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ABSTRACT. How many times do we need to shuffle a deck of card to make it sufficiently random? In this talk, we will formalize this notion,
from random walk to fourier analysis on groups. We will also draw similarities to a family of problems (that we do not address), that, roughly
speaking, is a (more complicated) sampling on groups.

Whenever necessary, we assume that the group is finite (so that we do not need measure-theoretic languages).

0. A FEW SCENARIOS

(1) Given an encrypted text; want to recover it.
(2) Given a scrambled text; want to recover it.
(3) Given a deck of cards; want to randomize it.

Scenario (1),(2) (3)

Aim Find f ∈

{
Bij ({Codeword}, {Usual Alphabet})
Bij ({Usual Alphabet}, {Usual Alphabet})

in scenario

{
(1)

(2)

that is "most plausible", i.e. f that maximizes Pl(f) :=
∏
iM(f(si), f(si+1),

where M($,#) as "the probability that the next letter is # given the current
letter being $".

Get a ran-
dom deck of
card

Algorithm "The Metropolis Algorithm" (a Monte-Carlo-Markov-Chain method):
(1) Pick a random f .
(2) Perform the following repeatedly (for "sufficiently many times"):

(a) f∗ := random transposition · f .
• If Pl(f∗) > Pl(f), goto f∗
• Otherwise, flip a Pl(f∗)/Pl(f);

– If comes up H, goto f∗.
– Otherwise (comes up T), goto f .

Repeated
shuffling

Target Probability
Distribution

p(f) ∝ Pl(f) uniform

Questions:
Q1: Why would the proposed algorithms cause our configuration converge to the target probability distribution?

A: Our algorithm above is a Sn-valued Markov chain, which target probability appears as a left eigenvector of the 1-
eigenvector of the transition probability.

Q2: What does it even mean by "converge to"? How to measure the difference between 2 probability distributions?
A: There is a distance function ‖·‖TV between 2 probability distributions; p1 and p2 "sufficiently close to" usually means
‖p1 − p2‖TV ≤ 1/4, but really, I’m not sure why this is a good cutoff.

Q3: Why consider (1)&(2) and (3) differently?
• The distinction of treatment is not artificial: in the latter, the transition probability only depends on the (group)

difference between 2 states, while this is not the case in the former. This matters.
In the rest of the talk, we will give an upper bound to ‖P (Xt)−p‖TV to the latter case in Q3; more importantly, we introduce Fourier
analysis of group, and draw useful connection to group representation. via Fourier analysis of group, and our understanding of
certain group representation.
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1. RANDOM WALK ON GROUP

A random walk on a group G is a sequence of G-valued random variables {Xi}i∈Z≥0
, s.t. the transition probability P (Xi+1 =

y|Xi = x) is
• independent of i
• memoryless, i.e. P (Xi+1|Xi) = P (Xi+1|Xi, . . . , X1)

In this case, we denote Px,y := P (Xi+1 = y|Xi = x). Also, we denote p0(x) := P (X0 = x) as the starting distribution.

Definition 1.1. A probability distribution on G is a function p : G→ [0, 1] s.t.
∑
g∈G p(g) = 1. The set of probability distributions

on G is denoted as Prob(G).

Remark 1.2. 2 examples:
(1) The uniform distribution on G is defined as u(g) = 1

|G| .

(2) The delta distribution on G wrt x ∈ G is defined as δx(g) =

{
1 x = g

0 otherwise
.

Remark 1.3. (1) Suppose a random walk starts with Px,y = p(yx−1) for some p ∈ Prob(G) and p0 = δId, then for any g ∈ G,
• P (X2 = g) =

∑
h∈G p(gh

−1)p(h).
• More generally, for any k ∈ Z+,

P (Xk = g) =
∑

(gk,...,g1)∈Gk∏1
i=k gi=g

1∏
i=k

p(gi)

Above are "iterated convolutions" p ∗ . . . ∗ p︸ ︷︷ ︸
k times

of p, for k = 2 and general Z+ respectively.

2. A DISTANCE BETWEEN PROBABILITY DISTRIBUTIONS ON G

Definition 2.1. The total variation distance on Prob(G) is given by

‖p1 − p2‖TV := max
A⊂G

|p1(A)− p2(A)| =
1

2

∑
g∈G
|p1(g)− p2(g)| =

1

2
‖p1 − p2‖1

Remark 2.2. It is indeed a distance function.

3. FOURIER ANALYSIS ON GROUP

In what follows, the set of irreducible representations of G is denoted as Ĝ.

Definition 3.1. For a f ∈ Fun(G,C), the fourier transform of f wrt the irreducible representation ρ : G→ AutC(Vρ) is

f̂(ρ) =
∑
g∈G

f(g)ρ(g) ∈ EndC(Cdρ)

Remark 3.2. (1) (Inverse Fourier Transform) For f ∈ Fun(G,C), g ∈ G,

1

|G|
∑
ρ∈Ĝ

dρ Tr(ρ(g
−1)f̂(ρ)).

(2) For G = R, and the irrep t̂ : R → GL(1,C) s.t. r 7→ e−2πixr·, f̂(t̂) = (
∫
x∈R f(x)e

−2πixt)· ∈ EndC(C). Note the bijection
R↔ R̂, t↔ t̂.

(3) Similar story holds for any (locally compact) abelian group. In this case, all the irreps are 1-dimensional; moreover,
Hom(G,S1)↔ Ĝ (Re: Pontryagin dual).

Remark 3.3. There is a familiar generalization. Suppose σ : G→ AutC(V ) is a representation, then the σ-fourier transform of f wrt
the irreducible representation ρ : G→ AutC(Vρ) is

f̂σ(ρ) =
∑
g∈G

(f ◦ σ(g))ρ(g) ∈ Fun(V,EndC(Vρ))

(1) For LG : G→ GL(CG) left regular representation, above is recovered, i.e. f̂LG(ρ)(IdG) = f̂(ρ).

(2) For ρsgn : Z/2Z→ GL(1,R) signed rep, f ∈ Fun(R,C), f̂ρsgn(ρ)(x) =

{
f(x) + f(−x) ρ = ρtrv

f(x)− f(−x) ρ = ρsgn

Remark 3.4. (1) p ∈ Prob(G)

p̂(ρtrv) =
∑
g∈G

p(g) = 1.
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(2) u ∈ Prob(G) uniform distribution, for ρ ∈ Ĝ,

û(ρ) =

{
IdVρ ρ = ρtrv

0 otherwise
.

Definition 3.5. For f1, f2 ∈ Fun(G,C), the (left) convolution between f1 and f2 is given by

(f1 ∗ f2)(g) =
∑
h∈G

f1(gh
−1)f2(h).

Remark 3.6. For any probability distributions p1, p2 on G,
(1) p1 ∗ p2 is also a probability distribution.
(2) In particular, iterated convolution p∗k (p ∈ Prob(G), k ∈ Z+) is a probability distribution.

• On a random walk where Px,y only depends on yx−1, i.e. Px,y = p(yx−1) for some probability distribution p on G,
then P (Xk = x) = p∗k(x).

Remark 3.7. The following holds:
(1) ("Convolution theorem") f̂1 ∗ f2 = f̂1 · f̂2
(2) ("Plancheral theorem") ‖f‖22 = 1

|G|
∑
ρ∈Ĝ dρ‖f̂(ρ)‖

2
HS(=

1
|G|

∑
ρ∈Ĝ dρ Tr(f̂(ρ)f̂(ρ)

∗))

The latter is phrased this way to highlight an isometry between G and Ĝ,

Lemma 3.8. ("Upper Bound Lemma") For any k ∈ Z+, p ∈ Prob(G),

‖p∗k − u‖2TV ≤
1

4

∑
ρ 6=ρtrv

‖p̂(ρ)‖2nHS

Proof.

‖p∗k − u‖2TV =
1

4
‖p∗k − u‖21 ≤

1

4
|G|‖p∗k − u‖22 =

1

4

∑
ρ∈Ĝ

‖p̂n(ρ)− û(ρ)‖2HS =
1

4

∑
ρ∈Ĝ
ρ 6=ρtrv

‖p̂(ρ)‖2kHS ,

�

where the 1st "=" holds since ‖·‖TV = 1
2‖·‖1, the 1st "≤" holds by Cauchy-Schwarz, the 2nd "=" holds by "convolution theorem",

"Plancheral", and linearity of "f 7→ f̂" and the 3rd "=" holds by Rem 3.4.

4. APPLICATIONS

Thanks to our extensive knowledge of the representation theory of symmetric groups, we have:

Theorem 4.1 (Diaconis-Shahshahani, 1980). On G = S52, for "random transpotion" p(g) =


1
52 g = Id
2

522 g = transposition
0 otherwise

, ∀c > 0, k ≥

103 + 26c⇒ d(µ∗k, λ) ≤ 6e−c.

Remark 4.2. In particular, k ≥ 270⇒ d(µ∗k, λ) ≤ 1
100 .

Theorem 4.3 (Bayer-Diaconis, 1992). On G = Sn, p ∈ Prob(S52) given by the following distribution:

‖p∗k − u‖TV ≤ 1−
∏n−1
i=1 (1−

i
2k
).

Remark 4.4. (1) This shuffle is riffle shuffle, and p has a name: Gilbert-Shannon-Reed distribution.
(2) k = 2 log2(n/c)⇒ ‖p∗k − u‖TV ≤ c2/2
(3) More precise calculations on RHS of the theorem yield

k 10 11 12 13 14
Upper
bound

.73 .48 .28 .15 .08

(4) More refined analysis was performed, to show that "LHS when k ≥ 7" ≤ 1/4.

4.1. Back to "Scenarios (1) and (2)". Since the transition probability Pxy does not just depend on yx−1, we cannot describe the
probability distribution at the kth timestamp by iterated convolutions, thereby cannot be cleanly described by the language above.
However, for some special target distributions, an analysis can be done thanks to symmetric function theory. This is treated in
references? in the paper "Monte Carlo Markov Chain Revolution" by Diaconis.
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