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Chapter 1

Differentiable Manifolds

Let X be a topological space. A chart on X is a triple ¢ = (U, L, ¢), where U is an open
subset of X, L is an n- dimensional vector space over R and ¢ : U — L is a continuous
map such that ¢ :— ¢(U) is a homeomorphism and ¢(U) C L is open in the natural
topology of L.

Two charts, ¢ = (U, L, ¢),c = (U', L, ¢') on X are C*®-compatible if ¢/ 0 ¢~ : ¢/(U N
U') — ¢(UNU') are C*°-maps. A C*-atlas on X is a family of mutually C*°-compatible
charts A = {cq = (Uq, La, ¢a)} such that U,Uy, = X. A C™-atlas A is full if given any
chart ¢ compatible with all charts in A, c is already in A. A C° manifold is a Hausdorff
space X with a countable basis for its topology provided with a full C*°-atlas. Observe

that any C*-atlas extends uniquely to a full C*°-atlas.

Example: The Grassmanian Gr,(V) of an n-dimensional real vector space V. By
definition
Grqy(V) ={A CV : Ais a ¢g-dimensional subspace of V'}.

Gry(V) has a natural topology as a homogeneous space. It also inherits a C*-structure
that way. We describe this C*°-structure. If B is an (n — ¢)-dimensional subspace of V,
let Up ={A € Gry(V): AnNB ={0}}. If A € Up is fixed, every A’ € Up is the graph of
a linear map u : A — B, this defines a map ¢4 p : Up ~ Homg(A, B). A C*-atlas for
Grq(V) that gives its C*-structure is

{(Up,Homg (A, B)pap): AC Ug, B € Gro_o(V)}.

Let X be a manifold and ¢ = (U, L, ¢), ¢ = (U, L', ¢’) be 2 charts centered at x € X,
(i.e. ¢(z) = ¢'(x) =0). Let 0. : L’ — L be the Jacobian of ¢ o ¢’ : ¢ (UNU') —
#(UNU’') at the origin. The we have de identities:



(i) Occr 0 Oprorr = O
(il) e =0}
(iii) 0o = id.

Associate to each chart ¢ = (U, L, ¢) centered at x the space L and to each pair ¢,
of such charts the isomorphism 6,.- : L' — L. These data define a vector space at x

uniquely up to a canonical isomorfism which is called the tangent space of X at x, T,.(X).

Example: The Grassmanian again. One shows that canonically T4 (Gry(V)) ~
Homg (A, V/A).

Let X,Y be C*°-manifolds. Let f: X — Y be a map. We call f a C*°-map if:
A f is continuous
B f is locally C*, i.e. if looked trough convenient charts it is C*°.

Clear identities and composition of C*°-maps are C*°-maps, so we get the category M
of C*° manifolds and maps. Further, if f : X — Y is a C*°-map and z € X, one can
define the differential

(df)e : Te(X) — Ty (Y)

as a linear map of real vector spaces.
We want now to study properties of the category M as a category.

M is closed under finite products.

M is not however closed under arbitrary fibre products.

Example: In general if f : X — Z, g: Y — Z, are injective then X x,Y =X NY
in Z if the category has fibre products.

Now take Z = R?, X = z-axis, Y = graph of a smooth function such that f~1(0) is
compact and not locally euclidean. Then, as a set X xz Y is homoeomorphic to f~1(0)
and is not, then a manifold.

Twomaps f: X — Z, g: Y — Z in M are transversal if for all x € X, y € Y such
that f(z) = g(z) = 2z, the map

T,(X) @ T,(v) "2% 1.(2)



is surjective.
Examples:

1. If Z is a vector space and f,g are inclusions of subspaces X,Y transversality of f,g¢

means that X +Y =7/ i.e.,

a. dim X +dimY > dim Z,
b. X NY has minimal dimension (= dim X + dimY — dim Z).

2. Let Y = e, a point, g(e) = zg € Z. Then f is transversal to g, if and only if, for all
x € fH20), dfy : To(X) — Ty, (Z) is surjective. Such a point zg is called a reqular

value of f.

3. f: X — Z is transversal to all maps g with target Z if and only if, for all z € X,
dfz : Te(X) — Ty (Z) is surjective.
The following theorem is a consequence of the implicit function theorem.

Theorem. If f: X — Z, g : Y — Z are transversal then the fibre product X Xz Y
exists and T(5 (X x.Y) = To(X) X7,z T,(Y) where f(x) = 2z = g(y).

A subset A of a manifold X has measure 0 if for any chart ¢ = (U, L, ¢), ¢(ANU) has

measure 0 in L (Lebesgue measure).

Theorem. Sard-Brown If f: X — Y is a map in M, then the set of regular values of

f is the complement of a set of measure 0.

In fact one can show that the set of singular values of f is a contable union of nowhere

dense sets and has measure 0.

Corollary. If dim, X < dimyY (observe a manifold need not have constant dimension)
forallz e X,y €Y, then f(X) has measure 0 in'Y



Chapter 2

Vector Bundles

A C*° vector bundle over a manifold X is a map 7w : E — X in M such that each fibre
E, =771(x), z € X, has real vector space structure, and such that for every x € X there

is an open neighborhood U and an isomorphism (in M)
7N U) = UxL

where L is a finite dimensional vector space, compatible with the vector space structure
on fibres. Let rank, F = dim E, for x € E.

A section s of E is a smooth map s : X — F such that 7 o s = id,. We denote by
['(X, E) the space of sections of E.

Theorem. If m > dim, X + rank, F for all © € X, then there are s1,...,sm € T'(X, E)
such that for every x € X, si(x),...,sm(x) genetate E.

Proof. First we prove this for X compact.

Step 1: To produce a finite dimensional subspace V- C I'(X, E) such that for all x € X

the evaluation map evy :' V — E is surjective:

We assume rank, F is constantly equal to r. For each x € X choose a neighborhood
N, of z over which F is trivial, i.e. 7T_1(Nx) ~ N, x R"; then, a section s of E over N,
can be identified with a C* function N, — R". By using C* which are not 0 at z and
vanish outside a compact neighborhood of z in N,, we obtain s{,...,sF € I'(X, FE) such
that {s7} form a basis for E, when y is in some neighborhood V, of X. By compactness
of X, X = U;-Vlemj.

Let V C T'(X, E) to be the space spanned by {s;}; ;.



Step 2: To show that for almost all W € Grp, (V) the evaluation map ev, : W — E is
surjective for all x € X.

Note that W is bad if and only if there is x € X and a hyperplane H C FE, such that
eve(W) C H,ie. W Cev;1(H). Let

Z = {(x, H,W) : 2 € X, H is a hyperplane in E,, W € Gry,(ev; (H))}.

In general, if 7 : F — X is a vector bundle, we can define the manifold
Griy(E) = {(z,H) : x € X,H is a k-plane in E,} with a natural projection on X and
a natural locally trivial structure. Now dim Gry(E) = dim X + k(dim L — k) (where L
is the typical fibre of E). Also over Gri(E) we have the vector bundle Fj whose fi-
bre at (z, H) is the space evy !(H). We see then that Z = Gy, (Fr_1). Now dimZ =
dimGr,_1(E) + m(dimV —1—-m) =dim X + (r — 1) + m(dimV — 1 — m).

The set of bad W in Gry, (V) is the image of the map f : Z — Grp,(V), (v, HL W) —
W. By Sard’s then it suffices to show that dim Z < dim Gr,, (V) = m(dimV — m). But:
dmX + (r—1)+m(dimV —1—-m) —m(dimV —m) = dim X + (r — 1) — m < 0 since
by hypothesis dim X +r < m.

For X non compact, recall that X = U2 K,,, K, compact and K,, C interior(/p,11).

The theorem follows from the following lemma.

Lemma. Let si,...,s8, € I'(X, E) span E, for all x € F where F is closed in X (m >
dim, X + rank, E for all x € X ); then s1,..., Sy can be modified outside F' so as to span
E, forallz e X.

Proof. To prove the lemma, its sufficient to show that for any compact K C X, we can
modify si,..., s, outside F so as to spam E, for x € F'U K (the process will converge
since K, C Int K41).

Step 1: Choose a finite dimensional vector space V' C T'(X, E) such that all s € V' vanish
on F and s1,...,8, and s € V' span E, for all z € FFU K. This can be easily achieved.
Let V =R" @&V’ and define w, : V — E, by (A1,..., A\, 8) — f) Aisi(z) + s(x).

Step 2: Almost all W € Gr,, (V) are such that -

. g = . ’
(i) for all z € FU K, wy, : W — E, is surjective
(ii) WnVvV’'=0.

This is seen in a similar way to that of step 2 of theorem.



Now choose such a W and let w; be the unique element in W such that w; + V' =
(0,...,1,0,...,0) 4+ V'. Let s be the image of w; in I'(X, E). Clearly s/,..., s}, span E,
for z € FNK and s)|F = s;|F. O

O
In a similar way one can prove:

Theorem (Stability Theorem). Let 7 : E — X be a vector bundle with dim E' > dim X.
Then 3s € T'(X, E) such that s(z) # 0 for all x € X.

Theorem (Bertini’s Theorem). Let X be a submanifold of Py, then almost all hyperplanes

i P, intersect X transversally.



Chapter 3
Imbeddings

A map f: X — Y in M is called an immersion if df, : T, X — Ty(;)Y is injective for
all z € X3 it is called a submersion if df; : To X — T};,)Y is surjective for all x € X it
is called an imbedding if it is a immersion and a homeomorfism of X with the subspace
f(X) CY. Also f is said ti be étale if it is both an inmmersion and a submersion. We say
that f: X — Y is proper if for any compact K C Y, f~'K is compact or equivalently:
if x,, is a sequence in X such that f(z,) — y € Y, then 3 a convergent subsequence
—x e X.

Ty,

Remarks: by the implicit function theorem, we have

1. f is an immersion at x if it is locally equivalent to the linear immersion R™ C R".
2. f is a submersion at x if it is locally equivalent to the linear projection R" — R™.
3. f is étale at x if it is locally equivalent to the identity isomorphism R™ ~ R".

An imbedding is open if f: X <— Y as an open subset. An imbedding f: X — Y is
closed if f(X) is closed in Y.
Fasily: any imbedding f : X — Y factors into a closed imbedding fi, followed by an
open imbedding ¢
xhuy-y

(A locally compact subspace of a locally compact space is locally closed i.e, it is the

intersection of an open and a closed set).

Proposition. An imbedding is proper if and only if it is closed. A submersion is proper

if and only if it is locally equivalent to pri:Y X Z — Y with Z a compact manifold.



Theorem. Let f: X — Y be a proper map in M such that 2dim; X + 1 < dimy,) Y.
Let F C X closed and suppose that f|p is a 1-1 immersion. Then there is an imbedding
'+ X — Y such that g|p = f|p.

Proof. We assume first that X is compact. We express X = U | X;, where U; is compact
and f(U;) C some chart in Y. By induction, it is enough to assume that f is an imbedding

on F U (Uj«nU;) and to show that f can be modified on (U,,) without changing it on

F U (UjernU;) so that it becomes an imbedding on F'U (Uj<,U;).

“Hence” we assume Y = RP.

Step 1: First we show that there is a function g : X — V (V a finite dimensional vector

space) such that g(F) = 0 and
(f,9): X —Y xV
is an imbedding:

(1) Cover X by coordinate open sets U; and use the coordinates functions to get a finite
number of functions u, : X — R such that uy(F) = 0 and du, span T, X for all x

not in the open set where f is an immersion.
(2) This gives an immersion (f,g) : X — Y x V with g(F) = 0.
(3) Now consider the set
Z={(z,2) € X x X|(,0)(2) = (f.9)(2') and z £ a'}.
This Z is closed in X x X and does not meet F' x F.

(4) So given (x,2') € Z, there is a function u : X — R such that u(xz) # wu(z’) and
u(F) =0.

(5) For each (x,2') € Z pick such a u, call it u(, , and cover Z by finitely many of the

open sets

Z(z,:p’) = {(3717‘7:/1) € Z|u(z,:p’)(x1) 7& u(x,:v’)(xll)}

(6) Take the resulting family of u(, .. Thus we obtain a finite family of functions {uq }

such that the map X — Y x V|

z = (f(@), ua())

is an imbedding.



Step 2: Here we show that for almost all quotient spaces @ of Y x X with dim () = dimY

we have the 2 properties:
(i) X — Y xV — @ is an imbedding.
(ii) Y — Y x V — @ is an isomorphism.
We show that the set
{AeGr(Y @V)|dimA =dimV,ANY =0 and

X —Y®V— (Y®V)/Ais an imbedding},

is everywhere dense. In particular there is one such A, so if f/ : X — Y is the map given
by f'(xz) — f(z) — g(x) € A, the f"is an imbedding and f'|r = f|p.

x Y9 yevy

]

Y —> (Y®V)/A

(1) First we determine the size of A € Gr(Y ® V) for which X — Y ®V — (Y ®V)/A
is not an immersion, i.e. if h = (f,g) then there is x and a line I C T, X such that
dhy(l) C A. Let

Z =A{(z,l,A)|lz € X,l € PT,(X),dh,(l) C A},
W=Y®V and dimV = r.

(2) Notice that dh can be thought of as a map TX — A*TW = X xy TW, and it is 1-1

since h is an immersion.
(3) Also, Z can be thought of as fibered over PT'X
F—7Z —PIrX
{Aldh(l) Cc A} — {z,l, A} — {z,l}
so Z is a Grassmannian bundle for a vector bundle over PTX.
(4) Hence Z is a manifold. Now dimZ = 2dim X — 1+ (r — 1)(dim W — r).

(5) As far as immersion goes, bad A is the same as being in the image of Z — Gr(W),
(x,1,A) — A.

10



(6) In calculating dim Z we use the fact that a subspace dh(l) C A C W is the same as
an (r — 1)-subspace in W/dh(l).

(7) Now dim Z < dim Gr, (W) for 2dim X < dimY. Hence, {bad A} has measure 0.

To get 1-1: A is bad if there are 1,22 € X such that x; # x9 and h(z1) — h(z2) € A.
Let
Z ={(z1,22,A)|h(x1) — h(x2) € A and x1 # x2}.

Since h is an imbedding, Z will be a manifold, a Grassmannian bundle of the vector bundle
{(z1, z2,v)|(z1,22) € X x X — A and v € W/R(h(x1) — h(z2))}.

Now dimZ = 2dim X + (r — 1)(dim W —r). So dimZ < dim Gr,(W) if 2dim X <
dimY. Hence Z has measure 0.

The proof for the non compact case goes along similar lines. O

An intuitive way to explain why the proof works is this: consider X imbedded in a
large vector space V. We look for lines L in V such that projection along [ onto V/L
leaves X imbedded in V/L. Bad lines L are those such that

(a) L passes through 2 points of X: there are 2dim X of these.

(b) Tangent lines at = € X, parallel to L: there are dim X + dim X — 1 (points + lines),

such lines.

Hence dim V' > 2dim X +1 will work for the imbedding because if dim V' > 2dim X +1

we can project down.

Corollary (Whitney imbedding theorem). If dim X < n. Then X can be imbedded in

R2"+1 45 a closed submanifold.

Theorem (Tubular neighbourhood theorem). Let Y be a submanifold of X and let V =
T(X)|y/T(Y). Then there is an open neighbourhood U of Y in X and a diffeomorphism
h:V — U such that h carries the 0-section of V to Y, i.e. the diagram

V—m U

0—86% /
Y

11

commutes.



Proof. Choose an imbedding of X in R", so Y C R". Now V|, ., can be identified with
{(y,v)|ly € Y,v € R", and vLT,(Y)}. So we can map h : V,, ., — R" by h(y,v) =y+v.
Now h is smooth and étale along the 0O-section. Hence there are open neighbourhoods
U C V, _gn of the 0-section and U" C R™ of Y such that h : U" — U’ is a diffeomorphism.

However we can always choose a function p : ¥ — R* such that {(y,v) : [[v|| <
p(y)} C U and always there si a diffeomorphism of {(y,v) : [|[v|| < p(y)} with V|, .. by a
change of scale.

Now, within the tubular neighbourhood of ¥ in R" map Vycxy — X by letting
v € Vycx,y go to the unique x that goes into v by orthogonal projection (one has to see

this). One may have to shrink the neighbourhood U, may be. O

12



Chapter 4
Transversality

In a category, we say that a commutative square

X Yo x

4

Y —=Y
9
is cartesian (or a pull back diagram) if X' =Y’ xy X, i.e. if for al T

Hom(T', X') ~ Hom(T,Y") Xgom(r,yy) Hom(T, X).

Tautology. Suppose the diagram

(1) (2)

s commutative. Then
i. (1) and (2) cartesian = the rectangle is cartesian.

ii. (2) and the rectangle cartesian => (2) cartesian.

Remarks:

1.If f: X — Y and g : Y/ — Y are transversal, then the fibre product Y’ xy X exists
and for all z = (y/,z) €Y' xy X, T.(Y' xy X) = Ty (Y') xq,y T: X.

13



2. Given the commutative square (1) of vector spaces:

0 K %4 v Ch 0
N
0 Ky w’ . w Cs 0

we have the induced maps of kernels K7 — K5 and of cokernels C7 — Cb.

i. Now (1) is cartesian if and only if K| — Ko.
ii. Also (1) is bicartesian if and only if K =5 Ky. and O] = Cy.
3. In the Remark 1 the square
T.(Y' xy X) — Tu X
| s
T,y — % 1y
is bicartesian because df + df : T,(Y') @ T(X) — Ty(Y) is onto, and because in
the Remark 2 the square (1) is bicartesian if and only if (1) is cartesian and g + f :
W' ®V — W is surjectie.
Definition. A cartesian square in M is clean if the square of tangent spaces
T.X' — T,X

Lo

Ty/ Y/ — TyY

is cartesian for every 2’ € X'.
The usual for cartesian squares also work for clean cartesian squares.

Lemma (Transversality Lemma). Given maps in M

VA

lg
YxS§-tsx

such that h is transversal to g, then for almost all s € S the map h(-,s) = hs: Y — X

1s transversal to g.

14



Proof. Consider de diagram:

l (1)

pt ' 59
Here W is the fibre product W = (Y x.S) x x Z which exists because h, g are transversal.
So (3) is transversal cartesian. By Sard’s Theorem,, for almost all s € S, the maps
pt —* Sand W — Y x § — § are transversal, so U, exists for almost all s € S
and the map U; — pt factors Us — Y — pt. Thus the rectangle (1)(2) is transversal
cartesian and obviously (1) is transversal cartesian, then (2) is.
Hence the rectangle (2)(3) is transversal cartesian, so hs and g are transversal for
almost all s € S.
O

Theorem (Transversality Theorem). Given maps in M

Z
)|
y Lo x

an a closed subset F C'Y such that f,qg are transversal over F, the there is f' such that

f =~ f'rel F and f' is transversal to g.

r
Proof. (1) Factor fas Y —5 Y x X 2 X and consider de diagram
YXxZ—Z

o

Y —>YxX —X
'y pr2

(2) Since the square is transversal cartesian, f is transversal to g if and only if I'; is
transversal to 1 x g. Hence we can assume f to be an imbedding (this argument also

shows that given a factorization Y —— U L, X of f, it suffices to ¢ transversally to
Uxx Z—U).

(3) Let U be a tubular neighbourhood of the imbedding f : Y — X. By the tubular
neighbourhood theorem, we may assume that f is the O-section of a vector bundle X

over Y.

15



(4) Choose a finite dimensional space S C I'(X — Y') (sections of the “bundle” X — Y)

which spans the fibre everywhere.
(5) Also choose a C* function p : Y — R such that p=1(0) = F.

(6) Take h:Y xS — X given by h(y, s) = p(y)s(y). Then h is transversal to g: because,
true on F since h(F x S) = 0; if y ¢ F, then varying s € S, s(y) fills out the fibre of

X over y since S spans all fibres, so h is a submersion at y.

(7) Apply the transversality lemma and take f’ = h; for a given s. The required homotopy
isG:YxI— X, (y,t) — ths(y); Go = f, G1 = hs and G‘Fx[ = 0.
O

16



Chapter 5

Cobordism

Hereafter we assume that all manifolds have bounded dimension and also that all vec-
tor bundles have bounded dimension. One consequence of this assumption is that every

manifold is contained, as a closed submanifold, in some R".

Definition. Two proper maps g : Z — X, ¢’ : Z/ — X are cobordant if there is a

proper map h: W — X x R such that the following transversal cartesian squares exist

A w A

X— X xRs—X
z—(z,0) (z,1)—=x

Examples:

1. If X = pt. In this case h=1([0,1]) is a manifold with boundary equal to Z U Z’.

2. Let W’ be a manifold with boundary such that Z U Z’ = 0W’. Consider the picture:

17



Y 4 Z
7

Z x[0:3) = 12 Tx (%)

By the Tietze extension theorem there is u : W/ — R extending the map on the
shaded areas, so take X = pt and u : W/ — R to get a cobordism between Z — pt
and Z' — pt.

3. We consider now the following case. Let Z,Z’ be closed submanifolds of X and W

closed in X.

IS

Lemma. Let h : W — X x S be a proper map and let so,s1 € S be reqular values of
prooh : W — S that are in the same component of S. Let W, = (pro o h)~1(s;) then

the maps Wy, — X and W5, — X are cobordant.

Proof. Note that W, is a manifold since s; is a regular value of pro o h. Consider the

diagram
Wy, —— W
i h
X —>Xx8

\L pr2

pt —> S

—S8;

18



All squares are transversal cartesian. Also W5, — X is proper. Now choose a path

u: R — S such that u(0) = sp and u(1) = s1. Consider the diagram:
Rx; W ——W

l '

XXxR— X xS

L]

R—" >g9

Now w is transversal to prooh on the closed set {0, 1} C R. By the Transversality Theorem,
we can make u transversal to pro with no change on 0,1. Thus R xg W can be formed

and the map R xg W — X X R is proper and gives the desired cobordism. O

Corollary. For a fized manifold X, cobordism of proper maps Z — X is an equivalence

relation.

Proof. Think of a cobordism between Z T x A RN X as a family of manifolds Z; such

0 ifz<0
that Zy = Z and Z; = Z' where ¢ : R — R is some function with ¢(x) =

1 ifz>1
¢ (x) #0 for 0 <z < 1. Then W’ is the pull back which exists by the lemma.

Iff: 72— X, f': 7' — X are cobordant and f': Z/ — X and " : Z" — X are
cobordant, then choose cobordism h : W — X xR of f and f/, and A’ : W' — X x R
as above, i.e.

U X x0)=2Z RYX x0) =2

hi(X x1)=2 WYX x1)=2"
RHX x(1—e1+€)=2"x(1—¢1+e¢)
WX X (—6,6)) = 2" % (—€,¢)
and piece them together in the obvious fashion. O

The cobordism ring of X, N*(X) is the set of cobordism classes of proper maps with
target X; if g: Z — X is such a map, let [Z <, X] denote its class in N*(X).

The rest of this chapter is devoted to properties of N*.

First we note that N* is a covariant functor from the category of manifolds and proper

maps; its range will b determined later.

19



If f: X — Y is proper, the the Gysin Homomorphism (or trace or integration along
the fiber), fi: N*(X) — N*(Y) is defined by composition i.e.

£z % x) =2 1% v

Secondly notice that N* is a contravariant functor from M, for given f : X — Y,
define f* : N*(Y) — N*(X) by the following procedure: Let [Z - Y] € N*(Y). Then
by the transversality theorem there is f': X — Y, f ~ f’ and such that f’ is transversal
to g. We have:

XxyZ— Z

L b

X ——Y

where X xy Z is a proper map. We put f*[Z -5 Y] = [X xy Z — X].

We check that this definition is independent of the choice of f’: let f” be another
deformation of f, transversal to g. Then there is a smooth homotopy h: X xR — Y
such that hg = f/,hy = f”. Then h is transversal to g on the closed subset X x 0U X x 1
of X x R (also h can be chosen to be a proper homotopy, i.e., the map X xR — Y xR :
(z,t) — (h(z,1),t) is proper; one can check the proof of the transversality theorem to see
that this is possible); hence, by the transversality theorem we can move h to be transversal
to g without changing it on X U X x 1. Now form the transversal cartesian square:

W——>Z7

Lk

XxR sy
Hence, W — X xR is a cobordism between X x ¢y Z — X and X X yr y. Furthermore,
it is independent of the choice of Z - Y, for given W — Y x R joining Z' — Y and

7" — 'Y we have:

X——Y

after f is moved transversally to W — Y x R — Y. Then W — X xR is a cobordism

between X Xy Z' — X and X xpy Z" — X.
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Properties.

1. Given X 2=V % Z then (gf)« = g« f« if both maps are proper and (gf)* = f*¢* in

general.
2. If fo~ fi: X — Y then f5 = ff: N*(Y) — N*(X).

3. If the square

x o x

1

v Loy

is transversal cartesian then f*g, = ¢/ f’*.
Proof. 1 and 2 are clear. For 3, we have
Q——>7
l keaeN*(X)

x L sx

lg’ g

R

ffg«(a) = f*[Z — Y] = [Q@ — Y] since f and gk are transversal. Also ¢, f™*(a) =
95[Q — X'] since f’ and k are transversal = [Q — Y]. O

Example. We would like properties 1,2,3 to characterize N* as a functor into the category
of sets, but let H(X) = H*(X;Zy) which is a contravariant homotopy functor (i.e., it
satisfies the second part of 1 and 2). By the Poincaré Duality, if dim X = n, H" }(X) is
dual to H;(X) by a pairing

HY(X) @ H(X) -L Ha(x) 2 7,
so one can define f, : H(X) — H"(X) (r = dimY — dim X) as the transpose of
& HE(Y) — HE(X) where f is a proper map. Then 1,2,3 are satisfied. Property 3 is

not trivial.

Proposition. Given a contravariant functor H on M which is also a covariant functor on
M proper such that 1,2,3 hold, then for all a € H(pt) there is a unique ¢(-) : N(-) — H(-)
compatible with f*, f. and such that ¢[pt [, pt] = a.
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Proof. Define ¢[Z NS | = g«7%(a) where mz : Z — pt. Now ¢ is clearly unique since

1Z L5 X] = gury[pt i, pt] (this is important to remember):
Z — pt
id iz’d
Tz
Z —=> pt

g

X

where the square is transversal cartesian.
For existence one needs only to check that ¢ is well defined: suppose that h : W —

X X R is cobordism of g : Z — X and ¢’ : Z/ — X. Then the squares in

Jo 1174 J1 7!

bkl

are transversal cartesian. Then

9sTZa = gxjoTiya by 1
= iphamya by 2
= iTh.mya by 2, since ig =~ i1
= g.jimya by 3
=g.7ha by 1
the rest is trivial. ]

Example. Let H(X) = H*(X;Zy). Let a = 1 € H*(pt;Z2). Then by the proposition,
there is a unique ¢ : N(X) — H(X) with ¢[pt i, pt] = 1 (compatible with f* and
f+). Moreover ¢[Z - X| = g.1; where 1; € HO(X) is the unit of the ring. If Z is
a submanifold of X, g.1z is the cohomology dual of Z in X. Steenrod proposed this
question: Can any cohomology class be realized by a submanifold in this way?

We now look into the additive structure of N(X).

Ifg: 7 —X,¢d:72 — X,letg+¢ : Z11 Z' — X be defined by g + ¢'|z = ¢,
g+ dlz =g. Define [Z L X+ (2 L X]|=[z11 7 AL |. The zero element in
N(X) is [) — X]. Every element in N (X) is of order 2: in fact, let [Z <> X] € N(X).
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Let h: Z x R — X x R be defined by (z,A\) — (g(2), A\?). The squares in the following
diagram are transversal cartesian:

ZUNZ — > ZxR<— )

AT

X — X xRs—r——
r—(z,1) (z,—1)z

and so h : Z xR — X x R is a cobordism between [g + ¢'] and [ — X]. hence
N(X) is an abelian group and every element in N(X) has order 2.

We give N(X) a grading in the following way: let N(X) = @,ezN9(X) where [Z -5
X] € NU(X) if g is everywhere of dimension g, i.e. if dimy) X —dim, Z = ¢ for every
z € Z. Notice that N9(X) = 0 for ¢ > dim X. (in general N9(X) is nonzero for infinitely

many negative values of q).

Properties.

4. f* and f, are additive homomorphisms.
5. If X = X, [[ X2, N(X) ~ N(X1) @ N(X>).
6. Ifg: Z— X, g :72 — X, then
(9+9)elziz = g1z + gulz.

Proposition. Properties 4,5,6 characterize the addition in N(X).

We define an external product N(X) @ N(Y) — N(X xY) :a® 8 — aX § by
z 4 X],[2' <, Y] — [Z x Z' 9 X Y] (X is well-defined since a cobordism
Zy — Xgives Zy x 7' — X x 7' — X XY).

Define an internal product N(X) @ N(Y) — N(X) : a ® f — A*(a X 3). Geomet-
rically, afeter moving g : Z — X transversal to ¢’ : 2/ — X, [Z' g, X] -7 9, X] =
[Z% x Z! — X] since the square

7% 7' —>7Zx 7

e

X ——— XxX

is transversal cartesian.
With the internal product, N*(X) is a graded commutative ring with unit 1y = [X d,

X].
Properties.
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7. f* is a ring homomorphism.

8. If f: X — Y and f': X’ — Y are proper, then (f x f).(aXda') = fra K fla’ and
(fx fBR) = fBEfE.
9. If f: X — Y is proper, then f.(zf*(y)) = f«(z)y (projection formula)
Proof. 7. is clear.
For 8., let a = [Z — X|, o/ = [Z" — X], then
(% F)ellZ — X]R[Z — X)) = (f x (2 x 7 — X x X))
—Zx7 — xxx Ly vy
—7—x Lyrz — x Ly
= filZ — XK fi[Z" — X'].
For 9., consider the square

X (17f) X % Y pri X

fl (1) fxli (2) fJ/

Yy ——MM Y XY —"—— >Y
Ay pri

The rectangle (1)(2) and the square (2) are transversal cartesian, so (1) is transversal

cartesian. Hence:
f(@f*(y) = Ak (X f(y))
= [ Ax (1 x f7)(z K y)
= [(L ) (@Xy) =Ay(f x 1)«(zKy)
= Ay (fizRy) = fu(z)y.

In the case of 9., we say fi is a module homomorphism for f*.

Property.(Exactness)

10. Let ¢ : Y — X be the inclusion of a closed submanifold and j : U — X the inclusion
of U = X — Y. Then the sequence
N(Y) = NX) LS NE)

is exact.
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Proof. Step 1:

P2 — Y] =7 — Y -5 X]
= [Uxx Z — X]
:[(Z)—>U}

|
e

Step 2:

Lemma (Excision). Given a closed submanifold i : Y — X and tubular neighbourhood
N of Y, then any cobordism class in N(X) vanishing in X —Y can be represented by a
proper map g : Z — X with image in N.

Step 3: j*[Z 4, X] = 0, then by lemma ¢ is properly homotopic to the map Z g,

N2y S Xso[Z2-L X|=[Z—Y -5 X]|=i,[]Z — Y], thus proving exactness
modulo proof of the lemma. O

Discussion of Lemma:

QWs 1L

Choose a tubular neighbourhood N of Y in X. Then the sphere bundle concentric to
ON give a family ON x (0,1) < X so by the transversality lemma, for almost all A € (0, 1),
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the sphere bundle ON x A\ — X is transversal to Z and W. We claim Z is cobordant to
(ZNN)Uznon (WNON) after all corners are suitably smoothed. Look at a small tubular
neighbourhood B of Z NJN. Let I be the part of W exterior to N and to B.

or=Zn)l, ,x (ZNéN)x 1)1, v (ONNT)
Let A:FU(ZQBN)XI ((ZNN) x 1)
Z(\N 'lf\v

— (Z02M)x T

P
INn

OA=ZI((ZNN)Uznan (W NON)), which does what we want it to.
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Chapter 6
Module structures in cobordism

For computing N(S™) as an N (pt)-module, consider the commutative diagram:

pt i gne  Re
\lf/
pt

By the exactness property, and since 7 is a homotopy equivalence, we have the com-

mutative diagram

-k
Vx

N(pt) —— N($") — > N(R")

N

where the top line is exact, i, is injective since fyi, = 1, and j* f* is an isomophism.

Hence the sequence

0—> Npt)— " -N(S")— I - NER") —>0
e fem =1

is split exact. We now regard N(S") as a right N (pt)—module under f*, and identify
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N (pt) with N(R"™) using 7*.
ix(wy) = (2" f7y) = (1) (f*y)

since fi = 1, 7% (xf*y) = (G*x)(G*f*y) = (*x)(7*y) so ix and j* are N(pt)—module
homomorphism.

Since the exact sequence splits, N(S") ~ Im(i,) @ Im(f*) as an N(pt)—module.
Hence N(S™) is the free N(pt)—module with basis 1gn, i1y The grading is given by
N¥(8™) ~ N*="(pt) @ N'(pt) for, if [X - S"] € N¥(S™), n — dim X = i, so if ¢ factors
through a point, its degree is i — n. If g is f* of something n — dim(S™ x Z) = i, so its

degree is 1.

Euler Class

Let E — X be a vector bundle, and let i : X — E be the zero section; then the Euler
class of E, e(F) is
e(E) =1i"i.1x € N(X).

If dmE =mn, e(E) € N*(X). Let s : X — FE be the section obtained by moving i

transversally to itself, and let Y = s~1i(x). Then the square

XS F

is transversal cartesian. Hence
i lx = 8T 1x = 7.7 1x = Jily,

so e(E) is the class associated to the submanifold Y. If X is a compact manifold of
dimension n and F¥ = T'X, then a section is a vector field on X, and Y in this case is the

set of zeroes of s. The reason for the terminology in the classical index theorem.

Theorem (Index Theorem). The number of zeroes of a wvector field is congruent with
X(X) mod 2, where x(X) is the Euler characteristic of X.

Properties.
L. e(f*E) = fre(B)
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2. If i : X — Y is a closed imbedding with normal bundle r, then i*i,(z) = e(r)x for all
r € N(X).

3. e(E'® E") =e(E)e(E").
Proof. 1. Let z,2' be the zero sections. Consider the diagram

Yy —> X

z

Y —> X

Then (1) is transversal cartesian by definition, and the rectangle (1)(2) is clearly

transversal cartesian. Hence (2) is so too. Thus

fre(E) = 2"z 1x by definition
=2 fzlx by functoriality
=22 fflx since (2) is transversal cartesian
=221y since f* is a ring homomorphism
=e(f*E) by definition

2. Let U be a tubular neighbourhood of X in Y, U ~ r, where r is the normal bundle

with projection 7 : r — X. Then:

id
D QLS

X
X “spyclsy

is a transversal cartesian square where 2 is the zero section and j is an open imbedding.
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Because i = j o z, then:

ier = 2% i by functoriality
= 2" zid"x by transversality
=zZ*z.x
=22 since pi o z = id
= 2"((z: i) (7)) by projection formula
= (2" z:lx) (") since z* is a ring homomoprphism
=e(r)z by definition and since 7 o z = id.

3. We have imbeddings X <» E” <& E'@ E" where i is the zero section and j(e”) = 0@e”.
Obviously ji is the zero section of E' & E”. Moreover, r; = 7*E’ where 7 : B — X

is the vector bundle projection.

e(B'® E") = i*j*j, il x by definition and functoriality
=1i"(e(r;)islx) by 2.
=i*(e(m*E)is1x)
=i"(m*e(E )islx) by 1.
=e(E )i 1x since i* is a ring homomorphism = e(E")e(E”) by definition.

O

If E — X is a vector bundle, the associated projective bundle PE — X consists of
lines in the fibres of E — X. The Hopf Bundle O(—1) is the canonical line bundle over
PE whose fibre at | C E, is [, i.e.,

O(-1) = {(l,t) : L e PE,t € }.

Let O be the trivial line bundle; define O(1) = Hom(O(-1),0). If n > 0, O(n) =
O(1)®---®0(1), n times; if n <0, O(n) = 0(—-1) ® --- ® O(—1), —n times. Since we

are working in the real case, any bundle is isomorphic to its dual, so O(1) ~ O(—1).

Theorem. Let E — X be an n-dimensional vector bundle over X, and let f : PE — X
be the associated projective bundle. Let & = e(O(—1)) € N(PE). Then N(PE) is a free
N(X)—module (via f*) with basis 1,¢,... "L
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Proof. We will start to prove the theorem in case E is a sum of line bundles, but we will
be forced to specialize to the case where E is a trivial bundle; we will then develop the
machinery to complete the proof.

Let E=L1&®...®H L,. Assume by induction that the theorem is true for a sum of less
than n line bundles (the case n = 1 is trivial). Set L = Ly, and FF = Lo @ --- @ L,. We

have the commutative diagram
X — s PE <l PF

AN4

X
where s(z) = L, C E; and j is the inclusion. PE — s(X) is a vector bundle over PF,
p:PE —s(X) — PF.

L ¢

NG

?(Q)

/

Then p is a deformation retraction of PE — s(X) — PF; pj = 1pr and jp >~ lpg_4(x)
so j is a homotopy equivalence between PE — s(X) and PF.
Hence by exactness:

Sx j*

N(X) 2 N(PE) 1> N(PF)
\ if*//
N(X)
with the top row exact.
By induction N(PF) is the free N(X)—module with basis 1,¢',...,&™ ! where & =
e(O(-1) — PF), but clearly j*(O(-1) — PE) = (O(-1) — PF). Thus ¢ =
e(O(—1) — PF) = e(j*(O(-1) — PE)) = j*e(O(—1) — PE) = j*¢ so in partic-

ular &, ...,£" 2 are all non-zero, and j* is an epimorphism.
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Thus we have a split short exact sequence of N(X)—modules:

0—>NX)—> _NPE) —L > NPF) —>0
\_/
fx

Hence N(PE) is the free N(X)—module with basis 1,&,...,6" 2 s,1x. We will show
n
in a lemma that s,1xy = uH(§ — f*e(L;)), where w is a unit in N(X). Hence N(PFE) has

=2

the N(X)—basis 1,¢, ... JEnL

n
Lemma. s,1x = uH(§ — fre(L;)), where u is a unit in N(X).

=2
Proof. Consider the vector bundle O(1) ® f*L; = Hom(O(—1), f*(L;)) on PE whose fibre
at a line [ C E, is the space of linear maps from [ to L; ;. This bundle has a canonical
section s; given by s;(I) is the homomorphism | C E, —P" L; .57 (0) = P(L1 & ... @
L& ...® L,) = H; since s; is transversal to the zero section. Thus e(O(1) ® f*L;) =
[H; — PE].

n

Now the H; intersect transversally and S(X) = Nj_,H; so we have s,1x = H[Hl —
i=2

PE] = He(O(l) ® f*L;). 1If the L; are trivial, O(1) ® f*L; ~ O(—1), so sslxy =
=2

[Te(O(-1) =&,
=2

Note that we have thus proved theorem 1 only for trivial bundles.
Corollary. N(X x P*~1) = N(X)[€]/(£€"), where £ = e(O(—1)).

We actually proved the corollary only so we now develop the rest of the needed ma-
chinery.
O

O

Let A be a commutative ring. A power series F(z,y) € A[[z,y]] is a formal group law
if
i. F(z,0) =z = F(0,z) and
ii. F(x, Fy,z)) = F(F(z,y),2).

It is commutative if
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iii. F(x,y)=F(y,x).

Examples.

1. F(z,y) =z +vy.

2. F(z,y) = 2+ y+ axy. This law is a multiplicative law if a = 1 and we use the change
of coordinates x — b,_1. 1 and 2 are the only polynomials which are formal group

laws.

3. If F(x,y) € Al[z,y]] is a formal group law and u(x Zuna: ! with the ug € A* (thus

u € A[[z]]*), then G(x,y) = u(F(u=t(z), u‘l(y))) is a new formal group law. Note that
if F(xz,z) =0, G(z,x) = 0, so in characteristic 2, the laws = +y and z + y + zy are not

related by a change of coordinates.

Proposition. There exists a unique commutative formal group law F(xz,y) =3 apztyt €
N (pt)[[x,y]] such that

e(L1 ® La) = F(e(L1),e(L2)) for all line bundles Ly, Ly over X, and
it. F(z,z)=0

Proof. Note N(P™ x P™) = N(pt)[£1,&]/(§7, &), where & = prie(O(1) — P™).
Hence over P x P™, there exist unique aj; € N 1=k l(pt) such that
e(prio(l) @ prsO(1) = > ajieleh.
0<k,I<m

Imbedding P™ x P™ — P™ x P", m < n, one sees that ajj = af; if k,l < m. Let
ag = aj for m > k + 1. Let Ly, Ly be line bundles over X, there exist f; : X — P™,
m >> dim X, such that

e(L1 ® Lg) = e(f10(1) ® f30(1))

= (f1, £2)" O am&&h)
—Zaklf1§1 f2§2)

:Zakle L1 6 2) .

This proves the existence and uniqueness of F' satisfying i. The commutative group law

properties result formally from
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1. e(O® L) =e(L) = e(L® O), where O is the trivial line bundle.
2. €(L1 & (L2 [ Lg)) = 6((L1 &® LQ) X L3)

3. E(Ll & L2) = €(L2 & Ll)

and ii. results from
4. e(L® L) =0, since L ® L is trivial.
O

To interpret the ay, let Hy,,, C P™ X P be a non-singular hypersurface of degree

(1,1), i.e. the zero submanifold of a generic section of priO(1) ® pr;O(2),

Hpyp =A{(z,y) e P x P": Z FAijziy; = o, \ij generic.
0<i<m, 0<j<n
Hpo = P! Now [Hypp — P™ x P = Z aklﬁfé“é where £V is the cobordism class
0<k,l<mn

of [P"=F — P™ x P™] and ¢V¢) is the cobordism class of [P™~F x Pl — P x P7.

projecting into N (pt) we have

[(Hin] = > auP™ P € N(pt).
0<k<m, 0<I<n

Hence [Hy, n] = amn+ lower a’s[P!] so the subring of N(pt) generated by {ax} is the same
as the subring generated by [H,, | (remembering that H,, o = P 1).

By the identity property of a formal group law, we have F(z,y) = x+y+zyG(z,y), so
F(z,y) —x = y(1+2G(x,y)). Let = e(L1), y = e(L]* @ Ly), then the formula becomes

e(L1 ® L' ® L) —e(L1) = e(L7' @ Lo) (1 + e(L1))G(e(L1), e(Ly * La))

but e(L;) is nilpotent so the latter term is a unit in N(X). Thus we have proved the

following:
Lemma. ¢(L;) —e(La) = e(L;' ® Lo) - u, where u is a unit in N(X).

We now complete the proof of the Lemma 1.
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_{[e00) @ 1)
=2

= [[(e(O(-1)) — f*e(Ly)) u is a unit in N(PE). But
1=2

since s, is a N(X)—module homomorphism, so we may assume the unit u lies in N (X).
This completes the proof of Lemma 1 and of the Theorem 1 in the case where E is a sum
of line bundles.

To finish the proof of Theorem 1, we need the following construction. Let Z be a
closed submanifold of X; the blow-up of Z in X, XV, is defined to be (X — Z) UPr where r
is the normal bundle of Z in X. Think of X as an X away from Z and normal directions
on Z. There is a natural map 7 : X — X such that 7|x—z = id and 7|p, is the bundle

projection to Z. The map 7 is sometimes called a monoidal transformation.
Examples:

1. Let V be a vector space, 0 € V; the blow-up of 0 € V, V =V —-0UPV. Note
V = Opy(—1) = {(I,v) : L aline in V through 0, v € I} and 7 : V — V : (l,v) — v
is a diffeomorphism over V — 0 and 7=1(0) = PV.

2. Let E —> X be a vector bundle over X. Let E be the blow-up of the zero section of
E. Then E = Opg(—1) = {(l,v) : | C E, line through 0,v € L}. The square:
PE— >E

|k

X——>F

zero section

is transversal cartesian; 7 is a diffeomorphism on E — X.

3. In general, given Z C X as a closed submanifold, we have by the Tubular Neighbour-

—sec open

hood Theorem z =%+ %% X. Then X = rUs_, X.
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Problem. Show that this formulation is independent of the choice of the tubular neigh-

bourhood (and algebraic geometric approach is to use the universal property:
Hom(T, X) ={(u:T — X,L,¢: Y7 — u,L) : L is a line bundle on T}

Yz = germs of functions f or X such that f|z = 0; L = germs of sections of L;

¢ is Oy —linear, and a section ¢(f) should generate L})

Problem. What can be said about the various blow-ups for Z C Y C X7

Proposition. Let f : Y — X be transversal to Z C X, X = (X — Z) UPrycx, and
Y = Y- f12)u Prs-1zcy. then the square

X

X

|

-

-

s transversal cartesian.

Theorem (Hironaka-Kleinman). If E — X s a vector bundle of dimension n, then

there is a succession of blow-ups

Xpo1 — Xpog — - — Xo — X1 — X
such that E pulle back to Xn—l s a sum of line bundles.

Proof. Let s : X — FE be a section transversal to O, and let E be the blow-up of the

zero section of F. it is clear that we have the diagram

PE —>FE —>PE

|

XC—F—>X

Let X be the blow-up of s7'O in X. Then the diagram
X—>E
|
X —">E

is transversal cartesian.



Hence, the diagram
X—>FE—>PE
|
X —"5>E——>X

commutes. Thus 7 : X — X factor through PFE so n*FE contains a line bundle. The

process can be iterated. O
We finish the proof of Theorem 1 with the following lemma:
Lemma. If 7 : X—Xisa blow-up, there exists x € N(XV) such that mex = 1.

Proof. The square

X< X-7Z
| ]
zelsx<!l x-7z
is transversal cartesian, so j*(m.1 — 1) = 0, which implies pi,1 — 1 = i,z for some z €
N(Z). But i,z is nilpotent because of the way products are computed: choose r such that

r codim Z > dim X, then [Y — Z — X]" is 0. Hence 7,1 = 1 + nilpotent elemente ,

which must be a unit u. Let z = 7*u~!, then pi,(m*u™!) = (m.1)u™! = wu™! = 1. O

Lemma. Let f: Y — X be a proper map and assume there exists y € N(Y) such that
fry = 1. Then, if Theorem 1 is true for f*E, it is true for E over X.

Proof. We have

P(f*E) L> PE
g’i lg
!

is transversal cartesian.

n—1
Step 1. The & are independent. if not, there exists a; € N(X) sucht that Z g*(a;)E = 0.
i=0
n—1 )
Applying f"*, we obtain Z " f*(a;)€" = 0., where ¢ = f"*¢, which implies f*(a;) = 0.
i=0

But f* is injective since fi(yf*(a)) = (fsy)a = a. Hence a; = 0 for all i.
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n—1

Step 2. The &' generate. Given z € N(PE), we have f*z = Z g™ (b;)€"" = 0 for some
=0

bi € N(Y). Then

n—1
DG felybi)€ =" fig™ (ybi)€’
=0

=D FUg"(ybi)(F7€)")
=D LUy (b (€)'

= fl(g"y > (g"b:)(€))
= filg"y)(f"2)

= (fig"y)z

= (9" fxy)z

=z
O

This completes the proof of Theorem 1 since we have proved it for sums of line bundles,
and we have the Hironaka-Kleinman theorem. We need only know that if X Ty 9,

Z such that f.x = 1 and ¢g*y = 1, then there exists 2’ such that (¢f).2’ = 1. But
(9f)«(zf*y) = g(frwy) = 1.
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Chapter 7
Stiefel-Whitney classes

Let E — X be an n—dimensional vector bundle. Then by the projective bundle theorem,
N(PE) = n@ N(X)¢" where £ = e(O(—1)). Let f : PE — X there exist unique elements
i=0
w;(F) € N (X),i > 0, such that
"+ frun(E)S" 4+ frwn(E) = 0.
The w;(E) are the cobordism Stiefel-Whitney classes of E. We set wo(E) = 1 and

wi(F) = 0 for i > dim E. The total Stiefel-Whitney class of E, w.(E) € N(X)[r], is
defined to be S w;(E)7".

>0
Theorem. The Stiefel-Whitney classes are uniquely characterized by the properties:
1. g*w;(E) = wi(g*F)
2. w(E'®E") = w,(E"w,(E")

wp(E'"® E") = Y wi(Ewj(E") (Whitney sum formula).
i gk

3. wr(L)=1+e(L)T
4. If dim E =n, w,(F) = e(E).

Proof. 1. and 3. are clear.

To prove 2., since there exists a map 7 : X — X such that 7*E’ and 7*E” are sums
of line bundles with 7* injective, it suffices to show w, (L1 @ ... ® L,) = ﬁ wr(L;); ie.,
w;i(L1 @ --- @ Ly) is the i-th elementary symmetric function of the e(L;). %:r%)m the proof

of the projective bundle theorem, we have

ﬁ e(O(1) & f*L;) =0
j=1
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and e(O(1) ® f*L;) = (e(O(1) — f*e(L;)) - unit.
Therefore, ﬁ (& — f*e(Lj)) = 0, which proves 2.
j=1
4. and uniqueness are similar. O

Let C C N(pt) be the subring of N(pt) generated by the coefficients of the formal
group law F.

Theorem. Let E, E' be the vector bundles over X of dimension n and m, respectively.

Then there exits a power series ®; € C[[x1,...,Tn,Y1,.-.,Ym]] such that
wi(E®E) =@ (wi(E),...,w,(E), w1 (E),...,wn(E"))

Proof. Let 7 : X — X be a map sucht that 7*E = @, L; and 7*E' = @jL, L. Then

m*w,; (E® E') = w;(®L; ® L)
= [[w-(Li® L))
= H(l + 7e(L; ® L))
= H(l + 7F(e(Li), e(L}))).

The power series [[(1 + 7F(Z;,¥;)) is symmetric in Z1,...,Z,, so by the symmet-
mn .
ric function theorem, it can be written as )7 721, .. Ty Yis - - -, Um) Where z; =
1=0
> Zj ---xj. Similarly the power series is symmetric in = yi,...,Ym,
L
71 | ‘J . 7 7
soitis Y ®i(x1,...,Tn, Y1, ,Ym), Where y; = > g, - Yj,- O
i=0 J1<<gi

Corollary. Let E be an n—dimensional vector bundle over X. Then there exists a power
series W, ; € Ol[x1, ..., 2n]] such that wi(AN'E) =V, (w1 (E), ..., w,(E)).

Corollary. Let E be an n—dimensional vector bundle over X, and L a line bundle. Then

there exists a formula e(E ® L) = e(L)" + 3 aq(e(L))w(E)*, where o = (aq,...,qn),
a>0

w(E)* = wi(E)* ... wy(E)* and ay € C[[z]].

The corollaries are proved similarly to the theorem.
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Chapter 8
Steenrod Operations in Cobordism

If X and Y are two left G—spaces, let X X Y be the orbit space of the action g(x,y) =
(gz,gy). If X is a right G—space, it can be made into a left G—space by gr = zg~!. In
this case X xqgY = X xY/(zg,y) = (x,9y). If G acts freely on X x Y, then X x5V is
a manifold.

Let Zy act trivially on X, by antipodal action on S”, and by interchange on X2 =
X x X, ie., o(x1,22) = (z2,71). note that Zy acts freely on S™ x X2 so that S™ xz, X?
is a manifold. S™ x z, X2 is a fibre bundle over S"/Zy with fibre X?2.

The square

S"x X2 ——= S" xz, X2

l |

St > S"/7, = RP"
is cartesian.
Define the external Steenrod square Pey : N(X) — N%(S™ xz, X?) by the following:
if [Z -1 X] € Ni(X), let f2 be (idgn, f2)/Zs : S X7, Z% — 8" x ZoX2. Let Puy|Z —1»
X] = [$" xz, 22 1 57 x5, X2.
To see that Py is well-defined, think of X — N (S™ xz, X2), f — f2 (for f proper)
as a theory with N as the universal example.

If
X —> X

|

Y —>Y
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is transversal cartesian, then

X/2 - X2

|

Y/2 < Y2
is transversal cartesian, so

S™ X7 )(/2 — S" X X2

l l

S™ X7 Y/2 — S" X Y2

is transversal cartesian. We can then check the axioms of chapter V and conclude that

there exists a unique map Pey : N(X) — N(S™ xz, X?) such that
i Peotfs = f2Peat

ii. Pegtf* = f2Pext

i, Pugely = lgn x7, Ly.

Now let Ay : X x X2 be the diagonal which is Zs—equivariant so it induces A x 1 S" %z,
X =RP"x X — S"xgz, X2. The internal Steenrod square P : N'(X) — N%*(RP"x X)
is defined by P, = Z}Pemx. If we move A x to d ~ A x and transversal to fQ (where
f:Z — X) and form the pull-back W :

W > 8" xg, Z°

et
d
RP" x X ——2 8" xz, X?
/A\X'Q
, then P[Z AN X] = [w — RP™ x X]. The map d is analogous to the diagonal approxi-
mation in classical theory. Note Pf* = (1 x f)*, but Pf. # (1 x f).P.
Recall N(RP" x X) = N(X)[v]/v"*! = 0, where v = egpn(O(—1)). Thus P, =

n .
> (Sgz)v'. This decomposition is compatible with n as it approaches oo, so we obtain

i=0

well-defined operations Sy, : N7(X) — N%71(X) for i > 0. The S,, are natural with
respect to f*. The Steenrod operations in unoriented cobordism theory Sy : NI(X) —
NITY(X) are defined by S,z = S,z if € N*(X). The S, satisfy the following

properties:
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1. S,f* = f*Sy

2. S

4T =0fori>degx

3. Sqi is additive

4. The S, satisfy the Cartan formula:

Sr(zy) = Z Syi(z)Si(y).

it+j=k

In general, however, Sy # 1 and Sgi # 0 for @ < 0 in obvious contrast to the Steenrod

squares in Zg—cohomology.
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Chapter 9

Clean Intersections

Let Y,Z C X be closed submanifold. Y and Z intersect cleanly if W =Y NZ is a
submanifold and, for all w e W, T,, W =T, Y NT,, Z.

Examples.
1. ZCcY cCX.
Y
X= R
2. Two curves in R3
if we have a clean intersection
5% AN Z
I f
Y —> X

9

we define the excess bundle E — W to be the vector bundle with fibres E,, = T, X /(T Y ®
TwZ).
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Theorem (Clean intersection formula). If

g/
W ——=

A
f! lf

Y —— X
g

is a clean intersection with excess bundle E — W, then, for all z € N(Z), g*fz =
file(E)g™2).

Proof. Let s be a generic section of E, i.e. s: W — FE is transversal to the zero section,
and let wg = s~10. Move g to § transversal to f to obtain the diagram (we construct §

explicity later):

9
Yy —2X

g
in which the triangles, the outer square and the inner square commute, and the outer

square is transversal cartesian.

g fiz =gfsz since g >~ ¢
= f0:90+% by tansversality
= flivi*g" 2 by commutativity

#Uxl g
= fule(E)g"2).

To construct g, note that in a neighbourhood of W, the situation is diffeomorphic to

w "wez z

| |

- >
Twey Twey @Twez @ E (0,2,0)

Y ~ (y,0,0)

Let p:r — R be 1 on W and 0 outside of some neighbourhood of W. Define

wcy
PiTwey = Twey @Tywey @ E by g(y) = (y,O,p(y)S(ﬂ'y)). Then g(z) = Wo.
]
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Example. Let ¢ : Y <— X with normal bundle r. Then

Y:Y
Y —> X

(2
is a clean intersection with excess bundle r. Hence i.i*y = e(r)y.
We generalize the notion of a clean intersection by defining clean squares. A square

(with f proper)

!

X 4 x
1
y sy
is clean if it is cartesian and

TI/X/ _— Tg/x/X

l l

/
Tf/x/Y EEEE— ng/x/Y
is cartesian; i.e.,

0 _— Tm/X/ _— Tf/x/Y/ EB Tg’a:’X —_— ng/x/Y

is an exact sequence of vector spaces. Define the excess bundle of a clean square, F, by
E, = ng/x/ (Y)/(dng/x/Y/ + dng/xX).

Theorem. For clean square with excess bundle E, g* f.x = flL(e(E)g™*x),x € N(X).

Proof. Left as an exercise. Factor g and f into embeddings followed by submersions. [J

Example. The square



(i the zero section) si clean. f*i,xz = j.(e(Q)g*z), where @ is the excess bundle. The
tangent bundle along the fibres of g is Hom(O(—1), E/O(-1)). @ is g*E/O(-1).
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Chapter 10

Determination of N*(pt): 1

N*(pt) = Bn<m N"(pt), where N"(pt) = cobordism classes of (—n) — manifolds Z —
pt. Recall that C' C N*(pt) is the subring generated by the coefficients of the formal
group law (or equivalently by the cobordism classes [P" — pt| and [H,,, — pt], where

Hp,, CP™ x P" is the hypersurface of degree (1,1) ).

Theorem. C = N*(pt).

Proof. By induction we can assume that C~% = N~%(pt) for i < n. Let [Z" iR pt] €

N~"(pt) and factor f into a embedding followed by a projection i.e.

Zn L s x = gnim

is a clean intersection and the diagram:

0—>T2 — 2257, (22 =T(2) @ To(Z) — > T.(Z) —> 0

; . |

0 —> T.X — X5 7, (X?) = T(X) @ To(X) ——> TL(X) —> 0

(@p) ———~a-f
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has exact rows, injective columns, and cartesian first square, so the sequence
0 —T(Z)—T.(X)eT.(2)T.(Z2) — T (X)) T,(X) — T.(X)/T.(Z) — 0
O

is exact. Hence the excess bundle of the clean intersection above is just the normal
bundle of i, r;. Letting Zo act on this intersection, we have the generator o of Zy acts as

—1 on v;. The square

RP" x Z —22 5 §" x5 7°

J/i ?ZL
RP" x X _Ax S™ %z, X*
is clean with excess bundle E = O(—1) K r; = priO(—1) @ prir;. The clean intersection
formula gives
Aty =ix(e(0(=1) M) A)
for v € N(S™ xz, Z?). if v = 1, El = P.y(ix1) and Z;ﬁf, where P.;; and P are the

external and internal Steenrod operations. Hence P(ix1) = i.e(O(—1) ® r;) where i =
id x i : RP" x Z — RP"™ x X. If v = Pga(g«1) = g1, for g : W — Z, we have

Sm X7 W2

B
Ss" X Z2
-]
RP" x X —2X 5 g, X2
SO
Pi W -4 Z] = P(i,g.1)
~ —2
= Ak (ig),1
= A%igil
= 7. (e(O(—1) K r) ALG1) by clean intersection formula
= 0. (e(O(-1) R ry) P[W L Z].

Therefore, for all z € N(Z), P(ixz) = ix(e(O(—1)Xr;) Pz) (this formula is clearly valid
for any embedding 7).
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Let j : pt — X. then P(j.a) = j.(e()(=1)®7j)P,), a € N(pt). Let v = e((0O—1)) €
NYRP™); r; si trivial of dimension n + r. Thus e(O(—1) K r;) = e(pr; x O(=1)"") =
(priv)™*" where pri : RP™ x pt — RP"™. Hence P(j.a) = (pri)"*"j.Pa, where j :
RP" x pt — RP™ x X. Recall p: X — pt so p = idrpn X p: RP" x X — RP" X pt
and pj = id, so P, P(j.) = (priv)"*" Pa.

Leta:f*lz[ZLpt]. NoteZLptLXishomotopictoz’:Z—>XifrZ1,
so that 7 is not onto. Then ( here pr; : RP™ x pt — RP™ is a diffeomorphism so we
identify RP™ x pt and RP™ under it):

(priv)" " P(fu1) = puP(jsfi1)
— 5. P(i.1)
= pyixe(O(—1) X ry)
= Fee(0(-1)81)

In the preceding, we could replace pt by a manifold Y and X by Y x sphere. We state

this generalization as a proposition an leave the proof as an exercise).

Proposition. Let f : Z — Y be a proper map factored as Z 5 Y x §ntr 2 Y,
r >~ Z. Then

(priv)" " P(fiz) = fo(e(O(=1)) @ i) Py).

Recall that e(L ® E") = e(L)" + 3 aq(e(L))w(E)*, where a, € C[[z]]. Then
a>0

e(O(=1)Xr;) = e(priO(—1) @ prir;)

= (priv)" + ) priaa(v)pri(w(r:)®).
a>0

where pri : RP™ x Z — RP™ x pt, we identify RP™ x pt with RP"™ to get f = pri. Hence

Fe(O(-1)Bry) = 0" fl+ 3 aa(v) fulw(r)®), (10.1)

a>0

because

RP" — " st
is transversal cartesian and everything is considered as an N (pt)—module, so we omit pi*
in (10.1).

50



Now we have v" " P(f,1) = v’“f*l—i—az;o aa (V) f(w(r;)®) in N(RP™) = N(pt)[v]/(v"1).

Hence v" 7" P(fu1) = v"fil + 52 3 caiv® fu(w(r;)®), ca, € C. by the induction assump-
a>01:<

tion, fu(w(r;)®) € Nlel=n(pt) = Clol=". Setting r = n, v = 0, and, looking at the

coefficients of v™ we see f,1 € C'. Completing the induction.
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Chapter 11
Characteristic classes in cobordism

Let X be a manifold with a finite number of components for simplicity. Vect(X) is the
set of isomorphic classes of real vector bundles over X; it has the structure of an abelian
monoid under direct sum. Vect(X) — KO(X) is the universal map to an abelian group.
let H°(X;Z) b the ring of locally constant functions on X with values in Z. Define a map
rank= 1k : Vect(X) — HY(X;Z) by 1k B(X) = dimg Ey.

Then rk extends to KO(X) :

Veet(X) —= = HO(X;7)

N S

KO(X)

Let KO(X) be the kernel of rk, so

rk

0—> KO(X) ——— KO(X) CHY(X;Z) —> 0

~_
since, given f € HO(X;Z) written in the form f* — f= where f*(x) € Z{, the one
can construct a trivial vector bundle over each component of X with rank f*(z) at x
(similarly for f7), which shows rk is surjective and the sequence splits. Hence KO(X) =
KO ® H(X;7Z).

Another interpretation of I/(\é(X ) when X is a manifold (or more generally when every
vector bundle can be imbedded in a trivial bundle) is the following: two vector bundles
E,E' are stably isomorphic if there exist bundles F, F’ trivial over each component of X
such that E® F ~ E' @ F'. Then KO(X) is the set of stable isomorphism classes. It is
an easy exercise to show KO(X) is a group under ® whit this definition.

A characteristic class is a natural transformation from Vect to N*.
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Examples.

1. Stiefel-Whitney classes w; : Vect(X) — N(X)
wif*E = f*wiE.

2. The total Stiefel-Whitney class w; : Vect(X) — N*(X)[t], where we take the degree
of 7 to be —1. w,(E) = S w;(E)7" is a polynomial, natural in F, with the following

property:
w(E® F) = w.(E)w,(F). (11.1)

A characteristic class satisfying (11.1) is an exponential characteristic class. Since
w;(F) € Ni(X),i > 0, in nilpotent (N*(X) = 0 for i > dim X), w,(E) = 1+ nilpotent

so it is a unit.

KO(X) > U(N*(X)[r])

w; is thus a homomorphism of Vect(X) into the units of N*(X)[r] so it extends to
KO(X). Since w.(E) = 1 if E si trivial on each component, w, : KO(X) —
UN*(X)[7])-

3. Let 7 = 11, m,... be sequence of indeterminants. We will define a characteristic class
wr KO(X) — N*(X)[r1,79,...] = N*[z] satisfying

i. w(E®F)=w;(E)w:(F), and
ii. for a line bundle L, w,(L) = ioj re(L)!, where tg = 1.
- =0

By the splitting principle, w, is uniquely characterized by these properties. Suppose
dim E = n, E a vector bundle over X, then N*(PE)[r] is a free N*(X)[r]—module of
rank n with basis 1,&,...,&"L, where ¢ = ¢(O(—1)). We define Norm : N*(PE)[r] —
N*(X)[z] by: Norm(X) is the determinant of the endomorphism y — zy of N(PE)[r]

as an N(X)[r]-module. Let w,(E) = Norm(io: 7:£%) where ¢ = e(Opg(—1)). Using
=0
N( ﬁ Xi) = ﬁ N(X;), we extend the definition to vector bundles of arbitrary rank.
i=1 i=1

For property ii., PL = X, O(=1) = L, so w,(L) = .2, r;e(L)".
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For property i.,

PE

gives an exact sequence,
0 — N(PF) 5 N(P(E ® F)) - N(PE) — 0

(for dim F' = 1, this was proved earlier; one can either reduce to this case or check that

the earlier argument extends).

Let ¢-(§) = "

multiply by ¢, in N(P(E ® F))[z] |
0 0

mult by ¢ (€)
det — det < mult by ¢, (¢) in NPESF))[r] * > _
)

in N(P(E ® F))[z 0 mult bye,(¢) in N(PF)[7]

mult by ¢-(&) mult by ¢- (&)
= det det

in N(PE)|z] in N(PF)|z]
which proves wiqu(E @ F') = w,(E)w,(F). (This passes over the work involved with

N(PF) — N(P(E @ F)), but it is not too dificult).

Let o = (a1, 9,...), a; > 0 € Z with almost all o; = 0. Let |a] = Y ia;. Give
i>1

the 7; degree —i in N(X)[z], and let 7@ = 7752 .... Then w,(E) = 3 7%wy(E),
a>0

we(E) € Nl*l(X).

Remarks.

L owqp,. (E) = wi(E).

2. wa(EDF) = m;:a wg(E)wy(F)

3. wo(E) = Py(wi1 E, waFE,...), where P, € Zs|r,...]
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P, is a universal polynomial since, if £ = L1 ®---® Ly, wr(E) = [[wr(L;) is a symmetric

function of the e(L;), so can be written

wr(E) = Z TYPo(wi B, ... ,w, E).

a>0
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Chapter 12
Landweber-Novikov operations

Theorem. There exists a unique operation sy : N(X) — N(X)[r] such that:
i Srf* = f*s;.

ii. sy fix = fu(we(vy)srx) for f proper, vy = f*T, — T, € KO(X).

1. Sy 18 a ring homomorphism.

w. sre(L) = § Tie(L)TY, for a line bundle L.

J=0

Clearly i., ii., and iv. characterize s; and thus impy iii..

Define s, by s,[Z % X]| = s,g.wy(ry). To show s, is well-defined by this formula

and to establish i. and ii., we use the universal property of N [Quillen thinks of N as this

universal object; the significance of this viewpoint will be established by proofs using it

and especially in later chapters].

Put f' = f* : N(Y)[r] — N(X)[z] for arbitrary, f : X — Y, and fi(x)

fe(wr(ry)x), so fi : N(X)[r] — N(Y)[r] for proper f: X — Y.
We check the axioms: that f'g' = (¢f)"; id' =id, f ~g = f' = g'is clear.

X 1y 7 are proper maps, note v,y = f*vy + vy, so

91/1(x) = ge(wr(vg) fi(wr(vy)x))
= g [+ ([ wr(vg))we (vf))
= (9)«(wr(vgs)x)
= (9/ )z

o6



and clearly idy = id. Given a transversal cartesian square
X 25X
I
y sy
we have (¢')*vy = v this is clear for f a submersion and for f an imbedding by transver-

sality Any f factors into a submersion followed by an imbedding. If f is proper,

g'fix = g* fulwr(vy)z)
= fig" (w(vy))
= filwr(v)g"z)
_ .’g”x.
Since the axioms hold, there exist a unique s, : N(X) — N(X)[z] such that
ios.f*=f's,
ii. s;f« = fls; and

il splpe = 1pg,
given by s,[Z < X] = g1z = g.(w(vy))-
To prove iii. it suffices to prove it for the external product X.
Let f: X — Y and f': X’ — Y’ be proper maps; then
se(fil W fil) = s:(f x f).1
= (f x f1)e(wr(vpxsr))
= (f x f)s(we(privy @ privy))
= (f x falpriwc(vy) - priwe(vp))
= fawr(vy) B flwr (vp)
= s, fx 1 R s, fil.

For iv. let ¢ : X — L be the zero section, v; = L and i*i,1 = e(L).

sre(L) = i"s7iyl

= i (i05 ()

=i*i, (> _tje(L))

320

— S tje(L)

J=0
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We can write s; = > t*s, as before, then s, fil = fiwa(vy).
- a>0

The s, : N7(X) — Nitlel(X) are called the Landweber-Novikov Operations.
If we think of 7 of consisting of generic elements of N (X), s, becomes an endomorphism
of N(X). s; can then be taken to transform a complicated formal group law into a simpler

one. We do this in the next chapter.
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Chapter 13

The Lazard ring and N(x)

Let A;; denote indeterminants, and let F, = ZAijxiyj be a formal power series. The
Lazard ring, Laz, is the Zg-algebra Zs[A;;]; j>0 modulo the ideal generated by the coeffi-

cient of the following power series:

Fu(z, Fu(y, 2)) — Fu(Fu(z,y), 2)
(z,y
(z,0
Fu(

xz,

Fy
Fy

) —
) —
m 957y)

Thus Laz is provided with a natural formal group law F), (the universal formal group

law) such that given any Zs-algebra R,
Homg, _q4(Laz, R) = {F € R[[z,y]]/F is a commutative formal

group law of height oo; i.e. F(z,z) = 0}.

We call the latter set F(R. Let g(R) be the group of formal power series 3" ;5o r;t/
with rg = 1, r; € R, under composition g(R) acts on F(R) by the formula: let f € g(R),
F € F(R), the (f x F)(z,y) = f(F(f 'z, f~'y)). We have a group acting on a set, so
we can make te set into a category with morphisms elements of the group. This category
dependes on R.

Let R be a Zs-algebra and a : Laz — R a homomorphism (there is a unique F, €
F(R) corresponding to a). Let a : Laz — N(pt) be the homomorphism carrying F), into
F| the formal group law of N(pt).
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N(X) ————> R Qra, N(X)
Let Ng(X) denote R ®pa, N(X). If f: X — Y, let

P iNg(Y) — No(X) :r®@ — r® fry.
If f is proper, let
fsNo(X) — No(YV) :r @2 — 1 ® fox.

Then N, is a functor on manifolds with Gysin homomorphism and products. In particular
we have Euler classes for line bundles: e,(L) = 1 ® e(L).
The formal group law over N, (pt) describing e, (L ® L) is clearly 1 ® F = F, ® 1 so,
identifying r ® 1 with r, we have e,(L ® L) = Fy(eqL,e,L’).
Suppose we are given a power series ¢(t) = ;0 rit’ ™t € g(R),ro =1 and rj € R.
7>

Theorem. Given ¢ € g(R), there exists a natural transformation @ : Ng(X) — Np(X)
such that:

i. @ 1s an R-linear ring homoprohism;

ii. pleal) = Y ri(epL)H = @(eyL) for L a line bundle, and
320

iii. Fo(z,y) = @(Fy(p~2, 07 1y).
Proof. Let §: N(X) — Ny(X) be the ring homomorphism such that 5(z) = > r%ss(z).

N(X) Z— > N(X)[] %z
e | |
Ny(X) = R @pag N(X) rez

BleL) =Y sorjen(LY ! = p(epL), since sr(eL) = Ym0 tje(L) .
varphi(Fy(epyL, epL')) = ¢(ep(L @ L))

(e(L® L")

(F(eL,eL)))

= (BF)(B(eL), B(el’)) = (BF)(pesL, perL’).

g
g
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Hence (BF)(x,y) = p(Fy(¢ 1z, 1y)). We have established that the diagram:

Laz ——> N(X) —=—> N(X)[z]
a Na(l')\
R / \\ng(X)

commutes. This implies there exists a unique homomorphism ¢ : R®p,,N(X) —
Ny(X) such that ¢(r ® ) = rfz. ¢ is a ring homomorphism since [ is, and R — linear.
¢eal = p(1®el) = f(eL) = p(eL)

peqaL, peg L)

—~~

= F,(pepL, pep L)

Apply thisto L = priO(1), L' = pr5O(2) on RP" xRP™ and use that N,(RP"xRP™) =
Ny(pt)lesL, epL']/(ep(L)™, en(L)™). (freenes of Np(RP™)) is guaranteed by Np(X) = (R®Laz
N(pt)) @npry N(X)]. Hence Fu(x,y) = o(Fy(¢ ™'z, 07 1y)). O

N(X) — = N(X)[z] —2%—= N(X)[t,u]
Define v; € Zo[r1, ..., Tiyu1, -+ ,u;] by

Z v T = Z T o Z u, TF+
= Z tj(z uka'H)j'H
Forming a few v; integrally we get
vg =1
v =ul + 1

v = U2 + 2urt; + 12
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Proposition. With v = (v, v, --) as above, 5,5 = Sy, i.€.
SuStT = Z uﬁsﬁ(z t%SaT)
= Z uPts s is equal tos,r = Z v(u,t)7sy ().

Proof.

Sustfel = sufe(we(vy))
= fe(wu(vy) - swwi(vy)),
sufil = fu(wy(vy)),
so it suffices to show wy(E)s,wi(E) = wy(g) for any vector bundle E. Since both sides

are exponential characteristic classes, it suffices to check equality for line bundles L by the

splitting principle.
wy(L)sywi(L) = (3 uie(L)")su(D_ tje(L))
= (D_wie(L))(Q_ tjsule(L)))
= (Q_wie(L))(Q_t; (D wie(L) 1)),
wy(L) = kae(L)k.

We need only to show the equality of the power series 3" v, 7% and (3 w; T%) (3 (3 u THH)9).
Multiplying these by 7', we get 3" vTF1 and S¢;(3 w;,TPF1)7+1 which are equal by
the definition of v. O

Theorem. Given p,¢ € G(R), Fy, Fy, F. € F(R), such that F, = ¢ x F,, F, = ¢ * Fp,
then the diagram

commautes.
Proof. Immediate from proposition. ]
Corollary. ¢ : No(X) — Ny(X) is an isomorphism.

Proof. (¢™1) : Ny(X) — Na(X) and (97 1) = (p¢™!) = id = id. O



Chapter 14

Determination of N*(pt): II

We assume, for the moment, the following proposition.

Proposition. Given a formal group law F(x,y) over a Zs—algebra, R such that F(x,z) =
0 there exists a opower series l(z) = Y riz'™ rg = 1, r; € R, such that [(F(z,y)) =
>0
l(z) + U(y).
Furthermore, 1 is uniquely determined by the requirement that it have no terms of

degree 2", r > 1.

The unique series of the proposition is the canonical logarithm. The proposition gives
a 1-1 correspondence between formal group laws F' over R and their canonical logarithms

because F(z,y) = 1"1(1(z) + I(y)).

Theorem. Let ¢ : Laz — N(pt) be the homomorphism sending F), to F, and let | =

ZCLjTj+1 be the canonical logarithm of F'. Then there is a natural isomorphism of rings
Laz ®g,(Zy ®pay N(X)) — N(z)

given by
m® (1®z) — c(m) Z a®sq ().

a>0
Proof. Let b=1id: Laz — Laz; € : Laz — Zo be the augmentation; and a : Laz — Laz

be the composition

Laz —— Zs — Laz.

Then F, = F, and F,(z,y) = = +y, and | x F, = F,. Hence [ : N,(X) :— Ny(X).

63



N,(X) = Laz @N(X)

= (Laz ®7Zs) ® N(X)

= Laz ®(Zs ® N(X))
Ny(X) = Laz@N(X) = N(X).

More explicitly:

L @Laz N(X) -----> N(X)

Where i is universal for F — z +y and j : 3. ;79T — [(T), ie. tj — aj.
Jjsi gives N (X)) new “additive” Euler classes. Zo®ra, N (X) is N(X) modulo coefficients
of higher order terms of the formal group law (of degree ;1)]. Now extend the dotted arrow

linearly over Laz by means of ¢ : Laz — N(X).

L3 @Laz N(X) —— N(X)

Laz ®7, (Z2 ®1ay N (X))

By the above, it is an isomorphism, and, clearly,

m® (1®z) — c(m) Zaasa(w).

Theorem. Laz — N(pt).

Proof. We have Laz ®z,(Z2 ®Las N(pt)) — N(pt), but by Chapter X, Laz — N(pt) is
surjective S0 Zy ®ra, N(pt) = Zz. This shows that the law F' over N(pt) is the universal

formal group law which is commutative of height oo O

The preceding can be carried through for graded rings with all isomorphisms preserving
grading. By the proposition we assumed at the beginning of this chapter, Laz is actually
a polynomial ring Zs[a,] with n > 1,n # 2/ —1,j > 0, where a,, are the coefficients of the

canonical logarithm of F'.
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Remark: for even n, the x,, are the classes of the RP™.
Theorem. Zy @ y(p) N(X) = H*(X;Z).

Proof. We have a unique map N(X) — H*(X;Zy) commuting with f,, f* because of the
universal property of N. The isomorphism constructed above Laz ®7, (Zo @14, N (X)) —
N(X) is compatible with suspension and shows that the generalized cohomology theorey
N(X) is a direct sum of copies of Za @y () N(X), so, since any direct summand of a
generalized cohomology theory is again a cohomology theory, Zs @y N(X) is. But
X = pt, Lo @npey N(pt) = Za, 50 Ly @n(pey N(X) satisfies the dimension axioms. Hence
by the Eilenberg-Steenrod uniqueness dimension theorem Zg ® ey N(X) — H* (X, Zs)

is an isomorphism. O
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