

## Week 8, Due Fri 11/21

1. Spivak, Chapter 9, Problem 5, 8, 19, 27
2. Assume that  $f(x)$  is a function with the following two properties:
  - (a)  $f(x+y) = f(x)f(y)$
  - (b)  $f(x)$  is differentiable at  $x = 0$ .

Prove the following:

- (a) If  $f(0) = 0$ , then  $f(x) = 0$  for all  $x$ .
- (b) If  $f(0) \neq 0$ , then  $f(0) = 1$ .
- (c) There is an equality  $f'(x) = f'(0)f(x)$ . Hint: use that

$$f(x+h) - f(x) = f(x+h) - f(x)f(h) + f(x)f(h) - f(x).$$

3. Let  $f(x)$  and  $g(x)$  be two functions which are infinitely differentiable. Let  $e(x) = f(x)g(x)$ .

- (a) Prove that for all integers  $n \geq 0$ , we have

$$e^{(n)}(x) = \sum_{k=0}^n \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x). \quad (1)$$

- (b) Let  $a, b \geq 0$  be integers. Specialize the identity (1) to  $f(x) = x^a$  and  $g(x) = x^b$  and  $n = a + b$  and prove directly that both sides are the same. (You may use Spivak Chapter 9, Problem 27.)