

A **binary tree** is a rooted, planar tree such that every node has either 0 or 2 branches.

6

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Let *B* denote the set of all binary trees.

Every binary tree is either a single node or equivalent to an ordered pair of binary trees.

or $B \xrightarrow{\sim} \{*\} \sqcup B^2 \implies B \cong 1 + B^2$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへぐ

Recall that the sixth cyclotomic polynomial is $\Phi_6(x) = x^2 - x + 1$. The complex roots of $\Phi_6(x)$ are the primitive sixth roots of unity ζ_6 and ζ_6^{-1} .

Hence $B \cong 1 + B^2$ "implies"

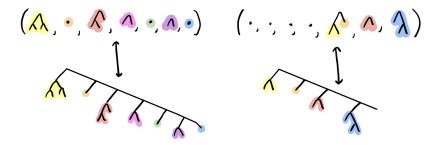
 $\Phi_6(B) \approx 0.$

ション・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ しょう

Q: In what sense does *B* behave like a sixth root of unity? Obviously $B^6 \not\cong 1$, but...

Theorem (Blass, Lawvere)

There exists a "very explicit bijection" $B \xrightarrow{\sim} B^7$.



イロト 不得 トイヨト イヨト

Clearly not all identities satisfied by ζ_6 lift to isomorphisms satisfied by *B* (e.g. $B^6 \not\cong 1$.)

Q: Which identities lift to isomorphisms?

A: Semiring consequences. The consequences of $B = 1 + B^2$ that can be deduced without subtraction or division!

In other words, if $f(x), g(x) \in \mathbb{N}[x]$ are such that f(x) = g(x) in the semiring $\mathbb{N}[x]/(x = 1 + x^2)$, then there is a "very explicit bijection" $f(B) \cong g(B)$.

ション・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ しょう

Theorem (Fiore-Leinster)

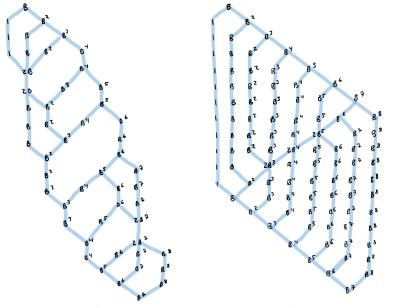
Suppose that $f, g_1, g_2 \in \mathbb{N}[x]$ are polynomials such that f(x) has a nonzero constant term and degree at least 2. If f(x) - x divides $g_1(x) - g_2(x)$ in $\mathbb{Z}[x]$ and g_1, g_2 are **both non-constant**, then $g_1(x) = g_2(x)$ in $\mathbb{N}[x]/(x = f(x))$.

In particular, if $f(x) = 1 + x^2$, then we can deduce $x = x^7$ in $\mathbb{N}[x]/(x = 1 + x^2)$ but not $1 = x^6$!

 $\Phi_6(x)$ divides $x^4 + x^2 + 1$, hence

$$0 \not\cong B^4 + B^2 + 1$$
$$B \cong B^4 + B^2 + B + 1.$$

ション・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ シック・



(Taken from : John Baez's blog)

・ロト ・日下・ * 日

ヨトーヨ

Using the same ideas you can construct tree types that "categorify" other complex numbers.

For example, the set *T* of rooted, planar trees where every node has 0, 1, or 2 children satisfies $T \cong 1 + T + T^2$, hence $T \approx i$.

ション・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・ しょう

There is a very explicit bijection $T \cong T^5$ (Fiore-Leinster.)

- J. Baez, Week 202, This Week's Finds in Mathematical Physics, https://math.ucr.edu/home/baez/week202.html.
- A. Blass, Seven trees in one, J. Pure Appl. Algebra, 103, (1995), 1-21.
- M. Fiore, T. Leinster, Objects of categories as complex numbers, Adv. Math., 190, (2005), 264-277.
- F. W. Lawvere, Some thoughts on the future of category theory, in *Proceedings of Como 1990*, Lecture Notes in Mathematics, vol. 1488, Springer, Berlin, (1991), 1-13.