$$\begin{array}{c} () \\ V \underline{req} vector space of dual; the a hive set of loss hyperplanes in V \\ U := V \setminus \bigcup_{Hell} H. Call every conn. comp a chamber. Atomic: every chamber C has preach, it walls Equivalently: I lower isom V \cong R^l that takes C acto R^l₂₀.
 Deligne (1972) Then $\bigcup_{C} := \bigvee_{C} \bigvee_{U} \underset{He}{=} H_{E}$ is apphenical (est its and over a contractible)
 Apphenetry motivator: Suppose $\forall C \subset CL(V)$ finite subgroup generated by reflections (i.e., a
 Coxeter group) with $\bigvee_{U} = for the degree for each water freely on \bigcup_{C}
 So the universal cover of \bigcup_{U} a loss a numerical cover of $\bigcup_{U} U_{C}$: $\bigcup_{U} U_{C}$ is called the Arth group of $\bigcup_{U} U_{C}$ is called the Arth group of $\bigcup_{U} U_{C}$ with $(will_{C})$
 Example: $W = S_{eff} \cap \mathbb{R}^{kff}$. Leaves $V := \{\pi_{0} + \dots + \pi_{d} = 0\}$ invariant.
 The reflections are the transpositions and so be hyperplaned are $\pi_{C} = \pi_{1}$ (i.e.).
 A chamber is $\pi_{0} < \pi_{1} < \dots < \pi_{d}$
 $U_{C} = \{(z_{0} - z_{d}) \in \mathbb{C}^{k-1} + z_{0} - z_{d}$ distinct; $\sum z_{c} = 0$
 $S_{eff} \cap \mathbb{V}_{C} = \mathbb{C}^{k-1} + q_{2}e^{k-1} + \dots < q_{d}$
 $W_{C} = \{\pi_{0} + q_{2}e^{k-1} + \dots < \pi_{d} + \mathbb{C}^{k}\}$ functioned are $\pi_{0} = \pi_{1}$ (i.e.).
 A chamber is $\pi_{0} < \pi_{1} < \dots < \pi_{d}$
 $W_{C} = \{\pi_{0} + q_{2}e^{k-1} + \dots < \pi_{d} + \mathbb{C}^{k}\}$ separable \mathcal{F} functionation of \mathcal{F}
 \mathcal{F}_{e} by $\mathbb{C}_{e} = \{\pi_{0} + q_{2}e^{k-1} + \dots < \pi_{d} \in \mathbb{C}^{k}\}$ separable \mathcal{F} functionation of π_{0}
 \mathcal{F}_{e} by $\mathbb{C}_{e} = \{\pi_{0} + q_{2}e^{k-1} + \dots < \pi_{d} \in \mathbb{C}^{k}\}$ separable \mathcal{F} functionated group π is the brand group π is the obtained group π is \mathcal{F}_{e} by π_{1} by π_{1} and π_{1} by π_{2} by π_{1} by π_{1} by π_{1} by π_{2} by π_{1} by π_{1} by π_{1} by π_{1} by π_{1} by π_{1} by π_{2} by π_{1} by $\pi_$$$$

(*)

Some Son Son a chamber C. let X be the set of walls of C How Hi So for every TEX we have a supporting hyperplane Hi and cover.

"top view" reflections sie W. Then $\{s_i\}_{i \in X}$ generate W. Clearly: (i) $s_i^2 = 0$ (i $\in X$) If $i \neq j$ and $s_i s_j$ has order m_{ij} , then $(s_i s_j)^{m_{ij}} = i$ (i in new of (i) equiv. to (ii) $s_i s_j s_i \cdots = s_j s_i s_j \cdots$ (braid veletions) m_{ij} m_{ij} Coxeter ('24) This is a presentation for W. Breskorn ('71) Aw has a presentation with generations $\{t_i\}_{i \in X}$ subject to the

brand relations
$$(t_{i}, t_{j}, ..., -t_{j}, ...)$$
 so that $A_{W_{i}}, W_{i}, t_{i} - 12$ is the mathem.
Generative of t_{i} : Lat F be a face of C. Then we have a dramber
CF opposite F: c_{F} f_{i} f_{i} and there is a unique f_{F} f_{i} f_{i} f_{i}
 $W_{F} \in W$ that takes C to CF.
Choose pe C, $q \in F$ and let δ_{F} : $[v_{i}, t_{j}, ..., V$ be $\frac{v}{u} = \frac{q}{q} \frac{s_{F}(p)}{p}$
Choose left δ_{F} : $[v_{i}, t_{j}] = T_{C}$
 $\delta_{F}(u) = \delta_{F}(u) + q(u)$. $t_{i} p$ $t_{i} = \frac{q}{q}$
Then δ_{F} closes up in W/U_C and defines $t_{F} \in t_{i}$ (W/U_C, F) = A_{W} .
If we let F run one the vells of C we get
our generators $\{t_{i}\}_{i \in X}$ (itil)
Remat. If F is the codin 2 face defined by Hi and H if then $t_{F} = \frac{t_{i}t_{i}\cdots}{t_{i}} \frac{t_{i}t_{i}\cdots}{t_{i}}$
 $i \in S + v i \in S$, and that $\Delta t_{i} = t_{i}A$. In particular Δ is carral.
 $3 : Property (F)$ is inherited if we choose some $H \in \mathcal{A}$ and consider
then this restriction used one to be a Coxeter awangement!)
Is a definition of I be a close to a wangement!)
Is a definition of I be a close to a some uncer $producet$)
The cells of Debyne's proof. Uses induction on I .)
Let $S = S(v)$ be the sphere of rays in V and $S = B(v)$ the core over its
(can take unit sphere rem. unit ball ure some uncer producet.)
The cells of H delines a wrangement of f_{i} (chambers deline $(q, 1)$ -simplices.)

