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Chebotarev, for prime numbers

A version of Chebotarev’s density law says the following:

Theorem

Let K/Q be a finite, Galois extension, and let C be a conjugacy class in
Gal(K/Q). Then

lim
N→∞

#{p ∈ N : p prime, p ≤ N,Frobp = C}
#{p ≤ N}

=
#C

# Gal(K/Q)
.

Remark

Frobp only defined if p is unramified in K .
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Chebotarev, for knots

Let

M be a closed, connected 3-manifold,

K1,K2, . . . be a sequence of disjoint, smooth, oriented knots in M
with Ln :=

⋃n
i=1 Ki ,

G finite group,

ρ : π1(M − Ln)→ G a surjective homomorphism.

Remark

ker ρ ≤ π1(M − Ln) determines a branched cover M̃ of M, possibly
ramified only over Ln.

M̃ has deck group G over M.
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Chebotarev, for knots

Definition

We say that (Ki ) obeys the Chebotarev law if for any ρ as above and any
conjugacy class C ⊆ G,

lim
N→∞

#{n < i ≤ N : [Ki ] = C}
N

=
#C

#G
.

From now on, let X be a closed hyperbolic surface of genus g ≥ 2, and
T1(X ) its unit tangent bundle.

Theorem (McMullen)

Let K1,K2, · · · ⊆ T1(X ) be the closed orbits of the geodesic flow ordered
by length. Then (Ki ) obeys the Chebotarev law.
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Remarks, about the main theorem

But not all classes of π1(T1(X )) come from geodesic loops!

Example

The fibers of the map T1(X )→ X are nontrivial loops in π1(T1(X )) but
are not freely homotopic to geodesics.

Proof technique

(1) Reduce to a problem about finite, directed graphs.

(2) Apply a Chebotarev theorem for closed orbits of flows on such graphs.
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Rectangles

Definition

A rectangle R is a simply-connected subset of T1(X ), which looks like:

Figure: underlying picture is Figure 1 in [2].



Geodesics to finite graphs

If Ri ,Rj are rectangles,

Rij = {v ∈ int(Ri ) : first return to
⋃

Rk lands in Rj}.

Let (Ri ) be a finite set of rectangles in T1(X ), and let Γ be a directed
graph with

V (Γ) = {Ri},
E (Γ) = {(Ri ,Rj) : Rij 6= ∅},
Σ(Γ) = {bi-infinite paths in Γ}

= {v : Z→ V (Γ) : (v(i), v(i + 1)) ∈ E (Γ)},
σ(v)(i) = v(i + 1).



Geodesics to finite graphs

If Ri ,Rj are rectangles,

Rij = {v ∈ int(Ri ) : first return to
⋃

Rk lands in Rj}.

Let (Ri ) be a finite set of rectangles in T1(X ), and let Γ be a directed
graph with

V (Γ) = {Ri},
E (Γ) = {(Ri ,Rj) : Rij 6= ∅},
Σ(Γ) = {bi-infinite paths in Γ}

= {v : Z→ V (Γ) : (v(i), v(i + 1)) ∈ E (Γ)},
σ(v)(i) = v(i + 1).



Paths in Γ to geodesics

We want a continuous map p : Σ(Γ)→
⋃
Ri , such that

p(. . . , v−1, v0, v1, . . . ) ∈ v0,

The first vector in
⋃
Ri hit by p(γ) by flowing through geodesics is

p(σ(γ)).

Definition

The finite set of rectangles (Ri ) is a Markov section if

for all v ∈ T1(X ), there is some time t > 0 such that t · v ∈
⋃
Ri , and

Rij := {v ∈ int(Ri ) : first return of v lands in int(Rj)} looks like:

Figure: Left: Figure 1 in [1]
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Paths in Γ to geodesics

Theorem (Ratner)

The geodesic flow for a compact surface of negative curvature admits a
Markov section.

Now we have:

Continuous map p : Σ(Γ)→
⋃

i Ri with
(. . . , p(σ−1(γ)), p(γ), p(σ(γ)), . . . ) lying on a geodesic.

Continuous height function h : Σ(Γ)→ (0,∞),

h(γ) := time until first return of p(γ) to
⋃

Ri .
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Flows

Definition

Given a nice function h : Σ(Γ)→ (0,∞), the corresponding suspended
subshift is defined as

Σ(Γ, h) =
Σ(Γ)× R

(γ, t + h(γ)) ∼ (σ(γ), t)

Can think of Σ(Γ, h) = “space of (flow, time) on Γ with speed given by
h.” In particular,

{closed orbits of Σ(Γ, h)} c−→ {closed orbits of Γ with speed h}

Definition

Σ(Γ, h) is equipped with a flow,

s · [γ, t] := [γ, s + t] ∀s ∈ R.
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Chebotarev theorem from symbolic dynamics

Theorem (Parry–Pollicott, McMullen)

Let Γ0 be a finite directed graph, and let h0 be a “nice” function on Σ(Γ).
The Chebotarev law holds for (τi ), closed orbits of Σ(Γ0, h0) ordered by
length, if the flow on Σ(Γ0, h0) is topologically mixing.

Definition

A flow is topologically mixing if for all open sets U,V , we have
U ∩ tV 6= ∅ for all t � 0.

Theorem

The geodesic flow on T1(X ) is topologically mixing.

Corollary

The flow on Σ(Γ, h) is topologically mixing, where Γ, h are the graph and
function constructed in the previous slides.
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Symbolic flow to geodesic flow

Let

U :=
(⋃

int(Ri )
)
∪ {geodesics running from Ri to Rj , ∀i , j}

⊆ T1(X ).

Continuous map called symbolic encoding:

π : Σ(Γ, h)→ U

[(. . . , x−1, x0, x1, . . . )︸ ︷︷ ︸
=x

, t] 7→ start at p(x) then flow for time t,

sending the symbolic flow to the geodesic flow.

After finitely many closed orbits have been excluded, π gives a
bijection between closed orbits of Σ(Γ, h) and T1(X ), with
L(τ) = L(π(τ)).
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Symbolic flow to geodesic flow

Continuous map c : Σ(Γ, h)→ Γ,

[(. . . , v−1, v0, v1, . . . ), t] 7→ linearly onto edge (v0, v1) ∈ Γ.

{closed orbits of Σ(Γ, h)} ↔ {closed orbits of Γ with speed h}.

Continuous map ι : Γ→ U,

ι(Ri ) ∈ Ri ,

edge (Ri ,Rj)→ {geodesics from Ri to Rj}

ι is uniquely determined up to homotopy.

For a closed orbit τ of Σ(Γ, h), we have two maps

π : τ ⊆ Σ(Γ, h)→ U and ι ◦ c : τ ⊆ Σ(Γ, h)→ Γ→ U.

π and ι ◦ c are homotopic to each other.
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A lemma

Lemma

Let L ⊆ ∂U be the union of finitely many closed geodesics. Then the map
ι : Γ→ U ⊆ T1(X )− L induces a surjective map

ι∗ : π1(Γ)→ π1(T1(X )− L).

Proof idea of lemma

Suppose L = ∅.
ι : Γ→ U is a homotopy equivalence, so suffices to show that
π1(U, x)→ π1(T1(X )− L, x) is surjective.

Let α : S1 → T1(X ) based at x .

Can assume that α in general position with T1(X )− U, with α
crossing ∂U transversely at finitely many points p = α(s).
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A lemma

Proof idea, continued.

After perturbing α, (WLOG) positive geodesic ray through p = α(s)
is dense in T1(X ).

T · p ∈ U for some T � 0. Then we can perturb α like:

Figure: Figure 2 in [1]

When L 6= ∅, all of this can be done away from L.
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Proof

Take ρ : π1(T1(X )− Ln) � G with Ln = K1 ∪ · · · ∪ Kn.

By subdividing rectangles, T1(X ) admits a Markov section whose
rectangles are disjoint and meet Ln only in their vertices.

The embedding ι : Γ→ U ⊆ T1(X ) lands in T1(X )− Ln.

The composition

π1(Σ(Γ, h))
c∗−→ π1(Γ)

ι∗−→ π1(T1(X )− Ln)
ρ−→ G

is surjective.
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Proof

Symbolic dynamics theorem implies

lim
N→∞

#{i ≤ N : ρ ◦ ι∗ ◦ c∗(τi ) = C}
N

=
#C

#G
.

Recall π : Σ(Γ, h)→ T1(X ). Except for finitely many orbits,
Ki = π(τi ) with L(Ki ) = L(τi ).

ι ◦ c : τ → Γ→ U and π : τ → U are homotopic, so

ρ(Ki ) = ρ ◦ π∗(τi ) = ρ ◦ ι∗ ◦ c∗(τi ) ⊆ G

(τi ) satisfies the Chebotarev law under ρ ◦ ι∗ ◦ c∗, so (Ki ) satisfies the
Chebotarev law under ρ.
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