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1 General introduction

This is far from a complete survey; the results covered were selected according
to the personal taste of the authors. A much more comprehensive account
of Margulis’s work up to 2008 is given in [Ji08]. The recent book [FKS22],
besides giving a taste of the enormous impact of Margulis on the field he
essentially created, also covers much more of Margulis’s output than we do
here. The reader should view this text as a “survey of surveys”, as we try to
present some glimpses of the work, and then refer the reader to more detailed
surveys as appropriate.

2 Dynamical systems on homogeneous spaces

This section presents an exposition of the contributions of Margulis in the
area of homogeneous dynamics, that is, dynamical and ergodic properties of
actions on homogeneous spaces of Lie groups. Given a Lie group G and
a closed subgroup Γ ⊂ G, one can consider the left action of any subgroup
F ⊂ G on G/Γ:

x 7→ gx, x ∈ G/Γ, g ∈ F.

When F is a one-parameter subgroup, the action thus obtained is called a
homogeneous (one-parameter) flow. Classical examples are given by geodesic
and horocycle flows on surfaces of constant negative curvature, extensively
studied in the 1930–1950s using geometric and representation-theoretic meth-
ods.
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We remark that geodesic flows on surfaces of constant negative curvature
are prototypical examples of Anosov flows, and orbits of horocycle flows are
stable and unstable leaves relative to the geodesic actions.

Margulis’ famous PhD Thesis “On some properties of Anosov flows” (or
rather of U -systems, as they were called by Anosov back then), written in
1969 and published in 2004 [Mar04], made a foundational contribution to the
theory. However, we will not be covering it here as we are limiting the scope
to homogenous dynamics. Feel free to rewrite this further.

In what follows, G will be a semisimple Lie group with finite center, and
Γ a lattice in G (this means that Γ ⊂ G is a discrete subgroup, and the
quotient G/Γ has finite Haar measure). A lattice Γ is uniform if G/Γ is
compact.

The space of lattices in Rn. Here we describe a family of homogeneous
spaces particularly important for number-theoretic applications. Let G =
SL(n,R), and let Ln denote the space of unimodular lattices in Rn. (By
definition, a lattice ∆ is unimodular iff the volume of Rn/∆ is equal to
1.) G acts on Ln as follows: if g ∈ G and ∆ ∈ Ln is the Z-span of the
vectors v1, . . . vn, then gv is the Z-span of gv1, . . . , gvn. This action is clearly
transitive. The stabilizer of the standard lattice Zn is Γ = SL(n,Z). This
gives an identification of Ln with G/Γ.

One can consider a Haar measure on G (both left and right invariant)
and the corresponding left-invariant measure on Ln, which, as is well known,
happens to be finite; that is, Γ is a lattice in G. An important feature of the
quotient topology on G/Γ is that Ln is not compact (in other words, Γ is
non-uniform). More precisely, Mahler’s Compactness Criterion [Reference]
says that a subset Q of Ln is bounded iff there exists ϵ > 0 such that for any
Λ ∈ Q one has infx∈Λ∖{0} ∥x∥ ≥ ϵ. In other words, for ϵ > 0 let Ln(ϵ) ⊂ Ln

denote the set of lattices whose shortest non-zero vector has length at least
ϵ. Then for any ϵ > 0 the set Ln(ϵ) is compact.

2.1 Unipotent Flows and Quantitative Non-Divergence.

Let U = {ut}t∈R be a unipotent one-parameter subgroup of G. (Recall that
in SL(n,R) a matrix is unipotent if all its eigenvalues are 1. In a general Lie
group an element is unipotent if its Adjoint (acting on the Lie algebra) is a
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unipotent matrix.) Examples of unipotent one-parameter subgroups:{(
1 t
0 1

)
: t ∈ R

}
⊂ SL(2,R) (2.1)

(the action of this subgroup on SL(2,R)/Γ induces the horocycle flow on the
unit tangent bundle to the quotient of the hyperbolic plane by Γ), and

1 t t2/2
0 1 t
0 0 1

 : t ∈ R

 ⊂ SL(3,R).

Consider the left action of a unipotent one-parameter subgroup of SL(n,R)
on Ln. When n = 2, every uniponent subgroup is conjugate to (2.1), and
it is easy to show, see §2.1.1, that every orbit spends relatively little time
outside L2(ϵ). In [Mar71, Mar75] Margulis proved the following result: for
any one-parameter group {ut} of unipotent linear transformations, the orbit
of every point in Ln under the semi-group {ut : t ≥ 0} does not diverge to
infinity. This was conjectured by Piateski-Shapiro and was used by Margulis
to prove arithmeticity of higher rank lattice subgroups of semisimple Lie
groups. Several years later Dani [Dan79] obtained a quantitative strengthen-
ing of the initial nondivergence result by showing that such orbits return into
a suitably chosen compact set with positive frequency. To be more precise,
Dani proved that for any Λ ∈ Ln there are 0 < ϵ, c < 1 such that for any
T > 0 one has ∣∣{t ∈ [0, T ] : utΛ ̸∈ Ln(ϵ)

}∣∣ < cT . (2.2)

(Here and hereafter for a set E ⊂ R, |E| denotes the Lebesgue measure of
E.) These ideas were developed during later work on the Oppenheim conjec-
ture and related topics, see [Dan81, Dan84, Dan86, DanMar89, DanMar90a,
DanMar91, DanMar93]. In this section we only present the result of [KlMar98]
which gives an explicit dependence of c on ϵ in (2.2) and includes the ear-
lier results on quantitative non-divergence as special cases. A more detailed
account is given in [Kl10, BK22].

2.1.1 An elementary non-divergence result.

Even though it does not capture much of the difficulty of the problem, we
start with the SL(2,R) case as a motivation.
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Lemma 2.1. Suppose T > 0, Λ ∈ L2 and 0 < ρ < 1/
√
2 are such that

∀ v ∈ Λ∖ {0} sup
t∈[0,T ]

∥utv∥ ≥ ρ. (2.3)

Then for any ϵ < ρ,

|{t ∈ [0, T ] : utΛ /∈ L2(ϵ)}| ≤ 2

(
ϵ

ρ

)
T. (2.4)

This can be interpreted as follows. Suppose ρ is the length of the shortest
vector in Λ. Then (2.3) holds. Thus for any ϵ < ρ the lemma gives the
quantitative statement (2.4), which says that the trajectory {utΛ}, where t
ranges from 0 to T , spends little time outside of L2(ϵ).

Proof. Recall that a vector v ∈ Λ is said to be primitive in Λ if Rv ∩ Λ is
generated by v as a Z-module. Now for r > 0 and a primitive v ∈ Λ consider

Bv(r)
def
= {t ∈ B : ∥utv∥ < r},

where ∥ · ∥ is the supremum norm. Let v =

(
a
b

)
∈ P (Λ) be such that

Bv(ϵ) ̸= ∅. Then, since utv =

(
a+ bt
b

)
, it follows that |b| < ϵ, and (2.3)

implies that b is nonzero. Therefore, if we denote f(t) = a+ bt, we have

Bv(ϵ) = {t ∈ [0, T ] : |f(t)| < ϵ} and Bv(ρ) = {x ∈ [0, T ] : |f(t)| < ρ} .

Clearly the ratio of lengths of intervals Bv(ϵ) and Bv(ρ) is bounded from
above by 2ϵ/ρ (by looking at the worst case when Bv(ϵ) is close to one of the
endpoints of B). Since

a unimodular lattice in R2 cannot contain

two linearly independent vectors each of length < ρ,
(2.5)

the sets Bv(ρ) are disjoint for different primitive v ∈ Λ, and also that utΛ /∈
L2(ϵ) whenever t ∈ Bv(ρ)∖Bv(ϵ) for some primitive v ∈ Λ. Thus we conclude
that

|{x ∈ [0, T ] : uxΛ /∈ L2(ϵ)}| ≤
∑
v

|Bv(ϵ)
∣∣

≤ 2

(
ϵ

ρ

)∑
v

∣∣Bv(ρ)
)∣∣ ≤ 2

(
ϵ

ρ

)
T.
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2.1.2 The general case

In this section, we present a generalization of Lemma 2.1, which is in partic-
ular valid for any dimension.

First, we note that the group structure of U = {ut : t ∈ R} is not used in
the proof of Lemma 2.1. In fact it was already observed in [Mar71] that the
feature important for the proof is the polynomial nature of the map t 7→ ut.
More generally, Kleinbock and Margulis introduced the following definition:

Definition 2.2. If C and α are positive numbers and B is a subset of Rd,
let us say that a function f : B 7→ R is (C, α)-good on B if for any open ball
J ⊂ B and any ϵ > 0 one has

|{x ∈ J : |f(x)| < ϵ}| ≤ C

(
ϵ

supx∈J |f(x)|

)α

|J | . (2.6)

This definition captures the property of unipotent orbits used in the proof
of Lemma 2.1.

Lemma 2.3. (a) f is (C, α)-good on B ⇔ so is |f | ⇒ so is cf ∀ c ∈ R;

(b) fi, i = 1, . . . , k, are (C, α)-good on B ⇒ so is supi |fi|;

(c) If f is (C, α)-good on B and c1 ≤
∣∣f(x)
g(x)

∣∣ ≤ c2 for all x ∈ B, then g is(
C(c2/c1)

α, α)-good on B;

The notion of (C, α)-good functions was introduced in [KlMar98] in 1998,
but the importance of (2.6) for measure estimates on the space of lattices
was observed earlier. For instance, the next proposition can be traced to
[DanMar93, Lemma 4.1].

Proposition 2.4. For any k ∈ N, any polynomial of degree not greater than
k is

(
k(k + 1)1/k, 1/k

)
-good on R.

As a corollary, we have:

Corollary 2.5. For any n ∈ N there exist (explicitly computable) C = C(n),
α = α(n) such that for any one-parameter unipotent subgroup {ut} of SLn(R),
any Λ ∈ Ln and any subgroup ∆ of Λ, the function t 7→ ∥ut∆∥ is (C, α)-good.

The following is the main non-divergence result of Kleinbock and Mar-
gulis. In particular, it is a generalization of Lemma 2.1 to the case of arbitrary
n.
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Theorem 2.6 ([KlMar98]). Suppose d, n ∈ N, a lattice Λ ⊂ Rn, a ball
B = B(x0, r0) ⊂ Rd, C, α > 0, 0 < ρ < 1/n and a continuous map h : B̃ →
SL(n,R) are given, where B̃ = B(x0, 3

nr0). Assume that for any primitive
subgroup ∆ ⊂ Λ,

(i) the function x 7→ ∥h(x)∆∥ is (C, α)-good on B̃, and

(ii) supx∈B̃ ∥h(x)∆∥ ≥ ρ.

Then for any ϵ < ρ,

|{x ∈ B : h(x)Λ /∈ Ln(ϵ)}| ≤ Cc(n, d)

(
ϵ

ρ

)α

|B| (2.7)

where c(n, d) is an explicit constant.

Here is one of the key ideas used in the proof of Theorem 2.6.

Lattices, subspaces and flags. Let Λ be a lattice in Rn. We say that a
subspace L of Rn is Λ-rational if L ∩ Λ is a lattice in L. For any Λ-rational
subspace L, we denote by dΛ(L) or simply by d(L) the volume of L/(L∩Λ).
Let us note that d(L) is equal to the norm of e1 ∧ · · · ∧ eℓ in the exterior
power

∧ℓ(Rn), where ℓ = dimL and (e1, . . . , eℓ) is a basis over Z of L ∩ Λ.
If L = {0} we write d(L) = 1.

Recall that a flag is an acsending chain of subspaces V1 ⊂ · · · ⊂ Vk of Rn.
We say that a flag is Λ-rational if all of its subspaces are.

We now present the substitute for (2.5) needed to work with n > 2. The
following definition is taken from [KLW04] but it is implicit in [KlMar98] and
also in [Mar71, Mar75].

Definition 2.7. Suppose Λ ⊂ Rn is a lattice, 0 < ϵ < η are constants, and
F is a Λ-rational flag. We say that Λ is marked by (F, ϵ, η) if the following
hold:

(M1) For any subspace V ∈ F , dΛ(V ) ≤ ρ.

(M2) For any subspace V ∈ F , dΛ(V ) ≥ ϵ.

(M3) F is maximal among all the Λ-rational flags satisfying (M1).

The higher dimensional analogue of (2.5) is the following:
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Proposition 2.8. Suppose Λ is a lattice, 0 < ϵ < η < 1, and suppose there
exists a Λ-rational flag F such that Λ is marked by (F, ϵ, η). Then Λ ∈ Ln(ϵ).

Proof. Write F = (V1, . . . , Vm). Then, by (M1) and (M2), for 1 ≤ i ≤ m,

ϵ ≤ dΛ(Vi) ≤ η < 1.

Suppose Λ ̸∈ Ln(ϵ), then there exists v ∈ Λ such that ∥v∥ < ϵ. Let i be such
that v ∈ Vi, v ̸∈ Vi+1, and let V = Vi+Rv. Then V is a Λ-rational subspace.
Let v1, . . . , vk−1 be a basis for Vi ∩ Λ, and let vk be such that v1, . . . , vk is a
basis for V ∩ Λ. Then,

dΛ(V ) = ∥v1 ∧ · · · ∧ vk∥ ≤ ∥v1 ∧ · · · ∧ vk−1∥∥vk∥.

Thus, one has
dΛ(V ) ≤ dΛ(Vi)∥v∥ < ϵ.

In particular, dΛ(V ) < ρ, and thus by (M3), V = Vi+1. Then dΛ(Vi+1) < ϵ,
contradicting (M1).

Proof of Theorem 2.6. The proof is a complicated inductive argument
based on the idea of the proof of Lemma 2.1 and on Proposition 2.8. We
refer the reader to [KlMar98], [KLW04] or [Kl10] for details.

2.1.3 Applications to Diophantine approximation on manifolds

In this section we list some of the applications of Theorem 2.6 to metric dio-
phanitine approximation. A much more detailed and comprehensive survey
is given in [BK22].

Mahler’s conjecture, proved by Sprindžuk in 1964 [Spr69] is the following
statement: for any n ∈ N, any ϵ > 0 and for almost any real number x, the
inequality

|p+ q1x+ q2x
2 + · · ·+ qnx

n| < ∥q∥−n(1+ϵ) (2.8)

has only finitely many solutions (p,q) ∈ Z× Zn, where q = (q1, . . . , qn) and
∥q∥ = max1≤i≤n |qi|.

After Sprindžuk’s result, several conjectural improvements were proposed.
Baker [Ba75] proposed replacing ∥q∥n in (2.8) by Π+(q)

−(1+ϵ), where Π+(q) =∏n
i=1 |qi|. (This is indeed an improvement of (2.8) since Π+(q) ≤ ∥q∥n.)

Sprindžuk proposed replacing the powers of x in (2.8) by arbitrary ana-
lytic functions, which together with 1 are linearly independent over R. In
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[KlMar98], Kleinbock and Margulis prove a combination of both of these
conjectures. In fact, the result of Kleinbock and Margulis applies to a more
general class of functions which need not be real analytic. We thus make the
following:

Definition 2.9. Let f = (f1, . . . , fn) : U → Rn be a map defined on an open
subset U of Rd. Given a point x0 ∈ U , we say that f is ℓ-non-degenerate at
x0 if f is ℓ times continuously differentiable on some sufficiently small ball
centered at x0 and the partial derivatives of f at x0 of orders up to ℓ span
Rn. The map f is called non-degenerate at x0 if it is ℓ-non-degenerate at x0
for some ℓ ∈ N; f is called nondegenerate almost everywhere (in U) if it is
non-degenerate at almost every x0 ∈ U with respect to Lebesgue measure.
The non-degeneracy of differentiable submanifolds of Rn is defined via their
parameterisation(s).

Note that a real analytic map f defined on a connected open set is non-
degenerate almost everywhere if and only if 1, f1, . . . fn are linearly indepen-
dent over R.

We are now ready to state the main result of Kleinbock and Margulis
which solves the Baker and Sprinžuk conjectures in full generality, and also
applies to non-degenerate maps.

Theorem 2.10 ([KlMar98, Theorem A]). Let f = (f1, . . . , fn) be a map
defined on an open subset U of Rd which is non-degenerate almost everywhere.
Then for any ϵ > 0, for almost every x ∈ U , the inequality

|p+ q1f1(x) + · · ·+ qnfn(x)| < Π+(q)
−1−ϵ (2.9)

has only finitely many solutions (p,q) ∈ Z× Zn.

Strategy of proof of Theorem 2.10. Define

uf(x) =

(
1 f(x)
0 In

)
∈ SLn+1(R),

where In is the n× n identity matrix. Also for t = (t1, . . . , tn) ∈ Zn
≥0, define

gt =


et

e−t1

. . .

e−tn

 ,where t = t1 + · · ·+ tn.
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Given a solution (p,q) to (2.9), define ti ∈ Zn
≥0 be the smallest integers such

that
e−ti max(1, |qi|) ≤ Π+(q)

−ϵ/(n+1).

Then, an elementary computation using (2.9) shows that

et|p+ q1f1(x) + · · ·+ qnfn(x)| < en(1+γ)e−γt, (2.10)

where γ = ϵ/(n+ 1 + nϵ).
For Λ ∈ Ln, let δ(Λ) denote the length of the shortest non-zero vector in

Λ. (Thus, Λ ∈ Ln(ϵ) if and only if δ(Λ) ≥ ϵ.)
Therefore, it follows from (2.10) that if (p,q) is a solution to (2.9) and t,

t are as above, then

δ(gtuf(x)Zn+1) < en(1+γ)e−γt. (2.11)

Thus it is enough to prove that for any sufficiently small ball B centered at
any point x0 on which f is non-degenerate,∑

t

|{x ∈ B : δ(gtuf(x)Zn+1) < en(1+γ)e−γt}| <∞. (2.12)

Indeed, if (2.12) holds, then the Borel-Cantelli Lemma ensures that for almost
all x ∈ B, (2.11) holds only for finitely many t. The equation (2.12) is proved
in [KlMar98] by verifying the conditions of Theorem 2.6.

Khintchine-Groshev type results. The following generalization of The-
orem 2.10 is proved in [BKM01]:

Theorem 2.11. Let f = (f1, . . . , fn) be a map defined on an open subset U
of Rd which is non-degenerate almost everywhere. Let Ψ : Zn → R+ be any
function such that

Ψ(q1, . . . , qi, . . . , qn) ≤ Ψ(q1, . . . , q
′
i, . . . , qn) if |qi| > |q′i| and qiq′i > 0

Suppose that ∑
q∈Zn

Ψ(q) <∞.

Then for almost every x ∈ U , the inequality

|p+ q1f1(x) + · · ·+ qnfn(x)| < Ψ(q)

has only finitely many solutions (p,q) ∈ Zn+1.
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Note that Ψ(q) = Π+(q)
−1−ϵ for ϵ > 0 satisfies the conditions of Theo-

rem 2.11, and thus Theorem 2.11 is indeed a generalization of Theorem 2.10.
We note the following corollaries:

Corollary 2.12. Let f be as in Theorem 2.11 and suppose ψ : R+ → R+ be
any monotonic function satisfying

∞∑
k=1

ψ(k) <∞.

Let r = (r1, . . . , rn) ∈ Rn
>0 be such that r1 + · · ·+ rn = 1. For q ∈ Zn, write

∥q∥r = max1≤i≤n |qi|r. Then, for almost every x ∈ U , the equation

|p+ q1f1(x) + · · ·+ qnfn(x)| < ψ(∥q∥r)

has only finitely many solutions (p,q) ∈ Zn+1.

Note that if r = (1/n, . . . , 1/n) then ∥q∥r = ∥q∥n. In this case Corol-
lary 2.12 is was proved previously by in [B02] by a different method which
does not involve quantitative non-divergence. However, without new ideas,
this approach does not seem to be possible to extend to in order to prove the
full version of Corollary 2.12 or Corollary 2.13 below.

Corollary 2.13. Let f be as in Theorem 2.11 and suppose ψ : R+ → R+ be
any monotonic function satisfying

∞∑
k=1

(log k)n−1ψ(k) <∞.

Then, for almost every x ∈ U , the equation

|p+ q1f1(x) + · · ·+ qnfn(x)| < ψ(Π+(q))

has only finitely many solutions (p,q) ∈ Zn+1.

Strategy of Proof of Theorem 2.11. The idea is to break up into two
cases, depending on the size of the gradient ∇(q · f). If ∥∇(q · f)∥ is large, a
direct argument is used. If it is small, the authors eventually find a way to
reduce to Theorem 2.6.

Maybe a few more references to more recent applications.
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2.2 Values of indefinite quadratic forms at integral points

2.2.1 The Oppenheim Conjecture.

In the 1970s unipotent flows made a dramatic appearance with regards to
another, seemingly unrelated, problem rooted in number theory. Let

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj

be an indefinite quadratic form in n variables. It is clear that if Q is a
multiple of a form with rational coefficients, then the set of values Q(Zn) is
a discrete subset of R. Much deeper is the following conjecture:

Conjecture 2.14 (Oppenheim, 1931). Suppose Q is not proportional to a
rational form and n ≥ 5. Then for every ϵ > 0 there exists x ∈ Zn ∖ {0}
such that |Q(x)| < ϵ.

This conjecture was later extended by Davenport to n ≥ 3. Note that it is
easy to construct counterexamples when n = 2; see e.g. [Esk10, Proposition
1.3].

In the mid 1970s Raghunathan observed a remarkable connection between
the Oppenheim Conjecture and flows on the space of lattices Ln = G/Γ,
where G = SL(n,R) and Γ = SL(n,Z). (Implicitly this observation was
made several decades earlier by Cassels and Swinnerton-Dyer, see [CSD55].)
It can be summarized as follows:

Observation 2.15 (Raghunathan). Let Q be an indefinite quadratic form,
and let H = SO(Q) denote its orthogonal group. Consider the orbit of the
standard lattice Zn ∈ Ln under H. Then the following are equivalent:

(a) The orbit HZn is not relatively compact in Ln.

(b) For all ϵ > 0 there exists x ∈ Zn ∖ {0} such that |Q(x)| < ϵ.

Proof. Suppose (a) holds, so some sequence hkZn leaves all compact sets.
Then in view of the Mahler compactness criterion there exist vk ∈ hkZn∖{0}
such that ∥vk∥ → 0. Then also by continuity, Q(vk) → 0. But then h−1

k vk ∈
Zn ∖ {0}, and Q(h−1

k vk) = Q(vk) → 0. Thus (b) holds.
On the other hand, assuming (b) we get a sequence of nonzero integer

vectors xk such that Q(xk) → 0 as k → ∞; then, using the transitivity of
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the H-action on the level sets of Q one find hk ∈ H such that hkxk → 0 as
k → ∞, proving (a).

Raghunathan also explained why the case n = 2 is different: in that
case H = SO(Q) has no unipotent elements. On the other hand, H is gen-
erated by its unipotent one-parameter subgroups when n > 2. Margulis’s
proof of the Oppenheim conjecture, given in [Mar87, Mar89a, Mar89b] uses
Raghunathan’s observation. In fact Margulis showed that that any relatively
compact orbit of SO(2, 1) in L3 is compact; this implies the Oppenheim Con-
jecture. For an account which stays reasonably close to Margulis’s original
proof see [BM00].

2.2.2 Ratner’s Theorems

Raghunathan also conjectured the following:

Theorem 2.16 (Raghunathan’s topological conjecture). Let G be a Lie
group, Γ ⊂ G a lattice, and U ⊂ G a one-parameter unipotent subgroup.
Suppose x ∈ G/Γ. Then there exists a subgroup F of G (generated by unipo-
tents) such that the closure Ux of the orbit Ux is Fx.

In the literature this conjecture was first stated in the paper [Dan81] and
in a more general form in [Mar89a] (when the subgroup U is not necessarily
unipotent but generated by unipotent elements). Raghunathan’s conjecture
was eventually proved in full generality by Ratner, see [Ra91b]. Yet, prior
to Ratner’s proof, Dani and Margulis established Theorem 2.16 in the spe-
cial case when G = SL(3,R) and U = {u(t)} is a “generic” one-parameter
unipotent sugroup of G; that is, such that u(t)− I has rank 2 for all t ̸= 0.
The work done in [DanMar90a], together with the methods developed in
[Mar87, Mar89a, Mar89b, DanMar89] suggested an approach for proving the
Raghunathan conjecture in general by studying the minimal invariant sets,
and the limits of orbits of sequences of points tending to a minimal invariant
set.

This strategy can be outlined as follows: Let x be a point in G/Γ, and U
a connected unipotent subgroup of G. Denote by X the closure of Ux and
consider a minimal closed U -invariant subset Y of X. Suppose that Ux is not
closed (equivalently X is not equal to Ux). Then X should contain ”many”
translations of Y by elements from the normalizer N(U) of U not belonging
to U . After that one can try to prove that X contains orbits of bigger and
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bigger unipotent subgroups until one reaches horospherical subgroups. The
basic tool in this strategy is the following fact. Let y be a point in X, and let
gn be a sequence of elements in G such that gn converges to 1, gn does not
belong to N(U), and yn = gny belongs to X. Then X contains AY where A
is a nontrivial connected subset in N(U) containing 1 and “transversal” to
U . To prove this one has to observe that the orbits Uyn and Uy are “almost
parallel” in the direction of N(U) most of the time in “the intermediate
range”.

In fact the set AU as a subset of N(U)/U is the image of a nontrivial
rational map from U into N(U)/U . Moreover this rational map sends 1 to
1 and also comes from a polynomial map from U into the closure of G/U
in the affine space V containing G/U . This affine space V is the space of
the rational representation of G such that V contains a vector the stabilizer
of which is U (Chevalley theorem). Some elements of this proof are key
to the current program of Lindenstrauss, Mohammadi, Margulis and Shah
[LMMS19] of giving a fully effective version of Ratner’s theorems.

It is worth pointing out that Ratner derived Theorem 2.16 from her mea-
sure classification theorem, conjectured earlier by Dani. Loosely speaking, it
says that all U -invariant ergodic measures are very nice.

Theorem 2.17 (Ratner’s measure classification theorem). [Ra91a] Let G be
a Lie group, Γ ⊂ G a lattice. Let U be a one-parameter unipotent subgroup
of G. Then, any ergodic U-invariant measure is algebraic; namely, there
exists x ∈ G/Γ and a subgroup F of G such that Fx is closed, and µ is
the F -invariant probability measure supported on Fx. (Also the group F is
generated by unipotent elements and contains U).

We note that following the publication of Ratner’s papers, Margulis and
Tomanov [MarTom94] gave a different proof of the measure classification
theorem which in particular made use of entropy considerations. This proof
turned out to be extremely influential for future developments in the area.

2.2.3 A quantitative version of the Oppenheim Conjecture.

Fix an indefinite quadratic form Q. Let ν be a continuous positive function
on the sphere {v ∈ Rn | ∥v∥ = 1}, and let Ω := {v ∈ Rn | ∥v∥ < ν(v/∥v∥)}.
We denote by TΩ the dilate of Ω by T . Define the following set:

V(a,b)(R) := {x ∈ Rn | a < Q(x) < b}.
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Also let V(a,b)(Z) := {x ∈ Zn | a < Q(x) < b}. The set TΩ ∩ Zn consists of
O(T n) points, and the set of values Q(TΩ ∩ Zn) is contained in an interval
of the form [−µT 2, µT 2], where µ > 0 is a constant depending on Q and Ω.
Thus one might expect that for any interval (a, b), as T → ∞,

|V(a,b)(Z) ∩ TΩ| ∼ cQ,Ω(b− a)T n−2 (2.13)

where cQ,Ω is a constant depending on Q and Ω. This may be interpreted
as “uniform distribution” of the sets Q(Zn ∩ TΩ) in the real line. The main
result of this section is that (2.13) holds if Q is not proportional to a rational
form, and has signature (p, q) with p ≥ 3, q ≥ 1. We also determine the
constant cQ,Ω.

If Q is an indefinite quadratic form in n variables, Ω is as above and (a, b)
is an interval, it can be shown that there exists a constant λ = λQ,Ω so that
as T → ∞,

Vol(V(a,b)(R) ∩ TΩ) ∼ λQ,Ω(b− a)T n−2 (2.14)

The main result of [EMM98] is the following:

Theorem 2.18. Let Q be an indefinite quadratic form of signature (p, q),
with p ≥ 3 and q ≥ 1. Suppose Q is not proportional to a rational form.
Then for any interval (a, b), as T → ∞,

|V(a,b)(Z) ∩ TΩ| ∼ λQ,Ω(b− a)T n−2 (2.15)

where n = p+ q, and λQ,Ω is as in (2.14).

The asymptotically exact lower bound was proved in [DanMar93]. For
that Dani and Margulis introduced a linearization method, which we wil
describe in more detail in §2.3.

If the signature of Q is (2, 1) or (2, 2) then no universal formula like (2.13)
holds. In fact, the following theorem holds:

Theorem 2.19. Let Ω0 be the unit ball, and let q = 1 or 2. Then for every
ϵ > 0 and every interval (a, b) there exists a quadratic form Q of signature
(2, q) not proportional to a rational form, and a constant c > 0 such that for
an infinite sequence Tj → ∞,

|V(a,b)(Z) ∩ TΩ0| > cT q
j (log Tj)

1−ϵ.

The case q = 1, b ≤ 0 of Theorem 2.19 was noticed by P. Sarnak and
worked out in detail in [Bre]. The quadratic forms constructed are of the
form x21 + x22 − αx23, or x21 + x22 − α(x23 + x24), where α is extremely well
approximated by squares of rational numbers.
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2.2.4 More on signature (2,2).

Recall that a subspace is called isotropic if the restriction of the quadratic
form to the subspace is identically zero. Observe also that whenever a
form of signature (2, 2) has a rational isotropic subspace L then L ∩ TΩ
contains on the order of T 2 integral points x for which Q(x) = 0, hence
NQ,Ω(−ϵ, ϵ, T ) ≥ cT 2, independently of the choice of ϵ. Thus to obtain an
asymptotic formula similar to (2.15) in the signature (2, 2) case, we must
exclude the contribution of rational isotropic subspaces. We remark that
an irrational quadratic form of signature (2, 2) may have at most 4 rational
isotropic subspaces (see [EMM05, Lemma 10.3]).

The space of quadratic forms in 4 variables is a linear space of dimension
10. Fix a norm ∥ · ∥ on this space.

Definition 2.20. (EWAS) A quadratic form Q is called extremely well
approximable by split forms (EWAS) if for any N > 0 there exists a split
integral form Q′ and 2 ≤ k ∈ R such that∥∥∥∥Q− 1

k
Q′
∥∥∥∥ ≤ 1

kN
.

The main result of [EMM05] is:

Theorem 2.21. Suppose Ω is as above. Let Q be an indefinite quadratic
form of signature (2, 2) which is not EWAS. Then for any interval (a, b), as
T → ∞,

ÑQ,Ω(a, b, T ) ∼ λQ,Ω(b− a)T 2, (2.16)

where the constant λQ,Ω is as in (2.14), and ÑQ,Ω counts the points not
contained in isotropic subspaces.

Theorem 2.21 has implications for eigenvalue spacings on a flat 2-dimensional
torus.

2.3 Linearization

In this section, we give a partial description of the “linearization” technique
introduced in [DanMar93] and used for the proof of the lower bounds in the
quantitative version of the Oppenheim conjecture. This technique, and in
particular Theorem 2.24 below, is used in a multitude of applications of the
theory of unipotent flows.

15



2.3.1 Non-ergodic measures invariant under a unipotent.

The collection H. (Up to conjugation, this should be the collection of
groups which appear in the definition of algebraic measure in the statement
of Theorem 2.17).

Let G be a Lie group, Γ a discrete subgroup of G, and π : G → G/Γ
the natural quotient map. Let H be the collection of all closed subgroups
F of G such that F ∩ Γ is a lattice in F and the subgroup generated by
unipotent one-parameter subgroups of G contained in F acts ergodically on
π(F ) ∼= F/(F ∩Γ) with respect to the F -invariant probability measure. This
collection is countable (see [Ra91a, Theorem 1.1] or [DanMar93, Proposi-
tion 2.1] for different proofs of this result).

Let U be a unipotent one-parameter subgroup of G and F ∈ H. Define

N(F,U) = {g ∈ G : U ⊂ gFg−1}
S(F,U) =

⋃
{N(F ′, U) : F ′ ∈ H, F ′ ⊂ F, dimF ′ < dimF}.

It is clear that if g ∈ N(F,U) and F ∈ H, then the orbit Uπ(g) is
contained in the closed subset π(gF ). More precisely, it is possible to prove
the following (cf. [MozSha95, Lemma 2.4]):

Lemma 2.22. Let g ∈ G and F ∈ H. Then g ∈ N(F,U) ∖ S(F,U) if and
only if the group gFg−1 is the smallest closed subgroup of G which contains
U and whose orbit through π(g) is closed in G/Γ. Moreover in this case
the action of U on gπ(F ) is ergodic with respect to a finite gFg−1-invariant
measure.

As a consequence of this lemma, one has

π
(
N(F,U)∖ S(F,U)

)
= π

(
N(F,U)

)
∖ π

(
S(F,U)

)
∀F ∈ H. (2.17)

Theorem 2.17 states that given any U -ergodic invariant probability mea-
sure on G/Γ, there exists F ∈ H and g ∈ G such that µ is g−1Fg-invariant
and µ

(
π(F )g

)
= 1. Now decomposing any finite invariant measure into its

ergodic component and using Lemma 2.22, one obtains the following de-
scription for any U -invariant probability measure on G/Γ (see [MozSha95,
Theorem 2.2]).
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Theorem 2.23 (Ratner). Let U be a unipotent one-parameter subgroup of
G and let µ be a finite U-invariant measure on G/Γ. For every F ∈ H,
let µF denote the restriction of µ to π(N(F,U) ∖ S(F,U)). Then µF is U-
invariant, and any U-ergodic component of µF is a gFg−1-invariant measure
on the closed orbit gπ(F ) for some g ∈ N(F,U)∖ S(F,U).

In particular, for all Borel measurable subsets A of G/Γ,

µ(A) =
∑
F∈H∗

µF (A),

where H∗ ⊂ H is a countable set consisting of one representative from each
Γ-conjugacy class of elements in H.

Remark. One often uses Theorem 2.23 in the following form: suppose µ
is any U -invariant measure on G/Γ which is not G-invariant. Then there
exists F ∈ H such that µ gives positive measure to some compact subset of
N(F,U)∖ S(F,U).

2.3.2 The theorem of Dani–Margulis on uniform convergence

The “linearization” technique of Dani and Margulis was devised to under-
stand which measures give positive weight to compact subsets subsets of
N(F,U)∖ S(F,U). Using this technique Dani and Margulis proved the fol-
lowing theorem, which is important for many applications.

Theorem 2.24 ([DanMar93], Theorem 3). Let G be a connected Lie group
and let Γ be a lattice in G. Let µ be the G-invariant probability measure on
G/Γ. Let U = {ut} be an Ad-unipotent one-parameter subgroup of G and
let f be a bounded continuous function on G/Γ. Let D be a compact subset
of G/Γ and let ϵ > 0 be given. Then there exist finitely many proper closed
subgroups F1 = F1(f,D, ϵ), . . . , Fk = Fk(f,D, ϵ) such that Fi ∩ Γ is a lattice
in Fi for all i, and compact subsets C1 = C1(f,D, ϵ), . . . , Ck = Ck(f,D, ϵ) of
N(F1, U), . . . , N(Fk, U) respectively, for which the following holds: For any
compact subset K of D∖

⋃
1≤i≤k π(Ci) there exists a T0 ≥ 0 such that for all

x ∈ K and T > T0 ∣∣∣ 1
T

∫ T

0

f(utx) dt−
∫
G/Γ

f dµ
∣∣∣ < ϵ. (2.18)
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This theorem can be informally stated as follows: Fix f and ϵ > 0.
Then (2.18) holds uniformly in the base point x, as long as x is restricted
to compact sets away from a finite union of “tubes” N(F,U); the latter are
associated with orbits which do not become equidistributed in G/Γ, because
their closure is strictly smaller.)

Note that only finitely many Fk are needed in Theorem 2.24. This has
the remarkable implication that if F ∈ H ∖ {F1, . . . , Fk}, then (2.18) holds
for x ∈ N(F,U) even though Ux is not dense in G/Γ (the closure of Ux is
Fx). Informally, this means that the non-dense orbits of U are themselves
becoming equidistributed as they get longer.

In the rest of this subsection, we present some of the ideas developed for
the proof of Theorem 2.24.

Linearization of neighborhoods of singular subsets. Let F ∈ H. Let g
denote the Lie algebra ofG and let f denote its Lie subalgebra associated to F .
For d = dim f, put VF = ∧df, and consider the linear G-action on VF via the
representation ∧d Ad, the d-th exterior power of the Adjoint representation
of G on g. Fix pF ∈ ∧df∖ {0}, and let ηF : G → VF be the map defined by
ηF (g) = g · pF = (∧d Ad g) · pF for all g ∈ G. Note that

ηF
−1(pF ) = {g ∈ NG(F ) : det(Ad g|f) = 1}.

The idea of Dani and Margulis is to work in the representation space VF
(or more precisely V̄F , which is the quotient of VF by the involution v → −v)
instead of G/Γ. In fact, for most of the argument one works only with the
oribit G · pF ⊂ VF . The advantage is that F is collapsed to a point (since
it stabilizes pF ). The difficulty is that the map ηF : G → V̄F is not Γ-
equivariant, and so becomes multivalued if considered as a map from G/Γ
to VF . Dani and Margulis showed that the orbit Γ · pF is discrete in VF
[DanMar93, Theorem 3.4], and that

ηF
−1(AF ) = N(F,U) (2.19)

[DanMar93, Prop. 3.2], where AF be the linear span of ηF (N(F,U)) in VF .

Let NG(F ) denote the normalizer in G of F . Put ΓF = NG(F )∩Γ. Then
for any γ ∈ ΓF , we have γπ(F ) = π(F ), and hence γ preserves the volume
of π(F ). Therefore | det(Ad γ|f)| = 1, and thus γ · pF = ±pF . Now define

V̄F =

{
VF/{Id,− Id} if ΓF · pF = {pF ,−pF}
VF if ΓF · pF = pF
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The action of G factors through the quotient map of VF onto V̄F . Let p̄F
denote the image of pF in V̄F , and define η̄F : G → V̄F as η̄F (g) = g · p̄F for
all g ∈ G. Then ΓF = η̄F

−1(p̄F ) ∩ Γ. Let ĀF denote the image of AF in V̄F .
Note that the inverse image of ĀF in VF is AF .

For every x ∈ G/Γ, define the set of representatives of x in V̄F to be

Rep(x) = η̄F
(
π−1(x)

)
= η̄F (xΓ) ⊂ V̄F .

The following lemma allows us to understand the map Rep in a special
case:

Lemma 2.25. If x = π(g) and g ∈ N(F,U)∖ S(F,U)

Rep(x) ∩ ĀF = {g · pF}.

Thus x has a single representative in ĀF ⊂ VF .

Proof. Indeed, using (2.19),

Rep
(
π(g)

)
∩ ĀF =

(
gΓ ∩N(F,U)

)
· p̄F

Now suppose γ ∈ Γ is such that gγ ∈ N(F,U). Then g belongs toN(γFγ−1, U)
as well as to N(F,U). Since g ̸∈ S(F,U), we must have γFγ−1 = F , so
γ ∈ ΓF . Then γp̄F = p̄F , so

(
gΓ ∩N(F,U)

)
· p̄F = {g · p̄F} as required.

We extend this observation in the following result (cf. [Sha91, Prop. 6.5]).

Proposition 2.26 ([DanMar93, Corollary 3.5]). Let D be a compact subset
of ĀF . Then for any compact set K ⊂ G/Γ∖π

(
S(F,U)

)
there exists a neigh-

borhood Φ of D in V̄F such that any x ∈ K has at most one representative in
Φ.

Using this proposition, one can uniquely represent in Φ the parts of the
unipotent trajectories in G/Γ lying in K. Then one also has a “polynomial
divergence” estimate similar to the ones used in §2.1:

Proposition 2.27 ([DanMar93, Proposition 4.2]). Let a compact set C ⊂ ĀF

and an ϵ > 0 be given. Then there exists a (larger) compact set D ⊂ ĀF with
the following property: For any neighborhood Φ of D in V̄F there exists a
neighborhood Ψ of C in V̄F with Ψ ⊂ Φ such that the following holds: For
any unipotent one parameter subgroup {u(t)} of G, an element w ∈ V̄H and
and interval I ⊂ R, if u(t0)w ̸∈ Φ for some t0 ∈ I then,

|{t ∈ I : u(t)w ∈ Ψ}| ≤ ϵ · |{t ∈ I : u(t)w ∈ Φ}|. (2.20)
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As a consequence, Dani and Margulis derive the following result of inde-
pendent interest:

Theorem 2.28 ([DanMar93, Theorem 1]). Let G be a connected Lie group
and let Γ be a discrete subgroup of G. Let U be any closed connected subgroup
of G which is generated by the Ad-unipotent elements contained in it. Let
K be a compact subset of G/Γ ∖

⋃
F∈HN(F,U). Then for any ϵ > 0 there

exists a neighbourhood Ω of
⋃

F∈HN(F,U) such that for any Ad-unipotent
one-parameter subgroup {ut} of G, any x ∈ K and any T ≥ 0,

|{t ∈ [0, T ] : utx ∈ Ω}| < ϵT.

Proof of Theorem 2.24. The proof relies on Ratner’s measure classification
theorem (Theorem 2.17) as well as on a refined version of Theorem 2.28,
which carefully handles trajectories of points in some N(F,U).

2.4 Upper bounds in the Oppenheim conjecture

We now return to the set-up of the quantitative version of the Oppenheim
conjecture stated in §2.2.3, and describe some ideas involved in the proof of
the upper bounds.

2.4.1 Passage to the space of lattices.

Here we relate the counting problem of Theorem 2.18 to a certain integral
expression involving the orthogonal group of the quadratic form and the
space Ln. Roughly this is done as follows. Let f be a bounded function on
Rn ∖ {0} vanishing outside a compact subset. For a lattice Λ ∈ Ln let

f̃(Λ) =
∑

v∈Λ∖{0}

f(v) (2.21)

(the function f̃ is called the Siegel Transform of f). The proof is based on
the identity of the form∫

K

f̃(atkΛ) dk =
∑

v∈Λ∖{0}

∫
K

f(atkv) dk (2.22)

obtained by integrating (2.21). In (2.22) {at} is a certain diagonal subgroup
of the orthogonal group of Q, and K is a maximal compact subgroup of
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the orthogonal group of Q. Then for an appropriate function f , the right
hand side is related to the number of lattice points v ∈ [et/2, et]∂Ω with
a < Q(v) < b. The asymptotics of the left-hand side is then established using
the ergodic theory of unipotent flows and some other techniques. Namely it
is shown in [EMM98] that Theorem 2.18 can be reduced to the following
theorem:

Theorem 2.29. Suppose p ≥ 3, q ≥ 1. Let Λ ∈ Ln be a unimodular lattice
such that HΛ is not closed. Let ν be any continuous function on K. Then

lim
t→+∞

∫
K

f̃(atkΛ)ν(k) dm(k) =

∫
K

ν dm

∫
Ln

f̃(∆) dµ(∆). (2.23)

Note that if we replace f̃ by a bounded continuous function ϕ, then
(2.23) follows easily from Theorem 2.24. (This was the original motivation
for Theorem 2.24.) The fact that Theorem 2.24 deals with unipotents and
Theorem 2.29 deals with large spheres is not a serious obstacle, since large
spheres can be approximated by unipotents. In fact, the integral in (2.23)
can be rewritten as ∫

B

(
1

T (x)

∫ T (x)

0

ϕ(utx) dm(k)

)
dx,

where B is a suitable subset of G and U is a suitable unipotent. Now by
Theorem 2.24, the inner integral tends to

∫
G/Γ

ϕ uniformly as long as x is in

a compact set away from an explicitly described set E, where E is a finite
union of neighborhoods of sets of the form π(C) where C is a compact subset
of some N(F,U). By direct calculation one can show that only a small part
of B is near E, hence (2.23) holds.

However, for a non-negative bounded continuous function f on Rn, the
function f̃ defined in (2.21) is unbounded (it is in Ls(Ln) for 1 ≤ s < n).
As it was done in [DanMar93], it is possible to obtain asymptotically exact
lower bounds by considering bounded continuous functions ϕ ≤ f̃ . But to
prove the upper bounds in the theorems stated above one needs to examine
carefully the situation at the “cusp” of G/Γ, i.e. outside of compact sets.

The functions αi and α. Let Λ be a lattice in Rn. Recall that the notion
of a Λ-rational subspace and the function dΛ was defined in §2.1 (following
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the statement of Theorem 2.6). Let us introduce the following notation:

αi(Λ) = sup
{ 1

dΛ(L)

∣∣∣ L is a Λ-rational subspace of dimension i
}
, 0 ≤ i ≤ n,

α(Λ) = max
0≤i≤n

αi(Λ). (2.24)

By [Sch68, Lemma 2], for any bounded compactly supported function f
on Rn there exists a positive constant c = c(f) such that f̃(Λ) < cα(Λ) for
any Λ ∈ Ln. The upper bound in Theorem 2.18 is proved by combining the
above observation with the following integrability estimate:

Theorem 2.30 ([EMM98]). If p ≥ 3, q ≥ 1 and 0 < s < 2, or if p = 2,
q ≥ 1 and 0 < s < 1, then for any Λ ∈ Ln

sup
t>0

∫
K

α(atkΛ)
s dm(k) <∞.

The upper bound is uniform as Λ varies over compact subsets of Ln.

This result can be interpreted as follows. For Λ ∈ Ln and h ∈ H, let
f(h) = α(hΛ). Since α is left-K̂ invariant, f is a function on the symmetric
space X = K\H. Theorem 2.30 is the statement that if if p ≥ 3, then the
averages of f s, 0 < s < 2 over the setsKatK inX remain bounded as t→ ∞,
and the bound is uniform as one varies the base point Λ over compact sets.

If (p, q) = (2, 1) or (2, 2), Theorem 2.30 does not hold even for s = 1. The
following result is, in general, best possible:

Theorem 2.31 ([EMM98]). If p = 2 and q = 2, or if p = 2 and q = 1, then
for any Λ ∈ Ln

sup
t>1

1

t

∫
K

α(atkΛ) dm(k) <∞, (2.25)

The upper bound is uniform as Λ varies over compact subsets of Ln.

2.4.2 Margulis functions.

We now present some ideas from the proof of Theorem 2.30 and Theo-
rem 2.31. We recall the notation from §2.2.1 and §2.4.1: G = SL(n,R),
Γ = SL(n,Z), K̂ ∼= SO(n) is a maximal compact subgroup of G, H ∼=
SO(p, q) ⊂ G, K = H ∩ K̂ = SO(p)× SO(q) is a maximal compact subgroup
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of H, and X is the symmetric space K\H. Let m(·) denote the normalized
Haar measure on K. Let {at : t ∈ R} be a self-adjoint one-parameter sub-
group of SO(2, 1), where SO(2, 1) is embedded into SO(p, q), so that at is
conjugate to the diagonal matrix with entries (et, 1, . . . , 1, e−t).

The strategy of the proof is to construct what we now call a Margulis
function. This idea has been extremely influential, see for example the survey
[EskMoz22].

Let Y be a space on which H acts. (In our case, Y = Ln). For t > 0, let
At be the averaging operator taking a function ϕ : Y → R to the function
Atϕ : Y → R defined by

(Atϕ)(x) =

∫
K

ϕ(atkx) dm(k). (2.26)

Definition 2.32. A K-invariant function f : Y → [1,∞] is called a Margulis
function (for the averages At) if it satisfies the following properties:

(a) There exists σ > 1 such that for all 0 ≤ t ≤ 1 and all x ∈ Y ,

σ−1f(x) ≤ f(atx) ≤ σf(x). (2.27)

(This holds if log f is uniformly continuous along the H-orbits).

(b) For every c0 > 0 there exist τ > 0 and b0 > 0 such that for all x ∈ Y ,

Aτf(x) ≤ c0f(x) + b0. (2.28)

(c) f is bounded on compact subsets of Y . For any ℓ > 0, the set
{x : f(x) ≤ ℓ} is a compact subset of Y .

We have the following abstract lemma:

Lemma 2.33. Suppose f is a Margulis function on Y . Then, for all c < 1
there exists t0 > 0 (depending on σ and c) and b > 0 (depending only on b0,
c0 and σ) such that for all t > t0 and all x ∈ Y ,

(Atf)(x) ≤ cf(x) + b. (2.29)

A more general version of this lemma is proved in [EMM98, §5.3]. The
reader may also refer to a simplified proof in [EskMoz22, §3], specialized to
the case H = SL(2,R).

From the proof of Lemma 2.33, one can deduce the following variant:

23



Lemma 2.34. For every σ > 1 there exists c0 > 0 such that the following
holds. Suppose f : Y → [1,∞) is a K-invariant function satisfying (a)
and (c) of Definition 2.32, and let At be as in (2.26). Suppose also that there
exists τ > 0 and b0 > 0 such that (2.28) holds. Then f is a Margulis function
for the averages At.

For a wider perspective on Margulis functions and many related results
see the survey [EskMoz22].

Strategy of the proof of Theorem 2.30. Suppose 0 < s < 2. If the
function αs were a Margulis function on G/Γ, then Theorem 2.30 would
follow immediately from (2.29). Even though this is not true, the idea is to
construct a Margulis function f on G/Γ which is within a bounded multiple
of αs.

If p ≥ 3 and 0 < s < 2, or if (p, q) = (2, 1) or (2, 2) and 0 < s < 1, it is
shown in [EMM98, §5.3] that for any c > 0 there exist t > 0 such that the
functions αs

i satisfy the following system of integral inequalities:

Atα
s
i ≤ ciα

s
i + e2t max

0<j≤min(n−i,i)

√
αs
i+jα

s
i−j, (2.30)

where At is the averaging operator (Atf)(∆) =
∫
K
f(atkΛ) and ci ≤ c. If

(p, q) = (2, 1) or (2, 2) and s = 1, then (2.30) also holds (for suitably modified
functions αi), but some of the constants ci cannot be made smaller than 1.

In §2.4.4 we will show that if (2.30) holds, then for any ϵ > 0, the function
f = fϵ,s =

∑
0≤i≤n ϵ

i(n−i)αs
i is the desired Margulis function, and it follows

from (2.24) that the ratio of αs and f is uniformly bounded between two
positive constants.

We now outline the proof of (2.30).

2.4.3 A system of inequalities.

By a direct calculation one can prove the following:

Proposition 2.35. Let {at | t ∈ R} be a self-adjoint one-parameter subgroup
of SO(2, 1). Let p, q ∈ N and let 0 < i < p+ q = n. Let

F (i) = {x1 ∧ · · · ∧ xi | x1, . . . , xi ∈ Rn} ⊂
∧i(Rn).

Then, if p ≥ 3, or if p = 2, q = 2 and i ̸= 2, for any 0 < s < 2 one has

lim
t→∞

sup
v∈F (i), ∥v∥=1

∫
K

dm(k)

∥atkv∥s
= 0. (2.31)
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where K = SO(p)× SO(q) and SO(2, 1) is embedded into SO(p, q). If p = 2
and q = 1, or if p = 2, q = 2 and i = 2, then (2.31) holds for any 0 < s < 1.

Lemma 2.36. Let {at}, p, q and n be as in Proposition 2.35. Denote
SO(p) × SO(q) by K. Suppose p ≥ 3, q ≥ 1 and 0 < i < n, or p = 2,
q = 2 and i = 1 or 3. Then for any 0 < s < 2, and any c > 0 there exist
t > 0 such that for any Λ ∈ Ln,∫

K

αi(atkΛ)
s dm(k) <

c

2
αi(Λ)

s + e2t max
0<j≤min{n−i,i}

(√
αi+j(Λ)αi−j(Λ)

)s
.

(2.32)
If p = 2, q = 1 and i = 1, 2, or if p = 2, q = 2 and i = 2, then for any
0 < s < 1 and any c > 0 there exist t > 0 such that (2.32) holds.

Proof. Fix c > 0. In view of Proposition 2.35 one can find t > 0 such that∫
K

dm(k)

∥atkv∥s
<
c

2
· 1

∥v∥s
(2.33)

for any v ∈ F (i) ∖ {0}. Let Λ ∈ Ln. There exists a Λ-rational subspace Li

of dimension i such that
1

dΛ(Li)
= αi(Λ). (2.34)

The inequality (2.33) therefore implies∫
K

dm(k)

datkΛ(atkLi)s
<
c

2
· 1

dΛ(Li)s
. (2.35)

Observe that

e−t ≤ ∥atv∥
∥v∥

≤ et ∀ 0 < j < n and ∀ v ∈ F (j)∖ {0}. (2.36)

Let us denote by Ψi the set of Λ-rational subspaces L of dimension i with
dΛ(L) < e2tdΛ(Li). We get from (2.36) that for a Λ-rational i-dimensional
subspace L /∈ Ψi

datkΛ(atkL) > datkΛ(atkLi), k ∈ K. (2.37)

It follows from (2.35), (2.37) and the definition of αi that∫
K

αi(atkΛ)
s dm(k) <

c

2
αi(Λ)

s if Ψi = {Li}. (2.38)
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Assume now that Ψi ̸= {Li}, and let M ∈ Ψi ∖ {Li}. Then dim(M + Li) is
equal to i+ j where j > 0. Now using (2.34), (2.36) and the fact that

dΛ(L)dΛ(M) ≥ dΛ(L ∩M)dΛ(L+M)

(see [EMM98, Lemma 5.6]), we get that for any k ∈ K

αi(atkΛ) < etαi(Λ) =
et

dΛ(Li)
<

e2t√
dΛ(Li)dΛ(M)

≤ e2t√
dΛ(Li ∩M)dΛ(Li +M)

≤ e2t
√
αi+j(Λ)αi−j(Λ) .

(2.39)

Hence if Ψi ̸= {Li}∫
K

αi(atkΛ)
s dm(k) ≤ e2t max

0<j≤min{n−i,i}

(√
αi+j(Λ)αi−j(Λ)

)s
. (2.40)

Combining (2.38) and (2.40), we obtain (2.32).

2.4.4 Averages over large spheres.

In this subsection we complete the proof of Theorem 2.30.

Proof of Theorem 2.30. It is easy to see that each of the functions αs
i is

K-invariant and has properties (a) and (c) of Definition 2.32. In particular,
there exists σ > 1 such that for all 1 ≤ i ≤ n, the equation (2.27) holds for
αs
i . Let c0 be such that Lemma 2.34 holds for this σ.
Applying Lemma 2.36, we see that there exists τ > 0 such that for any

0 < i < n
Aτα

s
i <

c0
2
αs
i + e2τ max

0<j≤min{n−i,i}

√
αs
i+jα

s
i−j. (2.41)

Let us denote q(i) = i(n− i). Then by a direct computation

2q(i)− q(i+ j)− q(i− j) = 2j2.

Therefore we get from (2.41) that for any 0 < i < n, and any 0 < ϵ < 1

Aτ (ϵ
q(i)αs

i ) <
c0
2
ϵq(i)αs

i + e2τ max
0<j≤min{n−i,i}

ϵq(i)−
q(i+j)+q(i−j)

2

√
ϵq(i+j)αs

i+jϵ
q(i−j)αs

i−j

≤ c0
2
ϵq(i)αs

i + ϵe2τ max
0<j≤min{n−i,i}

√
ϵq(i+j)αs

i+jϵ
q(i−j)αs

i−j.

(2.42)
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Consider the linear combination

fϵ,s =
∑

0≤i≤n

ϵq(i) αs
i .

The function fϵ,s then also has properties (a) and (c) of Definition 2.32. Since
ϵq(i)αs

i < fϵ,s, α0 = 1 and αn = 1, the inequalities (2.42) imply the following
inequality:

Aτfϵ,s < 2 +
c0
2
fϵ,s + nϵe2τfϵ,s. (2.43)

Taking ϵ = c0
2n
e−2τ , we see that there exists τ > 0 such that

Aτfϵ,s < c0fϵ,s + 2.

Then, by Lemma 2.34, fϵ,s is a Margulis function on G/Γ. Since

αs
i ≤ ϵ−q(i)fϵ,s,

Lemma 2.33 implies that there exists a constant B > 0 so that for each i and
all t > 0, ∫

K

αi(atkΛ)
s dm(k) < B,

and that the bound is uniform as Λ varies over compact subsets of G/Γ.
From this the theorem follows.

2.5 Effective Estimates

In this section, we present some work of Margulis and co-authors regarding
effective equidistribution and effective estimates on diophantine inequalities.
This is far from a comprehensive account; we choose to focus on two papers
relating to the Oppenheim conjecture. A much more detailed and compre-
hensive survey is given in [EinMoh22].

2.5.1 Effective solution of the Oppehneim conjecture

The following was proven by Dani and Margulis in [DanMar89]:

Theorem 2.37. Let Q be an indefinite ternary quadratic form which is not
proportional to an integral form. Then the set

{Q(v) : v ∈ Z3, v primitive}

is dense in R.
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In the following, we implicitly assume all integral quadratic forms we
consider are primitive in the sense that they are not a nontrivial integer
multiple of another integral quadratic form.

The main result of the paper [LinMar14] is the following quantification
of Theorem 2.37.

Theorem 2.38. Let Q1 be an indefinite, ternary quadratic form with detQ1 =
1 and suppose ϵ > 0. Then for any T ≥ T0(ϵ)∥Q1∥K1 at least one of the fol-
lowing holds:

(i) There is an integral quadratic form Q2 with | det(Q2)| < T and ∥Q1 −
λQ2∥ ≪ ∥Q1∥T−1 where λ = | det(Q2)|−1/3.

(ii) For any ξ ∈ [−(log T )κ2, (log T )κ2] there is a primitive integer vector
v ∈ Z3 with 0 < ∥v∥ < TK3 satisfying

|Q1(v)− ξ| ≪ (log T )−κ2

(with K1, κ2, K3, and the implicit constants absolute).

Though there are significant differences, the strategy which is used in the
paper has many similarities with the strategy which was used by Margulis in
[Mar87, Mar89a] and subsequent papers by Dani and Margulis [DanMar89,
DanMar90a, DanMar90b, DanMar91]. The main ingredient in these strate-
gies is to prove that an orbit closure contains orbits of additional subgroups.
In the original approach, this is achieved using minimal sets for appropriately
chosen subactions, while in [LinMar14] the beginning point of the orbit of
the new subgroup is moving. To make this approach work, the authors need
to control how this base point changes so it remains sufficiently generic in an
appropriate quantitative sense.

2.5.2 Power law estimates in dimension at least 5.

Note that in the above result the dependence on the parameter T is logarith-
mic. If the number of variables d is greater or equal to 5, power estimates
are possible. We now present the main result of [BGHM22], which is based
in part on earlier work of Götze and Margulis.

To state the result we use the following notation. Denote by Q the
symmetric matrix in GL(d,R) associated with the form Q(x) := ⟨x,Qx⟩,
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where ⟨·, ·⟩ is the standard Euclidean scalar product on Rd . Let Q+ de-
note the unique positive symmetric matrix such that Q2

+ = Q2 and let
Q+(x) = ⟨x,Q+x⟩ denote the associated positive form with eigenvalues being
the eigenvalues of Q in absolute value. Let q, resp. q0, denote the largest,
resp. smallest, of the absolute value of the eigenvalues of Q and assume
q0 ≥ 1. In the Oppenheim conjecture, we are concerned with the inequality
|Q(m)| < ϵ; we can replace the form Q by Q/ϵ and consider the inequality
|Q(m)| < 1. The following effective estimate is proved in [BGHM22]:

Theorem 2.39. For all indefinite and non-degenerate quadratic forms Q of
dimension d ≥ 5 and signature (r, s) there exists for any δ > 0 a non-trivial
integral solution m ∈ Zd ∖ {0} to the Diophantine inequality |Q(m)| < 1
satisfying

∥Q1/2
+ m∥ ≪δ,d (q/q0)

d+1
d−2 q1/2+max{ρd+2,d+1}/(d−4)+δ,

where the dependency on the signature (r,s) is given by

ρ := ρ(r, s) =


1
2
r
s

for r ≥ s+ 3
1
2
s+2
s−1

for r = s+ 2 or r = s+ 1
1
2
s+1
s−2

for r = s

In particular, for indefinite non-degenerate forms in d ≥ 5 variables of
signature (r, s) and eigenvalues in absolute value contained in a compact set
[1, C], i.e 1 ≤ q0 ≤ q ≤ C, Theorem 2.39 yields non-trivial solutions m ∈ Zd

of |Q(m)| < ϵ of size bounded by

∥m∥ ≪C,δ ϵ
−max{ρd+2,d+1}/(d−4)−δ.

The proof of Theorem 2.39 relies on Götze’s analytic approach [Go04] via
Theta series, translating the lattice point counting problem into averages of
certain functions on the space of lattices, for which the authors extend the
mean-value estimates obtained by Eskin-Margulis-Mozes [EMM98].

Other results. We should also remark that in some cases, especially if the
acting group has a spectral gap, Margulis and co-authors were able to use
a purely dynamical approach to get error estimates which are powers (and
not logs). For a sophisticated example, see [EMMV20]. I think we should at
least mention [LMMS19] as well as the earlier paper of Einsiedler, Margulis
and Venkatesh.
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