$$\begin{split} & \mathsf{Convexed}_{\mathsf{conflox}} & \mathsf{conflox}_{\mathsf{conflox}} & \mathsf{conflox} & \mathsf{conflox}_{\mathsf{conflox}} & \mathsf{conflox}} & \mathsf{conflox} & \mathsf{conflox}} & \mathsf{conflox}_{\mathsf{conflox}} & \mathsf{conflox} & \mathsf{conflox} & \mathsf{conflox} & \mathsf{conflox}} & \mathsf{conflox} & \mathsf{conflox} & \mathsf{conflox} & \mathsf{conflox} & \mathsf{conflox} & \mathsf{conflox}} & \mathsf{conflox} & \mathsf{conf$$

Remark: for every n >2 there entits a complex tons M= C / (R-span of an IR-ban)

which has no hyperonefaces at all and so
$$Cl(M)$$
 is finial in that case.
Yet $P_ic(M)$ can be shown to be nonzero (it contains a copy of the dual of M)

We call
$$\int c_i(\mathcal{I})^n$$
 the degree of \mathcal{L} , denoted deg(\mathcal{L}).
M

Basic fact: $\Gamma(M, \mathcal{L})$ (= space of hol. of sections of \mathcal{L}) is finite dimensional Assume M connected and $\dim_{\mathbb{C}}\Gamma(M, \mathcal{L}) \ge 1$, Let $(\sigma_0, ..., \sigma_{\mathcal{H}})$ be a basis of $\Gamma(M, \mathcal{L})$. Put Fix $(\mathcal{L}) := \{ x \in M : \sigma(n) = 0 \quad \forall \sigma \in \Gamma(M, \mathcal{L}) \}$ $= \{ x \in M : \sigma_i(n) = 0 \quad \forall \sigma \in \Gamma(M, \mathcal{L}) \}$

2

This is a closed analytic subset of M, $\operatorname{Fin}(\mathcal{L}) \neq M$. Collect all the ineducible importents of $\operatorname{Fin}(\mathcal{L})$ of codin 1 and hid a divisor $\mathbb{D} \geqslant 0$ such that $\operatorname{div}(\sigma) \geqslant \mathbb{D}_{0}$ for all $\sigma \in \Gamma(M, \mathbb{L})$ and which is maximal for this property. The obvious inclusion of $\mathcal{L}(-D) = \mathcal{L} \otimes \mathcal{O}_{\mathrm{ph}}(-D)$ in \mathcal{L} then induces an soon. On Γ , but $\Sigma(\mathcal{L}) := \operatorname{Fin}(\mathcal{L}(-D))$ is of codin $\geqslant 2$ everywhere.

 $2(I):= in(\alpha)$, is of a mapping, and this gives a well-defined map we can unde $\tau_i = h_i \sigma_i$ with h_i meromaphic, and this gives a well-defined map

 $\underline{F}_{g=}[\mathcal{L}] : M \setminus Fin(\mathcal{L}) \rightarrow n \mapsto [\sigma_0(n) \dots \sigma_{\overline{d}}(n)] = \mathbb{E}[:h_1 \dots h_{\overline{d}}] \in \mathbb{P}^d$ By viewing the $\sigma_{\overline{i}}'s$ as seehens of $\mathcal{L}(-D)$, we see that this may extends one $M \setminus \Sigma(\mathcal{L})$, shot is, in codim ≥ 2 .

Note that if D=0 ("I has no tried dissors"), then Ex records all the possitive divisors of I: each of these is the pull-back under Ex of a hyperplane in IP^d. So we always have a bijection fdivisors >0 for I) \longleftrightarrow pd (more interstably IPH°(M,X)) D \longrightarrow hyperplane defining D-Do The left hand side has therefore the similar of a projective opace; it is called

the complete lunear system defined by L.

I special interest: L = top exterior power of the holomorphic stargent bundle, also denote Ω_{M}^{n} This is called the <u>Canonical bundle</u> of M. Its amplete linear system is called the <u>Canonical system of M</u>.

Det. Lis very ample if Eye is an embedding
Lis ample if Eyeer is an embedding for some
$$r \ge 1$$

B. Lample implies that M can be realized as a closed analytic subset of some
some projective space. By a theorem of Chaw, M'v then andonalizedly
Davisch dosed. This makes M a complex projective manifold. Chow is there
also mythes that if two complex proj manifolds are bothelemorphic, then they
are isomorphic as algebraic variaties. So M is then a proj manifold in a
unique way.
We say that M is a Favo mailed if is anticanonical budle is ample.
Basic example: P' is a favo variety. Its degree is (mat).
In fect its anticanonical system consists of the hyperstrates of degree not.
For n=2 this is the lin system of abic curves
$$P^2 \subset P^2$$
 [Zo:Z;Z] is [Inon. of degree s] has degree g.

For n=2 this is the hin. system of arbic curves

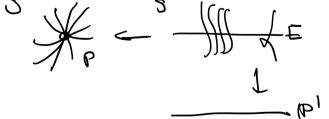
$$P^2 \longrightarrow P^9$$
 [Zo: Zi: Zi] in [mon. of degree 3] has degree 9.
Invar system of entre curves

In dimension 1, P' is in fact the only example: if C is a compact conn. Rremann surface of germs g, then the canonical bundle of C, S_{c} is ample for $g \ge 2$ and its almal, the sheaf of holow. Vector fields has no section $\pm \alpha$. For g=1both bundles are mind (home not ample). Para Burtace Most of

Let us see what the effect of blowing up a point is on the anticanonical system. f 1st Janol

S a complex surface, per
$$\hat{S}_{2} = Blp(S) \xrightarrow{T} S$$
. E exc. come of 1" kind
 $E = P^{1}$, $ErE = -1$.
If ω is a 2-form on S with $\omega(p) \neq 0$, then $\pi * \omega$ is a 2-form in \hat{S} which
remistres with order 1 along E . So $\Lambda_{\hat{S}} = \pi * Sc_{S}(E)$. Hence if we dealine

$$\begin{split} \Omega_{\tilde{S}}^{*} &= \pi^{*} \Omega_{\tilde{S}}^{*} (-E), \text{ and we find that} \\ \Gamma (\hat{S}, \Omega_{\tilde{S}}^{*}) &\cong \{s \in \Gamma (S, SZ_{\tilde{S}}) : s(p) = o\}, \\ Soft \Omega_{\tilde{S}}^{*} \text{ is very ample, then the antican. system of \hat{S} is a hyperplane \\ n the antican system of S_{-} The classification of Del Perro surfaces is then over by the foll. thus.$$



S K = S I F = If we blow up kun prom me J = ger an elliptre fibrahen which hers the I encepthenal dinsor E as a section

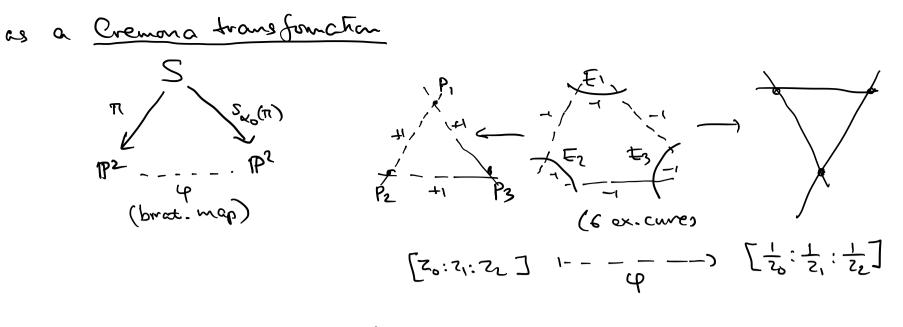
(4

Cohomological america Lot
$$p_{1}...,p_{r} \in \mathbb{P}^{2}$$
 and let $S \stackrel{n}{\longrightarrow} \mathbb{P}^{2}$ be obtained from bleming
up these points. We denote the corresp. enc. curves $E_{1}...E_{r}$.
They define classes $e_{1}...,e_{r} \in H^{2}(S)$. If $l \stackrel{n}{\longrightarrow} \pi^{*}(line \ in \mathbb{P}^{2}) \in H^{2}(S)$, then
 $(l_{j}e_{1}...,e_{r})$ is a basis of $H^{2}(S)$ whose intersection motion is $\begin{pmatrix} 1 & -1 & 0 \\ 0 & \ddots & 1 \end{pmatrix}$.
Then $\kappa := 3l - e_{1} - ... - e_{r} \in H^{2}(S)$ is the first class of the antricanonical bundle.
Note that $\kappa \cdot \kappa = g - r$. To $r \in S \cong \kappa \cdot \kappa > 0 \cong \kappa^{\perp}$ pos. definite.
If we assume $r \geqslant S$, then κ^{\perp} has basis
 $(l_{-e_{1}}-e_{2}-e_{3}, e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{r-1}-e_{r})$
 $\stackrel{n}{\approx} \stackrel{n}{\approx} \stackrel{n}{\approx} \stackrel{n}{\approx} \frac{1}{\kappa_{2}}$

These elements have the remarkable property that $\forall_i \cdot \forall_i = -2$ and for $i \pm j$, $\forall_i \cdot \forall_j \in \{0, 1\}$. We can make an intersection graph with vertices labeled by $\forall_{i-1}, \forall_{i-1}$ and vertex \forall_i connected with vertex \forall_j $(i \neq j)$ if $\forall_i \cdot \forall_j = 1$.

For $r \neq 3, 4, 5, 6, 7, 8$ kmi is the Dynkin diagram of $A_{1x}A_{2}, A_{4}, D_{5}, E_{6}, E_{7}, E_{8}$. To be precise, every $\alpha \in H^{2}(S)$ with $\alpha \cdot \kappa = 0$, $\alpha \cdot \alpha = -2$ determines on orthogonal reflection $S_{\alpha}: \kappa \in H^{2}(S) \longrightarrow \chi + (\kappa \cdot \chi) \alpha$ which there is the may regard the set $R_{S} \subset H^{2}(S)$ of such α as a root system (in some generalized sense); for $r \leq 8$ this set is thrike for $3 \leq r \leq 8$ of the type listed, whe $(\alpha_{0}, \dots, \alpha_{r-1})$ defining a system of simple roots and its Weyl group $W(R_{S})$ (= group generaled by the $s_{\alpha}'s$) is the $O(H^{2}(S))$ -stabilizer of its. Moreover, $W(R_{S})$ atto transitively on $E_{S}:= \{E \in H^{2}(S): E \cdot E = -1, E \cdot k\}$ ("podential enceptional classes")

and even simply transitively on the collection of outperformer (cp) (cp) (cp) are pairwise perpendicular:
$$\varepsilon_i \cdot \varepsilon_j = 0$$
 for all i, j .
Then For $3 \le r \le 9$, S is a del Perzo surface seach $\varepsilon_i \varepsilon_i$ is the class of an encephonod covere. If S is such a surface, then each encephonal sequence $(\varepsilon_{11}, \varepsilon_{1})$ defines a blow-down $S \longrightarrow S(\varepsilon_{11}, \varepsilon_{1}) \cong \mathbb{P}^2$ found so $W(R_S)$ permites these blow downs surface housingly). The reflection in $\exists_i (i=1,.,r_i)$ has merely the effect of renumbering (ε_i and ε_{irr} are enchanged), but do can be realized.



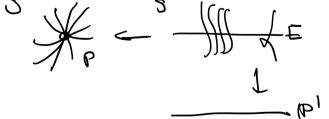
-4-

Cohomological america Lot
$$p_{1}...,p_{r} \in \mathbb{P}^{2}$$
 and let $S \stackrel{n}{\longrightarrow} \mathbb{P}^{2}$ be obtained from bleming
up these points. We denote the corresp. enc. curves $E_{1}...E_{r}$.
They define classes $e_{1}...,e_{r} \in H^{2}(S)$. If $l \stackrel{n}{\longrightarrow} \pi^{*}(line \ in \mathbb{P}^{2}) \in H^{2}(S)$, then
 $(l_{j}e_{1}...,e_{r})$ is a basis of $H^{2}(S)$ whose intersection motion is $\begin{pmatrix} 1 & -1 & 0 \\ 0 & \ddots & 1 \end{pmatrix}$.
Then $\kappa := 3l - e_{1} - ... - e_{r} \in H^{2}(S)$ is the first class of the antricanonical bundle.
Note that $\kappa \cdot \kappa = g - r$. To $r \in S \cong \kappa \cdot \kappa > 0 \cong \kappa^{\perp}$ pos. definite.
If we assume $r \geqslant S$, then κ^{\perp} has basis
 $(l_{-e_{1}}-e_{2}-e_{3}, e_{1}-e_{2}, e_{2}-e_{3}, \ldots, e_{r-1}-e_{r})$
 $\stackrel{n}{\approx} \stackrel{n}{\approx} \stackrel{n}{\approx} \stackrel{n}{\approx} \frac{1}{\kappa_{2}}$

These elements have the remarkable property that $\forall_i \cdot \forall_i = -2$ and for $i \pm j$, $\forall_i \cdot \forall_j \in \{0, 1\}$. We can make an intersection graph with vertices labeled by $\forall_{i-1}, \forall_{i-1}$ and vertex \forall_i connected with vertex \forall_j $(i \neq j)$ if $\forall_i \cdot \forall_j = 1$.

For $r \neq 3, 4, 5, 6, 7, 8$ kmi is the Dynkin diagram of $A_{1x}A_{2}, A_{4}, D_{5}, E_{6}, E_{7}, E_{8}$. To be precise, every $\alpha \in H^{2}(S)$ with $\alpha \cdot \kappa = 0$, $\alpha \cdot \alpha = -2$ determines on orthogonal reflection $S_{\alpha}: \kappa \in H^{2}(S) \longrightarrow \chi + (\kappa \cdot \chi) \alpha$ which there is the may regard the set $R_{S} \subset H^{2}(S)$ of such α as a root system (in some generalized sense); for $r \leq 8$ this set is thrike for $3 \leq r \leq 8$ of the type listed, whe $(\alpha_{0}, \dots, \alpha_{r-1})$ defining a system of simple roots and its Weyl group $W(R_{S})$ (= group generaled by the $s_{\alpha}'s$) is the $O(H^{2}(S))$ -stabilizer of its. Moreover, $W(R_{S})$ atto transitively on $E_{S}:= \{E \in H^{2}(S): E \cdot E = -1, E \cdot k\}$ ("podential enceptional classes")

and even simply transitively on the collection of outperformer (cp) (cp) (cp) are pairwise perpendicular:
$$\varepsilon_i \cdot \varepsilon_j = 0$$
 for all i, j .
Then For $3 \le r \le 9$, S is a del Perzo surface seach $\varepsilon_i \varepsilon_i$ is the class of an encephonod covere. If S is such a surface, then each encephonal sequence $(\varepsilon_{11}, \varepsilon_{1})$ defines a blow-down $S \longrightarrow S(\varepsilon_{11}, \varepsilon_{1}) \cong \mathbb{P}^2$ found so $W(R_S)$ permites these blow downs surface housingly). The reflection in $\exists_i (i=1,.,r_i)$ has merely the effect of renumbering (ε_i and ε_{irr} are enchanged), but do can be realized.



S K = S I F = If we blow up kun prom me J = ger an elliptre fibrahen which hers the I encepthenal dinsor E as a section

(4

B. Langle implies that M can be realized as a closed analytic subset of some
some projective space. By a theorem of Chaw, M'v then antomatically
Davisch dosed. This makes M a complex projective manifold. Chow is theorem
also mythes that if two complex proj manifolds are bothelemenphic, then they
are isomorphic as algebraic variables. So H is then a proj manifold in a
unique way.
We say that M is a Favo mailed if its anticanonical budde is ample.
Basic example: P' is a Favo variety. Its degree is Guets.
In feel its anticanonical system consists of the hyperstructures of degree not.
For n=2 this is the lin system of abic curves
$$P^2 \subset P^2$$
 [Zo: 7:72] in [mon. of degree s] has degree 9.

For n=2 this is the hin. system of a bic curves

$$P^2 \longrightarrow P^9$$
 [Zo: Zi: Zz] in [mon. of degree 3] has degree 9.
Invar system of entre curves

In dimension 1, P' is in fact the only example: if C is a compact conn. Rremann surface of germs g, then the canonical bundle of C, S_{c} is ample for $g \ge 2$ and its almal, the sheaf of holow. Vector fields has no section $\pm \alpha$. For g=1both bundles are mind (home not ample). Dans Burtaio Most of

Let us see what the effect of blowing up a point is on the anticanonical system. + 184 Janah \$ 00 (0) T. Q E

S a complex surface, pe S
$$\hat{J}_{2} = Blp(S) \xrightarrow{T} S$$
. E buc. come of I'' kind
 $E = P$
If ω is a 2-form on S with $\omega(p) \neq 0$, then $\pi * \omega$ is a 2-form in \hat{S} which
remistres with order 1 along E . So $\Lambda_{\hat{S}} = \pi * \Re_{S}(E)$. Hence if we dealine

$$\begin{split} \Omega_{\tilde{S}}^{*} &= \pi^{*} \Omega_{\tilde{S}}^{*} (-E), \text{ and we find that} \\ \Gamma (\hat{S}, \Omega_{\tilde{S}}^{*}) &\cong \{s \in \Gamma (S, SZ_{\tilde{S}}) : s(p) = o\}, \\ Soft \Omega_{\tilde{S}}^{*} \text{ is very ample, then the antican. system of \hat{S} is a hyperplane \\ n the antican system of S_{-} The classification of Del Perro surfaces is then over by the foll. thus.$$