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Abstract

Let M be a smooth 4-manifold underlying some del Pezzo surface of degree d > 6. We
consider the smooth Nielsen realization problem for M: which finite subgroups of Mod(M) =
7o(Homeo™ (M)) have lifts to Diff * (M) < Homeo™ (M) under the quotient map 7 : Homeo™ (M) —
Mod(M)? We give a complete classification of such finite subgroups of Mod(M) for d > 7 and a
partial answer for d = 6. For the cases d > 8, the quotient map m admits a section with image
contained in Diff " (M). For the case d = 7, we show that all finite order elements of Mod (M) have
lifts to Diff " (M), but there are finite subgroups of Mod (M) that do not lift to Diff (M ). We prove
that the condition of whether a finite subgroup G < Mod(M) lifts to Difft (M) is equivalent to
the existence of a certain equivariant connected sum realizing G. For the case d = 6, we show this
equivalence for all maximal finite subgroups G' < Mod(M).

1 Introduction

For any closed, oriented, smooth manifold M, consider the mapping class group denoted Mod(M) :=
mo(Homeo™ (M)). There is a quotient map of groups 7 : Homeo™ (M) — Mod(M) sending each
orientation-preserving homeomorphism f to its isotopy class [f] € Mod(M). The Nielsen realization
problem asks: for any finite subgroup G' < Mod(M ), does there exist a lift G of G to Homeo™ (M)?

The Nielsen realization problem has many refinements: for any reasonable structure on M, we
may require that the lift G be contained in the automorphism group Aut(M) < Homeo" (M) of
this structure. Three well-studied refinements are the smooth, metric, and complex Nielsen realization
problems. Note that the affirmative answer to the complex and metric Nielsen realization problems
imply affirmative answers to the smooth Nielsen realization problem.

For surfaces M, all three Nielsen realization problems were answered affirmatively for cyclic
groups G < Mod(M) by Nielsen ([Nie43]), for solvable groups G < Mod(M) by Fenchel ([Fen48]),
and for a general finite group G < Mod(M) by Kerckhoff ([Ker83]). For 4-manifolds, the Nielsen
realization problem was first studied by Farb-Looijenga ([FL21]]), in which they solve the metric
and complex Nielsen realization problems for K3 surfaces A ([FL21, Theorem 1.2]) and the smooth
version for involutions ([FL21, Theorem 1.8]). Unlike the case of surfaces, some subgroups G <
Mod(M) are realized and some are not.

The goal of this paper is to solve the smooth Nielsen realization problem for the underlying
smooth manifolds M* of del Pezzo surfaces of high degree. A del Pezzo surface is a smooth projective
algebraic surface with amgle anticanonical divisor class. Any del Pezzo surface is isomorphic to
CP! x CP!, CP?, or Blp CP? where P is a set of n points (with 1 < n < 8) in general position (no three
collinear points, no six coconic points, and no eight points on a cubic which is singular at any of the
eight points); see [Dol12, Theorem 8.1.15, Proposition 8.1.25]. The degree of the blowup Blp CP? of
CP? at n points is 9 — n and the degree of CP' x CP" is 8.

The blowup Blp CP? of CPP? at n points is diffeomorphic to the smooth 4-manifold

M,, := CP*#nCP?
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Figure 1: An equivariant connected sum (N, #N2, G). Left: The group G acts by diffeomorphisms
on both N; and N», fixes p; and py, and preserves some neighborhood U; (in grey) of each p;. Right:
A connected sum formed by gluing U; — {p;} for i = 1,2 in a G-equivariant way.

(see [GS99, p. 43]). Thus the underlying smooth manifolds of del Pezzo surfaces are M,, with 0 <
n < 8and M, = S? x S?; we call these manifolds del Pezzo manifolds. Throughout this paper, we
mostly consider M,, withn = 0, x, 1, 2, or 3 which are the underlying manifolds of del Pezzo surfaces
of degree d > 6.

In order to study smooth actions by finite groups on M,,, we consider equivariant connected sums
which appear in Hambleton-Tanase ([HI04, (1.C)]). For some &k > 1l and all 1 < i < k, let N; be a
smooth 4-manifold with a finite group G acting on N; by orientation-preserving diffeomorphisms.
Under some conditions, we can G-equivariantly glue the manifolds N; at points p; € N; fixed by
G or along a G-orbit of points in N, to form a connected sum N;# ... #N; with a smooth G-action
such that G acts on each IV; in the prescribed way. See Figure 1| for an illustration of an equivariant
connected sum. In this paper, we further impose for each 1 < ¢ < k that NV; or N; be a complex
surface on which G acts by biholomorphisms and anti-biholomorphisms; we call such a connected
sum a complex equivariant connected sum. See Section[2.2]for a more precise definition and discussion.

Main results. Among the del Pezzo manifolds considered in this paper, only M3 and M3 have infinite
mapping class groups; we focus on the smooth Nielsen realization problem for M; and Mjz below.
The reader may find the statements and proofs for the cases of My, M,, and M; in Section

The following theorem gives a complete solution for the smooth Nielsen realization problem for
M, in terms of the existence of complex equivariant connected sums.

Theorem 1.1 (Realizability Classification). Let G < Mod(Mz) be a finite subgroup. There exists a lift
G < Diff " (My) of G under = : Homeo' (M) — Mod(My) if and only if G is realized by a complex
equivariant connected sum. In particular, some finite subgroups G are realized by diffeomorphisms and some
are not.

The proof of Theorem [1.1j uses the fact that an index 2 subgroup of Mod (M) is isomorphic to a
hyperbolic reflection group, which yields an enumeration of the finite subgroups of Mod(Ms) up to
conjugacy. For each finite subgroup, we either construct a lift to Diff " (M5) by a complex equivariant
connected sum or show it does not lift to Diff " (A>) using the theory of finite group actions on 4-
manifolds. See Section 2l for an overview of these tools.

Some consequences of Theorem [1.1and its proof distinguish the Nielsen realization problem for
M, from those of surfaces and K3 manifolds. For example, the proof of Theorem [1.1| answers the
smooth Nielsen realization problem for finite cyclic subgroups of Mod(My) affirmatively.

Corollary 1.2 (Smooth Nielsen realization for cyclic groups). If ¢ € Mod(M>) has finite order n then
there exists f € Diff T (My) with order n such that [f] = c.

We record a specific case of Corollary [1.2]below to emphasize that the situation differs from that
of K3 manifolds, in which the isotopy class of any Dehn twist about a (—2)-sphere does not lift to
any finite order diffeomorphism (see Farb—Looijenga [FL21), Corollary 1.10]).



Corollary 1.3 (Twists lift in Mod(M>)). For any Dehn twist T about a (—2)-sphere in My, there is an order
2 diffeomorphism f € Diff ™ (M) isotopic to T.

One way in which the smooth Nielsen realization problem for M, differs from that for surfaces
in all relevant categories (smooth, metric, complex) is the nonrealizability of some finite subgroups

Corollary 1.4 (A subgroup that doesn’t lift, but its elements do). There exist finite subgroups G <
Mod(My) that do not have any lift G to Diff T (Ms). In fact, there exist finite subgroups G' < Mod(Ms) such
that all elements c € G of order n admit representatives f € Diff ™ (My) with order n but such that G itself
does not lift to Diff* (My).

Remark 1.5. The minimal subgroups G < Mod (M) of Corollaryare isomorphic to (Z/27)*. How-
ever, there exist subgroups of Mod (M) that are isomorphic to (Z/27Z)? that do lift to Diff ¥ (M5).

The proof method of Theorem [1.1| becomes unwieldy as the sizes of maximal finite subgroups
of Mod(M,,) grow as n grows. Instead of a full solution, we answer the smooth Nielsen realization
problem only for maximal finite subgroups of Mod(M3) in terms of complex equivariant connected
sums.

Theorem 1.6 (Realizing maximal finite subgroups). Up to conjugation, Mod(Ms) has three maximal
finite subgroups. Two of these have no lifts to Diff ™ (M3) under 7 : Homeo™ (M3) — Mod(Ms3). One does
lift, and is in fact realized by a complex equivariant connected sum.

Remark 1.7. More specifically, consider Mz as the complex surface Blp CP? where P = {[1 : 0 :
0],[0:1:0],[0:0:1]}. Let Aut(M3) < Diff*(M3) be the complex automorphism group of Mj, and
7 : M3y — M3 be the anti-biholomorphism induced by complex conjugation on CP?. The proof of
Theorem 1.6{shows that there exists a lift G < Diff *(M3) of G under 7 : Homeo™ (M3) — Mod(Ms3) if
and only if G is conjugate to 7((Aut(M3), 7)) in Mod(M3).

Finally, we consider the complex Nielsen realization problem for all 4-manifolds of the form M =
M, and M, for all n > 0.

Theorem 1.8 (Smooth not complex). If M = M, or M, for n > 0 there exist mapping classes ¢ €
Mod (M) of order 2 such that there exist involutions f € Diff* (M) with [f] = c (in fact, c is realized by a
complex equivariant connected sum) but such that

1. there exist no biholomorphic involution f with [f| = c for any complex structure of M, and

2. if M = M, with n > 1 then there exist no anti-biholomorphic involution f with [f] = c for any
complex structure of M.

Related work. Hambleton-Tanase ([HT04, Theorem A]) shows that if G = Z/pZ acts smoothly on
#nCP? for n > 1 and p is an odd prime then there exists an equivariant connected sum of linear
actions on CP? with the same fixed-set data (see [HT04] for the exact description of this data) and the
same induced action on Hy(#nCP?; Z). Their method is to analyze the equivariant Yang-Mills mod-
uli space to produce a stratified G-equivariant cobordism between (#nCP?, G) and an equivariant
connected sum of linear actions on CP®. Our results are similar in flavor in that we relate the exis-
tence of smooth actions on del Pezzo manifolds to the existence of complex equivariant connected
sums. However, our methods are much more elementary than those of [HHT04] and conversely yield
less refined results in terms of the fixed sets.

Finite group actions by complex or symplectic automorphisms of blowups of CP? have also been
well-studied. All possible groups appearing as the complex automorphism groups of del Pezzo
surfaces and their actions on their second homology groups have been determined by Dolgachev—
Iskovskikh ([DI09]). Finite groups of symplectic automorphisms of blowups of CP? have also been
studied by Chen-Li-Wu ([CLW21]).



Finally, recent work of Farb—Looijenga ([FL21]) addresses the metric, complex, and smooth Nielsen
realization problems for a different smooth 4-manifold, the K3 manifold. As noted above, the phe-
nomena that occur for K3 manifolds differ drastically from those that occur for del Pezzo manifolds
(e.g. (non)existence of order 2 diffeomorphisms isotopic to Dehn twists about (—2)-spheres).

Outline of paper. In Section [2| we review the relevant facts about the mapping class groups of del
Pezzo manifolds and their relationship to hyperbolic reflection subgroups. In Section [3| we detail
the elementary cases of the smooth Nielsen realization problem for My, M,, and M;. In Section
we review some results on finite group actions on 4-manifolds (Subsection and apply them in
Subsectionto classify all finite subgroups of Mod(M>) which lift to Diff * (M) and prove Theorem
and its corollaries. We then apply similar techniques to obtain a partial result for finite subgroups
of Mod(Ms) in Subsection[4.3] Finally, we address the complex Nielsen realization problem for M =
M, and M,, for all n > 0 in Subsection 4.4
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2 Mapping class groups of del Pezzo manifolds

2.1 Mapping class groups of del Pezzo manifolds

The mapping class groups Mod(M) := m(Homeo™ (M)) of closed, oriented, and simply connected
4-manifolds are computable due to the following landmark theorems of Freedman and Quinn.

Theorem 2.1 (Freedman [Fre82], Quinn [Qui86])). Let M* be a closed, oriented, and simply connected
manifold. The map
O : Mod(M) — Aut(Ho(M;Z), Q)

given by @ : [f] — f. is an isomorphism of groups.

The Mayer-Vietoris sequence implies that Hy(M,,;Z) = Hy(CP* Z) © Hy (@, Z)®" and gives a
natural Z-basis {H, E1, . .., E, } withintersection form Q s, = (1)&n(—1); the group Aut(Hz(M;Z), Qum,,)
is the indefinite orthogonal group O(1,n)(Z), i.e. by Freedman-Quinn (Theorem2.1),

Mod(M,) = O(1, n)(Z).

We will identify Aut(Hz(M;Z), Q) and Mod(M) for all M in the rest of this paper.

On the other hand, there is a diffeomorphism M, = (CP' x (CIP’l)#W. So in addition to the
standard Z-basis { H, E1, E2} of Ho(Ms; Z), there is another natural Z-basis {51, S2, £} of homology
corresponding to the decomposition Ha(My) = Ho(CP' xCP'; Z) 3 Hy (@2; 7). The lattice (Hy(CP* x
CP';7Z), Qcpi «cpr ) has two isotropic generators S; and Sy with Qp1cp1 (S1, S2) = 1 coming from
the factors of the product CP* x CP".

Combining the diffeomorphism M,, = (CP" x (CIF’l)#@2 for n > 2 with Theoremand apply-
ing [Wal64a, Theorem 2] to M, yields the following statement. (The same statement holds for M,
M., and M; but these cases will be handled in Section )

Theorem 2.2 (A rephrasing of [Wal64a, Theorem 2]). For M = M, or M, with 2 < n < 9, the restriction
of ™ : Homeo™ (M) — Mod(M) to the subgroup Diff * (M) < Homeo™ (M) is surjective.



Remark 2.3. Theoremcannot be extended to manifolds M,, for n > 10; Friedman-Morgan ([FM88)
Theorem 10]) shows that the image of the quotient 7|p;g+ (s, ) Diff " (M,,) — Aut(Hy(M,;7Z),Qur,)
has infinite index in Aut(Hy(M,,;Z), Q) for all n > 10.

2.2 Complex equivariant connected sums

Let Ny, N, be smooth manifolds and G a finite group. Suppose G' < Diff " (NV;) for i = 1,2 and that
there are points p; € N; for i = 1,2 such that p; is fixed by all g € G and the tangential representations
G — SO(T),,N;) are equivalent by an orientation-reversing isomorphism 7,, Ny — T}, N>. By the
equivariant tubular neighborhood theorem, there exist G-invariant neighborhoods of p; € N; for
each i = 1,2 which we can identify G-equivariantly to form a connected sum N;# N, with a natural
smooth action of G. The G-manifold (N1# N3, G) is called an equivariant connected sum.

Suppose that G < Diff " (V;). Let H < G be a normal subgroup and m = |G/H|. Suppose that
G < Diff T (mNy) (where mN, denotes m disjoint copies of N») and that H = ker(G — Sy,), ie. H
preserves each connected component N, ..., N™ of mN,. Suppose also that there exist points p; €
N; and p» € N!' C mN, which have stabilizers equal to H such that the tangential representations
H — SO(T,,N1) and H — SO(T,,N') are equivalent by an orientation-reversing isomorphism
T,, N1 — T,,N'. The G-equivariant identification of some H-invariant neighborhoods of the points
in the G-orbit G-p; of p; € N; and some H-invariant neighborhoods of the points in the G-orbit G- py
of p» € mN, forms a connected sum N1#mNy with a natural smooth action of G. The G-manifold
(N1#mN2, G) is also called an equivariant connected sum. Note that the first construction (N1#N3, G)
is a special case of this more general construction with H = G. Also see [H104, Section 1.C] for a
special case of these definitions of equivariant connected sums.

With these definitions in mind, we define a complex equivariant connected sum.

Definition 2.4. Let M be a smooth manifold and let G < Diff* (M) be finite. The pair (M, G) is called a
complex equivariant connected sum if one of the following holds:

1. M = N or N where N is a complex manifold and each g € G < Diff " (N) is biholomorphic or
anti-biholomorphic, or

2. (M,G) = (N1#mNs, G) is an equivariant connected sum where (N1, G) and (No, H) are complex
equivariant connected sums with H < G.

If Go < Mod(M) is a finite group such that there exists a complex equivariant connected sum
(M,G) and G < Diff " (M) is a lift of G under the quotient 7 : Homeo™ (M) — Mod(M) then we say
that Gy is realizable by a complex equivariant connected sum.

2.3 The group O(1,n)(Z) and the hyperboloid model

Fix n € N. Consider the vector space R"*! with the diagonal binary symmetric form @Q,, of signature
(1,n)
Qn((l"o@l, R Jin), (y07y13 s 7yn)) = ToYo — L1Y1r — ° — TnlYn-

We denote the pair (R"™!,Q,,) by E™ and the pair (R"*!, R,,) by E™! where R,, = —Q,,. There is
a natural isometric inclusion (Hs(Mp;7Z), Qur,) < EM™; using this embedding, identify R"*! with
the R-span of the Z-basis {H, Eu, ..., E,} of Hy(M,;Z) which makes the R-bilinear extension of
Qu, coincides with @,,. Under this identification, Q,,(H,H) = —R,(H,H) = 1 and Q,(Fk, E}) =
—R,(Ex,Er) =—1foralll <k <n.

Let O(n,1)(R) < GL(n + 1)(R) be the group of matrices preserving the form R,. The group
O(n, 1)(Z) is the subgroup of integral matrices of O(n, 1)(R). Every v € R"*! with R, (v,v) = £1, 42
defines a reflection about v, a linear map Ref, : R"™! — R"*! given by

2R, (v, w) 2Qn (v, w)

Refu(w) =w = o =Y Do)

5



RefEl —FEy RefE2 RefH_El —FEo
. 0"(2,1)(2)

RefEl —E> Resz —E5 RefE3 RefH,El —FE>—FEs3
. 0" (3,1)(2)

Figure 2: Coxeter diagrams for O (2,1)(Z) and O™ (3,1)(Z).

These reflections preserve the bilinear form R, so that Ref, € O(n,1)(R). If v € Z"™! C E™! then
Ref, € O(n, 1)(Z).
Consider the submanifold

H" = {v = (vg,v1,...,v,) € R"™ : R, (v,v) = -1, vy > 0};

the restriction of R,, to H" defines a Riemannian metric on H". As the notation suggests, this Rieman-
nian manifold is isometric to the hyperbolic n-space and is called the hyperboloid model (see [Thu97,
Chapter 2]). Let O (n, 1)(R) denote the index 2 subgroup of O(n, 1)(R) that preserves the submani-
fold H". This is the isometry group Isom(H") of H". The subgroup O™ (n, 1)(Z) is defined to be the
subgroup of integral matrices of O (n,1)(R), i.e. OT(n,1)(Z) is a discrete subgroup of Isom(H").
Finally, we observe that O(1,n)(R) = O(n, 1)(R) as subgroups of GL(n + 1)(R).

2.4 Coxeter theory

According to Vinberg ([Vin72]), the groups O™ (n,1)(Z) each contain a finite index, hyperbolic re-
flection subgroup acting by isometries on H" with a fundamental domain of finite volume for all
n < 17. It turns out that for n < 9, the maximal reflection subgroup of O* (n,1)(Z) is O™ (n, 1)(Z)
itself. Explicit generators for each O" (n, 1)(Z) are also determined in [Wal64b].

Theorem 2.5 (Wall, [Wal64b|, Theorem 1.5, 1.6]). For n = 2 and 3, the groups O™ (n, 1)(Z) are:

O+(2,1)(Z) = <RefH,E1,E2, RefEl,Ew RefE2>,
O+(3,1)(Z) = <RefH_E1_E2_E3, RefEl_Ez, Resz_ES, RefE3>.

Remark 2.6. Another way to phrase the first half of Theorem [2.5|is that O™ (2,1)(Z) is the triangle
group A(2,4, c0). This formulation is classical, shown by Fricke in [Fri9l} p. 64-68].

In particular, the groups O™ (n, 1)(Z) for n = 2, 3 are Coxeter groups and their Coxeter diagrams
are given in Figure[2] Denote the Coxeter system given by the diagrams in Figure2|by (W (n), S(n))
forn =2, 3.

For the sake of completeness, we emphasize that the geometric representation of (W (n), S(n)), de-
fined using the conventions of [Hum90], coincides with the action of O"(n,1)(Z) on E™!. Let V,,
be the R-span of {a; : s € S(n)}. The standard symmetric bilinear form B,, on V,, defined by the
Coxeter system (W (n), S(n)) is given on the basis {a; : s € S(n)} by

™
B"(O[S7 O[t) = — COS m
The action of W (n) on V,, preserving B,, is defined on the generators s € S(n) by

s-v=v—2B,(as,v)as.

Moreover, there is an isometry F,, : (V,, B,) — (R"" R,), given on the basis elements of V,, by
Fp(QRet,) = Rn(v,v)”20. One can check that F,,(s - v) = s - F,,(v) forallv € V,, and s € S(n). From
now on, we identify E™! with (V,,, B,,) under the isometry F,.

The fact that O™ (n, 1)(Z) < Isom(H") via the geometric representation of (W (n), S(n)) yields an
easy classification of the finite subgroups of O™ (n,1)(Z) = O (1,n)(Z) for n = 2, 3.



Lemma 2.7. For n = 2 or 3 and for any Ref, € S(n) — {Refp,_g,}, let G, be the subgroup of W (n)
generated by S(n) — {Ref, }. The maximal finite subgroups of W (n) = O (1,n)(Z) are conjugate in W (n)
to some G,,.

Proof. Let G < OT(n,1)(Z) = W(n) be a finite subgroup. Then G acts on H" as a finite subgroup
of isometries so it must fix at least one point in H" ([Thu97, Corollary 2.5.19]). On the other hand,
let U C E™! be the Tits cone of W(n) and consider —U = {—z € E™! : 2 € U}. Observe that
H" C E™! lies in —U because the fundamental domain of O"(n,1)(Z) in H* (n = 2,3) given by
Vinberg's algorithm ([Vin72]) has closure equal to the intersection (\,cg(,) {v € H" : R, (v,s) < 0}.
Because G fixes a point in —U, it also fixes a point in U.

For any I C S(n), define

Cr= (ﬂ{v €V, :By(v,s) = 0}) N (ﬂ{v €V, : Bp(v,s) > O}) .

sel s¢l

The family C of the sets of the form w(C;) for all w € W(n) and I C S(n) partitions U ([Hum90,
Section 5.13]). The stabilizer of any point in C; is W; by [Hum90, Theorem 5.13], where

Wr=(selICS(n)) CW(n).

Any W7y is contained in G, for some Ref, € S(n). On the other hand, note that Gg, _g, is infinite
because the only points of E™! fixed by G, _ g, are a(H — E1) for a € R which are not contained in
H". O

For completeness, we record the analogous result for O(1,n)(Z) for n = 2, 3.

Lemma 2.8. For n = 2,3, maximal finite subgroups of O(1, n)(Z) are conjugate in O(1,n)(Z) to subgroups
of the form (G, —I4+1) for Ref, € S(n) — {Refg, g, }-

Proof. Let G be a maximal finite subgroup of O(1,n)(Z). Observe that (—I,,11, G) is finite because
—In4+1 € Z(0O(1,n)(Z)), so —I,+1 € G. Then G fits into a split short exact sequence

1-0"(1L,n)(Z)NG = G — (—I,41) — 1,

meaning that G = (07 (1,n)(Z) N G, —I,4+1) with O (1,n)(Z) N G a maximal finite subgroup of
O™ (1,n)(Z). Finally, conclude by applying Lemma O

3 A section of 7 : Homeo™ (M) — Mod(M) for M = M, M, and M,

Let M = CP?, CP' x CP', or CP*#CP?. The mapping class group Mod(M) is isomorphic to Z/27Z
for M = CP? and to (Z/27)? in the latter two cases. It turns out that there exists a particularly nice
section of the quotient map 7 : Homeo™ (M) — Mod(M). We construct this section in the following
proposition as a warmup for the rest of this paper.

Proposition 3.1. Let M = CP?, CP' x CP', or CP*#CP?. There is a section of = : Homeo™ (M) —
Mod (M) with image in Diff ™ (M). In fact, Mod(M) is realized by a complex equivariant connected sums.

A main tool to construct complex equivariant connected sums is the following lemma.

Lemma 3.2. Let Gy = (Z/27)% < Diff" (M) and let Gy = (Z/27Z)? < Diff*(N) and fix a group
isomorphism ® : Gy — Gn. Suppose there exist p € Fix(Gy) C M, g € Fix(Gn) € N. Forall f € G,
let F'y and Fg 5y denote the connected components of p,q in Fix(f) and Fix(®(f)) respectively. Suppose
Fy, Fy(yy are 2-dimensional and that Fy N Fy, Fop) N Fe(g) are 1-dimensional for some pair of generators
fr90f Gur.

There exist diffeomorphisms f#®(f) € Diff*(M#N) for all f € Gy such that (f#®(f) : f € Gar) =
G and

F#0()] = (If], [9(£)]) € Mod(M) x Mod(N) < Mod(M#N).



Proof. Fix a Gjr-invariant metric on M and G y-invariant metric on V. The tangential representations
pm 2 Gy — SO(T,M) and pn : Gy — SO(T,N) are faithful because isometries of compact manifolds
are determined by their action on a point and a frame. The invariant subspaces T, M “* and T, N~
are 1-dimensional because Fy N Fj, and Fg(f) N Fy(1,) are 1-dimensional. Therefore —1, is not in the
image of the tangential representations of either G'y; and G .

There is a unique faithful representation p : (Z/2Z)* — SO(4,R) up to conjugation in SO(4,R)
such that —I, ¢ im(p). Therefore, pys and py are equivalent by an orientation-preserving isomor-
phism T,M — T,N, i.e. an orientation-reversing isomorphism 7,M — T,N. Now construct the
connected sum at small G ;- and G y-invariant disks in M and N centered at p and g respectively.
Then M+#N becomes a smooth (Z/2Z)?-manifold in the standard way since the map

f(2) reM-—p

(F#(N)w) = {@(f)(x) N,

is a well-defined diffeomorphism of M #N. By construction,
[F#0(£)] = (171, [2(£))) € Mod(M) x Mod(N) < Mod(M#N). O
Proof of Proposition[3.1} Consider the cases M = My, M = M, and M = M, separately.

1. Let M = My = CP?. Then Aut(Ha(M;Z), Qur) = Z/27 with generator ¢ : H + —H. The map
T : M — M given by complex conjugation realizes ¢ so s : ¢ — 7 defines a desired section
s : Mod(M) — Diff ¥ (M),

2. Let M = M, = CP! x CP!. Let (S1,52) be a Z-basis of Hy(M;Z) where S7, Sy correspond to
the first and second factors CP' respectively so that Q;(S;, S;) = 1 — &;; for 1 <4, j < 2. Then
Aut(Ho(M;Z), Q) = (c1,c2) =2 (Z/27)* where

(-1 0 _ (0 1
“a=lo -1/ 2711 o
with respect to the Z-basis (51, S2). For ¢ = ¢; and ¢y, define f. : M — M by

for t (XYL, W 2 Z) s (K VL, W2 ZD), fep s (X2 VLW 2]) o (W2 20, [X 2 Y],

Because f., and f., have order two and commute, (f.,, f.,) = (Z/2Z)? < Diff*(M) with
[fe;] = ci for i = 1, 2. Therefore, s : ¢; — f., defines a desired section s : Mod(M) — Diff+(M).

3. Let M = M; = CP?#CP?. Then Aut(Hy(M;Z): Qur) = (c1, c2) = (Z,/27)* where

(-1 0 (1 0
“a=\lo 1) 27lo 41

with respect to the Z-basis (H, E1). Define the diffeomorphisms f1, fa : CP? — CP? and g1, g :
CP? — CP? by

fl,02: [ X:Y: Z] = [X:Y:Z], fo,: [ XY : Z]—»[-X:Y:Z].

Because f; and f, have order two and commute, (f1, f2) = (Z/27)* < Diff+((CIP’2). By the same
computation, (g1, g2) = (Z/2Z)? < Diff " (CP?). Apply Lemma 3.2\ with (fi, fo) < Diff " (CP?)
and (g1, g2) < Diff " (CP?). The resulting diffeomorphisms f;#g¢; of M, generate (Z/27)? and
satisfy the equalities [f;#¢;] = ¢;. Therefore, s : ¢; — f;#g; defines a desired section s :
Mod(M) — Diff " (M). O



4 Nielsen realization problem for del Pezzo manifolds

4.1 Finite group actions on 4-manifolds

If G = Z/pZ with p € Z prime acts smoothly on a closed, oriented 4-manifold in an orientation-
preserving way then its fixed set is a finite disjoint union of isolated points and surfaces (see e.g.
[EL21} Proof of Lemma 3.5 (3)]). In this section we outline some results giving homological restric-
tions on these fixed sets.

Proposition 4.1 (Edmonds, [Edm89| Proposition 2.4]). Let G = Z/pZ act on a closed, oriented, simply-
connected 4-manifold M. The Z[G)-module H?(M;Z) decomposes into a direct sum of indecomposable repre-
sentations of the trivial type, cyclotomic type, and reqular type. Let t be the number of trivial summands and
c be the number of cyclotomic summands in H*(M;Z). Let Fix(G) C M be the fixed set of G. If Fix(G) # ()
then

1. 51 (Fix(G)) = cand
where By, (Fix(QG)) denotes the mod p, kth Betti numbers of Fix(G).

Remark 4.2. By [Edm89]|[Corollary 1.4], the Euler characteristic x (Fix(G)) of Fix(G) is t —c+2. Hence,
if t +2 # ¢ then Fix(G) # 0 if t + 2 # ¢ and so Proposition [4.1] applies. Moreover, Proposition
applies to the Z|G]-module structure of Hs(M;Z) since Ho(M;Z) and H?(M;Z) are isomorphic as
Z|G]-modules.

The second standard result regarding fixed sets of orientation-preserving, smooth finite group
actions on 4-manifolds is the Hirzebruch G-signature theorem. We specialize to the case G = Z/2Z.
Two quantities are necessary in the statement of this theorem: o(M) and o(M/G). The quantity
o (M) denotes the signature of M, which is defined as (M) = p™ —p~ where (p™, p~) is the signature
of the intersection form @)»s as a nondegenerate symmetric bilinear form. By [HZ74, Section 2.1, (22),
(24)], 0(M/G) = p{; — p; where (p:, p;) is the signature of the intersection form Qs restricted to the
G-fixed subspace of Ha(M;R).

Theorem 4.3 (A special case of the Hirzebruch G-signature theorem, [HZ74, Section 9.2, (12)]). Let
G = 7/2Z act on M* by orientation-preserving diffeomorphisms such that the 2-dimensional connected
components of the fixed sets are orientable. Then

20(M/G) = o(M) + Y Qu([C],[C))
C

where the sum on the right side is taken over the 2-dimensional connected components C' of the fixed set of G
in M.

Remark 4.4. The Hirzebruch G-signature theorem in [HZ74] Section 9.2 (12)] is stated for a general
finite group G. Its statement involves certain quantities called defects which are attached to every
connected submanifold of M with nontrivial stabilizer in G. In the case that G = Z/27Z, any orientable
2-dimensional component C' of the fixed set has defect equal to Q;([C], [C]) according to [HZ74,
Section 9.2, (15)]. At any isolated fixed point p € M, the nontrivial element g € G acts by —I, on
the tangent space T, M. This observation and [HZ74, Section 9.2, (19)] imply that the defect at any
isolated fixed point is 0. These computations of defects reduce the general statement of the theorem
to the statement given above for G = Z /2Z.



4.2 Smooth Nielsen realization problem for 1/,

The goal of this subsection is to prove Theorem|[L.1] We first label certain mapping classes in Mod(M>).
Denote by @, ¥ by following elements of Aut(Hs(Ma;Z), Qar,) = O(1,2)(Z) whose matrix forms are
given with respect to the ordered Z-basis (H, E1, E3) of Hy(Ms; Z):

1 0 0
., U=Refg,=[0 -1 0].
0 0 1

Denote by A, B the following elements of Aut(Ha(Ms;Z), Qrr,) = O(1,2)(Z) whose matrix forms
are given respect to the Z-basis (51, Sz, ¥):

1
) s B = RefH_El_E2 = (0
0

We determine the realizable subgroups of G; = (A, B,—I3) and G = (®, ¥, —I3) in Sections

and[4.2.2]respectively. In Sectio we combine the results of Sections and to prove
Theorem[1.1/and Corollaries[1.2land

o = O

1 0
@:Refzgl,}b RefEl = 0 0
0 —1

o= O
o O =
_ o O

A= RefE1_32 = (
-1

o~ O
o O
\_/

4.2.1 Subgroups of Gy = (A, B, —13) = (Z/27)3

In this section we first analyze the fixed sets of any lift of some c € G} to determine some subgroups
of G1 which cannot be realized by diffeomorphisms. Afterwards, we explicitly realize the remaining
subgroups of G.

Lemma 4.5. Let g = A or —AB. If g is realized by an order 2 diffeomorphism f, then
Fix(fy) 2 8% U {p}
where p is an isolated fixed points of f,.

Proof. If g = A, let S = (51,52,%) and if g = —AB, let S = (S, —S2, X). With respect to the Z-basis

S of HQ(MQ;Z),
01 0
g=11 0 0].
0 0 1

By Remark[4.2} x(Fix(f,)) = 3 and so Fix(f,) # (). Proposition [.1|implies that 8, (Fix(f,)) = 0 and
Bo(Fix(fy))+B2(Fix(fy)) = 3. Combining with the fact that each Fix(y) is a disjoint union of surfaces
and isolated points shows that

Fix(f,) = S* U {p} or [3]

where [n] denotes the set of n distinct isolated points. By the G-signature theorem (Theorem [4.3) and
the fact that o(Ms3) = —1,

20(M2/G) = —1+Y_ Qu,([C],[C)).
C

Comparing the parity of both sides of the equation shows that there must exist at least one 2-
dimensional component of the fixed set. O

The next lemma determines the self-intersection numbers of the submanifolds S? of Fix(f) and
FiX(f_ AB ) .
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Lemma 4.6. Let g = A or —AB. Suppose g is realized by an order 2 diffeomorphism fq and f_ 4 g respectively
with Fix(f,) = F, U {p} and F, = S*. Then

Qe ([Fa], [Fa]) =1, Qua,([Foasls [F-asB]) = —3.
Proof. Let G = (f,). Then

R{Sl +SQ,E} lfg:A,

Hy(Ms; R)E =
2(MziR) {R{Sl—SQ,E} if g= —AB.

The restriction of Qyy, to Ha(My; R)E with respect to the R-bases (S1 + Sz, %) and (S1 — S2, %) re-

spectively are
2 0
ifg=A,
0 —1> g
-2 0
0 -1

Q| 1z (MziR)E =

) ifg= —AB.

This shows that o(M2/(f4)) = 0 and o(Mz/(f-ap)) = —2. Applying the G-signature theorem
(Theorem [4.3) to both cases above shows

0=—1+ Qu,([Fal,[Fa)) —4=—1+Qu,([F-ag],[F-aB]). O

Lemma [4.6]yields the appropriate homological obstructions to prove the following nonrealizabil-
ity results.

Proposition 4.7. There is no lift of (A, —B) = (Z/2Z)? < Mod(Mz) or of (A, B) = (Z/27)? < Mod(My)
to Diff " (My).

Proof. Suppose there is a lift (fa, f+5) = (Z/2Z)* < Diff" (M) with [fa] = A and [f1p] = +B.
Because fip and f4 commute, fip restricts to a diffeomorphism on F4, the unique 2-dimensional
connected component of Fix(f4) by Lemma[4.5] Therefore £ B([F4]) = [Fa] or —[F4]. Observe that
Hj(M>; Z) has a direct sum decomposition

Hy (M Z) = Z{S} @ Z{S1, S2}

into a sum of (1)- and (—1)-eigenspaces of of +£B, meaning that either [F4] € Z{X} or [F4] €
Z{S1, 52}

By Lemma Qur, ([Fal,[Fa]) = 1. If [Fa] = aX for any a € Z then —a® = Qur, ([Fa],[Fa]) =1
which is a contradiction. If [F4] = aS1 + bSs for any a,b € Z then 2ab = Qar, ([Fa], [Fa]) = 1 which
is also a contradiction. O

Proposition 4.8. There is no lift of (—AB, —A) = (Z/27)% < Mod(M>) to Diff* (My).

Proof. Suppose there is a lift (f_ap, f-a) = (Z/27)? < Diff* (M) with [f_ap] = —AB and [f_4] =
—A. Because f_ap and f_4 commute, f_4 restricts to a diffeomorphism on F_ 45, which is the
unique 2-dimensional connected component of Fix(f_45) by Lemmal[4.5 There is a decomposition

Hy(M2;Q) = Q{S1 — Sz} ® Q{S1 + 52, X}
into (1)- and (—1)-eigenspaces of —A, which means that either [F_ 45] € Q{S1 — S2} N Ha(My;Z) or
[F_aB] € Q{S1 + S2, X} N Hay(Ma; Z).
If [F_ap] € Q{S1 — Sa} N Ha(My; Z) then [F_ ap] = a(S1 — S2) for some a € Z. Compute that

—3 = Qum,([F-aB], [F-aB]) = —2d°,
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which is a contradiction by Lemma
If [F_aB] € Q{S1+ 52, X} NHa(Ms; Z) then [F_ 45] = a(S1+.52) +b% for some a, b € Z. Moreover,
H;(Ms; Q) has another direct sum decomposition

Hy(M;Q) 2 Q{S1 — 52,2} @ Q{S1 + S2}
into a sum of (1)- and (—1)-eigenspaces of —AB. Because —AB([F_ag]) = [F_aB],
[F_ap] = a(S1 + S2) + b € Z{S1 — 52, %}

which implies that [F_ 45] = bX. However, this is impossible since —3 = Qs ([F_aB], [F-agB]) =
—b? by Lemma O

It turns out that with the exception of the subgroups of Propositions [4.7] and 4.8} all other sub-
groups of G are realizable. We explicitly construct the lifts of these subgroups of G to Diff* (Ms) in
this next proposition.

Proposition 4.9. If G < Mod(My) is one of
(A, —I3), (B,—B), (AB,—1I3), or (AB, —B)
then G is realized by a complex equivariant connected sum.
Proof. Define diffeomorphisms hly, hl, bl |  hlyg, bl 5 : CP' x CP' — CP' x CP' by:

RY, bl (X1 : X, [V1: Ya]) — ([Y1: Yal, [ X1 @ Xa)),
hi (X1 2 X, [Vi 2 Ya]) = ([= X1 1 Xa, [V1 2 Y2]),
hlpe hlp: (X1 Xo, [V1 2 Ya]) = ([X0 2 X2, [Y7 1 Ya)).
The diffeomorphisms hly, hiz, hl |, hlz, h! 5 have order 2. On the other hand, define diffeomor-
phisms b2, h%, h? | h? . h* g : CP? — CP? by:
R, hEp:[X:Y : Z]—[-X:Y:Z],
h%, h%Ig XY Z) = XY Z),
Pip:[X:Y:Z]—=[-X:Y:Z].
The fixed sets of the diffeomorphisms defined above are:

([X1: X, [X1 : Xa])} = CPY,

(0 : 1], Yy : Ya)YU{([1:0],[Y; : Ya])} = CP' LU CP',
(I [c:d]) € RP' x RP'} =~ T2,

£ Z] € CP?YU{[1:0:0]} = CP' U {p},

2 :a,b,c € R} = RP?,

o
=~

=
Jai
>
N
oo}

|

<

<.
(=l
el
S

=
o

m
~
——
Il
=
~
. [+

1. Compute that
(R, hL ) = (Z/22)* < Diff*(CP' x CP') and (h%,h2 ) = (Z/2Z)? < Diff*(CP?).

Let q; = ([0: 1],[0 : 1]) € Fix(hY) NFix(hl; )and g = [0: 0 : 1] € Fix(h%) N Fix(hz_la). The

3

connected component F, of ¢; in Fix(h}) N Fix(h! ;) is

F,,={(Ja:b],[a:b]):a,be R} =S
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The connected component Fy, of ¢z in Fix(h%) N Fix(h? ;) is
F,={0:a:0:a,beR}=S"

Therefore, apply Lemma [3.2| to see that (hly#h%, h ; #h? ) < Diff " (M) is a realization of
(A, —I3) by a complex equivariant connected sum.

. Compute that
Rl L) = (2/22)% < Di x an b2 ) = (Z/22)% < Diff T (CP?).
hh bt p) = (2/27)* < Difft (CP' x CP! d (k% h%p) = (Z/27)* < Difft (CP?

Letq; = ([0:1],[0 : 1]) € Fix(hk) NFix(hl 5) and g2 = [0 : 0 : 1] € Fix(h%) N Fix(h? 5). The
connected component I, of ¢; in Fix(hl) NFix(h! z) is

F,, ={(0:1],[a:0]):a,beR} =S
The connected component F, of ¢» in Fix(h%) N Fix(h% 5) is
F,,={[0:a:b :a,beR}ggl,

Therefore, apply Lemma [3.2| to see that (hh#h%, ht z#h% 5) < Diff (M) is a realization of
(B, —B) by a complex equivariant connected sum.

. Compute that
(Bl 1, hhp) = (Z/22)% < Diff*(CP' x CPY) and (h%,,, h%p) = (Z/2Z) < Diff* (CP?).

Let g1 = ([0:1],[0: 1]) € Fix(h! ;) NFix(h}z) and g2 = [0: 0 : 1] € Fix(h? ;) N Fix(h% 5). The
connected component F, of q; in Fix(h! ; ) N Fix(h}5) is

F,,={(fa:b],[a:b]):a,be R} =S
The connected component Fy, of ¢, in Fix(h? | ) N Fix(h% 5) is
F,={[0:a:b:a,bc R} =S

Therefore, apply Lemmato see that (h' | #h% |  hYp#h% ) < Diff (M) is a realization of
(—Is, AB) by a complex equivariant connected sum.

. Compute that
(hl 5, h' p) = (Z/27)% < Difit (CP' x CP') and (kg h2 ) = (Z/27)? < Diff* (CP?).

Let g1 = ([0: 1],[0: 1]) € Fix(hl5) NFix(h! z) and g2 = [0: 0 : 1] € Fix(h% ) N Fix(h2 3). The
connected component Fy, of ¢ in Fix(h!,5) NFix(h! ) is

F,, ={([a:b],[a:b]):abecR} =S
The connected component F, of g2 in Fix(h? 5) N Fix(h? 5) is
F,={[0:a:b:a,bc R} =S

Therefore, apply Lemma [3.2|to see that (b} ;#h?% 5, h! p#h? ;) < Diff " (My) is a realization of
(AB, —B) by a complex equivariant connected sum. O
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4.2.2 G2 = <<I>, \I/, —13> = D4 X Z/?Z

In this section we show that the subgroup Gy is realizable by diffeomorphisms of M, given by a
complex equivariant connected sum.

Proposition 4.10. The group Gy = Dy x (Z/2Z) < Mod(Ms) is realized by a complex equivariant connected
sum.

Proof. Define diffeomorphisms hg, hy, h_z, : CP* — CP? by
he([X:Y:Z]))=]-Y:X:Z],
he([X:Y:Z)=[X:-Y:Z],

hon(X:Y:Z))=[X:Y:Z].

Letp; =[1:0:00 € CP*and py = [0 : 1 : 0] € CP?. The subgroup (he,hy,h_5,) < Diff " (CP?)
preserves the set {p1,p2} C CP?. Tt is straightforward to check that (ha, hw, h—1,) = Dy x (Z/2Z).

On the other hand, let Ny, N, = CP?. Define go : Ny U Ny — Ny LI Ny by

golv,([X:Y : Z))=[X: =Y : Z] € Ny,
go|ln,([X Y 1 Z)=[X:Y :-Z] € Ny.

Define 9gu,9—15 - Nl (] N2 — N1 L N2

RV _ [Y:*?37]€N1 if[X:Y:Z] e Ny,
g@([X'Y'Z])_{[X:Y:—Z]eNQ if[X:Y:Z] €Ny,
o B [X:Y:Z]eN, if[X:Y:Z] €Ny,
g_IS([X.Y.Z])_{[X:Y:Z}GNQ if[X:Y:Z] €N,

The maps go, 9w, g—1, preserve the set {¢1,q2} C Ny U Ny withqs =[0:0:1] € Nyand g, =[0:0:
1] € No. Itis straightforward to check that (ge, gv, 9—1,) = Da x (Z/2Z).
Let By, = {(a,b,c,d) € R* : a®> + b? + ¢ + d*> < 1} for k = 1,2. Define smooth embeddings
ir : By — CP?, j), : By, — Ny for k = 1,2 by
i1(a,b,c,d) = [1: a+bi:c+ di] € CP?, jila,bye,d) =[c+bi:a—di:1] € Ny,
in(a,b,c,d) = [a+bi:1:c+ di] € CP? ja(a,b,c,d) = [c+bi:a—di:1] € Ny.
The embeddings i, iz are orientation-preserving while j;, jo are orientation-reversing. Then we ex-
plicitly identify M, with

(CP? — {p1,p2}) U (N1 U Ny — {q1,42})/ ~

with iy (tug) ~ jr((1 — t)uy) for all ¢ € (0,1) and uy, € OBy, for k = 1,2. For ¢ = ®, ¥, and —I;, let
f. € Diff " (M) be defined

fC(LC) _ {hc(l') T € (CP2 — {p17p2}

ge(z) € (N1UN2) —{q2, 02}

See Figure 3| for an illustration of the complex equivariant connected sum (Mo, (fo, fv, f-1,)). We
now show that each f. is a well-defined diffeomorphism of M;. sLet z = (a,b,c,d) € 0B4 and
€ (0,1). Compute for i (tx) = [1 : t(a + bi) : t(c + di)] € im(i;) € CP? — {py1,p2},

hq’(il(tx)) = ig(t(—a, —b, ¢, d)) = jQ((l - t)( ,—b, ¢, d)) =99 (]1((1 - t)x)
hw (ir (tz)) = i1 (t(=a, =b, ¢, d)) = ji((1 — t)(=a,=b,c,d)) = gw (i1 ((1 —t)z)
)

_ )7
- )
hery (ia (t2)) = i1 (t(a, =b, ¢, =d)) = ju (1 = 1) (@, =b, ¢, =d)) = g1, (7. (1 — t)2)).

a
a
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U
<hq>,h\1;,h_]3> <f<I>af\I!af—IS>

Figure 3: The complex equivariant connected sum (CP?#2CP? G9) constructed in the proof of

Proposition Left: The group G acts on CP? and 2CP?. The subgroup (®2, ¥, —I3) fixes the
points p1, p2, ¢1, and ¢, and preserves some neighborhoods (in grey) of each point. The group G2
acts on the union of these neighborhoods. Right: A connected sum formed by gluing the neighbor-
hood of ¢; to the neighborhood of p; (in grey) for i = 1,2 in a G2-equivariant way.

For iy(tz) = [t(a + bi) : 1 : t(c + di)] € im(iz) € CP* — {p1, pa},
he (iz(tx)) = ir(t(—a, =b,—c, =d)) = j1((1 — t)(—a, =b, —¢, =d)) = ga (j2((1 — t)x)),
h (iz(t)) = iz(t(—a, b, —c, =d) = j2((1 — t)(—a, =b, —¢, =d)) = gu (j2((1 — t)z)),
h_r, (22(151')) = ig(t(& —b,c, _d)) = j2((1 - t)(a> —b,c, _d)) =9-1s (]2((1 - t):E))

We have computed explicitly that h.(tz) ~ g.((1 —t)z) forall ¢ = ®, ¥, —1I3, x € 0B for k = 1,2
and t € (0,1). Therefore, (fo, fu, f-1,) = Dy x (Z/27) < Diff* (M) is a desired lift of (®, ¥, —I3) =

)

Dy x (Z/2Z) < Mod(M>) with [fe] = @, [fo] = ¥, and [f_,] = —I5 by construction. Finally, note
that this is an explicit construction of (CP*#2CP? G5) with H = (&2, ¥, —I3) < G4 as described in
Section2.2 O

4.2.3 Proof of Theorem[I.TIland its corollaries

The following proposition ties together the lemmas of the previous sections.

Proposition 4.11. Let G < Mod(My) be a finite subgroup. There exists a lift G of G to Diff* (My) under
7 : Homeo™t (Ms) — Mod(Mz) if and only if G is conjugate in Mod(My) to a subgroup of:

1. (®,V,—1I3) = Dy x (Z/2Z), or

2. one of the four groups (A, —1I3), (B, —13), (AB, —I3), or (— A, — B), each isomorphic to (Z/27)>.
Proof. By Lemma 2.8} any finite subgroup G < Mod (M) is conjugate in Mod (M) to a subgroup of

1. (Gu-p,—E,,—1I3) = (Refg,_g,,Refg,, —I3) = (®, ¥, —1I5) or

2. (Gg,,—1I3) = (Refu_g,—E,, Refg, —g,, —I3) = (A, B, —I3).

Proposition constructs a lift of (®, ¥, —1I3) to Diff " (My) explicitly. Suppose G is a subgroup of
(A, B, ~1I3) = (Z/2Z)* and G has a lift G < Diff " (My). Because there are subgroups of (4, B, —I3)
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which do not have lifts to Diff* (M) (Propositions 4.7 and , G must be a proper subgroup of
(A, B, —I3). Observe that any two out of the seven nontrivial elements of (A, B, —I3) determine a
subgroup of order 4 in (A, B, —I3), and there are three possible sets of generators for each order 4
subgroup. This gives seven distinct subgroups of order 4.

Propositions and [4.8laccount for three subgroups isomorphic to (Z/2Z)? that cannot be real-
ized by diffeomorphisms. Proposition[d.9gives lifts for the four remaining subgroups isomorphic to
(Z./27)%; all of these lifts are realized as complex equivariant connected sums. This accounts for all
maximal proper subgroups of (A, B, —I3). On the other hand, all nontrivial subgroups of maximal
proper subgroups of (A, B, —I3) are cyclic of order 2. Note that all order 2 elements of (A, B, —I3)
are contained in some subgroup of order 4, which have lifts to Diff + (My), listed in Proposition

Finally, the map 7|pig+ (s, ¢ Diff t(My) — Mod(M,) is surjective by Theorem Therefore, for
any finite subgroup H = gGg~' C Mod(M-) with G a finite subgroup of (4, B, —I3) or (®, ¥, —1I3),
let o € Diff ¥ (M) be a representative of g € Mod(Ms). Then if a lift G of G to Diff " (M,) exists then
H = aGa~'is alift of H and vice versa. Therefore, a lift G of G' to Diff " (M) exists if and only if G
is conjugate to a subgroup given in the statement of the proposition. O

We can now prove Theorem

Proof of Theorem All constructions of Proposition .9|and Proposition which account for all
realizable cases of Proposition are given as complex equivariant connected sums. These account
for all finite subgroups of Mod (M) which lift to Diff " (M5). O

Finally, we deduce the corollaries of Theorem

Proof of Corollary[1.2] By Lemma any finite order element ¢ of Mod(23) is conjugate to some
element contained in G; or G,. Compute that all individual finite order elements of G; and G, are
contained in some subgroup given in Propositionthat lifts to Diff " (M,). Again since Tlpige+ (M) :

Diff* (M,) — Mod(Ms>) is surjective, this is enough to conclude that c is represented by an order n
diffeomorphism in Diff * (M>). O

Proof of Corollary[1.3] The mapping class of a Dehn twist about a (—2)-sphere in M, has order 2 in
Mod(Ms). The corollary is a special case of Corollary[1.2} O

Proof of Corollary[T.4, By Propositions [4.7] and [4.8) there exist subgroups G < Mod(M3) isomorphic
to (Z/2Z)? that cannot be realized by diffeomorphisms. By Corollary all elements g € G are
realized by a complex equivariant connected sum. O

4.3 Smooth Nielsen realization problem for M3

In this section we use similar techniques as used in the proof of Theorem [1.1|to show that only one
of the three maximal finite subgroups of Mod(M3) lifts to Diff * (M3).
Throughout this section let

O'(Z]) = RefEi,Ej R(k) = RefEk, 1/) = RefH*Elenggv Cc = R(].)R(Q)R(?))

For any subgroup G < Mod(M3) with a lift to Diff *(M3), we denote this lift by (f, : g € G) <
Diff * (M3) where f, € Diff"(M;) and [f,] = g € Mod(M3). The following is a reformulation of
[Edm8&9, Corollary 2.6].

Lemma 4.12 (Edmonds, [Edm89, Corollary 2.6]). Let M be a simply-connected, closed, oriented 4-manifold.
Let f : M — M be an orientation-preserving diffeomorphism of prime order p. If Fix(f) has two or more
connected components and S C Fix(f) is an orientable 2-dimensional component then [S] # 0 € Ho(M;Z).
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Proof. 1f Fix(f) is not purely 2-dimensional then [Edm89, Corollary 2.6] says that the 2-dimensional
components represent linearly independent elements of Hy(M;Z/pZ). Then because [S] # 0 €
Hy(M;Z/pZ) and S is an orientable surface, [S] # 0 € Hy(M; Z).

If Fix(f) is purely 2-dimensional with k-many connected components then [Edm89, Corollary
2.6] says that any (k — 1)-many connected components represent linearly independent elements of
Hy(M;Z/pZ). By the assumption that k > 1, this implies that [S] # 0 € Hao(M;Z/pZ). Because S is
an orientable surface, [S] # 0 € Ho(M;Z). O

In addition to the homological results used in Section a main idea of many arguments in this
section is the following: suppose a finite abelian group G acts smoothly on some 4-manifold A/ and
fix a G-invariant metric on M. For all g,h € G, the fact that g, h commute implies that h restricts
to a diffeomorphism on Fix(g) and vice versa. If there is a unique isolated fixed point p € Fix(g)
then p must be fixed by all elements of G since diffeomorphisms of Fix(g) must send 0-dimensional
components to 0-dimensional components and so the tangential representation G — SO(T,M) is
faithful.

Lemma4.13. If G = (0(12), R(3)) = (Z/2Z)? < Mod(Ms3) lifts to Diff * (M3) then Fix(f,(12)) = Fi U F
with F; = S? for i = 1,2 and Fix(fy(12)r(3)) = RP? LI {p}. Moreover, Qur, ([Fi1], [F1]) + Qs ([Fa), [Fa]) =
0.

Proof. Suppose a lift (f, : ¢ € G) < Diff*(Mj3) exists. By Remark@ X(Fix(fs(12))) = 4 and
X(Fix(foa2)r(3))) = 2; therefore, Fix(f,12)) # 0 and Fix(fs(12)r(3)) # 0. By Proposition
Br(Fix(fr(12))) = 0and Bo(Fix(fo(12)))+ B2 (Fix(fr(12))) = 4. Again by Propositiond.1} 81 (Fix(fo(12)r(3))) =
1 and Bo(Fix(f,a2)r@))) + B2(Fix(fr(12)r(3))) = 3. Combining with the fact that each Fix(y) is a dis-

joint union of surfaces and isolated points shows that

Fix(f,(12)) = [4], S* U [2], or S US?, Fix(f,(2)r@3)) = RP? U {p}.

Because p € Fix(f,(12)r(3)) is a unique isolated fixed point, p is fixed by f, for all g € G and the
tangential representation G — SO(T, M) is faithful. If p is an isolated fixed point of f, forany h € G,
then d,, f, = —I, which is the only element of SO(4) of order 2 that does not fix any nonzero vector.
Therefore, p is not an isolated fixed point of f, for any h # ¢(12)R(3) € G.

Because f,(12) acts on Fix(f,(12)r(3)), it must fix the isolated point p € Fix(f,(12)r(3)). Then p
cannot be an isolated fixed point of f,(12), and so Fix(f,(12y) % [4].

Suppose Fix(fo,, ) = S* U [2]. By the G-signature theorem (Theorem for G = (fy(12)) with
S=§C Fix(fs(12)),

2= -2+ Qu([S],[5]).

The diffeomorphism fr(3) commutes with f,(12) and so fr(s) restricts to a diffeomorphism of S and
R(3)(S)) = +19].

If R(3)([S]) = —[S] then [S] = aE3 € Z{Es} for some a € Z. Then Qr([S],[S]) = —a® =0
implies that a = 0. By Lemma[4.12} this is a contradiction.

If R(3)([S]) = [S] then [S] € Z{H, Ey + E»} since 0(12)([S]) = [S]. Hence [S] = aH + b(E + E»)
for some a,b € Z, and so Q 1, ([9],[S]) = a* — 2b* = 0. The only integral solution to this equation is
(a2, b) = (0,0), meaning [S] = 0. This is again a contradiction by Lemma and so Fix(f,(12)) #
S U 2]

Finally, the only remaining choice is Fix(f,12)) = S* U S?. Denote these 2-spheres by F; and
F5. The last claim follows because —2 = —2 + Qar, ([F1], [F1]) + Qs ([F2], [F2]) by the G-signature
theorem (Theorem for G = (f,12))- O

Proposition 4.14. There is no lift of G = (0(12),0(23), R(3)) < Mod(Ms3) to Diff " (Ms3).
Proof. Suppose a lift (f, : g € G) < Diff " (M3) exists. By Lemma Fix(foa2)r(3)) = RP? LI {q}
for some isolated fixed point ¢ € M3 of f(12)r(3). Note that ¢ = R(1)R(2)R(3) is in the center Z(G)
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of G, so f. must fix the point ¢. Because Fix(f.) # (), Proposition {4.1| shows that 3; (Fix(f.)) = 3
and Sy (Fix(f.)) + B2(Fix(f.)) = 3. Combining with the fact that each Fix(f.) is a disjoint union of
surfaces and isolated points shows that Fix(f.) = #3RP? U {p} for some isolated fixed point p € Mj
of f.. All elements g € G commute with ¢, and so f, acts on Fix( f.) by diffeomorphism. This shows
that p is a fixed point of f, for all g € G and the tangential representation G — SO(T},M3) is faithful.
Because f. has order 2, its derivative at the isolated fixed point p must be d, f. = —I4. Therefore, p
cannot be an isolated fixed point of the lift of f;, for any h € G of order 2.

If p is an isolated point in Fix(f,(12)) N Fix(fr(s)) then p is an isolated fixed point of f,(12)r(3),
which is a contradiction. So p is in a 1-dimensional component of Fix(f,(12)) N Fix(fr(s)). Let
Fix(f,a2) = F1 U F> with F; = S? by Lemma Because R(3) and ¢(12) commute in G, the
diffeomorphism fr(s) acts on Fix(f,(12)). Assuming p € Fi, we must have R3([F1]) = —[F1], i.e.
[F1] = aE3 for some a € Z, because fp(3) only fixes a 1-dimensional submanifold of F;. On the
other hand, f. acts by a diffeomorphism on F; since f.(p) = p and ¢ commutes with o(12). Therefore
c([F1]) = c(aFEs) = —[Fy]. However, d,, f. must act by —I, on T),S; because d,, f. = —I, on T, M3. This
means that f. acts in an orientation-preserving way on Fi, i.e. ¢([F1]) = [Fi]. Therefore, [F}] = 0.
This is a contradiction by Lemma O

Proposition 4.15. There is no lift of G = (1, 0(12), R(3)) < Mod(Ms3) to Diff ™ (M3).

Proof. Suppose there is such a lift (f, : g € G) to Diff "(M;). Observe that ¢(12) € Z(G) and
Fix(f,a2) = Fi U Fy with F; = §* and Qu, ([F1], [F1]) + Qus, ([F2], [F2]) = 0 by Lemma [4.13]
Lemma [4.13| shows that Fix(f,12)r(3)) = RP? L {p}. Since foi2) and fresy act on Fix(f,(12)r(3)),
they must fix the unique isolated point p. Because f,(12) and fg(3) have a common fixed point, fz(3)
preserves each F;. Moreover, p must be an isolated point in Fix(f,(12)) N Fix(fr(s)), since otherwise
p would not be an isolated fixed point of f5(12)r(3). If F1 is the component of Fix(f,(12)) containing
p then d,, fres)|T,s, = —1I2, i.e. fr) acts by an orientation-preserving diffeomorphism on F; and
R(3)([F1]) = [F1]- Because o(12)([F1]) = [F1], we know that [F}] € Z{H, E; + F>}.

Next, note that 1) and ¢(12) commute and consider the action of f,; on Fix(c(12)) = Fy U F,. With
respect to the Z-basis (H — E1, H — Ey, H — Ey — Es, E3) of Hy(M3;Z),

10 0 0
01 00
w_OO()l
0 010

1. Suppose ¥([F1]) = £[F,]. Write [Fy] = aH + b(Ey + E2) for some a,b € Z. Then
Qut ([F1], [F1]) + Qs ([F2], [F2]) = 2(a® — 26%) = 0

since
Qur, ([F2], [F2]) = Qs (W ([F1]), ¥ ([F1)) = Qua, ([F1], [F1]) = a® — 207,
The only integral solution (a,b) = (0,0), a contradiction by Lemma[4.12}

2. If ¢([F1]) = —[FA1] then [F1] € Z{H — E; — E3 — E3}. Compute that
Z{H,E\ + E>;} NZ{H — E1 — Ey — E3} =0,
which implies that [F] = 0. This is a contradiction again by Lemma .12}
3. If ¢([F1]) = [F1] then [Fy] € Z{H — E1 — E> + E3,H — Eq, H — E»}. Compute that
Z{H — E\ — Ey + E3,H — E\,H — Ex} N Z{H, E\ + Eo} = Z{2H — E| — E»}.

So [F1] = ¢(2H — E; — E») for some ¢ € Z and Qy, ([F1], [F1]) = 2¢2.

Next, note that R(3)([F]) = *[Fb] because R(3)([F1]) = [Fi] and fr(s) acts on Fix(fy(12)).
Because O'(lQ)([FQ]) = [FQ], we know that [FQ] S Z{H, Fi + Es, E3}
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(@) If R(3)([Fy]) = —[Fy] then [Fy] € Z{E3}. So Qs ([Fe], [F2]) = —d? for some d € Z. Then

Qs ([F1], [F1)) + Qo ([F2], [Fo]) = 22 —d* = 0

has only the integral solution (c, d) = (0,0), a contradiction by Lemma

(b) If R(3)([F2]) = [F2] then [F] € Z{H, Ey + E3}. This means that ¢)([Fz]) # —[F3]. Compute
that

Z{H,E, + Ex}NZ{H — E\ — By + E3, H — E\, H — By} = Z{2H — E| — E,}.

This shows that [F»] = d(2H — E; — E») for some d € Z, i.e. Qr, ([F2], [F»]) = 2d°. Finally,
compute
Qut, ([F1], [F1]) + Qur ([F2], [F]) = 2¢ +2d% = 0

only has the integral solution (¢, d) = (0,0), a contradiction of Lemma[4.12} O

It remains to show one realizability result before turning to the proof of the main theorem of this
section.

Corollary 4.16 ([Dol12, Theorem 8.4.2]). The group G = (1, 0(12),0(23), —14) is realized by biholomor-
phisms and anti-biholomorphisms of X = Blp CP?, where P = {[1:0:0],[0:1:0],[0: 0 : 1]}.

Proof. By [Dol12] Theorem 8.4.2], the algebraic automorphism group is Aut(X) = (CV)? x (S5 x Sa),
where the factor Ss x Sy is a lift of (/) x (c(12), 0(23)). More explicitly, [Dol12} p. 388] gives the lift

which we describe below.
Consider the maps hy, by (i) : CP? --» CP? for (i5) = (12), (23) given by
hy [ X:Y:Z]|—=[YZ:XZ:XY],

hopoy: [X:Y : Z] = [Y : X : Z],

hosy (XY Z]—=[X:Z:Y].
These maps permute P = {[1:0:0],[0:1:0],[0:0: 1]}. Moreover, hy, 0 hy(;;) = hg(ij) © hy for each
(ij) and (hy(12), ho(23)) = Ss. Thenlet fy, f5(i;) be the map on X induced by h., h,(;;) respectively.
Then we see also that (fy, f5(12); fo(23)) = Z/2Z x S3. Moreover, compute that [fy] = Refy ¢, ¢, e,
and [f,(;j)] = Refe, ¢, for (ij) = (12), (23).

On the other hand, consider the map h_j, : CP* — CP* givenby h_p, : [X : Y : Z] = [X : Y : Z].
Then h_j, fixes each point in P and so induces an order 2 diffeomorphism f_j;, on X with [f_j,] =
—1,. Moreover, h_j, commutes with each hy, hy(;;). Therefore, (f, : g € G) < Diff " (M3) is a lift of
G to Difft (Ms). O

We are ready to prove the main theorem of this section, Theorem[L.6}

Proof of Theorem By Lemma[2.8) the maximal finite subgroups of Mod(}M3) are conjugate in Mod(M3)
to

1. <GH—E1—E2—E3a —I4> = <RefE1_E2, RefEQ_ES, RefES, —I4> = <0’(12), 0'(23), R(g), —I4>,
2. <GE2_E3,—I4> = <RefH_E1_E2_E3,RefEl_Ez,RefEB,—I4> <’(/),0'(12),R(3),—]4>, or
3. <GE3,—I4> = <RefH7E17E27E37RefE17E2;Reszngn_I4> <’(/J,U(12),0’(23),—I4>.

Propositions[d.14/and show that (Gr_g, —E,—Bs, —14) and (G g, g,, —I1) respectively do not lift
to Diff T (M3). Corolla shows that (Gg,, —I4) lifts to Aut(S) x (7) as described in the statement
of the theorem. The map 7|pig+ (ar,) Diff * (M3) — Mod(M3) is surjective by Theorem For any
maximal finite subgroup H = gGg~' with G one of the maximal finite subgroups listed above, let
o € Diff " (M3) be a representative of g € G. Then if a lift G of G to Diff " (M3) exists then H = aGa ™!
is a lift of H and vice versa. Therefore, a lift G of G to Diff " (Ms3) exists if and only if G is conjugate
to (Gg,, —14). O
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4.4 Complex Nielsen realization problem for rational manifolds

In this section we show that the complex Nielsen realization problem differs from the smooth Nielsen
realization problem for any M = M, or M, for all n > 0, which we call rational manifolds. We also
show that for alln > 1, there exist finite order mapping classes ¢ € Mod(M,,) such that there exists no
lift of ¢ to a biholomorphic or anti-biholomorphic map in Diff * (11,,) for any complex structure of M,,.
This justifies why we consider complex equivariant connected sums rather than biholomorphisms
and anti-biholomorphisms in solving the Nielsen realization problem for del Pezzo manifolds.

A result of Friedman-Qin ([FQ95| Corollary 0.2]) says that if X is a complex surface diffeomorphic
to a rational surface then X is a rational surface. Because any blowup of CP? at finitely many points
and CP! x CP! are rational surfaces, any complex structure of M = M, or M, for n > 0 turns M
into a rational surface. By [GS99| Theorem 3.4.6], the complex surface M is geometrically ruled if
M = M, or M, with n > 1 and biholomorphic to CP* if M = M,. Simply-connected, minimal,
geometrically ruled surfaces are isomorphic to a Hirzebruch surface F,, for some m > 0 and m # 1
by ([GS99, Theorem 3.4.8]). This implies that the complex surface M,, is a blowup of CPP? at n points
or a blowup of a Hirzebruch surface F,,, at (n — 1) points.

The following lemma gives some examples of restrictions on the possible fixed sets of biholomor-
phisms and anti-biholomorphisms.

Lemma 4.17. The fixed set of a biholomorphism of finite order is orientable. The fixed set of an anti-biholomorphic
involution has no isolated points.

Proof. Let ® € Difft(M) and consider an almost complex structure .J on M. Note that Fix(®) is a
disjoint union of surfaces and isolated points.

1. If ® € Diff " (M) is biholomorphic then the linear operators d,® and J on T}, M commute for all
p € Fix(®). Because T, (Fix(®)) is the fixed subspace of T, M under d,®, the space T, (Fix(®))
is preserved by J. Therefore, Fix(®) is orientable because J|7 rix(¢) is an almost complex struc-
ture on Fix(®).

2. If ® € Diff* (M) is anti-biholomorphic then d,®o.J = —J od,® for all p € Fix(®), meaning that
d,® is not in the center of GL(7,,M). On the other hand, observe that if ® is an involution with
an isolated fixed point p € M, the differential d,® acts by negation on 7,,M, but the negation
map —Iy is in the center of GL(T,,M). O

In the following proposition we apply Lemma [£.17]and the results from Section [4.1] about fixed
sets of smooth actions of finite groups on 4-manifolds to derive some contradictions.

Proposition 4.18. Fixn > 1. Ifn = 2,let c = Ref g, Ref g, € Mod(My3). Ifn = 3,let ¢ = Refy Refg,—g, €
Mod(Ms). If n # 2,3, let

n—1
¢ =Refy H Refg, € Mod(M,,).
k=1
The mapping class ¢ € Mod(M,,) is not realizable by a biholomorphim or an anti-biholomorphim of order 2 of
any complex structure of M,,.

Proof. Suppose f € Diff*(M,,) is of order 2 with [f] = ¢. By Remark x(Fix(f)) =3 —nifn #3
and x(Fix(f)) = 2if n = 3; therefore, Fix(f) # () for all n > 1. By Proposition 4.1} the fixed set Fix(f)
must satisfy

Bi(Fix(f)) =n, Bo(Fix(f)) + B2(Fix(f)) =3

if n # 3 and f1(Fix(f)) = 1 and Bo(Fix(f)) + B2(Fix(f)) = 3 if n = 3. Because Fix(f) is a disjoint
union of surfaces and isolated points, Fix(f) = S U {p}, where S is a connected surface and p is an
isolated fixed point of f. Lemma4.17/implies that f cannot be anti-biholomorphic because it fixes an
isolated point. We now prove that f cannot be biholomorphic.
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Ifn=1 (mod 2) then 8;(S) =1 (mod 2) and so S is non-orientable. Suppose thatn = 0 (mod 2)
and that S is orientable. The fixed subspace Ho(M,,;Z) by cis Z{E, } if n # 2 and Z{H} if n = 2. By
the G-signature theorem (Theorem [4.3),

-2 ifn # 2,

(1 —n) +Qun, ([S],[S]) = {2 if n = 2.

1. If n # 2 then Quy,, ([S], [S]) = n — 3. On the other hand, ¢([S]) = [S] and so [S]| = aFE,, for some
a € 7. This implies that Qyy, ([S],[S]) = —a? = n — 3. However, Qur, ([S],[S]) =n—3 > 0
because n > 4, but —a? < 0.

2. If n = 2 then Qr, ([S], [S]) = 3. On the other hand, ¢([S]) = [S] and so [S] = aH for some a € Z,
and so Q, ([S],[S]) = a? = 3. There exists no a € Z such that a? = 3.

In any case, S must be non-orientable. Lemma [.17]implies that f is not biholomorphic. O

The following lemma shows that the of the mapping classes ¢ € Mod(M,,) for n # 2 considered
in Proposition are realizable by complex equivariant connected sums.

Lemma 4.19. Ifn > 1 and n # 3, let

n—1
¢ = Refy H Refg, € Mod(M,,).
k=1

Ifn =3, let
¢ = Refy Refp, g, € Mod(Mj).

Then c is realizable by a complex equivariant connected sum.

Proof. If n # 3, consider the blowup Blp CP? where P C CP? is a subset of (n — 1)-points that are
fixed by 7 : CP?> — CP? given by complex conjugation. Then 7 induces an anti-biholomorphism
g : BlpCP? — Blp CP? of order 2 which induces the negation map on Hy(M,,_1;Z) and fixes a
surface S C M,,_1. If n = 3, consider ¢y = Refy Refp, _p, € Mod(M;). Theorem 1.1 and Corollary
shows that ¢ is realized by a complex equivariant connected sum with a smooth Z/2Z-action
given by a diffeomorphism g. By [Edm89][Corollary 1.4], x(Fix(g)) = 1 and by Proposition
B1(Fix(g)) = 1. Therefore, Fix(g) = S := RP? C Ms.

On the other hand, consider the diffeomorphism f : CP? — CP? defined by [A: B : C]  [~A :
B : C); it fixes a surface S*> C CP?.

For any n > 1, pick a point p € S C M,,_; fixed by gand ¢ € S? C CP?. Both dpg and dg f
act by the linear maps (a,b,c,d) — (—a,—b,c,d) with respect to appropriate positive bases By,
and Bz of T,M,,—; and T,CP? respectively. The tangential representations (g) — SO(T,M,_;)
and (f) — SO(T,CP?) therefore are equivalent by an orientation-reversing isomorphism 7}, M,,_; —
T,CP? given by (a, b, ¢, d) + (b, a, ¢, d) with respect to the bases B, and Bzpz. Therefore, there exists
a complex equivariant connected sum M,,_;#CP? with a smooth Z/2Z-action given by a diffeomor-
phism g#f acting by g on M,,_; —p C M,,_1#CP? and acting by f on CP? — ¢ C M,,_;#CP?. By
construction, g#f acts by negation on the first factor Ho(M,,_1;Z) and f acts by the identity on the
second factor Hy(CP?; Z) of the direct sum Hy(M,,; Z) = Ho(M,,_1;7) @ Ho(CP?; Z). This is precisely
the action of c on Hy(M,,; Z). O

Finally, we turn to the complex Nielsen realization problem for all rational manifolds.
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Proof of Theorem[1.8] Consider ¢ € Mod(My) acting on Hy(Mo; Z) by negation. Let f be any diffeo-
morphism of order 2 with [f] = ¢. By Remark .2} x(Fix(f)) = 1 so by Proposition 4.1} the fixed set
Fix(f) satisfies

ALFix(f)) =1, Bo(Fix(f)) + B2(Fix(f)) = 2.

Combining with the fact that Fix(f) is a disjoint union of surfaces and isolated points implies that
Fix(f) = RP*. By Lemma f is not biholomorphic for any complex structure of M.

Consider ¢ € Mod(M,) acting on Hy(M.,;Z) by negation. Let f be any diffeomorphism of order
2 with [f] = ¢. By a result of Friedman—Qin ([FQ95, Corollary 0.2]), any complex structure on M,
turns M, into a minimal rational surface. Therefore, M, is a Hirzebruch surface F,, for somen = 0
(mod 2) by [GS99, Theorems 3.4.6, 3.4.8]. Consider F,, as the CP!-bundle over CP! with the projection
p:F, — CP!. Let C C F,, be the image of a section of p. Then C' is a complex submanifold of IF;,
isomorphic to CP' and f(C) is a smooth submanifold of F,, diffeomorphic to CP'. The restriction
(pof)|c : CP* — CP' has degree —1 because (po f).([C]) = p«o f«([C]) = —[CP']. Therefore (po f)|c
is not holomorphic because it has negative degree. Because C is a complex submanifold of IF,, and p
is holomorphic, f is not biholomorphic.

For M = M, and M., Proposition 3.1/ shows that there is a section of the map 7 : Diff T (M) —
Mod(M) and Mod(M) is realized by a complex equivariant connected sum. Therefore, the mapping
class ¢ € Mod (M) considered above is realizable by a complex equivariant connected sum.

It remains to consider the cases M = M, withn > 1. Let ¢ € Mod(M) be the mapping class
given in the statement of Proposition .18} Then c is not realizable by a biholomorphism or an anti-
biholomorphism of order 2 of any complex structure of M. For M = M;, Proposition shows
that there is a section of the map 7 : Diff " (M) — Mod(M) and Mod(M) is realized by a complex
equivariant connected sum. For M = Ms, Theorem[I.T]and Corollary[I.2]show that c is realized by a
complex equivariant connected sum. For M = M,, with n > 3, Lemma shows that c is realized
by a complex equivariant connected sum. O
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