Week 7, Due Fri 11/15

1. Prove — with full details using ε s and δ s — that

$$\lim_{x \to 1} x^2 = 1.$$

- 2. Write down a set of numbers A with all of the following properties, and justify your answer:
 - (a) $\sup A$ exists and is not in A.
 - (b) $\inf A$ exists and lies in A.
- 3. For each of the following conditions, determine whether or not such an f(x) has to be continuous at x = 0 or not:
 - (a) $\exists \varepsilon > 0, \forall \delta > 0$, if x satisfies $0 < |x| < \delta$, then $|f(x) f(0)| < \varepsilon$.
 - (b) $\forall \varepsilon > 0, \forall \delta > 0$, if x satisfies $0 < |x| < \delta$, then $|f(x) f(0)| < \varepsilon$.
 - (c) $\forall \varepsilon > 0, \exists \delta > 0$, if x satisfies $0 < |x| < \delta$, then $|f(x) f(0)| < \varepsilon^2$.
- 4. Let f(x) be a continuous function on **R** satisfying f(x+1) = f(x) for every x. Prove that f(x) is bounded on **R**.