Christol's Theorem

Trevor Hyde August 10th, 2020

Formal Laurent Series

Let \mathbb{F}_q be a finite field with q elements.

Let $\mathbb{F}_q((x))$ be the field of formal Laurent series over \mathbb{F}_q ,

$$\mathbb{F}_q(\!(x)\!):=\{x^{-n}(a_0+a_1x+a_2x^2+\ldots):n\geq 0, a_i\in \mathbb{F}_q\}.$$

The field $\mathbb{F}_q(x)$ of rational functions can be naturally identified with a subfield of $\mathbb{F}_q((x))$.

$$\mathbb{F}_q(x)\subseteq\mathbb{F}_q(\!(x)\!)$$

How do we express $f(x) \in \mathbb{F}_q(x)$ as a formal Laurent series?

Ex. Let q=2.

$$\frac{x+1}{x^2+x+1} = a_0 + a_1x + a_2x^2 + \dots$$

$$x+1 = (1+x+x^2)(a_0 + a_1x + a_2x^2 + \dots)$$

$$= a_0 + (a_0 + a_1)x + (a_0 + a_1 + a_2)x^2 + (a_1 + a_2 + a_3)x^3 + \dots$$

 $\therefore a_n$ satisfies a linear recurrence $a_n = a_{n-1} + a_{n-2}$ with $a_0 = 1$ and $a_1 = 0$.

 $\therefore a_n$ is eventually periodic.

Theorem (Characterization of Rational Functions)

A formal Laurent series $x^{-n}(a_0 + a_1x + a_2x^2 + ...) \in \mathbb{F}_q((x))$ is a rational function if and only if (a_n) is eventually periodic.

Algebraic Laurent Series

 $\mathbb{F}_q((x))$ is uncountable, hence most elements are transcendental over $\mathbb{F}_q(x)$.

However, there are many $f(x) \in \mathbb{F}_q((x))$ which are algebraic over $\mathbb{F}_q(x)$.

Ex. Let $f(x) \in \mathbb{F}_2((x))$ be the series $f(x) = \sum_{n \geq 0} a_n x^n$ where

 $a_n = 1 + #1$'s in the binary expansion of $n \mod 2$.

$$f(x) = 1 + x^3 + x^5 + x^6 + x^9 + \dots$$

Then y = f(x) is a solution of

$$(1+x)^3y^2 + (1+x)^2y + x = 0.$$

Algebraic Laurent Series?

Question: How to characterize the algebraic formal Laurent series?

Christol (1979) answered this question in terms of formal series generated by *finite automata*!

q-Automatic Sequences

A sequence $(a_n) \subseteq \mathbb{F}_q$ is called *q-automatic* if there exists

- 1. A finite set M with an action by the free semigroup A^* , where $A = \{0, 1, 2, \dots, q-1\}$,
- 2. A start state $s_0 \in M$, and
- 3. A dual state $\lambda: M \to \mathbb{F}_q$,

such that if we view n as an element of A^* by expressing n in base q, then

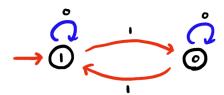
$$a_n = \lambda(n \cdot s_0)$$

The set *M* with this action and extra data is called a *finite* automata with output.*

q-Automatic Sequences

Ex. The sequence

 $a_n = 1 + \#1$'s in the binary expansion of $n \mod 2$ is 2-automatic generated by the following automata.



Important Footnote*

When we encode a natural number n as a word in $\{0,1,\ldots,q-1\}^*$ in order to define a q-automatic sequence, which direction do we read the word?

It doesn't matter!

Lemma

If (a_n) is a q-automatic sequence produced by an automata \widehat{M} with one reading convention, then there is another automata \widehat{M} producing the same sequence with the opposite reading convention.

Theorem (Christol, 1979)

A formal power series $f(x) = \sum_{n \geq 0} b_n x^n \in \mathbb{F}_q((x))$ is algebraic over $\mathbb{F}_q(x)$ if and only if (b_n) is a q-automatic sequence.

Proof of Christol (Automatic → **Algebraic)**

Suppose (b_n) **is** q**-automatic**, produced by the automata M.

For each state $s \in M$, let

$$f_s(x) := \sum_{\substack{n \geq 0 \\ n \cdot s_0 = s}} x^n \in \mathbb{F}_q((x)).$$

If the state t_i transitions to s under the letter a_i for $1 \le i \le k$, then

$$f_s(x) = \sum_{i=1}^k x^{a_i} f_{t_i}(x^q) = \sum_{i=1}^k x^{a_i} f_{t_i}(x)^q$$

Proof of Christol (Automatic → Algebraic)

$$egin{aligned} f_{\mathtt{S}}(x) &= \sum_{i=1}^k x^{a_i} f_{t_i}(x^q) = \sum_{i=1}^k x^{a_i} f_{t_i}(x)^q \ &f_{\mathtt{S}} \in \langle f^q_{\mathtt{S}_1}, f^q_{\mathtt{S}_2}, \dots, f^q_{\mathtt{S}_n}
angle \ &f_{\mathtt{S}}, f^q_{\mathtt{S}} \in \langle f^{q^2}_{\mathtt{S}_1}, f^{q^2}_{\mathtt{S}_2}, \dots, f^{q^2}_{\mathtt{S}_n}
angle \ &\vdots \ &f_{\mathtt{S}}, f^q_{\mathtt{S}}, f^{q^2}_{\mathtt{S}}, \dots, f^{q^d+1}_{\mathtt{S}_n} \in \langle f^{q^{d+1}}_{\mathtt{S}_1}, f^{q^{d+1}}_{\mathtt{S}_n}, \dots, f^{q^{d+1}}_{\mathtt{S}_n}
angle \end{aligned}$$

 $\Longrightarrow f_s(x)$ is algebraic over $\mathbb{F}_q(x)$ for each $s \in M$.

Hence,

$$f(x) = \sum_{n \geq 0} b_n x^n = \sum_{n \geq 0} \lambda(n \cdot s_0) x^n = \sum_{s \in M} \lambda(s) f_s(x)$$

is algebraic over $\mathbb{F}_a(x)$.

For $0 \le a < q$, let δ_a be the \mathbb{F}_q -linear operator

$$f(x) = \sum_{n>0} b_n x^n \quad \xrightarrow{\delta_a} \quad \delta_a f(x) = \sum_{n>0} b_{a+qn} x^n.$$

$$f(x) = \sum_{a=0}^{q-1} x^a \delta_a f(x^q)$$
 $\delta_a(gf^q) = \delta_a(g)f.$

If
$$w = a_0 + a_1 q + a_2 q^2 + \ldots + a_k q^k$$
, let

$$\delta_{\mathbf{W}} = \delta_{\mathbf{a}_{\mathbf{k}}} \circ \cdots \circ \delta_{\mathbf{a}_{1}} \circ \delta_{\mathbf{a}_{0}}.$$

$$\delta_w f(x) = \sum_{n>0} b_{w+q^{k+1}n} x^n.$$

Hence $\delta_w f(0) = b_w$.

Let M have

- ightharpoonup Start state f(x),
- ▶ Dual state ε : $g(x) \mapsto g(0)$, and
- A^* act by $a \cdot g(x) = \delta_a g(x)$.

We have shown that this automata produces the sequence (b_n) of coefficients of f(x), thus it remains to show that we can choose such an M with finitely many states.

Suppose $f(x) \in \mathbb{F}_q((x))$ is algebraic over $\mathbb{F}_q(x)$.

Thus $\{f(x)^{q^k}: k \geq 0\}$ is linearly dependent over $\mathbb{F}_q(x)$.

$$f^{q^i} = c_1 f^{q^{i+1}} + c_2 f^{q^{i+2}} + \ldots + c_d f^{q^{i+d}}$$

$$f^{q^{i-1}} = \delta_0 f^{q^i} = (\delta_0 c_1) f^{q^i} + (\delta_0 c_2) f^{q^{i+1}} + \ldots + (\delta_0 c_d) f^{q^{i+d-1}}$$

WLOG:
$$f = c_1 f^q + c_2 f^{q^2} + \ldots + c_d f^{q^d}$$
,

with $c_i(x) \in \mathbb{F}_q[x]$.

Let $B=\max_i \deg c_i(x)$ and let M be the \mathbb{F}_q -vector space spanned by $h_i(x)f(x)^{q^i}$ with $h_i(x)\in \mathbb{F}_q[x]$ of degree at most B for $0\leq i\leq d$.

$$\begin{split} \delta_a(h_0f + h_1f^q + \ldots + h_df^{q^d}) &= \\ \delta_a((h_0c_1 + h_1)f^q + \ldots + (h_0c_d + h_d)f^{q^d}) &= \\ \delta_a(h_0c_1 + h_1)f + \ldots + \delta_a(h_0c_d + h_d)f^{q^{d-1}} &\in M \end{split}$$

since

$$\deg \delta_a(h_0c_i+h_i)\leq \frac{2B}{q}\leq B.$$

Therefore $\delta_a(M) \subseteq M$ for all $0 \le a < q$.

M is a finite dimensional vector space over \mathbb{F}_q , hence is a finite set.

Since $f \in M$ and M is closed under the action of A^* , it follows that M is a *finite* automata with output that produces (b_n) . Therefore (b_n) is q-automatic. \square

Application: Transcendence Criteria

Corollary

If the coefficients of $f(x) \in \mathbb{Q}((x))$ belong to a finite set, then either $f(x) \in \mathbb{Q}(x)$ or f(x) is transcendental over $\mathbb{Q}(x)$.

Pf: If f(x) is algebraic over $\mathbb{Q}(x)$, then the reduction of $f \mod p$ is algebraic over $\mathbb{F}_p(x)$ for almost all primes p.

Christol implies that the sequence (b_n) of coefficients of f(x) is p-automatic for almost all primes p.

Application: Transcendence Criteria

Hence we can choose two sufficiently large primes for which the coefficients (b_n) are all distinct modulo each prime.

Theorem (Cobham)

If (b_n) is a sequence valued in a finite set X which is q_1 and q_2 automatic for multiplicatively independent q_1 and q_2 , then (b_n) is eventually periodic.

Therefore (b_n) is eventually periodic, which implies that f(x) is rational. \Box