δ

δ 0

)
: δ is diagonal

}
⊂

{(
0 C

D 0

)}
= p

and
Φr = {±(δ∗

j ± δ∗
k)|j ̸= k and 1 ≤ j, k ≤ n} ∪ {±2δ∗

j |1 ≤ j ≤ n}
is a simple root system of type Cn. The little Weyl group has the form Wa = {±1}n ⋉ Sn, with Sn

permuting the dual basis δ∗
j and {±1}n acting by changing the sign of the coordinates δ∗

j .
Note also that if 2δ∗

j = 2δ∗
k = 0, then also ±δ∗

j ± δ∗
k = 0. Hence, we need only deal with distinguished

Levis associated to subroot systems S ⊂ Φr satisfying:
(∗) For every distinct 1 ≤ j < k ≤ n, either {±2δ∗

j ,±2δ∗
k} ̸⊂ S or else {±2δ∗

j ,±2δ∗
k,±δ∗

j ± δ∗
k} ⊂ S.

Now we see that any simple subroot system of Φr satisfying condition (∗) is Wa conjugate to one of the
following:

(1) The subroot system Φr = {±δ∗
j ± δ∗

k : 1 ≤ j, k ≤ n1} for some n1 ≤ n. In this case,

l =




∗ ∗
η′ δ′

∗ ∗
δ′ η′

 : δ′ and η′ and diagonal (n− n1) × (n− n1) matrices


so that L ≃ GLn1 ×T ′ for a torus T ′ of rank 2(n− n1).

(2) The subroot system Φr = {±(δ∗
j − δ∗

k) : 1 ≤ j < k ≤ n1} for some n1 ≤ n. In this case,

l =




A B

η′′ δ′′

B A

δ′′ η′′

 : δ′′ and η′′ are diagonal (n− n1) × (n− n1) matrices


so that L ≃ (GLn1 × GLn1) × T ′′ for T ′′ a torus and the involution acting on GL2 × GL2 by
swapping factors. There is a unique nilpotent orbit in this case.

For an arbitrary subroot system S ⊂ Φr satisfying condition (∗), S is a product S1 ×· · ·×Sa ×S′
1 ×· · ·×S′

b

where Sj is Wa conjugate to a root system of type (1) and S′
j is Wa conjugate to a root system of type (2).

However, we note that condition (∗) immediately implies that a = 1. Hence, we reduce to distinguished
Levis associated with S1 × S′

1 × · · · × S′
b

For such a root system, we have

L ≃ GL2n1 ×(GLm1 × GLm1) × · · · × (GLmb
× GLmb

) × T ′
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for T ′ a torus of rank 2(n−
∑

j nj −
∑

k mk). We can see easily that

HL = (GLn1 × GLn1) ×
b∏

k=1
GLmk

×(T ′)θ

where (T ′)θ is a (connected) torus of rank (n−
∑

j nj −
∑

k mk). In particular, we see that |Nreg
pL
/HL| = 2

by comparing with the list in Proposition 2.39 for the first factor of (GLn1 × GLn1) ⊂ GL2n1 .
We hence conclude with a description of the regular quotient preg(Ireg

K
K in this case.

Proposition 3.52. For H, p, and K as in this example, let V ⊂ a be the subscheme that is the complement
of all root hyperplanes for roots of the form ±2δ∗

i . Then, we have preg(Ireg
K

K ∼= a//Wa

∐
U a//Wa, where

U := V //Wa ⊂ a//Wa.

Proof. Follows immediately from the above computations and Theorem 3.49. □

Example 3.53. Consider the split form SOn ⊂ SLn. If n is odd, there is only one nilpotent orbit and the
regular quotient and GIT quotient agree. We will assume therefore that n is even. We have a = t is the
diagonal Cartan inside p = symn (symmetric n × n matrices). The restricted root system agrees with
the root system for SLn and so is type An−1. Any distinguished Levi is W = Wa conjugate to a block
diagonal Levi

L = S(GLn1 × · · · × GLnl
) ⊂ SLn

where nj ≥ 1 and
∑

j nj = n. It is easy to see that

HL = S(On1 × · · · ×Onl
)

Recall that the symmetric pair SOnj ⊂ GLnj has 2 regular nilpotent orbits in the case where nj is even
and 1 when nj is odd (see Proposition 2.39). Without loss of generality, suppose that n1, . . . , na are even
while na+1, . . . , nl are odd.

If l > a (i.e. some nj is odd), then the quotient map

L = S(GLn1 × · · · × GLnl
) → GLn1 × · · · × GLna

=: L1

is surjective and carries HL to the subgroup

H1 := On1 × · · · ×Ona

(L1, H1) is a symmetric pair, and one checks that π0(H1) acts freely on components of Nreg
pL1

. In particular,
comparing with list of Proposition 2.39, we see that

#(Nreg
pL
/HL) = #(Nreg

pL1
/H1) = 2a/2a = 1.

If l = a (i.e. all indices are even), then π0(HL) acts freely on the components of Nreg
pL

and comparing
with the list in Proposition 2.39 gives

#(Nreg
pL
/HL) = 2a/2a−1 = 2.

We conclude:

Proposition 3.54. Let n be even, and let ϵ1, . . . , ϵn be coordinates for diagonal matrices, so that a = t

is the locus
∑

j ϵj = 0. Let EvenParn denote the set of even partitions of {1, . . . , n}, i.e. the set of
decompositions {1, . . . , n} = S1 ⊔ · · · ⊔ Sk with each |Si| even. Put

Zj1,...,jl
= {ϵj1 = ϵj2 = · · · = ϵjl

} ⊂ a

and ZS = ∩mZSm
for S ∈ EvenParn.

Define V to be the complement of
∪S∈EvenP arn

ZS ⊂ a

and let U = V //Wa ⊂ a//Wa. Then in this example, we have preg(Ireg
K

K ≃ a//Wa

∐
U a//Wa.
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Proof. This follows by Theorem 3.49 and the computations above. □

Remark 3.55. In the statement of Proposition 3.54, one can replace EvenParn with only those partitions
{1, . . . , n} = S1 ⊔ · · · ⊔ Sl for which #Sj = 2 for all j. The open set U in the Proposition has complement
of codimension n− (n/2). Hence this gives an example of a symmetric pair for which the gluing does not
occur along the complement of a divisor.

Example 3.56. Consider the split form SO2n × SO2n ⊂ SO4n of Example 2.19. Recall that restricted roots
are of the form

Φr = {i(±δ∗
j ± δ∗

k) : j ̸= k, 1 ≤ j, k ≤ 2n}
This gives the root system of type D2n, which is simple and simply-laced when n ≥ 2 and is the product
D2 = A1 ×A1 when n = 1. Recall that for n ≥ 2 this is the unique family of simple symmetric pairs up
to isogeny for which there are 4 regular nilpotent orbits.

For inductive purposes, we will need to describe the case when n = 1: When n = 1, the root system D2

is not simple, and the isogeny of Theorem 3.35 is the map

ξ : SL2 × SL2 → SO4

with θ lifting to the involution θ(g) = g−t on each copy of SL2, and

ξ−1(SO2 × SO2) = SO2 × SO2 ⊂ SL2 × SL2 .

In particular, the regular quotient can be described as a product:

Proposition 3.57. The form SO2 × SO2 ⊂ SO4 has regular quotient given by the product of regular quotients

p(Ireg
K

K = p1(Ireg
K1

K1 × p1(Ireg
K1

K1

where (G1, θ1, H1) = (SL2, g 7→ g−t,SO2).

Now, consider the case SO2n × SO2n ⊂ SO4n for n ≥ 2. In this case, the root system is type D2n,
is simple, and is simply laced. The little Weyl group is Wa = {±1}n−1 ⋉ Sn, where Sn acts on the
coordinates δ∗

j by permuting the indices j and {±1}n−1 acts by changing an even number of signs on the
δ∗

j . Any simple root subsystem of Φr is Wa conjugate to one of the following:
(1) S = {i(±δ∗

j ±δ∗
k) : 1 ≤ j < k ≤ m1} for some m1 ≤ 2n. The Levi associated to this root subsystem

is

l =




A B

02n−m1 δ′

−Bt A

−δ′ 02n−m1

 : A ∈ som1 , and δ′ is a diagonal (2n−m1) × (2n−m1) matrix


giving L = SO2m1 ×T ′ for T ′ a split torus and θ acting on SO2m1 by conjugation by diag(Im1 ,−Im1).

(2) S = {±i(δ∗
j − δ∗

k) : 1 ≤ j < k ≤ m1} for some m1 ≤ 2n. The Levi associated to this S is

l =




A B

02n−m1 δ′

−B A

−δ′ 02n−m1

 : A ∈ som1 , B ∈ symm1 , and δ′ is a diagonal (2n−m1) × (2n−m1) matrix


giving L ≃ GLm1 ×T ′ for T ′ a split torus and θ acting on GLm1 by g 7→ g−t.

(3) S = {±i(δ∗
j + δ∗

k) : 1 ≤ j < k ≤ m1} for some odd m1 < 2n. The Levi associated to this root
subsystem is

l =




A B

02n−m1 δ′

−B A

−δ′ 02n−m1

 : A ∈ som1 , B = B‡, and δ′ is a diagonal (2n−m1) × (2n−m1) matrix
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where B‡ =
(
(−1)ijbji

)
1≤i,j≤m1

. This again gives L ≃ GLm1 ×T ′.

Any arbitrary subroot system of Φr is a product S = S1 × · · ·Sl where each Sj is conjugate to one
of the three above root subsystems. Of the above, types (2) [when m1 is even] and (1) can contribute
nontrivial regular nilpotent orbits. Suppose that

S =
a∏

j=1
S

(1)
j ×

b∏
j=1

S
(2)
j ×

c∏
j=1

S
(3)
j

where S(k)
j has rank m(k)

j .
Let H(2)

L =
∏b

j=1 Om
(2)
j

and H
(3)
L =

∏b
j=1 Om

(3)
j

. Then, we compute

HL =

 a∏
j=1

O
m

(1)
j

× S

(
a∏

k=1
O

m
(1)
k

×H
(2)
L ×H

(3)
L

) ∩

S
 a∏

j=1
O

m
(1)
j

×H
(2)
L ×H

(3)
L

×
a∏

k=1
O

m
(1)
k


with the intersection being taken inside

a∏
j=1

(O
m

(1)
j

×O
m

(1)
j

) ×H
(2)
L ×H

(3)
L

We recall that SOmj ⊂ GLmj has 1 regular, nilpotent K orbit when mj is odd and 2 when mj is even,
and that SOmj

× SOmj
⊂ SO2mj

has 2 regular nilpotent orbits when mj is odd and 4 when mj is even.
Define the following invariants:

Let Ne
1 be the number of Levis of type (1) with mj even and No

1 the number of Levis of type (1) with
mj odd. Let Ne

2 and No
2 be defined similarly for type (2) Levis, and N3 the number of type (3) Levis. Let

ϵ1 be zero if both No
1 = 0 and Ne

1 ̸= 0 and 1 otherwise, and let ϵ2 be zero if
∑

j mj = 2n and No
2 = N3 = 0

and 1 otherwise. Then, we can count the nilpotent orbits by studying the components of HL. We find:

#(Nreg
pL
/HL) = 22Ne

1 +No
1 +Ne

2 /(2Ne
1 +ϵ1−1 · 2Ne

1 +No
1 +Ne

2 +ϵ2−1) = 22−ϵ1−ϵ2

For example, for SO4 × SO4 ⊂ SO8, we have:

(1) There are 4 sheets over the loci:
(i) Fix an ordering ij of {1, 2, 3, 4}. {δ∗

i1
= δ∗

i2
= 0, δ∗

i3
= ±δ∗

i4
}, i.e. strata corresponding to

distinguished Levis HL ⊂ L that are W conjugate to (SO2 × SO2) × SO2 ⊂ SO4 × GL2.
(ii) The origin {δ∗

i = 0 for all i}, i.e. the strata corresponding to the distinguished Levi SO8.
(2) There are 2 sheets over the loci:

(i) Fix an ordering ij of {1, 2, 3, 4}, and fix signs ϵj ∈ {±1}. {δ∗
ij

= ϵjδ
∗
ij+1

: j = 1, 2, 3}, i.e.
strata corresponding to distinguished Levis HL ⊂ L which are W -conjugate to SO4 ⊂ GL4.

(ii) Fix ij an ordering of {1, 2, 3, 4} and signs ϵ1, ϵ2 ∈ {±1}. {δ∗
i1

= ϵ1δ
∗
i2
, δ∗

i3
= ϵ2δ

∗
i4

}, i.e. strata
corresponding to distinguished Levis HL ⊂ L which are W conjugate to S(O2 × O2) ⊂
GL2 × GL2.

(3) 1 sheet over all other strata.

Note that the above list allows us to reduce to only Levis conjugate to (SO2 × SO2) × SO2 ⊂ SO4 × GL2.
Note that the regular quotient of this symmetric pair is given by the regular quotient of SO2 × SO2 ⊂ SO4,
whose gluing pattern was studied above.

Example 3.58. Consider the more general case of SOm × SO2n−m ⊂ SO2n from Example 2.20. Note that
this is split for m = n (see previous example for this case with m even) and quasi-split for m = n − 1.
Note furthermore that if m were odd, then there would be a single regular, nilpotent orbit for this pair,
and the regular quotient would be equal to the GIT quotient. We will therefore consider only the case
where m is even. The restricted root system for this pair is given by

Φr = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗
j : 1 ≤ j ≤ m}.
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This is a simple root system of type Bm, and the little Weyl group Wa = {±1}m⋉Sm acts by permutations
and sign changes on the δ∗

j , 1 ≤ j ≤ m. Note that we again have a condition on subroot systems of Φr

that can arise as the set of roots vanishing a collection of hyperplanes in a. Namely,
(∗) For every distinct 1 ≤ j < k ≤ m, either {±iδ∗

j ,±iδ∗
k} ̸⊂ S or else {±iδ∗

j ,±iδ∗
k, i(±δ∗

j ± δ∗
k)} ⊂ S.

A simple root subsystem S ⊂ Φr satisfying condition (∗) is Wa conjugate to one of the following:
(1) {i(±δ∗

j ± δ∗
k) : 1 ≤ j < k ≤ m1} ∪ {i(±δ∗

j ) : 1 ≤ j ≤ m1} for some m1 ≤ m. This has distinguished
Levi given by L ≃ SO2(m1+n−m) ×T ′ where T ′ is a (not split) torus, and θ acts on SO2(m1+n−m)

by conjugation by diag(Im1,2n−2m−m1).
(2) {±i(δ∗

j −δ∗
k) : 1 ≤ j < k ≤ m1} for some m1 ≤ m. This has associated Levi given by L = GLm1 ×T ′

where T ′ is a (nonsplit) torus and θ acts on GLm1 by the split involution θ(g) = g−t.
An arbitrary subroot system satisfying (∗) is a product of at most one Levi of type (1) and an arbitrary
number of Levis of type (2). There are two sheets over the strata:

• Fix m1, . . . ,mr such that each mk is even and
∑

l ml = 2n. The Wa orbit of {δ∗
j = 0: 1 ≤ j ≤

m1} ∩
⋂r−1

l=2 {δ∗
j = δ∗

k : ml + 1 ≤ j < k ≤ ml+1}.
• Fix m1, . . . ,mr such that each mk is even and

∑
l ml = 2n. The Wa orbit of

⋂r−1
l=1 {δ∗

j =
δ∗

k : ml + 1 ≤ j < k ≤ ml+1}.
and map p(Ireg

K
K → p//K is an isomorphism elsewhere.

Example 3.59. Consider the case of SOm × SO2n+1−m ⊂ SO2n+1, m ≤ n, of Example 2.21. Recall that
the root system is the simple type Bm root system

Φr = {i(±δ∗
j ± δ∗

k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗
j : 1 ≤ j ≤ m}.

The little Weyl group Wa = {±1}m ⋉ Sm acts on Φr by permutation and sign change on the δ∗
j . Note

that by Proposition 2.39, there is a unique regular, nilpotent K orbit in p when m is odd and two when
m is even. We therefore restrict to the case when m is even.

Note also that if iδ∗
j = iδ∗

k = 0, then also i(±δ∗
j ± δ∗

k) = 0. Hence, we need only deal with distinguished
Levis associated to subroot systems S ⊂ Φr satisfying:

(∗) For every distinct 1 ≤ j < k ≤ n, either {±iδ∗
j ,±iδ∗

k} ̸⊂ S or else {±iδ∗
j ,±iδ∗

k, i(±δ∗
j ± δ∗

k)} ⊂ S.
Any simple subroot system of Φr is Wa conjugate to one of the following:
(1) {i(±δ∗

j ± δ∗
k),±iδ∗

j : 1 ≤ j < k ≤ m1} for some m1 ≤ m. The associated Levi for this subroot
system is L ≃ SO2(m1+n−m)+1 ×T ′ for T ′ a torus and θ acting on SO2(m1+n−m)+1 by conjugation
by the matrix Im1,m1+2(n−m)+1 = diag(Im1 ,−Im1+2(n−m)+1).

(2) {i(±δ∗
j − δ∗

k) : 1 ≤ j < k ≤ m1} for some m1 ≤ m. The associated Levi for this subroot system is
L ≃ GLm1 ×T ′ for T ′ a torus, and θ acting on GLm1 by θ(g) = g−t.

An arbitrary subroot system of Φr is a product of Levis of type (1) and (2) with at most one type (1)
Levi appearing. There are 2 sheets precisely over the following strata in a//Wa:

• Fix m1, . . . ,mr such that each mk is even and
∑

l ml = 2n. The Wa orbit of {δ∗
j = 0: 1 ≤ j ≤

m1} ∩
⋂r−1

l=2 {δ∗
j = δ∗

k : ml + 1 ≤ j < k ≤ ml+1}.
• Fix m1, . . . ,mr such that each mk is even and

∑
l ml = 2n. The Wa orbit of

⋂r−1
l=1 {δ∗

j =
δ∗

k : ml + 1 ≤ j < k ≤ ml+1}.
and the map p(Ireg

K
K → p//K is an isomorphism elsewhere.

Example 3.60. Consider the split form GLn ⊂ Sp2n of example 2.22. The restricted root system agrees
with the usual root system, which is type Cn. We use the presentation

Φr = {±δ∗
j ± δ∗

k : 1 ≤ j < k ≤ n} ∪ {±2δ∗
j : 1 ≤ j ≤ n}

for the root system, where the dual basis δ∗
j is chosen with respect to the coordinate vectors for the

Cartan a in example 2.22. The little Weyl group Wa = W = {±1}n ⋉ Sn acts on Φr by letting Sn act by
permuting the δ∗

j and {±1}n act by sign changes on the δ∗
j .
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Note also that if 2δ∗
j = 2δ∗

k = 0, then also ±δ∗
j ± δ∗

k = 0. Hence, we need only deal with distinguished
Levis associated to subroot systems S ⊂ Φr satisfying:

(∗) For every distinct 1 ≤ j < k ≤ n, either {±2δ∗
j ,±2δ∗

k} ̸⊂ S or else {±2δ∗
j ,±2δ∗

k,±δ∗
j ± δ∗

k} ⊂ S.
Now we see that any simple subroot system S of Φr satisfying condition (∗) is Wa conjugate to one of

the following:

(1) {±δ∗
j ± δ∗

k : 1 ≤ j < k ≤ n1} ∪ {±2δj : 1 ≤ j ≤ n1} for some n1 ≤ n. The associated Levi has

l =




∗ ∗
0 δ′

∗ ∗
δ′ 0

 : δ′ is a diagonal (n− n1) × (n− n1) matrix


giving L ≃ Sp2n1 ×T ′ for T ′ a split torus and θ acting on Sp2n1 by conjugation by diag(In1 ,−In1).

(2) {±(δ∗
j − δ∗

k) : 1 ≤ j < k ≤ n1} for some n1 ≤ n. The associated Levi has

l =




A B

0n−n1 δ′

B −At

δ′ 0n−n1

 : A ∈ son1 , B ∈ symn1 , and δ′ is a diagonal (n− n1) × (n− n1) matrix


giving L ≃ GLn1 ×T ′ where T ′ is a split torus and θ acts on GLn1 by the split form g 7→ g−t.

An arbitrary root subsystem of Φr satisfying (∗) is a product of the above types, with at most one factor
of type (1) appearing. In particular, the strata of a//Wa with two sheets are the following:

(1) For any subset T ⊂ {1, . . . , n}, {δ∗
j = 0: j ∈ T}. These are the strata corresponding to Levis of

type (1).
(2) Fix the following data: Even integers nk such that

∑
k nk = n; an ordering ij of the numbers

{1, . . . , n}; signs ϵj ∈ {±1}. Then, consider the strata

⋂
k

{
δ∗

ij
= ϵjδ

∗
ij+1

:
(

k∑
l=1

nl

)
+ 1 ≤ j ≤

k+1∑
l=1

nl

}
.

This corresponds to Levis which are products of type (2) Levis L ≃
∏

k GLnk
where all the nk are

even.

3.8. Galois Description of J via the Parabolic Cover for Quasi-split Symmetric Pairs. We
continue to assume all symmetric pairs in this section are quasi-split. We will follow the general construction
outlined in [21]; namely, we will study the parabolic cover associated to the action of H on p. We begin
by a lemma relating parabolics of H to parabolics of G.

Lemma 3.61. Any Borel B of H is the intersection BG ∩H for some θ-stable Borel BG of G. Moreover,
suppose we have a Levi M ⊂ H of H and suppose that there exists a Levi MG ⊂ G such that MG ∩H = M .
Then, there exists parabolics Q ⊂ H with Levi M and QG ⊂ G with Levi MG such that for any parabolic
P of H conjugate to Q, there exists a parabolic PG of G conjugate to QG such that P = PG ∩H.

Proof. We begin with the statement on Borels, first showing that the intersection any θ-stable Borel of
G with H is a Borel of H. Let BG be a θ-stable Borel of G and put B = BG ∩H. It is clear that B is
solvable; we must show that H/B is projective, or equivalently that H/B ≃ H ·BG ⊂ G/BG is a closed
embedding. We claim that, in fact, H ·BG = (G/BG)θ. Let B′

G be another θ-stable Borel of G, and let
g ∈ G be such that g ·BG = B′

G. Applying θ gives θ(g) ·BG = B′
G, so that g−1θ(g) ∈ NG(BG) = BG and

further

g−1θ(g) ∈ {b ∈ BG : θ(b) = b−1}.
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Recall that the image of the morphism G → G sending g 7→ g−1θ(g) is precisely those g in G such that
θ(g) = g−1. As BG is θ-stable, the image of the morphism BG → BG is therefore the intersection

{g ∈ G : θ(g) = g−1} ∩BG = {b ∈ BG : θ(b) = b−1},

and so there exists b ∈ BG so that g−1θ(g) = b−1θ(b). We have gb−1 ·BG = B′
G while also

(gb−1)−1θ(gb−1) = b(g−1θ(g))θ(b)−1 = b(b−1θ(b))θ(b)−1 = 1.

We conclude that BG and B′
G are Gθ conjugate. Hence, Gθ · BG = (G/BG)θ and since the flag variety

is invariant under central isogeny, also H · BG = (G/BG)θ. Now, since the fixed locus of an algebraic
involution is closed, we conclude that BG ∩H is Borel.

Since all Borels of H are conjugate under K, and since K conjugacy preserves θ-stability, we conclude
that every Borel of H is the intersection of a Borel of G with H.

Now, suppose we have a Levi M ⊂ H of H and suppose that there exists a Levi MG ⊂ G such that
MG ∩ H = M . Choose any parabolic QG of G with Levi factor MG, and put Q = QG ∩ H. We must
show first that Q is a parabolic with Levi M . Let BG ⊂ QG be a Borel in QG and B = BG ∩ H the
corresponding Borel of H. Since we have a commutative diagram

H/B //

��

H/Q

��

G/BG
// G/QG

with the horizontal arrows being surjective and the left vertical arrow being a closed immersion, it follows
that H/Q is a closed subvariety of G/QG. In particular, H/Q is projective, and Q is a parabolic in H.
That the Levi factor of Q is M follows from intersecting the decomposition QG = MG · UG where UG is
the unipotent radical of QG.

Now, for any parabolic P of H conjugate to Q by h ∈ H, we may take the corresponding conjugate
parabolic h ·QG of G. The result follows. □

We now introduce the central object of study; the parabolic cameral cover. To make sense of the
definition, we need the following.

Lemma 3.62. For any X ∈ prss, ZK(X)◦ is a (not necessarily maximal) torus of H, and Zk(X) =
Lie(ZK(X)◦).

Proof. Assume without loss of generality that X ∈ A. By Proposition 2.32, ZK(X)◦ ⊂ ZK(A) is a
connected abelian subgroup of a maximal torus, so is a torus in H.

The statement on Lie algebras is Lemma 4.2 of [19]. □

Definition 3.63. Fix a regular, semisimple element X ∈ a. We define Levi subgroups M := ZH(X)◦ of
H and MG := ZG(X)◦ of G.

Let Q and QG be as in the statement of Lemma 3.61 for the Levis M ⊂ MG.

Remark 3.64. Note that M , MG are well defined up to conjugation by H. The parabolics Q and QG may
involve further choice as parabolics with fixed Levi type are not necessarily conjugate.

Definition 3.65. Fix the data of Definition 3.63. Then, let

p̃rss = {(X,P ) : X ∈ preg, Lie(P ) ⊃ Ck(Ck(X)) and P is a parabolic of H which is H conjugate to Q}

and denote by πp : p̃reg → preg the projection map. We denote by p̃rss = p̃reg|prss .
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Proposition 3.66. Let WH,M = NH(M)/M denote the relative Weyl group of M . There is a canonical
map p̃rss → a//Wker ×Wa/Wker WH,M = a ×Wa

WH,M fitting into a Cartesian diagram

p̃rss a ×Wa
WH,M

prss p//H a//Wa
∼=

Proof. Let ãreg = π−1
p (areg) be the closed subscheme of p̃reg over the subscheme areg ⊂ prss. Then, we

have a projection map ãreg → areg.
The relative Weyl group WH,M acts on the set of all parabolics of H with Levi M , and the set of such

parabolics conjugate to Q is a WH,M torsor under this action.
The map areg ×WH,M → ãreg sending (X,w) 7→ (X,w ·Q) is an isomorphism, and the resulting diagram

ãreg areg ×WH,M a ×Wa
WH,M

areg p//H a//Wa

∼=

∼=

with the top right arrow given by quotienting by the diagonal action of Wa, is commutative and Cartesian.
Recall from Lemma 2.29 that H · areg = prss. The H-orbit H · (ãreg) → prss is therefore a surjective

WH,M cover. Since there is an inclusion of WH,M covers

H · (ãreg) ↪→ p̃rss

we conclude that this map is an isomorphism. In particular, since the map ãreg → a×Wa
WH,M is ZH(areg)

equivariant, it extends to a map
prss : p̃rss → a ×Wa

WH,M

by taking
prss(h · γ) = prss(γ).

This map is H invariant, and hence the diagram

p̃rss a ×Wa
WH,M

prss p//H a//Wa
∼=

is a Cartesian square. □

We now seek to extend Proposition 3.66 over the regular locus. For this, we will need Lemma ??, which
demonstrates the structure of the parabolic cover over the regular nilpotent locus. We begin with some
preliminary lemmas.

First, let us set some notation. Let BG be the unique Borel in G such that e ∈ Lie(BG), and let
TG ⊂ BG be the unique maximal torus of BG. Note that BG is necessarily θ stable, and hence TG contains
a maximal torus TH of H. Choose a so that C = CH(a) ⊂ TH , and let SH denote the set of simple roots
of H with respect to TH and the Borel BG ∩H (which is Borel by the proof of Lemma 3.61). Denote by
V ⊂ SH the set of simple roots of H which are trivial on C. Then, consider the nilpotent element

e′ :=
∑

α∈SH \V

ekα ∈ k

Lemma 3.67. For all simple quasisplit forms except possibly the quasisplit form on E6, we have:
(1) The nilpotent

ẽ =
∑

α∈SG

egα

lies in p.
(2) The nilpotents ẽ ∈ p and e′ ∈ k defined above commute.
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Proof. We proceed case-by-case through the classification of quasisplit simple symmetric pairs. As the
definitions of e, e′ do not depend on isogeny class or center, we further assume that all pairs are of the
form (G, θ,K) for G simple semisimple.

In the case of any split pair (G, θ,K), we have that C = Z(G) ∩K, and so V = SK . Hence, e′ = 0 and
the result is trivial.

In the case of (G, θ,K) = (SL2n, θ, S(GLn × GLn)) from example 2.18, we have TK the set of diagonal
matrices, and

ẽ =
(

0 In

Nn 0

)
where Nn =



0
1 0

1 0
. . . . . .

1 0

 is n× n

On the other hand, V = ∅ and

e′ =
(
Nn

Nn

)

It is easy to check [ẽ, e′] = 0.
In the case of (G, θ,K) = (SL2n+1, θ, S(GLn × GLn+1)), we have TK is again the diagonal matrices,

and

ẽ =

 0⃗ In

In

0⃗t

 where 0⃗ is the n× 1 zero vector.

Then, again V = ∅ and

e′ =
(
Nn

Nn+1

)

It is again an easy check that [ẽ, e′] = 0.
Now consider the case (G, θ,K) = (SO2n+2, θ, SOn × SOn+2) of example ??, with θ given by

θ

(
A B

−Bt D

)
=
(
A −B
Bt D

)

In this case, we take

TG =





a1

−a1

a2

−a2
. . .

. . .
an+1

−an+1


: aj ∈ k×
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When n is even, this gives TK = TG while when n is odd, TK is the n− 1 dimensional subtorus given by
a(n+1)/2 = 0. We divide into cases based on the parity of n: If n is even, we get:

ẽ =
(

0 B

−Bt 0

)
where B =



i 1 i −1
−1 i 1 i

i 1 i −1
−1 i 1 i

. . . . . .
i 1 i −1

−1 i 1 i

i 1 2i 0
−1 i 2 0


is n× (n+ 1)

Moreover, V consists of all but two roots of SOn+1, i.e.

e′ =



0n

0n−2

0 2
0 2i

0 0
−2 −2i


So that [ẽ, e′] = 0.

In the case of n odd, we instead get

ẽ =
(

0 B

−Bt 0

)
where B =



0 i 1 i −1
0 −1 i 1 i

i 1 i −1
−1 i 1 i

. . . . . .
i 1 i −1

−1 i 1 i

2i 2


is n× (n+ 1)

Again, V consists of all but two roots of SOn+1, and we have

e′ =



0n

0n−2

0 2 1
0 2i i

0 0
−2 −2i
−1 −i


We can again verify the commuting property.

The only remaining simple, semisimple quasisplit involution is the quasisplit form on E6. □

Lemma 3.68. We keep notation as in Definition 3.63. Fix a regular, nilpotent element e ∈ N
reg
p . There

exists a parabolic P of H, resp. PG of G, so that P is conjugate to Q and P ⊃ CK(CK(e)◦), resp. PG

is conjugate to QG and PG ⊃ CG(CK(e)◦). For any such P , there exists a corresponding PG so that
P = PG ∩H.

Proof. Let e′ be as in the previous Lemma. We have CK(e′) ⊃ CK(CK(e)◦) and CG(e′) ⊃ CG(CK(e)◦).
Moreover, we can complete e′ to an sl2 triple (e′, h′, f ′) in k with h′ regular in Lie(C). In particular, a
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minimal parabolic containing CK(e′), resp. CG(e′) will have Levi type CK(h′) = CK(C), resp. CG(h′) =
CG(C), as required.

For the final statement, choose first a parabolic PG with Levi factor MG = CG(C). Note that
M = CK(C) ⊂ MG = CG(C) are Levis of H and G respectively such that MG ∩H = M . Hence, by the
proof of Lemma 3.61, PG ∩H is a parabolic of H, and hence, all parabolics conjugate to P , and hence Q,
can be written as intersections of such parabolics PG. □

Corollary 3.69. The map p̃reg → preg is quasifinite, and there is an action of H on p̃reg such that the
GIT quotient

ã//Wa := p̃reg//H

fits into a Cartesian diagram

p̃reg

��

// ã//Wa

��

preg // a//Wa

for a finite map ã//Wa → a//Wa

(Todo: Describe gluing pattern explicitly to form ã//Wa)

4. Sections from sl2 Triples

In this appendix, we review the construction of [17] and note an extension of those results to positive
characteristic when p is greater than the Coxeter number of G based on the results of [27], [19], [36], and
[20]. In particular, we review the theory of normal sl2 triples, and derive the Kostant-Rallis section from
the construction of the Kostant section. We compare this with the results of [19], reviewed in Section 2.5.

Definition 4.1. We say an sl2 triple (e, h, f) is normal if e, f ∈ p and h ∈ k. We say that an sl2-triple is
principal if e is regular as an element of p.

Remark 4.2. Note that a principal, normal sl2 triple in the sense of Definition 4.1 is a principal sl2 triple
of g in the usual sense only in the case of a quasi-split involution.

In the characteristic p case, we will need to pass to associated characters.

Definition 4.3. Fix a nilpotent e ∈ N. An associated character of e is a character λ : Gm → G such that
e ∈ g(2;λ) (where g(k;λ) is the k-th graded piece of g under the grading induced by λ) and there is a Levi
subgroup L ⊂ G such that λ(Gm) ⊂ Lder and e is distinguished in Lie(L), i.e. ZLder (e)◦ is unipotent.

Lemma 4.4. ([27], Prop. 4) Given an associated character λ to a nilpotent e, one can extend e to a
unique sl2 triple (e, h, f) with h ∈ Lie(image(λ)) and f ∈ g(−2;λ).

We recall the following facts about associated characters and sl2 of G up to conjugation.

Lemma 4.5. ([20], Prop 18 and [36], Theorem 1.1) Consider the projection

{(e, λ) : e ∈ N and λ is an associated character for e}/G → N/G

where G acts by conjugation on each set.
(1) This map is a bijection in good characteristic.
(2) The bijection above factors through

{(e, λ) : e ∈ N and λ is an associated character for e}/G → {sl2-triples}/G → N/G

where the first map comes from Lemma 4.4. The map from G-orbits of sl2-triples to N/G is a
bijection if and only if the characteristic of the field is greater than the Coxeter number.
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Proof. Part (1) follows from Prop. 18, part 2, of [20]. Part 2 follows from Thoerem 1.1 of [36]. □

We will demand, in addition, that associated characters be compatible with the involution on G in the
following sense.

Definition 4.6. We say that a character λ is a normal associated character with respect to a nilpotent
e ∈ Np of p if it is an associated character or e and Image(λ) ⊂ K.

Lemma 4.7. ([19], Cor. 5.4) For any e ∈ Np, there exists a normal associated character λ for e.
Moreover, such a character is unique up to conjugation by the connected component of the centralizer
ZK(e)◦.

We now deduce the results on sl2 triples relevant to our paper.

Lemma 4.8. The map

{H-orbits of normal sl2 triples} → {H-orbits of nilpotents in p}

is surjective, i.e. for any e ∈ Np, there exists a normal sl2 triple (e, h, f) extending e. Assuming that the
characteristic of the field is greater than the Coxeter number, this map is a bijection.

Proof. It suffices to prove this Lemma for H = K. In characteristic zero, this follows from [17], Proposition
4.

In characteristic p > 0, surjectivity follows from Lemma 4.4 and Lemma 4.7. Now assume the
characteristic is greater than the Coxeter number. Then, we have a sequence of maps{

K-orbits of pairs (e,λ) for
λ associated to e, valued in K

}
ϕ
//

≃

22
{K-orbits of normal sl2-triples} // // {K-orbits of nilpotents in p}

Since the composite map is an isomorphism, the map ϕ is injective. We claim that it is also surjective.
Suppose that a normal sl2 triple (e, h, f) is not in the image of ϕ. Then, by Lemma 4.7, there is a
character λ valued in K associated to e. Moreover, by Lemma 4.5, any two associated characters of e are
conjugate by an element of ZG(e)◦, and there is a unique character λ′ associated to e for which (e, h, f) is
the corresponding sl2 triple. Let g ∈ ZG(e)◦ conjugate λ′ and λ, so that g also conjugates (e, h, f) to a
normal sl2 triple (e, h′, f ′). Since this g preserves normality of the sl2 triple, Lie(image g · λ) ⊂ k. Since
g · λ is a one-parameter subgroup, it is connected and hence has image in K. We conclude that g · λ is an
associated character to e valued in K whose associated sl2 triple is (e, h, f). □

Now let e ∈ N
reg
p be a regular nilpotent. From a principal, normal sl2 triple (e, h, f), one produces a

Kostant-Rallis section by considering the slice e+ cp(f).

Theorem 4.9. The map e+ cp(f) → a//Wa is an isomorphism. We will call its inverse a Kostant-Rallis
section associated to e.

Moreover, for a given regular nilpotent e in p, this section is unique up to conjugation by ZK(e)◦. In
particular, this gives a bijection

{K-orbits of Kostant-Rallis sections} → {K-orbits of regular nilpotents in p}.

Proof. In characteristic zero, this is the content of [17], Theorem 11.
In characteristic p > 0, by [19], Lemma 6.29, it suffices to check that e + cp(f) is an Ad(λ)-graded

complement of [k, e], where λ : k× → K is an associated character to e. Certainly the slice is Ad(λ) graded
as e and f are homogeneous with respect to the grading. To show that the slice gives a complement, it
suffices to show

p =
(
e+ cp(f)

)
⊕ [k, e]

By the proof of Lemma 3.1.3 of [29], we have that

g =
(
e+ cg(f)

)
⊕ [e, g].
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Intersecting this with p and using the fact that e ∈ p gives this result. □

Corollary 4.10. Let s = e+ cp(f) be the Kostant-Rallis slice in p. Then, p = s + [e, p]. In particular, if

a : H × s → preg

is the action map. Then the differential of a at 0 ∈ s is surjective.

Proof. The first claim follows from the proof of Theorem 4.9. For the second, we note that the differential
is identified with the map

h × s → h, (x, s) 7→ [x, e] + s.

By the first claim together with the observation that h = k, this is surjective. □

References

[1] Stacks Project Authors. Stacks project. 2022.
[2] David Baraglia and Laura Schaposnik. Cayley and Langlands type correspondences for orthogonal Higgs bundles.

Transactions of the American Mathematical Society, 371(10):7451–7492, 2019.
[3] Alexis Bouthier. Dimension des fibres de springer affines pour les groupes. Transformation Groups, 20(3):615–663, 2015.
[4] Alexis Bouthier. La fibration de Hitchin-Frenkel-Ngô et son complexe d’intersection. Ann. Sci. Éc. Norm. Supér. (4),

50(1):85–129, 2017.
[5] Steven B Bradlow, Lucas C Branco, and Laura P Schaposnik. Orthogonal Higgs bundles with singular spectral curves.

arXiv preprint arXiv:1909.03994, 2019.
[6] Lucas C Branco. Higgs bundles, Lagrangians and mirror symmetry. arXiv preprint arXiv:1803.01611, 2018.
[7] Jingren Chi. Geometry of Kottwitz–Viehmann varieties. Journal of the Institute of Mathematics of Jussieu, pages 1–65,

2018.
[8] R Donagi and D Gaitsgory. The gerbe of Higgs bundles. Transformation groups, 7(2):109–153, 2002.
[9] Dennis Gaitsgory and David Nadler. Spherical varieties and langlands duality. Moscow Mathematical Journal, 10(1):65–

137, 2010.
[10] Oscar Garcia-Prada, Peter B Gothen, et al. The Hitchin-Kobayashi correspondence, Higgs pairs and surface group

representations. arXiv preprint arXiv:0909.4487, 2009.
[11] Oscar Garcia-Prada and Ana Peon-Nieto. Abelianization of Higgs bundles for quasi-split real groups. Transformation

Groups, pages 1–41, 2021.
[12] Victor Ginzburg. Variations on themes of Kostant. Transformation Groups, 13(3):557–573, 2008.
[13] Jean Giraud. Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften, Band 179. Springer-

Verlag, Berlin-New York, 1971.
[14] Nigel Hitchin and Laura P Schaposnik. Nonabelianization of Higgs bundles. Journal of Differential Geometry, 97(1):79–89,

2014.
[15] Friedrich Knop. Automorphisms, root systems, and compactifications of homogeneous varieties. Journal of the American

Mathematical Society, 9(1):153–174, 1996.
[16] Friedrich Knop and Barbara Schalke. The dual group of a spherical variety. Transactions of the Moscow Mathematical

Society, 78:187–216, 2017.
[17] Bertram Kostant and Stephen Rallis. Orbits and representations associated with symmetric spaces. American Journal

of Mathematics, 93(3):753–809, 1971.
[18] Spencer Leslie. An analogue of the Grothendieck–Springer resolution for symmetric spaces. Algebra & Number Theory,

15(1):69–107, 2021.
[19] Paul Levy. Involutions of reductive Lie algebras in positive characteristic. Advances in Mathematics, 210(2):505–559,

2007.
[20] George J McNinch. Nilpotent orbits over ground fields of good characteristic. Mathematische Annalen, 329:49–85, 2004.
[21] B Morrissey and Ngô B.C. Reqular Quotients and Hitchin Type Fibrations. Forthcoming.
[22] David Nadler. Perverse sheaves on real loop grassmannians. Inventiones mathematicae, 159(1):1–73, 2005.
[23] Bao Châu Ngô. Le lemme fondamental pour les algebres de Lie. Publications Mathématiques de l’IHÉS, 111(1):1–169,

2010.
[24] Dmitri I Panyushev. On invariant theory of θ-groups. arXiv preprint math/0307248, 2003.
[25] Ana Peón-Nieto. Higgs bundles, real forms and the Hitchin fibration. PhD thesis, Universidad Autónoma de Madrid,

2013.
[26] Ana Peón-Nieto. Cameral data for SU(p + 1, p)-Higgs bundles. arXiv preprint arXiv:1506.01318, 2015.
[27] Klaus Pommerening. The Morozov-Jacobson theorem on 3-dimensional simple Lie subalgebras. 2012 (English version).

39



THE HITCHIN FIBRATION FOR SYMMETRIC PAIRS T. HAMEISTER AND B. MORRISSEY

[28] Roger W Richardson. Orbits, invariants, and representations associated to involutions of reductive groups. Inventiones
mathematicae, 66(2):287–312, 1982.

[29] Simon Riche. Kostant section, universal centralizer, and a modular derived Satake equivalence. Mathematische Zeitschrift,
286(1):223–261, 2017.

[30] Yiannis Sakellaridis and Akshay Venkatesh. Periods and harmonic analysis on spherical varieties. Société mathématique
de France, 2017.

[31] Laura P Schaposnik. Spectral data for G-Higgs bundles. PhD thesis, Oxford University, 2013.
[32] Laura P Schaposnik. An introduction to spectral data for Higgs bundles. arXiv preprint arXiv:1408.0333, 2014.
[33] Laura P Schaposnik. Spectral data for U(m, m)-Higgs bundles. International Mathematics Research Notices,

2015(11):3486–3498, 2015.
[34] Laura P Schaposnik. A geometric approach to orthogonal Higgs bundles. European Journal of Mathematics, 4(4):1390–

1411, 2018.
[35] Jiro Sekiguchi. The nilpotent subvariety of the vector space associated to a symmetric pair. Publications of the Research

Institute for Mathematical Sciences, 20(1):155–212, 1984.
[36] David I Stewart and Adam R Thomas. The Jacobson–Morozov theorem and complete reducibility of Lie subalgebras.

Proceedings of the London Mathematical Society, 116(1):68–100, 2018.
[37] Dmitry A Timashev. Homogeneous spaces and equivariant embeddings, volume 138. Springer Science & Business Media,

2011.
[38] Griffin Wang. Multiplicative Hitchin Fibration and the Fundamental Lemma. Draft, 2022.

40


	1. Introduction
	1.1. Related Work
	1.2. Future Work
	1.3. Notation and Conventions

	2. Background on Symmetric Pairs
	2.1. Maximal theta-split Tori, the Little Weyl Group, and the Restricted Root System
	2.2. Examples
	2.3. Regularity and the Quasi-Split Condition
	2.4. Nilpotent Orbits
	2.5. Generalities on Kostant-Rallis Sections

	3. The regular quotient
	3.1. Generalities on the regular quotient
	3.2. Regular quotient and smoothness of stabilizer group schemes via Kostant–Rallis Sections
	3.3. Overview of Explicit Description of the Regular Quotient
	3.4. The Action of NG(K)/Z-K on the Regular Quotient
	3.5. Reduction to the Simple, Simply Connected Case
	3.6. Reduction to Levi Subgroups
	3.7. Examples
	3.8. Galois Description of J via the Parabolic Cover for Quasi-split Symmetric Pairs

	4. Sections from sl2 Triples
	References

