
Lecture 2 problems

1. (Degree-genus formula) Give two other proofs of the degree-genus formula, as follows:

(a) Let C be a smooth degree d ≥ 2 curve in P2. Pick a line L ⊂ P2 and a point
p ∈ P2 not on C or L. There is a map π : C → L ∼= P1 given by π(m) := the
intersection of the unique line through p and m and the line L. Prove that for
generic choices of L and p, the map π is a branched cover with ramification
points of order 2, making C a 2-sheeted branched cover of P1, branched over
some number r of points of P1. Compute r, and then use the Riemann-Hurwtiz
formula to compute the genus of C.

(b) I proved in my lecture that any two smooth degree d hypersurfaces in Pn are
diffeomorphic, so it suffices to construct, for each d ≥ 1, a single smooth, degree
d curve C ⊂ P2 of genus (d− 1)(d− 2)/2. To do this:

i. Start with d lines in general position, and show that they are the zero set
of polynomial C[x, y, z](d).

ii. Use the fact that the space of smooth degree d curves in P2 is dense in the
space of all degree d curves in P2 to show that the zero set of some (hence
any) perturbed polynomial is given by the original union of lines with their
intersection points smoothed to little tubes.

iii. Now try to figure out the genus. Try examples with small d first.

2. (Computing the canonical class of P2) Theorem 14.10 of Milnor-Stasheff’s “Charac-
teristic Classes” gives a computation of the total Chern class of the cotangent bundle
of Pn, and hence of the tangent bundle (it’s the negative of the one for the cotangent
bundle). This proof is somewhat formal. The goal of this exercise is to give a proof
in the classical style (which actually proves more) that the first Chern class c1(P2)
of the (cotangent bundle of) P2 equals −3PD([H]), where PD([H]) is the Poincaré
dual of the hyperplane class [H] ∈ H2(P2;Z). The proof easily generalizes to prove
that c1(Pn) = −(n+ 1)PD([H]).

The only fact we will need is the following. The first Chern class c1(T
∗M) of the

cotangent bundle of an algebraic surface M is equal to the following: let θ be a
meromorphic 2-form on M . Then c1(T

∗M) is the the homology class of the set of
zeros (counted with order of vanishing) minus the homology class of the set of poles
(counted with order of the pole).

As a toy case, let M = P1 = Cz ∪{∞}. Let θ = dz on Cz. Then the local coordinate
at ∞ is w = 1/z, and so

θ = d(1/w) =
−1

w2
dw

so that θ has a pole of order 2 at ∞. Since θ has no zeros, it follows that the
homology class discussed above is −2[{∞}] ∈ H0(P1); here [∞] is a 0-cycle, and −2
is the coefficient.

Now to use the above to compute c1(T
∗P2).
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(a) Choose two generic meromorphic 1-forms θ1, θ2 on P2. There are (at least) two
ways to do this: you can work as above by just considering say dz and dw on
C2
z,w, and extend to the P1 at infinity, generalizing the above. Another way is

to specify two holomorphic 1-forms on C3
z0,z1,z2 − {0} that are invariant under

scaling by any λ ∈ C∗; for example on can take dz1/z1 and dz2/z2.

(b) Compute the zero set and pole set of θ1 ∧ θ2, and the order of vanishing (resp.
order of the pole).

(c) Use the above-mentioned theorem to prove that c1(T
∗M) = −3[H], where

[H ∈ H2(P2;Z) is the hyperplane class.

3. (Lines on the Fermat cubic) Let S ⊆ P3 be the Fermat cubic

S := Z(x30 + x31 + x32 + x33).

(a) Prove directly that S has 27 lines, and find their equations. How many of the
lines lie in the set of real points S(R)?

(b) Prove that, given any line L ⊂ S, there are exactly 10 other lines in S that
intersect L.

(c) Prove that, given any two disjoint lines L1, L2 ⊂ S, there are exactly 5 other
lines in S meeting both L1 and L2.

(d) Using ideas from my lecture, prove that all of the above statements are true for
any smooth cubic surface.

4. (27 real lines) Consider the projective variety (over C)

S := Z(
4∑

i=0

xi,
4∑

i=o

x3i ) ⊂ P4.

This is a surface in the hyperplane Z(
∑4

i=0 xi) ⊂ P4). Prove that all 27 lines on S
are real; that is, each one is defined by linear equations with real coefficients.

5. (Lines in higher dimensions and degrees) Fix the field C.

(a) Prove that the space of all degree 5 hypersurfaces in P4 can be identified with
P125.

(b) A comment (not a problem): Let U ⊂ P125 be the space of smooth degree 5
hypersurfaces in P4. Let Gr(2, 5) denote the Grassmannian of 2-planes in C5. It
turns out that the set

{(X,L) ∈ U ×Gr(2, 5) : L is a line in X}

is a smooth algebraic variety, and that it has the same dimension as U .

(c) Although one might guess from (b) that a smooth hypersurface of degree 5 in P4

contains only finitely many lines, the Fermat hypersurface Z(x50 +x51 + · · ·+x54) ⊂ P4

contains infinitely many lines. Prove this.
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