Conjugacy classes of parabolic subgroups of $\mathrm{O}^{+}(1,9)(\mathbb{Z})$

Seraphina Lee

August 14, 2022

Let $\mathbb{Z}^{1,9}=\mathbb{Z}\left\{H, e_{1}, \ldots, e_{9}\right\}$ with the summetric, bilinear form Q of type $(1,9)$:

$$
Q=\operatorname{diag}(1,-1, \ldots,-1)
$$

Throughout, when we consider a \mathbb{Z}-submodule W of \mathbb{Z}^{10}, we mean the pair $\left(W,\left.Q\right|_{W}\right)$, which may or may not be a lattice.

In this note, we show that there are exactly two conjugacy classes of maximal parabolic subgroups $\Gamma=\operatorname{Stab}_{\mathrm{O}^{+}(1,9)(\mathbb{Z})}(u)$, where $u \in \mathbb{Z}^{1,9}$ is a primitive, isotropic, nontrivial vector corresponding to a point of $\partial \mathbb{H}^{9}$. It suffices to compute that there are exactly two $\mathrm{O}(1,9)(\mathbb{Z})$-orbits of primitive, isotropic, nontrivial vectors of $\mathbb{Z}^{1,9}$.

Lemma 1. There are exactly two $\mathrm{O}(1,9)(\mathbb{Z})$-orbits of primitive, isotropic vectors in $\mathbb{Z}^{1,9}$. They are the orbits of $v:=H-e_{1}$ and $w:=3 H-e_{1}-\cdots-e_{9}$.

The main tool of the proof of Lemma 1 is the following theorem.
Theorem 2 (Mordell Mor38). There are exactly two isomorphism classes of positive-definite, unimodular lattices of rank 8 ; they are given by $8(1)$ and E_{8}.

Equivalently, any such negative-definite lattice is isomorphic to $8(-1)$ or $-E_{8}$. Next, we record a computation that is used in the proof of Lemma 1.

Lemma 3. Let

$$
L:=\mathbb{Z}\left\{w, 2 H-e_{1}-e_{2}-e_{3}-e_{4}-e_{5}\right\} \cong(1) \oplus(-1)
$$

be a sublattice of $\mathbb{Z}^{1,9}$. Then $L^{\perp} \cong-E_{8}$.
Proof. Note that $L^{\perp} \subseteq \mathbb{Z}\{w\}^{\perp}$ where

$$
\mathbb{Z}\{w\}^{\perp}=\mathbb{Z}\left\{H-e_{1}-e_{2}-e_{3}, e_{1}-e_{2}, \ldots, e_{8}-e_{9}\right\} \cong \mathbb{Z}^{9}
$$

The restriction of Q to $\mathbb{Z}\{w\}^{\perp}$ is even so the restriction of Q to L^{\perp} is even. Because L is odd and indefinite, $L \cong(1) \oplus(-1)$, so a signature calculation shows that L is negative definite of rank 8 . Theorem 2 implies that $L^{\perp} \cong-E_{8}$.

Now we prove the main lemma.
Proof of Lemma 1. First, we show that v and w are not in the same $\mathrm{O}(1,9)(\mathbb{Z})$-orbit. Observe that the restriction of Q to

$$
\mathbb{Z}\{w\}^{\perp}=\mathbb{Z}\left\{H-e_{1}-e_{2}-e_{3}, e_{1}-e_{2}, \ldots, e_{8}-e_{9}\right\} \cong \mathbb{Z}^{9}
$$

is even, while the restriction of Q to

$$
\mathbb{Z}\{v\}^{\perp}=\mathbb{Z}\left\{v, e_{2}, e_{3}, \ldots, e_{9}\right\} \cong \mathbb{Z}^{9}
$$

is odd. For any $g \in \mathrm{O}(1,9)(\mathbb{Z})$, the restriction of Q to $g\left(\mathbb{Z}\{w\}^{\perp}\right)$ is also even, so $g\left(\mathbb{Z}\{w\}^{\perp}\right) \neq \mathbb{Z}\{v\}^{\perp}$. Therefore, $g(w) \neq v$ for all $g \in \mathrm{O}(1,9)(\mathbb{Z})$.

Next, we show that any primitive, isotropic, nontrivial vector $u \in \mathbb{Z}^{1,9}$ lies in the $\mathrm{O}(1,9)(\mathbb{Z})$-orbit of v or w. By unimodularity of Q, there exists $u^{*} \in \mathbb{Z}^{1,9}$ such that $Q\left(u, u^{*}\right)=1$. Then the restriction of Q to $\mathbb{Z}\left\{u, u^{*}\right\}$ is unimodular and indefinite, and so the restriction of Q to $\mathbb{Z}\left\{u, u^{*}\right\}^{\perp}$ is unimodular and negative definite of rank 8. By Theorem 2, this gives two cases

$$
\mathbb{Z}\left\{u, u^{*}\right\}^{\perp} \cong-E_{8} \quad \text { or } \quad \mathbb{Z}\left\{u, u^{*}\right\}^{\perp} \cong 8(-1)
$$

depending on the parity of $\left.Q\right|_{\mathbb{Z}\left\{u, u^{*}\right\}^{\perp}}$.

1. If $\mathbb{Z}\left\{u, u^{*}\right\}^{\perp} \cong-E_{8}$ then Q restricted to $\mathbb{Z}\left\{u, u^{*}\right\}$ must be odd since $\mathbb{Z}^{1,9}$ is odd. Therefore, $\mathbb{Z}\left\{u, u^{*}\right\} \cong(1) \oplus(-1)$. There exists an automorphism $A \in \mathrm{O}(1,9)(\mathbb{Z})$ such that

$$
A\left(\mathbb{Z}\left\{u, u^{*}\right\}\right)=L \cong(1) \oplus(-1), \quad A\left(\mathbb{Z}\left\{u, u^{*}\right\}^{\perp}\right)=L^{\perp} \cong-E_{8}
$$

Up to automorphisms of L, there exists a unique primitive, isotropic, nontrivial vector in L, i.e. w. So perhaps after applying an automorphism of L, we can ensure that

$$
A(u)=w=3 H-e_{1}-\cdots-e_{9} \in L
$$

2. If $\mathbb{Z}\left\{u, u^{*}\right\}^{\perp} \cong 8(-1)$ then depending on the parity of $\left.Q\right|_{\mathbb{Z}\left\{u, u^{*}\right\}}$,

$$
\mathbb{Z}\left\{u, u^{*}\right\} \cong(1) \oplus(-1) \quad \text { or } \quad \mathbb{Z}\left\{u, u^{*}\right\} \cong\left(\mathbb{Z}^{2},\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

There exists an automorphism $A \in \mathrm{O}(1,9)(\mathbb{Z})$ such that

$$
A\left(\mathbb{Z}\left\{u, u^{*}\right\}\right)=\mathbb{Z}\left\{H, e_{1}\right\}, \quad A\left(\mathbb{Z}\left\{u, u^{*}\right\}^{\perp}\right)=\mathbb{Z}\left\{e_{2}, \ldots, e_{9}\right\}
$$

or

$$
A\left(\mathbb{Z}\left\{u, u^{*}\right\}\right)=\mathbb{Z}\left\{H-e_{1}, H-e_{2}\right\}, \quad A\left(\mathbb{Z}\left\{u, u^{*}\right\}^{\perp}\right)=\mathbb{Z}\left\{H-e_{1}-e_{2}, e_{3}, \ldots, e_{9}\right\}
$$

respectively. In either case, up to automorphisms of $A\left(\mathbb{Z}\left\{u, u^{*}\right\}\right)$, there's a unique primitive, isotropic, nontrivial vector in $A\left(\mathbb{Z}\left\{u, u^{*}\right\}\right)$, i.e. $H-e_{1}$. So perhaps after applying an automorphism of $A\left(\mathbb{Z}\left\{u, u^{*}\right\}\right)$, we can ensure that

$$
A(u)=v=H-e_{1}
$$

References

[Mor38] Mordell, L. J. The definite quadratic forms in eight variables with determinant unity. J. Math. Pures Appl., 17:41-46, 1938.

Seraphina Eun Bi Lee
seraphinalee@uchicago.edu

