Knots Which Behave Like the Prime Numbers

Based on the paper ([1]) by Curtis T. McMullen

Seraphina Lee

June 29, 2020

A version of Chebotarev's density law says the following:

Theorem

Let K/\mathbf{Q} be a finite, Galois extension, and let C be a conjugacy class in $Gal(K/\mathbf{Q})$. Then

$$\lim_{N\to\infty} \frac{\#\{p\in \mathbf{N}: p \text{ prime, } p\leq N, \operatorname{Frob}_p=C\}}{\#\{p\leq N\}} = \frac{\#C}{\#\operatorname{Gal}(K/\mathbf{Q})}.$$

A version of Chebotarev's density law says the following:

Theorem

Let K/\mathbf{Q} be a finite, Galois extension, and let C be a conjugacy class in $Gal(K/\mathbf{Q})$. Then

$$\lim_{N \to \infty} \frac{\#\{p \in \mathbf{N} : p \text{ prime, } p \le N, \operatorname{Frob}_p = C\}}{\#\{p \le N\}} = \frac{\#C}{\#\operatorname{Gal}(K/\mathbf{Q})}$$

Remark

Frob_p only defined if p is unramified in K.

Let

- M be a closed, connected 3-manifold,
- K_1, K_2, \ldots be a sequence of disjoint, smooth, oriented knots in M with $L_n := \bigcup_{i=1}^n K_i$,
- G finite group,
- $\rho: \pi_1(M L_n) \to G$ a surjective homomorphism.

Let

- *M* be a closed, connected 3-manifold,
- K_1, K_2, \ldots be a sequence of disjoint, smooth, oriented knots in M with $L_n := \bigcup_{i=1}^n K_i$,
- G finite group,
- $\rho: \pi_1(M L_n) \to G$ a surjective homomorphism.

Remark

- ker ρ ≤ π₁(M − L_n) determines a branched cover M̃ of M, possibly ramified only over L_n.
- \tilde{M} has deck group G over M.

We say that (K_i) obeys the Chebotarev law if for any ρ as above and any conjugacy class $C \subseteq G$,

$$\lim_{N\to\infty}\frac{\#\{n< i\leq N: [K_i]=C\}}{N}=\frac{\#C}{\#G}.$$

We say that (K_i) obeys the Chebotarev law if for any ρ as above and any conjugacy class $C \subseteq G$,

$$\lim_{N\to\infty}\frac{\#\{n< i\leq N: [K_i]=C\}}{N}=\frac{\#C}{\#G}.$$

From now on, let X be a closed hyperbolic surface of genus $g \ge 2$, and $T_1(X)$ its unit tangent bundle.

Theorem (McMullen)

Let $K_1, K_2, \dots \subseteq T_1(X)$ be the closed orbits of the geodesic flow ordered by length. Then (K_i) obeys the Chebotarev law.

But not all classes of $\pi_1(T_1(X))$ come from geodesic loops!

Example

The fibers of the map $T_1(X) \to X$ are nontrivial loops in $\pi_1(T_1(X))$ but are not freely homotopic to geodesics.

But not all classes of $\pi_1(T_1(X))$ come from geodesic loops!

Example

The fibers of the map $T_1(X) \to X$ are nontrivial loops in $\pi_1(T_1(X))$ but are not freely homotopic to geodesics.

Proof technique

- (1) Reduce to a problem about finite, directed graphs.
- (2) Apply a Chebotarev theorem for closed orbits of flows on such graphs.

Rectangles

Definition

A rectangle R is a simply-connected subset of $T_1(X)$, which looks like:

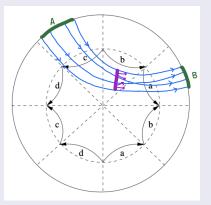


Figure: underlying picture is Figure 1 in [2].

• If R_i, R_j are rectangles,

$$R_{ij} = \{ v \in int(R_i) : \text{ first return to } \bigcup R_k \text{ lands in } R_j \}.$$

• If R_i, R_j are rectangles,

$$R_{ij} = \{v \in int(R_i) : \text{first return to } \bigcup R_k \text{ lands in } R_j\}.$$

 Let (R_i) be a finite set of rectangles in T₁(X), and let Γ be a directed graph with

$$V(\Gamma) = \{R_i\},\$$

$$E(\Gamma) = \{(R_i, R_j) : R_{ij} \neq \emptyset\},\$$

$$\Sigma(\Gamma) = \{\text{bi-infinite paths in } \Gamma\}\$$

$$= \{v : \mathbf{Z} \rightarrow V(\Gamma) : (v(i), v(i+1)) \in E(\Gamma)\},\$$

$$\sigma(v)(i) = v(i+1).$$

Paths in Γ to geodesics

We want a continuous map $p: \Sigma(\Gamma) \to \bigcup R_i$, such that • $p(\ldots, v_{-1}, v_0, v_1, \ldots) \in v_0$,

Paths in Γ to geodesics

We want a continuous map $p: \Sigma(\Gamma) \rightarrow \bigcup R_i$, such that

•
$$p(\ldots, v_{-1}, v_0, v_1, \ldots) \in v_0$$
,

• The first vector in $\bigcup R_i$ hit by $p(\gamma)$ by flowing through geodesics is $p(\sigma(\gamma))$.

Paths in Γ to geodesics

We want a continuous map $p: \Sigma(\Gamma) \rightarrow \bigcup R_i$, such that

- $p(\ldots, v_{-1}, v_0, v_1, \ldots) \in v_0$,
- The first vector in $\bigcup R_i$ hit by $p(\gamma)$ by flowing through geodesics is $p(\sigma(\gamma))$.

Definition

The finite set of rectangles (R_i) is a Markov section if

- for all $v \in T_1(X)$, there is some time t > 0 such that $t \cdot v \in \bigcup R_i$, and
- $R_{ij} := \{v \in int(R_i) : first return of v lands in int(R_j)\}$ looks like:

Figure: Left: Figure 1 in [1]

Theorem (Ratner)

The geodesic flow for a compact surface of negative curvature admits a Markov section.

Theorem (Ratner)

The geodesic flow for a compact surface of negative curvature admits a Markov section.

Now we have:

• Continuous map $p: \Sigma(\Gamma) \to \bigcup_i R_i$ with $(\dots, p(\sigma^{-1}(\gamma)), p(\gamma), p(\sigma(\gamma)), \dots)$ lying on a geodesic.

Theorem (Ratner)

The geodesic flow for a compact surface of negative curvature admits a Markov section.

Now we have:

• Continuous map $p: \Sigma(\Gamma) \to \bigcup_i R_i$ with $(\dots, p(\sigma^{-1}(\gamma)), p(\gamma), p(\sigma(\gamma)), \dots)$ lying on a geodesic.

• Continuous height function $h: \Sigma(\Gamma) \to (0,\infty)$,

 $h(\gamma) :=$ time until first return of $p(\gamma)$ to $\bigcup R_i$.

Given a nice function $h:\Sigma(\Gamma)\to(0,\infty),$ the corresponding suspended subshift is defined as

$$\Sigma(\Gamma, h) = rac{\Sigma(\Gamma) imes \mathbf{R}}{(\gamma, t + h(\gamma)) \sim (\sigma(\gamma), t)}$$

Given a nice function $h:\Sigma(\Gamma)\to(0,\infty),$ the corresponding suspended subshift is defined as

$$\Sigma(\Gamma, h) = rac{\Sigma(\Gamma) imes \mathbf{R}}{(\gamma, t + h(\gamma)) \sim (\sigma(\gamma), t)}$$

Can think of $\Sigma(\Gamma, h) =$ "space of (flow, time) on Γ with speed given by h." In particular,

{closed orbits of $\Sigma(\Gamma, h)$ } \xrightarrow{c} {closed orbits of Γ with speed h}

Given a nice function $h:\Sigma(\Gamma)\to(0,\infty),$ the corresponding suspended subshift is defined as

$$\Sigma(\Gamma, h) = rac{\Sigma(\Gamma) imes \mathbf{R}}{(\gamma, t + h(\gamma)) \sim (\sigma(\gamma), t)}$$

Can think of $\Sigma(\Gamma, h) =$ "space of (flow, time) on Γ with speed given by h." In particular,

{closed orbits of $\Sigma(\Gamma, h)$ } \xrightarrow{c} {closed orbits of Γ with speed h}

Definition

 $\Sigma(\Gamma, h)$ is equipped with a flow,

 $s \cdot [\gamma, t] := [\gamma, s + t] \qquad \forall s \in \mathbf{R}.$

Let Γ_0 be a finite directed graph, and let h_0 be a "nice" function on $\Sigma(\Gamma)$. The Chebotarev law holds for (τ_i) , closed orbits of $\Sigma(\Gamma_0, h_0)$ ordered by length, if the flow on $\Sigma(\Gamma_0, h_0)$ is topologically mixing.

Let Γ_0 be a finite directed graph, and let h_0 be a "nice" function on $\Sigma(\Gamma)$. The Chebotarev law holds for (τ_i) , closed orbits of $\Sigma(\Gamma_0, h_0)$ ordered by length, if the flow on $\Sigma(\Gamma_0, h_0)$ is topologically mixing.

Definition

A flow is topologically mixing if for all open sets U, V, we have $U \cap tV \neq \emptyset$ for all $t \gg 0$.

Let Γ_0 be a finite directed graph, and let h_0 be a "nice" function on $\Sigma(\Gamma)$. The Chebotarev law holds for (τ_i) , closed orbits of $\Sigma(\Gamma_0, h_0)$ ordered by length, if the flow on $\Sigma(\Gamma_0, h_0)$ is topologically mixing.

Definition

A flow is topologically mixing if for all open sets U, V, we have $U \cap tV \neq \emptyset$ for all $t \gg 0$.

Theorem

The geodesic flow on $T_1(X)$ is topologically mixing.

Let Γ_0 be a finite directed graph, and let h_0 be a "nice" function on $\Sigma(\Gamma)$. The Chebotarev law holds for (τ_i) , closed orbits of $\Sigma(\Gamma_0, h_0)$ ordered by length, if the flow on $\Sigma(\Gamma_0, h_0)$ is topologically mixing.

Definition

A flow is topologically mixing if for all open sets U, V, we have $U \cap tV \neq \emptyset$ for all $t \gg 0$.

Theorem

The geodesic flow on $T_1(X)$ is topologically mixing.

Corollary

The flow on $\Sigma(\Gamma, h)$ is topologically mixing, where Γ , h are the graph and function constructed in the previous slides.

Let

$$U := \left(\bigcup \operatorname{int}(R_i)\right) \cup \{ \text{geodesics running from } R_i \text{ to } R_j, \forall i, j \}$$
$$\subseteq T_1(X).$$

Let

$$U := \left(\bigcup \operatorname{int}(R_i)\right) \cup \{ \operatorname{geodesics running from } R_i \text{ to } R_j, \forall i, j \}$$
$$\subseteq T_1(X).$$

• Continuous map called symbolic encoding:

$$\pi: \Sigma(\Gamma, h) \to U$$

$$[\underbrace{(\dots, x_{-1}, x_0, x_1, \dots)}_{=x}, t] \mapsto \text{start at } p(x) \text{ then flow for time } t,$$

sending the symbolic flow to the geodesic flow.

Let

$$U := \left(\bigcup \operatorname{int}(R_i)\right) \cup \{ \operatorname{geodesics running from } R_i \text{ to } R_j, \forall i, j \}$$
$$\subseteq T_1(X).$$

• Continuous map called symbolic encoding:

$$\pi: \Sigma(\Gamma, h) \to U$$

$$[\underbrace{(\dots, x_{-1}, x_0, x_1, \dots)}_{=x}, t] \mapsto \text{start at } p(x) \text{ then flow for time } t,$$

sending the symbolic flow to the geodesic flow.

After finitely many closed orbits have been excluded, π gives a bijection between closed orbits of Σ(Γ, h) and T₁(X), with L(τ) = L(π(τ)).

• Continuous map $c: \Sigma(\Gamma, h) \to \Gamma$,

 $[(\ldots, v_{-1}, v_0, v_1, \ldots), t] \mapsto \text{linearly onto edge } (v_0, v_1) \in \Gamma.$

• Continuous map $c: \Sigma(\Gamma, h) \to \Gamma$,

 $[(\ldots, v_{-1}, v_0, v_1, \ldots), t] \mapsto \text{linearly onto edge } (v_0, v_1) \in \Gamma.$

{closed orbits of $\Sigma(\Gamma, h)$ } ↔ {closed orbits of Γ with speed *h*}.

• Continuous map $c: \Sigma(\Gamma, h) \to \Gamma$,

 $[(\ldots, v_{-1}, v_0, v_1, \ldots), t] \mapsto \text{linearly onto edge} (v_0, v_1) \in \Gamma.$

 $\{\text{closed orbits of } \Sigma(\Gamma, h)\} \leftrightarrow \{\text{closed orbits of } \Gamma \text{ with speed } h\}.$ • Continuous map $\iota : \Gamma \to U$,

> $\iota(R_i) \in R_i,$ edge $(R_i, R_j) o \{$ geodesics from R_i to $R_j \}$

• Continuous map $c: \Sigma(\Gamma, h) \to \Gamma$,

 $[(\ldots, v_{-1}, v_0, v_1, \ldots), t] \mapsto \text{linearly onto edge} (v_0, v_1) \in \Gamma.$

 $\{\text{closed orbits of } \Sigma(\Gamma, h)\} \leftrightarrow \{\text{closed orbits of } \Gamma \text{ with speed } h\}.$ • Continuous map $\iota : \Gamma \to U$,

> $\iota(R_i) \in R_i,$ edge $(R_i, R_j) \rightarrow \{$ geodesics from R_i to $R_j \}$

• ι is uniquely determined up to homotopy.

• Continuous map $c: \Sigma(\Gamma, h) \to \Gamma$,

 $[(\ldots, v_{-1}, v_0, v_1, \ldots), t] \mapsto \text{linearly onto edge} (v_0, v_1) \in \Gamma.$

{closed orbits of $\Sigma(\Gamma, h)$ } \leftrightarrow {closed orbits of Γ with speed h}. • Continuous map $\iota : \Gamma \to U$,

> $\iota(R_i) \in R_i,$ edge $(R_i, R_j) \rightarrow \{$ geodesics from R_i to $R_j \}$

- ι is uniquely determined up to homotopy.
- For a closed orbit τ of $\Sigma(\Gamma, h)$, we have two maps

 $\pi: \tau \subseteq \Sigma(\Gamma, h) \to U$ and $\iota \circ c: \tau \subseteq \Sigma(\Gamma, h) \to \Gamma \to U.$

• Continuous map $c: \Sigma(\Gamma, h) \to \Gamma$,

 $[(\ldots, v_{-1}, v_0, v_1, \ldots), t] \mapsto \text{linearly onto edge} (v_0, v_1) \in \Gamma.$

{closed orbits of $\Sigma(\Gamma, h)$ } \leftrightarrow {closed orbits of Γ with speed h}. • Continuous map $\iota : \Gamma \to U$,

> $\iota(R_i) \in R_i,$ edge $(R_i, R_j) \rightarrow \{$ geodesics from R_i to $R_j \}$

- ι is uniquely determined up to homotopy.
- For a closed orbit τ of $\Sigma(\Gamma, h)$, we have two maps

 $\pi: \tau \subseteq \Sigma(\Gamma, h) \to U$ and $\iota \circ c: \tau \subseteq \Sigma(\Gamma, h) \to \Gamma \to U.$

• π and $\iota \circ c$ are homotopic to each other.

A lemma

Lemma

Let $L \subseteq \partial U$ be the union of finitely many closed geodesics. Then the map $\iota : \Gamma \to U \subseteq T_1(X) - L$ induces a surjective map

 $\iota_*:\pi_1(\Gamma)\to\pi_1(T_1(X)-L).$

A lemma

Lemma

Let $L \subseteq \partial U$ be the union of finitely many closed geodesics. Then the map $\iota : \Gamma \to U \subseteq T_1(X) - L$ induces a surjective map

$$\iota_*:\pi_1(\Gamma)\to\pi_1(T_1(X)-L).$$

Proof idea of lemma

• Suppose $L = \emptyset$.

Lemma

Let $L \subseteq \partial U$ be the union of finitely many closed geodesics. Then the map $\iota : \Gamma \to U \subseteq T_1(X) - L$ induces a surjective map

$$\iota_*:\pi_1(\Gamma)\to\pi_1(T_1(X)-L).$$

Proof idea of lemma

- Suppose $L = \emptyset$.
- $\iota : \Gamma \to U$ is a homotopy equivalence, so suffices to show that $\pi_1(U, x) \to \pi_1(T_1(X) L, x)$ is surjective.

Lemma

Let $L \subseteq \partial U$ be the union of finitely many closed geodesics. Then the map $\iota : \Gamma \to U \subseteq T_1(X) - L$ induces a surjective map

$$\iota_*:\pi_1(\Gamma)\to\pi_1(T_1(X)-L).$$

Proof idea of lemma

- Suppose $L = \emptyset$.
- $\iota : \Gamma \to U$ is a homotopy equivalence, so suffices to show that $\pi_1(U, x) \to \pi_1(T_1(X) L, x)$ is surjective.
- Let $\alpha : \mathbf{S}^1 \to T_1(X)$ based at x.

Lemma

Let $L \subseteq \partial U$ be the union of finitely many closed geodesics. Then the map $\iota : \Gamma \to U \subseteq T_1(X) - L$ induces a surjective map

$$\iota_*:\pi_1(\Gamma)\to\pi_1(T_1(X)-L).$$

Proof idea of lemma

- Suppose $L = \emptyset$.
- $\iota : \Gamma \to U$ is a homotopy equivalence, so suffices to show that $\pi_1(U, x) \to \pi_1(T_1(X) L, x)$ is surjective.
- Let $\alpha : \mathbf{S}^1 \to T_1(X)$ based at x.
- Can assume that α in general position with T₁(X) − U, with α crossing ∂U transversely at finitely many points p = α(s).

Proof idea, continued.

After perturbing α, (WLOG) positive geodesic ray through p = α(s) is dense in T₁(X).

Proof idea, continued.

- After perturbing α, (WLOG) positive geodesic ray through p = α(s) is dense in T₁(X).
- $T \cdot p \in U$ for some $T \gg 0$. Then we can perturb α like:

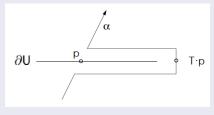


Figure: Figure 2 in [1]

Proof idea, continued.

- After perturbing α, (WLOG) positive geodesic ray through p = α(s) is dense in T₁(X).
- $T \cdot p \in U$ for some $T \gg 0$. Then we can perturb α like:

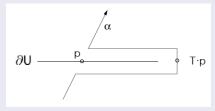


Figure: Figure 2 in [1]

• When $L \neq \emptyset$, all of this can be done away from *L*.

• Take $\rho : \pi_1(T_1(X) - L_n) \twoheadrightarrow G$ with $L_n = K_1 \cup \cdots \cup K_n$.

- Take $\rho : \pi_1(T_1(X) L_n) \twoheadrightarrow G$ with $L_n = K_1 \cup \cdots \cup K_n$.
- By subdividing rectangles, $T_1(X)$ admits a Markov section whose rectangles are disjoint and meet L_n only in their vertices.

- Take $\rho : \pi_1(T_1(X) L_n) \twoheadrightarrow G$ with $L_n = K_1 \cup \cdots \cup K_n$.
- By subdividing rectangles, $T_1(X)$ admits a Markov section whose rectangles are disjoint and meet L_n only in their vertices.
- The embedding $\iota : \Gamma \to U \subseteq T_1(X)$ lands in $T_1(X) L_n$.

- Take $\rho: \pi_1(T_1(X) L_n) \twoheadrightarrow G$ with $L_n = K_1 \cup \cdots \cup K_n$.
- By subdividing rectangles, $T_1(X)$ admits a Markov section whose rectangles are disjoint and meet L_n only in their vertices.
- The embedding $\iota : \Gamma \to U \subseteq T_1(X)$ lands in $T_1(X) L_n$.
- The composition

$$\pi_1(\Sigma(\Gamma,h)) \xrightarrow{c_*} \pi_1(\Gamma) \xrightarrow{\iota_*} \pi_1(T_1(X) - L_n) \xrightarrow{\rho} G$$

is surjective.

• Symbolic dynamics theorem implies

$$\lim_{N\to\infty}\frac{\#\{i\leq N:\rho\circ\iota_*\circ c_*(\tau_i)=C\}}{N}=\frac{\#C}{\#G}.$$

• Symbolic dynamics theorem implies

$$\lim_{N\to\infty}\frac{\#\{i\leq N:\rho\circ\iota_*\circ c_*(\tau_i)=C\}}{N}=\frac{\#C}{\#G}.$$

• Recall $\pi : \Sigma(\Gamma, h) \to T_1(X)$. Except for finitely many orbits, $K_i = \pi(\tau_i)$ with $L(K_i) = L(\tau_i)$.

Symbolic dynamics theorem implies

$$\lim_{N\to\infty}\frac{\#\{i\leq N:\rho\circ\iota_*\circ c_*(\tau_i)=C\}}{N}=\frac{\#C}{\#G}.$$

• Recall $\pi : \Sigma(\Gamma, h) \to T_1(X)$. Except for finitely many orbits, $K_i = \pi(\tau_i)$ with $L(K_i) = L(\tau_i)$.

• $\iota \circ c : \tau \to \Gamma \to U$ and $\pi : \tau \to U$ are homotopic, so

$$\rho(K_i) = \rho \circ \pi_*(\tau_i) = \rho \circ \iota_* \circ c_*(\tau_i) \subseteq G$$

Symbolic dynamics theorem implies

$$\lim_{N\to\infty}\frac{\#\{i\leq N:\rho\circ\iota_*\circ c_*(\tau_i)=C\}}{N}=\frac{\#C}{\#G}.$$

• Recall $\pi : \Sigma(\Gamma, h) \to T_1(X)$. Except for finitely many orbits, $K_i = \pi(\tau_i)$ with $L(K_i) = L(\tau_i)$.

• $\iota \circ c : \tau \to \Gamma \to U$ and $\pi : \tau \to U$ are homotopic, so

$$\rho(K_i) = \rho \circ \pi_*(\tau_i) = \rho \circ \iota_* \circ c_*(\tau_i) \subseteq G$$

 (τ_i) satisfies the Chebotarev law under ρ ∘ ι_{*} ∘ c_{*}, so (K_i) satisfies the Chebotarev law under ρ.

Curtis T. McMullen. "Knots Which Behave Like the Prime Numbers". In: *Compositio Mathematica* 149 (2013).

Javier Aramayona. Hyperbolic Structures on Surfaces. 2011.