Conjugacy classes of parabolic subgroups of $O^+(1,9)(\mathbb{Z})$

Seraphina Lee

August 14, 2022

Let $\mathbb{Z}^{1,9} = \mathbb{Z}\{H, e_1, \dots, e_9\}$ with the summetric, bilinear form Q of type (1,9):

 $Q = \operatorname{diag}(1, -1, \dots, -1).$

Throughout, when we consider a \mathbb{Z} -submodule W of \mathbb{Z}^{10} , we mean the pair $(W, Q|_W)$, which may or may not be a lattice.

In this note, we show that there are exactly two conjugacy classes of maximal parabolic subgroups $\Gamma = \operatorname{Stab}_{O^+(1,9)(\mathbb{Z})}(u)$, where $u \in \mathbb{Z}^{1,9}$ is a primitive, isotropic, nontrivial vector corresponding to a point of $\partial \mathbb{H}^9$. It suffices to compute that there are exactly two $O(1,9)(\mathbb{Z})$ -orbits of primitive, isotropic, nontrivial vectors of $\mathbb{Z}^{1,9}$.

Lemma 1. There are exactly two $O(1,9)(\mathbb{Z})$ -orbits of primitive, isotropic vectors in $\mathbb{Z}^{1,9}$. They are the orbits of $v := H - e_1$ and $w := 3H - e_1 - \cdots - e_9$.

The main tool of the proof of Lemma 1 is the following theorem.

Theorem 2 (Mordell [Mor38]). There are exactly two isomorphism classes of positive-definite, unimodular lattices of rank 8; they are given by 8(1) and E_8 .

Equivalently, any such negative-definite lattice is isomorphic to 8(-1) or $-E_8$. Next, we record a computation that is used in the proof of Lemma 1.

Lemma 3. Let

$$L := \mathbb{Z}\{w, 2H - e_1 - e_2 - e_3 - e_4 - e_5\} \cong (1) \oplus (-1)$$

be a sublattice of $\mathbb{Z}^{1,9}$. Then $L^{\perp} \cong -E_8$.

Proof. Note that $L^{\perp} \subseteq \mathbb{Z}\{w\}^{\perp}$ where

$$\mathbb{Z}\{w\}^{\perp} = \mathbb{Z}\{H - e_1 - e_2 - e_3, e_1 - e_2, \dots, e_8 - e_9\} \cong \mathbb{Z}^9$$

The restriction of Q to $\mathbb{Z}\{w\}^{\perp}$ is even so the restriction of Q to L^{\perp} is even. Because L is odd and indefinite, $L \cong (1) \oplus (-1)$, so a signature calculation shows that L is negative definite of rank 8. Theorem 2 implies that $L^{\perp} \cong -E_8$.

Now we prove the main lemma.

Proof of Lemma 1. First, we show that v and w are not in the same $O(1,9)(\mathbb{Z})$ -orbit. Observe that the restriction of Q to

$$\mathbb{Z}\{w\}^{\perp} = \mathbb{Z}\{H - e_1 - e_2 - e_3, e_1 - e_2, \dots, e_8 - e_9\} \cong \mathbb{Z}^9$$

is even, while the restriction of Q to

$$\mathbb{Z}\{v\}^{\perp} = \mathbb{Z}\{v, e_2, e_3, \dots, e_9\} \cong \mathbb{Z}^9$$

is odd. For any $g \in O(1,9)(\mathbb{Z})$, the restriction of Q to $g(\mathbb{Z}\{w\}^{\perp})$ is also even, so $g(\mathbb{Z}\{w\}^{\perp}) \neq \mathbb{Z}\{v\}^{\perp}$. Therefore, $g(w) \neq v$ for all $g \in O(1,9)(\mathbb{Z})$.

Next, we show that any primitive, isotropic, nontrivial vector $u \in \mathbb{Z}^{1,9}$ lies in the $O(1,9)(\mathbb{Z})$ -orbit of v or w. By unimodularity of Q, there exists $u^* \in \mathbb{Z}^{1,9}$ such that $Q(u, u^*) = 1$. Then the restriction of Q to $\mathbb{Z}\{u, u^*\}$ is unimodular and indefinite, and so the restriction of Q to $\mathbb{Z}\{u, u^*\}^{\perp}$ is unimodular and negative definite of rank 8. By Theorem 2, this gives two cases

$$\mathbb{Z}\{u, u^*\}^{\perp} \cong -E_8$$
 or $\mathbb{Z}\{u, u^*\}^{\perp} \cong 8(-1)$

depending on the parity of $Q|_{\mathbb{Z}\{u,u^*\}^{\perp}}$.

1. If $\mathbb{Z}\{u, u^*\}^{\perp} \cong -E_8$ then Q restricted to $\mathbb{Z}\{u, u^*\}$ must be odd since $\mathbb{Z}^{1,9}$ is odd. Therefore, $\mathbb{Z}\{u, u^*\} \cong (1) \oplus (-1)$. There exists an automorphism $A \in O(1,9)(\mathbb{Z})$ such that

$$A(\mathbb{Z}\{u, u^*\}) = L \cong (1) \oplus (-1), \qquad A(\mathbb{Z}\{u, u^*\}^{\perp}) = L^{\perp} \cong -E_8.$$

Up to automorphisms of L, there exists a unique primitive, isotropic, nontrivial vector in L, i.e. w. So perhaps after applying an automorphism of L, we can ensure that

$$A(u) = w = 3H - e_1 - \dots - e_9 \in L.$$

2. If $\mathbb{Z}\{u, u^*\}^{\perp} \cong 8(-1)$ then depending on the parity of $Q|_{\mathbb{Z}\{u, u^*\}}$,

$$\mathbb{Z}\{u,u^*\} \cong (1) \oplus (-1) \qquad \text{or} \qquad \mathbb{Z}\{u,u^*\} \cong \left(\mathbb{Z}^2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right).$$

There exists an automorphism $A \in O(1,9)(\mathbb{Z})$ such that

$$A(\mathbb{Z}\{u, u^*\}) = \mathbb{Z}\{H, e_1\}, \qquad A(\mathbb{Z}\{u, u^*\}^{\perp}) = \mathbb{Z}\{e_2, \dots, e_9\}$$

or

$$A(\mathbb{Z}\{u, u^*\}) = \mathbb{Z}\{H - e_1, H - e_2\}, \qquad A(\mathbb{Z}\{u, u^*\}^{\perp}) = \mathbb{Z}\{H - e_1 - e_2, e_3, \dots, e_9\}$$

respectively. In either case, up to automorphisms of $A(\mathbb{Z}\{u, u^*\})$, there's a unique primitive, isotropic, nontrivial vector in $A(\mathbb{Z}\{u, u^*\})$, i.e. $H - e_1$. So perhaps after applying an automorphism of $A(\mathbb{Z}\{u, u^*\})$, we can ensure that

$$A(u) = v = H - e_1.$$

References

[Mor38] Mordell, L. J. The definite quadratic forms in eight variables with determinant unity. J. Math. Pures Appl., 17:41–46, 1938.

Seraphina Eun Bi Lee seraphinalee@uchicago.edu