
Getting Acquainted with 
Intersection Forms 

Chapter 3 

W E define the intersection form of a 4-manifold, which governs inter-
sections of surfaces inside the manifold. We start by representing ev-

ery homology 2-class by an embedded surface, then, in section 3.2 (page 
115), we explore the properties of the intersection form. Among them is 
unimodularity, which is essentially equivalent to Poincare duality. An im-
portant invariant of an intersection form is its signature, and we discuss 
how its vanishing is equivalent to the 4-manifold being a boundary of a 
5-manifold. After listing a few simple examples of 4-manifolds and their 
intersection form, in section 3.3 (page 127) we present in some detail the 
important example of the K3 manifold. 

Given any closed oriented 4-manifold M, its intersection form is the sym-
metric 2-form defined as follows: 

QM: H2(M;Z) x H2(M;Z) Z 
QM(a:, {3) = (a: U ,B)[MJ . 

This form is bilinear1 and is represented by a matrix of determinant ± 1 . 
While over 1R this is a recipe for boredom, since this intersection form is 
defined over the integers (and thus changes of coordinates must be made 
only through integer-valued matrices), our QM is a quite far-from-trivial 
object. 

1. Notice that QM vanishes on any torsion element, and thus can be thought of as defined on the free 
part of H2 (M; Z); since our manifolds are assumed simply-connected, torsion is not an issue. -111 



112 3. Getting Acquainted with Intersection Forms 

For convenience, we will often denote QM (LX, f3) by LX • f3. Further, we will 
identify without comment a cohomology class LX E Z) with its Poin-
care-dual homology class LX E H 2 (M Z) . 

For defining QM more geometrically,2 we will represent classes LX and f3 
from H2(M;Z) by embedded surfaces SIX and Sf3' and then equivalently 
define QM (LX, f3) as the intersection number of SIX and Sf3: 

QM (LX, f3) = SIX . Sf3 . 

First, though, we need to argue that any class LX E H2 (M; Z) can indeed be 
represented by a smoothly embedded surface Sa: 

3.1. Preparation: representing homology by surfaces 
It is known from general results3 that every homology class of a 4-manifold 
can be represented by embedded submanifolds. Nonetheless, we present 
a direct argument for the case of 2-classes, owing to the useful techniques 
that it exhibits. 

Simply-connected case. Assume first that M is simply-connected. Then by 
Hurewicz's theorem 712(M) and hence all homology classes 
of M can be represented as images of maps f: 52 -4 M. The latter can 
always be perturbed to yield immersed spheres, whose only failures from 
being embedded are transverse double-points. These double-points can be 
eliminated at the price of increasing the genus. 

For example, by using complex coordinates, a double-point is isomorphic 
to the simple nodal singularity of equation 2122 = 0 in C2: the complex 
planes 21 = 0 and 22 = 0 meeting at the origin. It can be eliminated 
by perturbing to 2122 = E, as suggested in figure 3.1 on the facing page. 
(A simple change of coordinates transforms the situation into perturbing 
wi + = 0 to wi + = E.) 
More geometrically, imagine two planes meeting orthogonally at the origin 
of IR4. Their traces in the 3-sphere 53 are two circles, linking once.4 We can 
eliminate the singularity if we discard the portions contained in the open 4-
ball bounded by 53 , and instead connect the two circles in 53 by an annular 

2. 'Think with intersections, prove with cup-products." 
3. For example, for any smooth oriented XIII and any Cl: E H*(X;Z), there is some integer k so that 
ka can be represented by an embedded submanifold; if IX has dimension at most 8 or codimension at 
most 2, then it can be represented directly by a submanifold; if XIII is embedded in lR",+2, then X is 
the boundary of an oriented smooth (m + 1 )-submanifold in IRI1l+2. These results were announced 
in R. Thorn's Sous-varietes et classes d'homologie des varieUs differentiables [Tho53a] and proved in 
his celebrated Quelques proprieUs globales des varieUs differentiables [Tho54]. 
4. Think: fibers of the Hopf map 53 -t CJP 1 ; the Hopf map will be recalled in footnote 34 on page 129. 
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> 

3.1. Eliminating a double-point, 1: complex coordinates 

sheet, as suggested in figureS 3.2. Thus, we replaced two disks meeting at 
the double-point by an annulus. A 4-dimensional image is attempted in 
figure6 3.3 on the following page. 

3.2. Eliminating a double-point, 11: annulus 

5. On the left of figure 3.2, one circle is drawn as a vertical line through 00, after setting 53 = IR J U 00. 

6. As usual, in figure 3.3, dotted lines represent creatures escaping in the fourth dimension. 
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.... 

) 

3.3. Eliminating a double-point, III 

Either way, we can eliminate all double-points of the immersed sphere, and 
the result is then an embedded surface representing that homology class. 
Thus, all homology classes can be represented by embedded surfaces, but 
rarely by spheres. 

The failure to represent homology classes by smoothly embedded spheres is 
of course related to the failure of smoothly embedding disks. The natural 
question to ask is then: what is the minimum genus needed to represent a 
given homology class? We will come back to this question later.7 

In general. The method above only works for simply-connected M4 ,s. An 
argument for general 4-manifolds has two equivalent versions: 

(1) Since (]POO is an Eilenberg-Maclane K(Z,2)-space,s it follows that 
the elements of H2(M; Z) correspond to homotopy classes of maps M 
(]poo. Since M is 4-dimensional, such maps can be slid off the high-dimen-
sional cells of ClPoo and thus reduced to maps M ClP2 . For any class 
lX E H2 (M; Z), pick a corresponding fa: M ClP2 and arrange it to be 
differentiable and transverse to (::Jpl C (]p2. Then fa- l [CPI] is a surface 
Poincare-dual to lX. 

(2) Equivalently, since ClPoo coincides with the classifying space9 

of the group U(I), classes in H2(M;Z) correspond to complex line bun-
dles on M, with lX being paired to La whenever Cl (La) = lX. If we pick a 

7. See ahead, chapter 11 (starting on page 481). 

S. An Eilenberg-Maclane K(G,m)-space is a space whose only non-zero homotopy group is 7r17l = 
G; such a space is unique up to homotopy-equivalence. It can be used to represent cohomology as 
H m (X; G) = [X; K( G, In)] ,where [A; B] denotes the set of homotopy classes of maps A -t B. 
9. A classifying space for a topological group G is a space so that [X; .@G] coincides with the 
set of isomorphisms classes of G-bundles over X. A bit more on classifying spaces is explained in the 
end-notes of the next chapter (page 204). 
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generic section (J' of LIX , then its zero set (J'-l [0] will be an embedded surface 
Poincare-dual to a. 

3.2. Intersection forms 
Given a closed oriented 4-manifold M, we defined its intersection form as 

where SIX and Sf3 are any two surfaces representing the classes a and [3. 
Notice that, if M is simply-connected, then H2(M; Z) is a free Z-module 
and there are isomorphisms H2 (M; Z) EB m Z, where m = b2 (M). If M 
is not simply-connected, then H2(M; Z) inherits the torsion of Hi (M; Z), 
but by linearity the intersection form will always vanish on these torsion 
classes; thus, when studying intersection form, we can safely pretend that 
H2(M; Z) is always free. 

Lemma. The form QM(a, (3) = SIX . Sf3 on H2(M; Z) coincides modulo Poincare 
duality with the pairing QM(a*, f3*) = (a* U f3*)[M] on H2(M; Z). 

Proof Given any class a E H2(M;Z), denote by a* its Poincare-dual 
from H2(M;Z); we have a* n [M] = a. We wish to show that the 
pairing QM(a*,[3*) = (a* U [3*)[M] 
on H2 (M; Z) defines the same bilinear form as the one defined above. 

We use the general formula1o (a* U [3*) [M] = a* [[3*n [M]J, from which 
it follows that QM(a*,[3*) = a*[f3], or 

QM(a*,f3*) = a*[Sf3] . 
Therefore, we need to show that 

a*[Sf3] = SIX . Sf3 . 
Since QM vanishes on torsion classes, it is enough to check the last 
formula by including the free part of H2(M; Z) into H2(M; R) and by 
interpreting the latter as the de Rham cohomology of exterior 2-forms. 

Moving into de Rham co homology translates cup products into wedge 
products and cohomology I homology pairings into integrations. We 
have, for example, 

QM(a*,[3*) = iM a* 1\f3* 

for all2-forms a*, f3* E f(A2(TMJ)· 

and 

10. More often written in terms of the Kronecker pairing as (IX'" U f3"', [MD = (IX*, f3'" n [MD. 
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In this setting, given a surface Sa, one can find a 2-form a* dual to SIX 
so that it is non-zero only close to SIX' Further, one can choose some 
local oriented coordinates {Xl, X2, Yl, Y2} so that Sa coincides locally 
with the plane {Yl = 0; Y2 = O}, oriented by dXl 1\ dX2. One can 
then choose a* to be locally written a* = f(Xl, X2) dYl 1\ dY2, for some 
suitable bump-function f on R2, supported only around (0,0) and 
with integral fR2 f = 1. 

If Sf3 is some surface transverse to SIX and we arrange that, around 
the intersection points of SIX and Sf3' we have Sf3 described by {XI 
0; X2 = O}, then clearly 

r a* = Sa . Sf3 ' 
JS{3 

with each intersection point of SIX and Sf3 contributing ± 1 depending 
on whether dYI 1\ dY2 orients Sf3 positively or not.u 0 

Unimodularity and dual classes 
The intersection form QM is Z-bilinear and symmetric. As a consequence of 
Poincare duality, the form QM is also unimodular, meaning that the matrix 
representing QM is invertible over Z. This is the same as saying that 

detQM = ±l . 
Unimodularity is further equivalent to the property that, for every Z-linear 
function f: H2(M;Z) Z, there exists a unique a E H2(M;Z) so that 
f(x)=a.x. 

Lemma. The intersection form QM of a 4-manifold is unimodular. 

Proof. The intersection form is unimodular if and only if the map 

QM: H2(M;Z) ---+ HOffiZ (H2(M;Z), Z) 
IX 

is an isomorphism. We will argue that this last map coincides with 
the Poincare duality morphism. Indeed, Poincare duality is the isomor-
phism 

IX a* , 
with a* characterized by a* n [M] = a. Assume for simplicity that 
H2 (M; Z) is free.12 Then the universal coefficient theorem13 shows that 

11. See R. Bott and L. Tu's Differential forms in algebraic topology [BT82] for more such play with 
exterior forms. 
12. If not free, a similar argument is made on the free part H2(M; Z) / Ext(H\ (M; Z); Z) of H2(M; Z), 
which is all that matters since QM vanishes on torsion. 
13. The universal coefficient theorem was recalled on page 15. 
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we have an isomorphism 

H2(M;Z) Hom(H2(M;Z), Z) 
IX* X I---t IX*[X] . 

Combining Poincare duality with the latter yields the isomorphism 

H2(M;Z) Hom(H2(M;Z), Z) 
X I---t IX* [x] . 
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However, as argued in the preceding subsection, we have QM (IX, x) = 
IX* [x], and therefore the above isomorphism coincides with the map 
QM' That proves that the intersection form QM is unimodular. 0 

Further, the unimodularity of QM is equivalent to the fact that, for every 
basis {IX I, ... , IXm} of H2 (M; Z), there is a unique dual basis {,B I, ... ,,Bm} 
of H2(M;Z) so that IXk·,Bk = +1 and lXi' {3j = 0 if i i- j. 

To see this, start with the basis {aI, ... , am} in H2 (M; Z) / pick the familiar 
dual basis14 {a7, ... in the dual Z-module Hom(H2(M;Z), Z), then 
transport it back to H2(l\1; Z) by using Poincare duality (or QM) and hence 
obtain the desired basis {,sI, ... , ,sm}. 

In particular, for every indivisible class IX (i.e., not a multiple), there exists 
at least one dual class ,B such that IX . {3 = + 1: complete IX to a basis and 
proceed as above. (Of course, such ,B'S are not unique: once you find one, 
you can obtain others by adding any / with IX'/ = 0.) 

lntersection forms and connected sums 
The simplest way of combining two 4-manifolds yields the the simplest 
way of combining two intersection forms. First, a bit of review: 

Remembering connected sums. The connected sum of two manifolds M 
and N, denoted by N M# , 
is the simplest method for combining M and N into one connected man-
ifold, by joining them with a tube as sketched in figure 3.4 on the next 
page. Notice that the 4-sphere is an identity element for connected sums: 
M#S4 M. 
:onnected sums are described more rigorously by choosing in each of M 
lnd N a small open 4-ball and removing it to get two manifolds MO and 
rvo, each with a 3-sphere as boundary, then identifying these 3-spheres to 
)btain the closed manifold M # N . 

l4. Recall that, given a basis {el, ... , em} in a module Z, the dual basis {er, ... , in Z* is specified 
'Y setting e;(ek) = 1 and ej(ej) = 0 for i t= j. 
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J[ > 

3.4. The connected sum of two manifolds, I 

More about connected sums. The identification of the two 3-spheres must 
be made through an orientation-reversing diffeomorphism a MO a N°, as 
was mentioned on page 13. Indeed, if M and N are oriented, then the new 
boundary 3-spheres will inherit orientations. In order that the orientations of 
M and N be nicely compatible with an orientation of M # N, we must identify 
the 3-spheres with an orientation flip. 
Furthermore, to ensure that M # N is a smooth manifold, this gluing must be 
done as follows: Choose open 4 -balls in M and N, then remove them. Embed 
copies of 53 x [0, I] as collars to the new boundary 3-spheres. Take care to 
embed these collars so that, on the side of M, the sphere 53 x I be sent onto 
a MO, with 53 x [0,1) going into the interior of MO. On the N side, 53 x ° 
should be sent onto a N° and 53 x (0, 1] into the interior of N° . Now identify 
the two collars 53 x [0, I] in the obvious manner and thus obtain M # N, as 
in figure 3.5. This automatically forces the boundary-spheres to be identified 
Hinside-out", reversing orientations, and further makes it clear that M # N is 
smooth.1S See figure 3.6 on the next page. The equivalence of this procedure 
with 'Joining by a tube" is explained in figure 3.7 on the facing page. 

_M_O > MUN I 
3.5. Gluing by identifying collars 

Sums and This connected sum operation is nicely compatible with 
intersection forms: 
Lemma. If M and N have intersection forms QM and QN' then their connected 
sum M # N will have intersection form 

QMUN = QM EB QN . 

Proof. Since MO and N° can be viewed as M and N without a 4-
handle (or a 4-cell), and since 2-homology is influenced only by 1-, 2-
and 3-handles, it follows that the 2-homologyof M # N will merely be 
the friendly gathering of the 2-homologies of M and N, intersections 
and all. 0 

15. In fact, each time you read" A Imd B both have the same boundary, so we glue A and B along if', you 
should understand that the "gluing" is done via an orientation-reversing diffeomorphism a A aB, 
and that a collaring procedure as above is used. This was already explained on page 13. For more on 
the foundation of these gluings, read from M. Hirsch's Differential topology [Hir94, sec 8.2]. 
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3.6. The connected sum of two manifolds, II 

J[ ) ) 

3.7. The connected sum of two manifolds, III 

Topological heaven. For topological 4-manifolds a converse is true: 

Theorem (M. Freedman). If M is simply-connected and QM splits as a direct 
sum QM = Q' EB Q", then there exist topological 4-manifolds N' and N" with 
intersection forms Q' and Q" such that M = N' # N" . 0 

This is a direct consequence of Freedman's classification that we will present 
later.16 Such a result certainly fails in the smooth case, and its failure spawns 
exotic17 R4 's. 

Invariants of intersection forms 
To start to distinguish between the various possible intersection forms, we 
define the following simple algebraic invariants: 

16. See ahead section 5.2 (page 239). For a more refined topological sum-splitting result, we refer to 
M. Freedman and F. Quinn's Topology of 4-manifolds [FQ90, ch to]. 
17. See ahead section 5.4 (page 250). 
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- The rank of QM : 

It is the size of QM 's domain, defined simply as 

rank QM = rankz H2(M;Z) I 

or rank QM = dim IR H2(M; R). In other words, the rank is the second 
Betti number b2 (M) of M. 

- The signature of QM: 
It is obtained as follows: first diagonalize QM as a matrix over R (or 
Q), separate the resulting positive and negative eigenvalues, then sub-
tract their counts; that is 

sign QM = dim H! (M; R) - dim H: (M; R) I 

where Hi are any maximal positive/negative-definite subspaces for 
QM' We can set partial Betti numbers = dim Hi, and thus we can 
read sign QM = bi (M) - b2 (M). 

- The definiteness of QM (definite or indefinite): 
If for all non-zero classes it we always have QM (it, it) > 0, then QM is 
called positive definite. 
If, on the contrary, we have QM (iX, iX) < 0 for all non-zero it'S, then 
QM is called negative definite. 
Otherwise, if for some it+ we have QM(it+, it+) > 0 and for some it_ 

we have QM (it_, it_) < 0, then QM is called indefinite. 

- The parity of QM (even or odd): 
If, for all classes it, we have that QM(iX, IX) is even, then QM is called 
even. Otherwise, it is called odd. Notice that it is enough to have one 
class with odd self-intersection for QM to be called odd. 

Signatures and bounding 4-manifolds 
A first remark is that signatures are additive: sign( Q' EB Q") = sign Q' + 
sign Q" . In particular,18 

sign(M # N) = sign M + sign N . 

Another remark is that changing the orientation of M will change the sign 
of the signature: 

sign M = - sign M I 

since it obviously changes the sign of its intersection form: QM = - QM . 

18. The additivity of signatures still holds for gluings M Ua N more general than connected sums. 
This result (Novikov additivity) and an outline of its proof can be found in the the end-notes of the next 
chapter 224). 
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The signature vanishes for boundaries. More remarkably, the vanishing of 
the signature of a 4-manifold M has a direct topological interpretation: 

Lemma. If M4 is the boundary of some oriented 5-manifold W5 , then 

signQM = o. 
Proof. Since the signature appears after diagonalizing over some field, 
we will work here with homology with rational coefficients. Thus, de-
note by t: H2 (M;Q) H2 (W;Q) the morphism induced from the 
inclusion of M4 as the boundary of W5 . 

If bounding. First, we claim that if both IX, f3 E H2 (M; Q) have tIX = 0 
and tf3 = 0 then their intersection must be IX . f3 = O. Indeed, since IX 
and f3 are rational, some of their multiples mlX and n f3 will be integral. 
Then nllX and nf3 can be represented by two embedded surfaces Smo: 
and 5 11 /3 in M. Since ux = 0 and lf3 = 0, this implies that Smo: and 
511 /3 will bound two oriented 3-manifolds Ymo: and Ynf3 inside W. The 
intersection number IX . f3 is determined by counting the intersections 
of the surfaces Smo: and Snf3' then dividing by mn. However, the inter-
section of and inside W5 consists of arcs, which connect pairs 
of intersection points of Smo: and Snf3 with opposite signs, as pictured 
in figure 3.8. It follows that Sma: . Sna: = 0, and therefore lX . f3 = 0, as 
claimed. 

M 

3.8. Bounding surfaces have zero intersection 

If not bounding. Second, we claim that for every lX E H2 (M; Q) with 
tIX f=. 0 there must be some f3 E H2(M; Q) so that lX . {3 = + 1 but l{3 = O. 
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To see that, we notice that, since ux i= 0 in H2 (W;Q), there exists a 3-
class B E H3 (W, a W; Q) that is dual19 to our ux E H2(W; Q), i.e., has 
tx· B = + 1 in W5. Its boundary aB = f3 is a class in H2(M; Q), and we 
have that a . f3 = la . B = + 1 and also that lf3 = O. See figure 3.9. 

". . .... ..................... 

3.9. A non-bounding class has a bounding dual 

Unravel the form. Finally, we are ready to attack the actual intersection 
form of M. Any class a that bounds in W, i.e., has la = 0, must have 
zero self-intersection tx . a = O. We are thus more interested in classes 
tx that do not bound. 

Assume we choose some a E H2(M; Q) so that la i= O. Then there 
is some f3 E H2 (M;Q) so that a· f3 = +1, while lf3 = 0, and thus 
f3 . f3 = O. Therefore the part of QM corresponding to {a, f3} has matrix 

Q.p = [; , 

which has determinant -1 and diagonalizes over Q as [+ 1 J EB [- I] . 
Since QM is unimodular, this means that QM must actually split as a 
direct sum QM = QIX{3 EB Q..l for some unimodular form Q-L defined 
on a complement of Q{tx,f3} in H2 (M;Q). Since the signature is addi-
tive and one can see that sign QIX f3 = 0, we deduce that we must have 
sign QM = sign Q..l . 
We continue this procedure for Q..l , splitting off 2-dimensional pieces 
until there are no more classes a with ltx i= 0 left. Then whatever is still 
there has to bound in W, and hence contribute to the signature. 
Therefore sign QM = O. 0 

19. A reasoning analogous to the one we made earlier for QM applies to the intersection pairing 
H2(W;Z) x H3(W,aW; Z) -7 Z. Inparticular,itisunimodular, and thus we have dual classes; since 
we work over O. the indivisibility of IX is not required. 
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A consequence of this result is that, whenever two 4-manifolds can be 
linked by a cobordism, they must have the same signature. Indeed, if 
a w = MU N, then 0 = sign(M UN) = - sign M + sign N. That is: 

Corollary. If two manifolds are cobordant, then they have the same signature. 
Signature is a cobordism invariant. 0 

The signature vanishes only for boundaries. A result quite more difficult to 
prove is the following: 

Theorem (V Rokhlin). If a smooth oriented 4-manifold M has 

signQM = 0, 

then there is a smooth oriented 5-manifold W such that a W = M. 

Idea of proof. A classic result of Whitney assures that any manifold 
X I11 can be immersed in 1R 2m -1 ; in particular, our M4 can be immersed 
in JR.7. By performing various surgery modifications, we then arrange 
that M be cobordant to a 4-manifold M' that embeds in JR.6. Further-
more, a result of R. Thom20 implies that M' must bound a 5-manifold 
W' inside JR.6. Attaching W' to the earlier cobordism from M to M' 
creates the needed W5 . A few more details for such a proof will be 
given in an inserted note on page 167. 0 

Therefore, the signature of M is zero if and only if M bounds. And hence: 

Corollary ( Cobordisms and signa tures). Two 4-manifolds have the same sig-
l1ature if and only if they are cobordant. Signature is the complete cobordism in-
pariant. 0 

A consequence is that, unlike h-cobordisms, simple cobordisms are not 
very interesting: Every 4-manifold M is cobordant to a connected sum of {]p2'S 
or of {]p2's or to 54. Indeed, assume that sign M = m > 0; then, since 
sign (]p2 = I, it follows that M and #m Cp2 must be cobordant; if m < 0, 
use Cp2's instead. 

Simple examples of intersection forms 
Since the first example of a 4-manifold that comes to mind, namely the 
sphere 54, does not have any 2-homology, it has no intersection form worth 
mentioning. Thus, we move on: 

20. The result was quoted back in footnote 3 on page 112. 
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The complex projective plane. The complex projective plane (]p2 has inter-
section form 

Indeed,since H2 ({]P2 ;Z) = Z{[ClPl]} where [ClPl] isthedassofaprojec-
tive line, and since two projective lines always meet in a point, the equality 
above follows. 

The oppositely-oriented manifold ClP2 has 

QClP2 = [-1] 

Sphere bundles. The manifold 52 x 52 has intersection form 

Q s' x s' = [1 1]. 
We will denote this matrix by H (from ''hyperbolic plane"). 

Reversing orientation does not exhibit a new manifold: there exist orienta-
tion-preserving diffeomorphisms 52 x 52 52 X 52, and they correspond 
algebraically to isomorphisms H :::::: - H. 

The twisted product 52 X 52 is the unique nontrivial sphere-bundle21 over 
52. It is obtained by gluing two trivial patches (hemisphere) x 52 along the 
equator of the base-sphere, using the identification of the 52-fibers that 
rotates them by 2n as we travel along the equator. The intersection form is 

Qs' xs' = [: 1]. 
A simple change of basis in H2 (52 X 52; Z) exhibits the intersection form 
as 

QS2 "S2 = [1 -1] = [+1] Ell [- 1] . 
Even more, it is not hard to argue that in fact we have a diffeomorphism22 

52 x 52 ClP2 #ClP2 , 

and so we have not really encountered anything essentially new. 

21. Since an S2 -bundle over S2 = [)21 U [)22 is described by an equatorial gluing map Si -,> 50(3), 
and 7I1 50( 3) = 'Z2, it follows that there are only two topologically-distinct sphere-bundles over a 
sphere. 
22. Quick argument: The equatorial gluing map Si -,> 50(3) of 52 x can be imagined as follows: 
as we travel along the equator of the base-sphere, it fixes the poles of the fiber-sphere and rotates the 
equator of the fiber-sphere by an angle increasing from 0 to 2n. Then these fiber-equators describe 
a circle-bundle of Euler number 1, which thus has to be the Hopf circle-bundle S3 -,> S2. Hence 
the sphere-bundle is cut into two halves by a 3-sphere. Each of these halves is a disk-bundle of Euler 
number 1 and can therefore be identified with a neighborhood of CIP I inside OP2, but the complement 
of such a neighborhood is just a 4- ball. Taking care of orientations yields the splitting S2 x S2 = ClP2 # 
CIP 2 . 
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Connected sums. Of course, through the use of connected sums we can 
build a lot of boring examples, such as C1P2 # C1P2 # 52 X 52, whose in-
tersection form is the sum [+ 1] EB [-1] EB H. (Incidentally, notice that this 
manifold has signature zero, and thus must be the boundary of some 5-
manifold.) 

The Es-manifold. More interesting, though rather exotic, is Freedman's 
Eg-manifold MEs = PEsUr;p.1. This topological 4-manifold was built ear-
lier23 by plumbing on the Eg diagram and capping with a fake 4-ball. Its 
intersection form can be read from the plumbing diagram to be 

2 1 
1 2 

2 
2 

2 
2 1 

2 
2 

From now on, we will denote this matrix24 by Eg, and succinctly write 
Q.M = Eg. The Eg-manifold does not admit any smooth structures.25 

2 2 2 2 2 2 2 

3.10. The E8 diagram, yet again 

An alternative algebraic description of this most important £8 -form is the 
following: Consider the form Q = [-1] ED 8 [+ 1], with corresponding basis 
{eO,el, ... ,e8}. The vector K = geo + Cl + ... + Cs has K· K = -1; therefore 
its Q-orthogonal complement must be unimodular. This complement is the 
£8 -form. In particular, we have £8 EB [- I] [- I] Efl 8 [+ 1] . 

Lemma. The Eg -form is positive-definite, even, ([nd of signature 8. 

Unexpectedly, proof We will perform elementary operations on the 
rows and columns of the Eg-matrix. This will be fun. 

23. See section 2.3 (page 86). 
24. Various people have slightly different favorite choices for their E8 -matrix, for example, the nega-
tive of the above matrix. A brief discussion is contained in the end-notes of this chapter (page 137). 
25. This is a consequence of Rokhlin's theorem, see section 4.4 (page 170) ahead. 
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First off, notice that these operations must be applied symmetrically, cor-
responding to changes of basis in H2(M; Z). That is to say, when for 
example we subtract 3/2 times the first row from the third, we must 
afterwards also subtract 3/2 times the first column from the third col-
umn. Indeed, since the matrix A of a bilinear form acts on H2 x H2 
by (x,y) xt Ay, any elementary change of basis 1+ AEij on H2 will 
transform A into (I + AEji)A(I + AEij)' 

Denote by (1), (2), (3), (4), (5), (6), (7), (8) the eight rows/columns of 
the E8-matrix, and let us start: We write down the E8-matrix, then 
subtract 1/2 x (1) from (2): 

2 1 2 
1 2 1 3/2 1 

I 2 1 I 2 I 
I 2 1 

I 2 1 then 1 2 I 
1 2 1 1 • 

1 2 1 1 2 I 
1 2 I 2 

2 2 

Subtract 2/3 X (2) from (3), then subtract 3/4 x (3) from (4): 
2 2 

4/3 1 
1 2 1 

I 2 1 
then 5/4 I 

I 2 I 1 • 
1 2 1 1 2 1 

I 2 1 2 
2 2 

Subtract 4/5 x (4) from (5), then subtract 1/2 x (8) from (5): 
2 2 

3/2 

6/5 1 
then 

7/10 1 
1 2 1 1.· 2 1 

1 2 1 2 
2 2 

Subtract 10/7 x (5) from (6), then subtract 7/4 x (6) from (7): 
2 2 

7/10 
then 5/4 

7/10 

4/7 1 
1 2 

2 2 

We have diagonalized E8, and its signature is 8. It is positive-definite. 
Its determinant is detEs = 2.3/2.4/3.5/4.7/10.4/7.1/4' 2 1 and 
hence ER is unimodular, as claimed. 0 
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A few more examples. ( 1) The intersection form of MEs # MEs is Eg EB - Eg . 
Algebraically, we ha ve Eg EB - Eg :::::: EB 8 H through a suitable change of basis. 
As it turns out, this corresponds to an actual homeomorphism26 

- 2 2 
MEs # MEs # 8 5 x 5 . 

Hence the smooth manifold # 8 52 X 52 can be into two non-smoothab1e 
topological4-manifolds, along a topo1ogically-embedded 3-sphere. 
(2) The intersection form of MEs#Cp2 is [- 1] EB 8 [+ 1], same as the intersec-
tion form of CP2 # 8 CP2. The two 4 -manifolds, though, are not homeomor-
phie, and the manifold MEs#Cp2 does not admit any smooth structures.27 

(3) The manifold MEs#MEs' with intersection form Eg EB Eg, is not smooth.28 

Neither is MEs # MEs # 52 x 52, nor is MEs # MEs # 2 52 X 52. However, sud-
denly MEs # MEs # 3 52 X 52 does admit smooth structures, and in what fol-
lows we will display such a smooth structure: 

3..3. Essential example: the K3 surface 
A less exotic example (than the E8-manifold) of a 4-manifold whose inter-
section form contains E8 's is the remarkable K3 complex surface that we 
build next: 

The Kummer construction 
Take the 4-torus 

and think of each SI-factor as the unit-circle inside C. Consider the map 

given by complex-conjugation in each circle-factor, as in figure 3.11 on the 
next page. The involution er has exactly 16 = 24 fixed points, and thus the 
quotient 

will have sixteen singular points where it will fail to be a manifold. Small 
neighborhoods of these singular points are cones29 on lR1P3. 

We wish to surger away these singular points of 1[4/ er in order to obtain an 
actual 4-manifold. For that, we consider the complex cotangent bundle T;2 
26. This homeomorphism follows from Freedman's classification, see section 5.2 (page 239). A direct 
argument can also be made, starting with the observation that .A.!lEg# MEs is the boundary of (MEs \ 
ball) x [0, IJ. 
27. This follows, again, from Freedman's classification. 
28. This is a consequence of Donaldson's theorem, section 5.3 (page 243). 

29. Remember that the cone CA of a space A is simply the result of taking A x [0,1] and collapsing 
A x 1 to a single point (the "vertex"). 
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3.11. Conjugation, acting on Si 

of the 2-sphere. It is the 2-plane bundle over 52 with Euler number -2 (it 
has opposite orientation30 to the tangent bundle T51 , whose Euler number is 
+ 2). Its unit-disk subbundle DT;2 is a 4-manifold bounded by lR1P3. 

Since a neighborhood of a singular point in 1['4/ (J" has the same boundary as 
DT;2' we can cut the former out of 1['4/ (J" and replace it by a copy of DT;2 . 
The result of this maneuver is essentially to remove the singular point and 
replace it with a sphere of self-intersection - 2 (the zero-section of DT;2). 
We do this for all sixteen singular points. 

Such a desingularization of 1['4/ eT yields a simply-connected smooth 4-mani-
fold. This manifold admits a complex structure (thus it is a complex sur-
face) and is called the K3 surface. The name comes from Kummer-Kahler-
Kodaira.31 The construction above is due to Kummer, which is why this 
manifold used to be known merely as the Kummer surface. 

Homology. The K3 surface has homology H2(K3; Z) = 61 22Z (superfi-
cially, from 6 tori surviving from 1['4, plus the 16 desingularizing spheres). 
Its intersection form is 

2 2 1 
2 2 
1 2 1 2 

QK3 
1 2 2 1 

1 2 1 61- 1 2 1 
1 2 1 2 

1 2 1 2 
1 2 2 

ill [I 1]E9[1 1]E9[1 1] 
and clearly it is better kept abbreviated as 

QK3 = 61 2( -E8) ffi 3H . 

30. For a discussion of orientations for complex-duals, see the end-notes of this chapter (page 134). 
31. A. Weil wrote that, besides honoring Kummer, Kodaira and Kahler, the name" K3" was also chosen 
in relation to the famous K2 peak in the Himalayas: "[Surfaces] ainsi 110mmeeS en l'honneur de Kummer, 
Kiihler, Kodaira, et de la belle montagne K2 au Cachemire." 
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Even if this manifold does not seem simple at all, it is in many ways as 
simple as it gets. We will see that K3 is indeed the simplest32 simply-connec-
ted smooth 4-manifold that is not S4 nor a boring sum of (]p2, (]p2 and 
S2 x 52's. 

The desingularization, revisited. Let us take a closer look at the desingular-
ization of ']['4/ (J that created K3 and try to better it. 
Consider first a neighborhood inside ']['4 of a fixed point Xo of (J. It is merely 
a 4-ball, which can be viewed as a cone over its boundary 3-sphere S3, 
with vertex at Xo. The action of (J on this cone can itself be viewed as being 
the cone33 of the antipodal map S3 S3 (which sends w to -w). Therefore, 
the quotient of this neighborhood of Xo by (J must be a cone on the quotient 
of 53 by the antipodal map, in other words, a cone on IRIP3. 
Furthermore, S3 is fibrated by the Hopf map,34 which makes it into a bun-
dle with fiber S' and base S2. Then its quotient lRIP3 inherits a structure of 
IRIP' -bundle over S2: Si C S3 S2 

11 

IRIPI C IR1P3 S2. 
However, IRIP' is simply a circle, so in fact we exhibited IRIP3 as an SI-
bundle over S2. 
Now let us look back at the neighborhood of a singular point of ']['4/ (J. It 
is a cone on IRIP3, and we can think of it as being built by attaching a disk 
to each circle-fiber of IRIP3 , and then identifying all their centers in order to 
obtain the vertex of the cone, the singular point. When we desingularize, 
we replace this cone-neighborhood in ']['4/ (J with a copy of DT;2' This can 
be viewed simply as not identifying the centers of those disks attached to 
the fibers of IRIP3, but keeping them disjoint. The space of the circle-fibers 
of lRIP3 is the base S2 of the fibration. Thus the space of the attached disks is 
52 as well, and thus their centers (now distinct) will draw a new 2-sphere, 
which replaced the singular point. 
We can thus think of our desingularization as simply replacing each of the 
sixteen singular points of ']['4/ (J by a sphere with self-intersection -2. 

32. We take "simple" to include "simple to describe". Smooth manifolds with simpler intersection forms 
already exist (e.g., exotic #m 52 x 52 's, see page 553), and exotic 54 's could always appear. 
33. Remember that the cone Cf of a map f: A -> B is the function Cr CA ---t CB defined by first 
extending f: A ---t B to f x id: A x [0, I] -; B x [0, I], then collapsing A x I to a point and B x I to 
another, with the the resulting function er: CA -; CB sending vertex to vertex. 
34. Remember that the Hopf map is defined to send a point x E 53 C (:2 to the point from 52 = (:1P I 
that represents the complex line spanned by x inside (:2. Topologically, the Hopf bundle 53 -> 52 is 
a circle-bundle of Euler class + 1. Two distinct fibers will be two circles in 53 linked once (a so-called 
Hopf link, see figure 8.16 on page 318). The Hopf map 53 -> 52 represents the generator of 7t352 = Z. 
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Holomorphic construction 
A complex geometer would construct the Kummer K3 in a way that visibly 
exhibits its complex structure. Specifically, she would start with ']['4 being 
a complex torus-for example the simplest such, the product of two copies 
of C / (Z EB iZ). Such a ']['4 comes equipped with complex coordinates 
('WI' 'W2), and the involution (7 can be described as (7( WI, W2) = (-WI' -W2) 
(which is obviously holomorphic). 
As before, the action of (7 has sixteen fixed points, but, before taking the 
quotient, the complex geometer will blow-up35 ']['4 at these sixteen points. 
This has the result of replacing each fixed point of (7 with a sphere of self-
intersection -1 (a neighborhood of which looks like a neighborhood of 
CIP I inside CIP 2). The map (7 can be extended across this blown-up 4-
torus: since she replaced the fixed points of (7 by spheres, she can extend (7 

across the new spheres simply as the identity, thus letting the whole sphe-
res be fixed by the resulting (7. 

Only now will the complex geometer take the quotient by (7 of the blown-
up 4-torus. The result is the K3 surface. The spheres of self-intersection 
- 1 created when blowing-up the torus will project to the quotient K3 as 
themselves (they were fixed by (7), but their neighborhoods are doubly-
covered through the action of (7; thus these spheres inside K3 have now 
self-intersection -2. 

Many K3's. This is the place to note that a complex geometer will in fact 
see a multitude of K3 surfaces. Indeed, "K3" is not the name of one complex 
surface, but the name of a class of surfaces.36 Any non-singular simply-con-
nected complex surface with Cl = 0 is a K3 surface. 
For example, in the construction above, if we start with a different complex 
structure on ']['4 (from factoring C2 by a different lattice), then we will end 
up with a different K3 surface. All K3' s that result from such a construc-
tion are called Kummer surfaces. However, K3 surfaces can be built in 
many other ways. One example is the hypersurface of ClP3 given by the 
homogeneous equation 

zt + zi + zj + z1 = 0 
(or any other smooth surface of degree 4). Another is the E(2) elliptic 
surface that we will describe in chapter 8 (page 301). 
This whole multitude of complex K3 surfaces, through the blinded eyes of 
the topologist, are just one smooth 4-manifold: any two K3's are complex-
deformations of each other, and thus are diffeomorphic. Hence, in this book 
we will carelessly be saying "the K3 surface". 

35. For a discussion of blow-ups, see ahead section 7.1 (page 286). 
36. For instance, the moduli space of all K3 surfaces has dimension 20. 
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K3 as an elliptic fibration 
The K3 surface can be structured as a singular fibration over S2, with gene-
ric fiber a torus. A (singular) fibration by tori of a complex surface is called 
an elliptic fibration (because a torus in complex geometry is called an elliptic 
curve). A complex surface that admits an elliptic fibration is called an ellip-
tic surface. The Kummer K3 is such an elliptic surface. Other examples of 
elliptic surfaces, as well as a different elliptic fib ration on the K3 manifold, 
will be discussed later.37 

In any case, describing the elliptic fibration of K3 will help us better visual-
ize this manifold. To exhibit it, we start with the projection 

SI x SI X SI X SI ---+ SI X SI 

of ']['4 onto its first two factors. After taking the quotient by the action of (T, 

this projection descends to a map 
1[4/ (T ---+ 1[2/ (T • 

Its target ']['2 / (T is a non-singular sphere S2, as suggested in figure 3.12 (it 
seems like it has four singular points at the corners, but these are merely 
metric-singular, and can be smoothed over). 

> 

3.12. Obtaining the base sphere: ']['2/ eT = 52 

Aside from the corner-points of the base-sphere ']['2 / (T, each of its other 
points comes from two distinct points (p, q) and (p, q) of ']['2 identified by 
(T. Thus, the fiber of the map 1[4/ (T 1[2 / (T over a generic point appears 
from (T'S identifying two distinct tori p x q X SI X SI and p x q X SI X SI 
from ']['4. The resulting fiber will itself be a torus. This is the generic fiber 
of ']['4/ er ']['2/ (T. See also figure 3.13 on the following page. 

On the other hand, each of the four corner-points of the sphere 1[2 / (T comes 
from a single fixed point (Po, qo) of (T on 1[2. Thus, the fiber of ']['4/ (T 

']['2/ (T over such a corner appears from (T'S sending a torus po x qo X SI X SI 
to itself. The quotient of this torus is again a cornered-sphere (just as before, 
in figure 3.12), but now its corners coincide with the sixteen global fixed 
points of (T on 1[4. In other words, each such sphere-fib er contains four 

37. See chapter 8 (starting on page 301), which is devoted to these creatures. 
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of the sixteen singular points of the quotient 1'4/ (J", points where the latter 
fails to be a manifold. See again figure 3.13. 

1 

3.13. The map 1[4/ er --> 1[2/ er and its fibers 

This might be a good moment to notice that 1[4/ (J is simply-connected. It 
fibrates over 52, which is simply-connected, and any loop in a generic torus 
fiber can be moved along to one of the singular sphere-fibers and contracted 
there. The desingularization of 1[4/ (J into K3 does not create any new loops, 
and therefore the K3 surface is, as claimed, simply-connected. 

As explained before, we cut neighborhoods of the singular points out of 
'f4 / (J" and glue a copy of lDTs2 in their stead, thus replacing each singular 
point by a sphere; the result is the K3 surface. The projection 'f4 / (J" -7 

'f2 / (J" survives the desingularization as a map 

K3 ---t 52 . 

Indeed, since 'we only replaced sixteen points by sixteen spheres, we can 
send each of these spheres wherever the removed point used to go in 52. 
The generic fiber of K3 52 is still a torus. However, there are now also 
four singular fibers, each made of five transversely-intersecting spheres: 
the old singular sphere-fiber of 'f4 / (J, together with its four desingulariz-
ing spheres. A symbolic picture of this fib ration is figure 3.14. 
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-2 -2 -2 -2 

! 
3.14. K3 as the Kummer elliptic fibration 

Observe that the main sphere of the singular fiber must have self-intersection 
- 2. This can be can argued as follows: Denote by 5 the main sphere of a 
singular fiber and by 51,52,53,54 the desingularizing spheres. Recall how 
the main sphere 5 appeared from factoring by eT: doubly-covered by a torus. 
Imagine a moving generic torus-fiber F of K3 approaching our singular fiber: 
it will wrap around the main sphere twice, covering it. Also, the approaching 
fiber will extend to cover the desingularizing spheres once, and so in homol-
ogy we have F = 25 + 51 + 52 + 53 + 54. We know that F· F = 0 (since it is 
a fiber), and that each 5k . 5k = -2; then one can compute that we must also 
have5·5=-2. 

Finally, note that a neighborhood of the singular fiber inside K3 can be 
obtained by plumbing five copies of lOT;2 following the diagram from fi-
gure 3.15. 

-2 -2 

X 
-2 -2 

3.15. Plumbing diagram for neighborhood of singular fiber 
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Note: Duals of complex bundles and orientations 
The pretext for this note is to explain why the cotangent bundle T;2 (used earlier 
for building K3) has Euler class -2 rather than +2; that is to say, why T;2 and 
TS2 have opposite orientations. 

Let V be a real vector space, endowed with a complex structure. There are two 
ways to think of such a creature: (1) we can view V as a complex vector space, 
in other words, think of it as endowed with an action of the complex scalars C x 
V ----t V that makes V into a vector space over the field of complex numbers; or 
(2) we can view V as a real space endowed with an automorphism I: V ----t V 
with the property that I 0 I = - id. One should think of this I as a proxy for the 
multiplication by i. The two views are clearly equivalent, related by 

J(v)=i·v. 

Nonetheless, they naturally lead to two different versions of a complex structure 
for the dual vector space. 

The real version. Let us first discuss the case when we view V as a real vector space 
endowed with an anti-involution I. As a real vector space, the dual of V is 

V* = HOl11lR (V; JR) . 
A vector space and its dual are isomorphic, but there is no natural choice of iso-
morphism. To fix a choice of such an isomorphism, we endow V with an auxiliary 
inner-product ( ., . )lR . Then V and V* are naturally isomorphic through 

V V*: V 1-----7 v* = ( . ,v)lR . 

If V is endowed with a complex structure I, then it is quite natural to restrict the 
choice of inner-product to those that are compatible with I. This means that we 
only choose inner-products that are invariant under I: we require that 

(Iv, l'w)n<. = (v, w)n<. . 
An immediate consequence is that we have (Iv, w)lR = - (v, lw)n<. . 
We now wish to endow the dual V* with a complex structure of its own. In other 
words, we want to define a natural anti-involution J*: V* ----t V* induced by I. 
Since an isomorphism V V* was already chosen, it makes sense now to sim-
ply transport I from V to V* through that isomorphism. Namely, we define the 
complex structure J* of V* by 

]*(v*) = (Jv)* . 
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More explicitly, if f E V* is given by f(x) = for some v E V, then 
(J*f)(x) = (x, JV)IR' However,thismeansthat (J*f) (x) = -(Ix, v)IR ,andsowe 
have J* f = - fU 0 ) • 

Notice that we ended up with a formula that does not depend on the choice of 
inner-product. Hence we have defined a natural complex structure J* on the real 
vector space V* = HomIR (V, 1R) . 

The complex version. If, on the other hand, we think of the complex structure of V 
as an action of the complex scalars that makes V into a vector space Vc over the 
complex numbers, then a different notion of dual space comes to the fore. We must 
define the dual as 

Vc = HoIl1c: (V, C) . 
This vector space comes from birth equipped with a complex structure, namely 

(i· f)(x) = i f(x) 

for every f E Vc' To better grasp what this Vc looks like, we will endow Vc with 
an auxiliary inner-product. The appropriate notion of inner-product for complex 
vector spaces is that of Hermitian inner-products. This differs from the usual inner 
products by the facts that it is complex-valued, and it is complex-linear in its first 
variable, but complex anti-linear in the second. We have (0, ° )c : V x V C 
with (zv, w)c = z(v, w)c ' but (v, zW)c = z(v, w}c for everyl Z E C. 

Any Hermitian inner product can then be used to define a complex-isomorphism 
of Vc' though not with Vc' but with its conjugate vector space Vc. The latter 
is defined as being the real vector space V endowed with an action of complex 
scalars that is conjugate to that of Vc. That is to say, in Vc we have i . v = - iv. 
The complex-isomorphism with the dual is: 

Vc Vc: = (o,v)c 

Notice that in the definition of v* we must put v as the second entry in ( ., . )c ' 
so that v* be a complex-linear function and thus indeed belong to Vc' 

If f E Vc is given by f(x) = (x, v)c for some v E V, then we have (if)(x) 
i f(x) = i(x, v)c = (x, -iv)c . This means that we have 

i· v* = (-iv)* , 

which shows that the complex-isomorphism above is indeed between the dual Vc 
and the conjugate vector space Vc. 

Comparison. In review, if we view a complex vector space as (V, J), then its dual 
is (V*, J*) and the two are complex-isomorphic. If we view a complex vector 
space as Vc' then its dual is Vc' which is complex-isomorphic to Vc. To compare 
the two versions, it is enough to notice that Vc translates simply as (V, - n. In-
deed, as real vector spaces (i.e., ignoring the complex structures) V* and Vc are 

1. It is worth noticing that the concept of a real inner product compatible with a complex structure, 
and the concept of Hermitian inner product are equivalent: one can go from one to the other by using 
(v, w)c = (v, w)1R - i (iv, ?,u)1R and (v, w)1R = Re (v, w)c . 
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naturally isomorphic. Specifically, the isomorphism HOffilR (V, 1R) Holl1c (V, C) 
sends f: V 1R to the function f c: V C given by 

f c (x) = (f ( x) - if (J x)) . 
The duals (V*, /*) and Vc thus differ not as real vector spaces, but because their 
complex structures are conjugate. This could be checked directly against the iso-
morphism above, or, in the simplifying presence of an inner-product, we could 
simply write: J*(v*) = (iv)* and i.v*=(-iv)*. 

Usage. We should emphasize that, while the "complex" version of dual is certainly 
the most often used, nonetheless both these versions are important. 
As a typical example, consider a complex manifold X I which is endowed with a 
tangent bundle T x and a cotangent bundle Tx. Owing to the complex structure of 
X, the tangent bundle has a natural complex structure on its fibers. The complex 
structure on Tx is always taken to be dual to the one on T x in its "complex" ver-
sion: as complex bundles, we have Tx T x. In general for vector bundles with 
complex structures, the dual is usually taken to be the "complex" dual. 
The "real" version of dual is also used in complex geometry. Thinking now of the 
complex structure of T x as J: T x -t T x, we let it induce its own dual complex 
structure /* on Tx. We then extend /* by linearity to the complexified vector 
space Tx 01R C. The advantage of such an extension is that now J* has eigenval-
ues ± i, and thus splits the bundle Tx ':?:Q C into its ±i-eigenbundles as 

Tx = 1\ 1,0 EB 1\0, 1 I 

and hence separates complex-valued I-forms on X into type (1,0) and type (0, I). 
This is simply a splitting into complex-linear and complex-anti-linear parts: in-
deed /* (a:) = -ia: if and only if a:(/x) = +ia:(x) I and then a: E 1\1,0. 

The advantage of using J lies in part with clarity of notation: for a complex-valued 
creature, J will denote the complex action on its arguments (living on X), while i 
denotes the complex action on its values (living in C). 

More on complex-valued fonns. Every complex-I.<'alued function f: X C has its differential 
df E f(Tx ® C) split into its (l, 0) -part a f E [(AI,O) and its (0,1) -part a f E [(Ao. I ). Hence, 
a f = ° means that f's deri\'ative is complex-linear, df(Jx) = i df, and thus that f is holomor-
phic. 

By using local real coordinates (XI. YI ... " XIII. on X such that Zk = Xk + iYk are local complex 
coordinates on X, we can define dZ k = dXk + i dYk and dZk = dXk - i dYb and write Al.o = 
C{dz l , ... ,dz",} and AO. I = C{dz l ... .. dzlII }. Indeed, !*(dzk) = +idzk. 

The split AI ® C = Al.o ffi AO. 1 further leads to a splitting of all complex-valued forms into 
(p, q) -types, as in Ak @C = Ak.O '1' i\h--1. 1 ·r, ... AI.k-1 $ AO,k. Specifically, NJ·q is made of all 
complex-valued forms that can be written using p of the dzk's and q of the dzk's. For example, 
A2,0 contains all complex-bilinear 2 -forms. 

The exterior differential d: f(Ak) -- r( ;\""-1) splits, after complexification, as d = d + a with 
d: f(AP,q) f(AI1+I.I/) and a: [(N'·I/) - r(;\I'·q+I). Since aa = 0, trus can be llsed to de-
fine cohomology groups HP·q(X) = Kerd / Ima (called Dolbeault cohomology), which offer 
a cohomology splitting Hk(X; C) = I-lk.O(X) ,f) Hk- I, I (X) Ef) • " Ef) HI,k-1 (X) Ef) HO.k(X), \,vith 
HP,q(X) :::::: Hq,P(X); further, if X is Kahler, then the Hodge duality operator2 * will take 

2. The Hodge operator will be recalled in section 9.3 (page 350). 
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(p,q)-forms to (m - q, m - p)-forms, and lead into complex Hodge theory, to just drop some 
names. Any complex geometry book will explain these topics properly, for example P. Griffiths 
and J. Harris's Principles of algebraic geometry [GH7S, GH94j; we ourselves will make use of 
(p, q) -forms for some technical points later on.3 Part of this topic will be explained in more detail 
in the end-notes of chapter 9 (page 365). 

Orientations. Every vector space with a complex structure (defined either way) is 
naturally oriented by any basis like {el, iel, ... ,eb iek} (or {Cl, lel, ... ,eb lek} ). 
Thus its dual vector space, getting a complex structure itself, will be naturally 
oriented as well. However, the choice of duality matters: if our vector space V is 
odd-dimensional (over C), then the two versions of dual complex structure lead 
to opposite orientations of V's dual. Specifically, the real-isomorphism V Vc 
reverses orientations, while V (V*, J*) preserves them. 

For complex manifolds and their tangent/cotangent bundles, as we mentioned 
above, one uses the "complex" version of duality. Therefore, for a complex curve 
C (for example, 52) we have that the tangent bundle Tc and the cotangent bundle 
Tc' while isomorphic as real bundles, are naturally oriented by opposite orienta-
tions. In particular, the tangent bundle TS2 is the plane bundle of Euler class +2, 
while the cotangent bundle T;2 is the plane bundle with Euler class - 2. 

For a complex surface M (for example, K3), the tangent and cotangent bundles 
do not have opposite orientations. Nonetheless, their complex structures are con-
jugate, and this leads to phenomena like Cl (TNt) = -Cl (TM)' 

Note: Positive ESf negative Es 
In some texts, the Eg-forrn is sometimes described by the matrix 

2 -I 
-I 2 -I 

-I 2 -1 

Ex ;:::; -I 2 -1 
-1 2 -1 -I 

-1 2 -1 
-1 2 

-1 2 

Correspondingly, the negative-E8-form is sometimes written 
-2 1 

-2 1 
-2 1 

-2 
-2 

1 -2 
1 -2 

-2 

These alternative matrices are in fact equivalent with the ones presented earlier, 
because one can always find an isomorphism between the two versions: simply 
change the sign of "every other" element of the basis. Then the self-intersections 

3. In section 6.2 (page 278), the end-notes of chapter 9 (connections and holomorphic bundles, page 
365) and the end-notes of chapter 10 (Seiberg-Witten on Kahler and symplectic, page 457). 
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are preserved, but, if done properly, the intersections between distinct elements 
will all change signs. Peek back at the Eg diagram for inspiration. 
Complex geometers always prefer to have + 1 's off the diagonal (thinking in terms 
of complex submanifolds, which always intersect positively), and so they will 
write - Eg in the version displayed above. 
More than this, certain texts prefer to switch the names of the Eg- and negative-
Eg -matrices. Since what we denote here by - Eg appears quite more often than 
Eg, calling it Eg does save some writing. 
Pick your own favorites. 
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