

Lecture 2 problems

1. (Degree-genus formula) Give two other proofs of the degree-genus formula, as follows:
 - (a) Let C be a smooth degree $d \geq 2$ curve in \mathbb{P}^2 . Pick a line $L \subset \mathbb{P}^2$ and a point $p \in \mathbb{P}^2$ not on C or L . There is a map $\pi : C \rightarrow L \cong \mathbb{P}^1$ given by $\pi(m) :=$ the intersection of the unique line through p and m and the line L . Prove that for generic choices of L and p , the map π is a branched cover with ramification points of order 2, making C a 2-sheeted branched cover of \mathbb{P}^1 , branched over some number r of points of \mathbb{P}^1 . Compute r , and then use the Riemann-Hurwitz formula to compute the genus of C .
 - (b) I proved in my lecture that any two smooth degree d hypersurfaces in \mathbb{P}^n are diffeomorphic, so it suffices to construct, for each $d \geq 1$, a single smooth, degree d curve $C \subset \mathbb{P}^2$ of genus $(d-1)(d-2)/2$. To do this:
 - i. Start with d lines in general position, and show that they are the zero set of polynomial $\mathbb{C}[x, y, z]_{(d)}$.
 - ii. Use the fact that the space of smooth degree d curves in \mathbb{P}^2 is dense in the space of all degree d curves in \mathbb{P}^2 to show that the zero set of some (hence any) perturbed polynomial is given by the original union of lines with their intersection points smoothed to little tubes.
 - iii. Now try to figure out the genus. Try examples with small d first.
2. (Computing the canonical class of \mathbb{P}^2) Theorem 14.10 of Milnor-Stasheff's "Characteristic Classes" gives a computation of the total Chern class of the cotangent bundle of \mathbb{P}^n , and hence of the tangent bundle (it's the negative of the one for the cotangent bundle). This proof is somewhat formal. The goal of this exercise is to give a proof in the classical style (which actually proves more) that the first Chern class $c_1(\mathbb{P}^2)$ of the (cotangent bundle of) \mathbb{P}^2 equals $-3\text{PD}([H])$, where $\text{PD}([H])$ is the Poincaré dual of the hyperplane class $[H] \in H_2(\mathbb{P}^2; \mathbb{Z})$. The proof easily generalizes to prove that $c_1(\mathbb{P}^n) = -(n+1)\text{PD}([H])$.

The only fact we will need is the following. The first Chern class $c_1(T^*M)$ of the cotangent bundle of an algebraic surface M is equal to the following: let θ be a meromorphic 2-form on M . Then $c_1(T^*M)$ is the the homology class of the set of zeros (counted with order of vanishing) minus the homology class of the set of poles (counted with order of the pole).

As a toy case, let $M = \mathbb{P}^1 = \mathbb{C}_z \cup \{\infty\}$. Let $\theta = dz$ on \mathbb{C}_z . Then the local coordinate at ∞ is $w = 1/z$, and so

$$\theta = d(1/w) = \frac{-1}{w^2} dw$$

so that θ has a pole of order 2 at ∞ . Since θ has no zeros, it follows that the homology class discussed above is $-2[\{\infty\}] \in H_0(\mathbb{P}^1)$; here $[\infty]$ is a 0-cycle, and -2 is the coefficient.

Now to use the above to compute $c_1(T^*\mathbb{P}^2)$.

(a) Choose two generic meromorphic 1-forms θ_1, θ_2 on \mathbb{P}^2 . There are (at least) two ways to do this: you can work as above by just considering say dz and dw on $\mathbb{C}_{z,w}^2$, and extend to the \mathbb{P}^1 at infinity, generalizing the above. Another way is to specify two holomorphic 1-forms on $\mathbb{C}_{z_0,z_1,z_2}^3 - \{0\}$ that are invariant under scaling by any $\lambda \in \mathbb{C}^*$; for example one can take dz_1/z_1 and dz_2/z_2 .

(b) Compute the zero set and pole set of $\theta_1 \wedge \theta_2$, and the order of vanishing (resp. order of the pole).

(c) Use the above-mentioned theorem to prove that $c_1(T^*M) = -3[H]$, where $[H \in H_2(\mathbb{P}^2; \mathbb{Z})]$ is the hyperplane class.

3. (Lines on the Fermat cubic) Let $S \subseteq \mathbb{P}^3$ be the Fermat cubic

$$S := Z(x_0^3 + x_1^3 + x_2^3 + x_3^3).$$

(a) Prove directly that S has 27 lines, and find their equations. How many of the lines lie in the set of real points $S(\mathbb{R})$?

(b) Prove that, given any line $L \subset S$, there are exactly 10 other lines in S that intersect L .

(c) Prove that, given any two disjoint lines $L_1, L_2 \subset S$, there are exactly 5 other lines in S meeting both L_1 and L_2 .

(d) Using ideas from my lecture, prove that all of the above statements are true for any smooth cubic surface.

4. (27 real lines) Consider the projective variety (over \mathbb{C})

$$S := Z\left(\sum_{i=0}^4 x_i, \sum_{i=0}^4 x_i^3\right) \subset \mathbb{P}^4.$$

This is a surface in the hyperplane $Z(\sum_{i=0}^4 x_i) \subset \mathbb{P}^4$. Prove that all 27 lines on S are real; that is, each one is defined by linear equations with real coefficients.

5. (Lines in higher dimensions and degrees) Fix the field \mathbb{C} .

(a) Prove that the space of all degree 5 hypersurfaces in \mathbb{P}^4 can be identified with \mathbb{P}^{125} .

(b) A comment (not a problem): Let $U \subset \mathbb{P}^{125}$ be the space of smooth degree 5 hypersurfaces in \mathbb{P}^4 . Let $\text{Gr}(2, 5)$ denote the Grassmannian of 2-planes in \mathbb{C}^5 . It turns out that the set

$$\{(X, L) \in U \times \text{Gr}(2, 5) : L \text{ is a line in } X\}$$

is a smooth algebraic variety, and that it has the same dimension as U .

(c) Although one might guess from (b) that a smooth hypersurface of degree 5 in \mathbb{P}^4 contains only finitely many lines, the *Fermat hypersurface* $Z(x_0^5 + x_1^5 + \dots + x_4^5) \subset \mathbb{P}^4$ contains infinitely many lines. Prove this.