
MARGULIS FUNCTIONS AND THEIR APPLICATIONS

ALEX ESKIN AND SHAHAR MOZES

1. Definition and basic properties

Motivation. In many cases, one wants to show that trajectories of some dynamical
system spend most of the time in compact sets, or more generally, avoid on average
a certain subset of the space. The construction of a Margulis function allows one
to obtain remarkably sharp estimates of this type. The first construction is due to
Margulis in [EMM98] to show quantitative recurrence for the action of SO(p, q) on
SL(p+ q,R)/SL(p+ q,Z); this is used in the proof of the “quantitative Oppenheim
conjecture”. The difficulty in this problem is related to the complicated geometry of
of the noncompact part of the space. However, the method is remarkably versatile,
and has seen many other applications.

We now proceed with the formal definition, and give examples later. The reader is
encouraged to skip ahead to the examples as necessary.

Let X be the space where our dynamics takes place. First we need an averaging
operator A. This is formally just a linear map from the space C(X) of continuous
functions on X to itself, where X is the space where the dynamics takes place. We
always assume that A is a Markov operator, i.e. that A takes non-negative functions
to non-negative functions and takes the constant function 1 to itself.

Let Y be a possibly empty subset of X. If Y is not empty, we assume that it is
invariant in the sense that if h ∈ C(X) is supported on X \ Y then so is Ah.

Definition 1.1. A continuous function f : X → [1,∞] is called a Margulis function
for Y if the following hold:

(a) f(x) =∞ if and only if x ∈ Y . For each ` > 0, the set {x : f(x) ≤ `} is a
compact subset of X \ Y .

(b) There exists c < 1 and b <∞ such that for all x ∈ X,

(1.1) (Af)(x) ≤ cf(x) + b.

The continuity assumption on f is often modified; this will be mentioned below.
We now state an immediate consequence of the definition:
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Lemma 1.2. Suppose x ∈ X \ Y . Then, there exists N = N(x) such that for all
n > N ,

(1.2) (Anf)(x) ≤ 2b

1− c
<∞.

The constant N(x) depends only on f(x) and can thus be chosen uniformly over the
compact sets {x : f(x) ≤ `}.

Proof. By iterating (1.1) we obtain

(Anf) ≤ cnf(x) + cn−1b+ · · ·+ cb+ b ≤ cnf(x) +
b

1− c
,

where for the last estimate we summed the geometric series. Now choose n so that
cnf(x) < b/(1− c). �

2. Random Walks

In this setting, a Margulis function is also called a Foster-Lyapunov (or drift)
function and has been used extensively. See the book [MT09] for further references.

Suppose we are considering a random walk on X. This means that for each x ∈ X
we have a probability measure µx on X so that the probability of moving in one step
of the random walk from x into some subset E ⊂ X is µx(E). Now, for h ∈ C(X),
let

(Ah)(x) =

∫
h dµx,

so A is the averaging operator with respect to one step of the random walk. Then
An is the averaging operator with respect to n steps of the random walk, and we can
write Anh =

∫
X
h dµnx, where µnx(E) is the probability of moving in n steps of the

random walk into some set E.

Lemma 2.1. Suppose Y ⊂ X and that a Margulis function f can be constructed for
Y . Then, for any ε > 0 there exists a compact subset Fε of X \ Y such that for any
x ∈ X \ Y , for all sufficiently large n (depending on x and ε), µnx(Fε) > 1− ε.

In particular, Lemma 2.1 shows that any weak-star limit µ∞x of the measures µnx is
a probability measure satisfying µ∞x (Y ) = 0.

Proof. The equation (1.2) has the interpretation that for any x ∈ X, for large
enough n, ∫

f dµnx ≤ 2b/(1− c).

Now suppose ε > 0 is given, and choose ` > 2b
(1−c)ε . By Markov’s inequality we have

µnx({x : f(x) > `}) ≤ 2b

(1− c)`
< ε.
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Thus, the µnx measure of the compact set {x : f(x) ≤ `} is at least 1− ε. �

The existence of a Margulis function also implies certain large deviation results,
see e.g. §6.

3. Actions of semisimple groups

Suppose the space X admits a continuous action of a semisimple group G. For
simplicity of presentation, we will assume in this section that G = SL(2,R). For the
case where G = SO(p, q) see the original paper [EMM98].

Recall that G acts on the upper half plane H by Möbius transformations. It is
convenient for to write this action as(

a b
c d

)
· z =

dz − b
−cz + a

.

This is a right action of G, and the stabilizer of i ∈ H is K = SO(2). Thus, H
is canonically identified with K\G. This action is by hyperbolic isometries, thus
dH(Kg1g,Kg2g) = dH(Kg1, Kg2) for all g1, g2, g ∈ G, where dH is the hyperbolic
metric on H. We will also use this action to identify the unit tangent bundle T 1(H)
of H with G.

Let at =

(
et 0
0 e−t

)
, rθ =

(
cos θ − sin θ
sin θ cos θ

)
. Then, under the identification of G

with T 1(H), left multiplication by at on G corresponds to geodesic flow for time t on
T 1(H). In particular,

dH(Katg,Kg) = t.

Also, since Krθg = Kg, rθg corresponds to the same point in H as g but with a
different tangent vector. For g ∈ G, let

Sτ (Kg) = {Kaτrθg : 0 ≤ θ < 2π} ⊂ H.
Then, Sτ (Kg) is the circle of radius τ around the point Kg ∈ H.

Now suppose X is an arbitrary space with a continuous (left) SL(2,R) action. For
a function h : X → R, we can pull back h to a function hx on G ∼= T 1(H). We then
let the averaging operator Aτ be defined as

(3.1) (Aτh)(x) =
1

2π

∫ 2π

0

h(aτrθx) dθ =
1

2π

∫ 2π

0

hx(aτrθ) dθ.

We will usually take h to be invariant under the action of K = SO(2) ⊂ G. Using
the identification of K\G with H, we think of (Aτh)(x) as the average of h over a
circle of radius τ in the G orbit through x, or more precisely the average of hx over
Sτ (K), where K is the base point of K\G ∼= H.

Suppose Y ⊂ X is a G-invariant submanifold. (Again, Y = ∅ is allowed).

Definition 3.1. A K-invariant function f : X → [1,∞] is called a Margulis function
for Y if it satisfies the following properties:



4 ALEX ESKIN AND SHAHAR MOZES

(a) There exists σ > 1 such that for all 0 ≤ t ≤ 1 and all x ∈ X,

(3.2) σ−1f(x) ≤ f(atx) ≤ σf(x).

(This holds if log f is uniformly continuous along the G-orbits).
(b) For every c0 > 0 there exist τ > 0 and b0 > 0 such that for all x ∈ X,

Aτf(x) ≤ c0f(x) + b0.

(c) f(x) =∞ if and only if x ∈ Y , and f is bounded on compact subsets of X \Y .

For any ` > 0, the set {x : f(x) ≤ `} is a compact subset of X \ Y .

Lemma 3.2. Suppose there exists a Margulis function f for Y . Then,

(i) For all c < 1 there exists t0 > 0 (depending on σ, and c) and b > 0 (depending
only on b0, c0 and σ) such that for all t > t0 and all x ∈ X,

(Atf)(x) ≤ cf(x) + b.

(ii) There exists B > 0 (depending only on c0, b0 and σ) such that for all x ∈ X,
there exists T0 = T0(x, c0, b0, σ) such that for all t > T0,

(Atf)(x) ≤ B.

(iii) For every ε > 0 there exists a compact subset Fε of X \ Y such that for all
x ∈ X there exists T0 = T0(x, c0, b0, σ) such that for all t > T0,

|{θ ∈ [0, 2π) : atrθx ∈ Fε}| ≥ 2π(1− ε).
For completeness, we include the proof of this lemma. It is essentially taken from

[EMM98, §5.3], specialized to the case G = SL(2,R).
The basic observation is the following standard fact from hyperbolic geometry:

Lemma 3.3. There exist absolute constants 0 < δ′ < 1 and δ > 0 such that for any
p, q ∈ H, for any t > 0, for at least δ′-fraction of z ∈ St(q) (with respect to the visual
measure from q), we have

(3.3) dH(p, q) + t− δ ≤ dH(p, z) ≤ dH(p, q) + t.

Using the identification of G with T 1(H) we can restate Lemma 3.3 as follows:

Corollary 3.4. There exist absolute constants 0 < δ′ < 1 and δ > 0 such that for
any t > 0, any s > 0 and any g ∈ G, for at least δ′-fraction of φ ∈ [0, 2π],

(3.4) t+ s− δ ≤ dH(Katrφasg,Kg) ≤ t+ s.

Proof. This is indeed Lemma 3.3 with p = Kg, q = Kasg (so dH(p, q) = s). As φ
varies, the points Katrφasg trace out St(q) = St(Kasg) ⊂ H. �

Corollary 3.5. Suppose f : X → [1,∞] is a K-invariant function satisfying (3.2).
Then, there exists σ′ > 1 depending only on σ such that for any t > 0, s > 0 and any
x ∈ X,

(3.5) (At+sf)(x) ≤ σ′(AtAsf)(x).
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Outline of proof. Fix x ∈ X. For g ∈ SL(2,R), let fx(g) = f(gx), and let

f̃x(g) =
1

2π

∫ 2π

0

f(grθx) dθ.

Then, f̃x : H→ [1,∞] is a spherically symmetric function, i.e. f̃x(g) depends only on
dH(Kg,Ke), where e is the identity of G.

We have

(3.6) (AtAsf)(x) =
1

2π

∫ 2π

0

1

2π

∫ 2π

0

f(atrφasrθx) dφ dθ =
1

2π

∫ 2π

0

f̃x(atrφas).

By Corollary 3.4, for at least δ′-fraction of φ ∈ [0, 2π], (3.4) holds (with g = e). Then,
by (3.2), for at least δ′-fraction of φ ∈ [0, 2π],

f̃x(atrφas) ≥ σ−1
1 f̃x(at+s)

where σ1 = σ1(σ, δ) > 1. Plugging in to (3.6), we get

(AtAsf)(x) ≥ (δ′σ−1
1 )f̃x(at+s) = (δ′σ−1

1 )(At+sf)(x),

as required. �

Proof of Lemma 3.2. By condition (b) of Definition 3.1 we can choose τ large enough
in (b) so that c0 is sufficiently small so that κ ≡ c0σ

′ < 1, where σ′ is as in Corol-
lary 3.5. Then, for any s ∈ R and for all x,

(As+τf)(x) ≤ σ′As(Aτf)(x) by (3.5)

≤ σ′As(c0f(x) + b0) by condition (b)

= κ(Asf)(x) + σ′b0 since σ′c0 = κ.

Iterating this we get, for n ∈ N

(Anτf)(x) ≤ κnf(x) + σ′b0 + κσ′b0 + · · ·+ κn−1σ′b0 ≤ κnf(x) +B,

where B = σ′b0
1−κ . Since κ < 1, κnf(x) → 0 as n → ∞. Therefore both (i) and (ii)

follow for t ∈ τN. The general case of both (i) and (ii) then follows by applying again
condition (a). The derivation of (iii) from (ii) is the same as in the random walk
case. �

As in the random walk setting, the existence of a Margulis function implies certain
large deviation results, see §6.

4. Construction of Margulis functions I: easy cases

In this section, we construct Margulis functions in the simplest possible settings.
A much more elaborate (and useful) construction is done in the next section.

We begin with the following elementary calculation:
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Lemma 4.1. Fix 0 ≤ δ < 1. Then there exists a constant c(δ) such that for any
τ > 0 and any v ∈ R2 − {(0, 0)},

(4.1)
1

2π

∫ 2π

0

dθ

‖aτrθv‖1+δ
≤ c(δ)e−τ(1−δ)

‖v‖1+δ

Proof. By rescaling and rotating may assume that v = (0, 1). Then, the left-hand-
side of (4.1) becomes:

1

2π

∫ 2π

0

(e2τ sin2 θ + e−2τ cos2 θ)−(1+δ)/2 dθ

We decompose [0, 2π] = R1∪R2, where R1 = {θ : e2τ sin2 θ ≤ e−2τ cos2 θ} and R2 is
the set where the opposite inequality holds. Note that there exist absolute constants
0 < c1 < c2 such that

(4.2) c1e
−2τ ≤ |R1| ≤ c2e

−2τ

On R1, the integrand is bounded by a constant multiple of eτ(1+δ). Hence, in view
of (4.2), the integral over R1 is O(e−τ(1−δ)) as required. Now the integral over R2 is
bounded by

e−τ(1+δ)

∫
R2

| sin θ|−(1+δ) dθ = O(e−τ(1−δ)),

where in the last estimate we used (4.2). �

Interpretation in the hyperbolic upper half plane. Given g ∈ SL(2,R), we
may write

g−1 =

(
1 x
0 1

)(
y1/2 0

0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
In view of our conventions at the beginning of §3, g · i = x+ iy, and let φ(g) = x+ iy.
Then, φ gives an identification between SO(2)\SL(2,R) and the hyperbolic upper
half plane H. Under this identification, the right multiplication action of SL(2,R) on
SO(2)\SL(2,R) becomes action by Möbius transformations on H.

Let β : H→ R+ be defined by β(x+ iy) = y1/2. Note that in view of the definitions
of β and φ,

β(φ(g)) =

∥∥∥∥g(1
0

)∥∥∥∥−1

.

Thus, Lemma 4.1 is equivalent to the following well known:

Lemma 4.2. Fix 0 ≤ δ < 1. Then there exists a constant c(δ) such that for any
τ > 0 and any z ∈ H,

(4.3)

∫
Sτ (z)

β1+δ(w) dmz(w) ≤ c(δ)e−τ(1−δ)β(z)1+δ,
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where Sτ (z) is the sphere in H centered at z and with radius τ , and the measure mzis
the normalized visual measure (from z) on the sphere Sτ (z).

(In other words, most of the measure of Sτ (z) is concentrated closer to the x axis
than z). If, as in §3, we let

(4.4) (Aτh)(z) =

∫
Sτ (z)

h dmz,

then (4.3) may be rewritten as

(4.5) (Aτβ
1+δ)(z) ≤ c(δ)e−τ(1−δ)β1+δ(z).

Taking the quotient by SL(2,Z). Let α(z) = supγ∈SL(2,Z) β(γz).

Lemma 4.3. For any 0 ≤ δ < 1 and any τ large enough depending on δ, the function
α1+δ is a Margulis function for the averaging operator (4.4) on X = H/SL(2,Z) with
Y = ∅.

Proof. The property (a) of Definition 1.1 is immediate from the description of the
fundamental domain of the action of SL(2,Z) on H. To show (1.2), fix τ > 0 large
enough so that c0 ≡ c(δ)e−(1−δ)τ < 1.

Note that if Im z ≥ 1, then α(z) = β(z). Thus, if Im z is large enough so that
S(z, τ) ⊂ {x+ iy : y ≥ 1}, then, in view of (4.5), we have

(Aτα
1+δ)(z) ≤ c0α

1+δ(z).

If Imz is not large enough, then α(z) ≤ C(τ), and then for all w ∈ S(z, τ), α(z)1+δ ≤
b(δ, τ), where b(δ, τ) is some constant. Thus, in this case,

(Aτα
1+δ)(z) ≤ c0α

1+δ(z) + b(δ, τ).

Thus, for all z ∈ H,

(Aτα
1+δ)(z) ≤ c0α

1+δ(z) + b(δ, τ),

and c0 < 1. This verifies condition (b) of Definition 1.1. �

The space SL(2,R)/SL(2,Z). The space L2 of unimodular lattices in R2 admits a
transitive action by SL(2,R) and the stabilizer of the square lattice is SL(2,Z); thus
L2 is isomorphic to the quotient space SL(2,R)/SL(2,Z).

Note that the map φ is SL(2,Z)-equivariant. Let d(L) denote the length of the
shortest vector in the lattice L. From the definitions we see the following:

Lemma 4.4. For any g ∈ SL(2,R),

α(φ(g)) = d(gZ2)−1.

Then, as a corollary of Lemma 4.3, we get the following:
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Lemma 4.5. For any 0 ≤ δ < 1, the function d−(1+δ) is a Margulis function (in the
sense of Definition 3.1 with the averaging operator Aτ given by (3.1)) for the action
of SL(2,R) on X = L2, with Y = ∅.

We now come full circle by indicating a direct proof of Lemma 4.5 (i.e. without
thinking of the hyperbolic plane). Note that a unimodular lattice in R2 can have at
most one (linearly independent) vector of length < 1 (otherwise the covolume is too
small). If the shortest vector v of a lattice L is sufficiently short (depending on τ)
then for all θ ∈ [0, 2π), d(aτrθL) = ‖aτrθv‖. Then, by Lemma 4.1,

(Aτd
−(1+δ))(L) ≤ c(δ)e−(1−δ)τd−(1+δ)(L).

If not, then d(L)−(1+δ) ≤ C(δ, τ) and then

(Aτd
−(1+δ))(L) ≤ b(δ, τ)d−(1+δ)(L).

Then, in all cases, provided τ is large enough so that c0 ≡ c(δ)e−(1−δ)τ < 1, we have

(Aτd
−(1+δ))(L) ≤ c0d

−(1+δ)(L) + b0,

where c0 < 1. Thus, (b) of Definition 3.1 holds. The condition (c) holds by Mahler
compactness, and (a) follows immediately from the definitions. �

Ball averages. For h : H → R, let (Bτh)(z) denote the average of h over the ball
B(z, τ) of radius τ centered at z, with respect to the hyperbolic volume. Thus, Bτ

is similar to Aτ , but is doing ball averages instead of sphere averages. In view of
hyperbolic geometry (and in particular the fact that most of the hyperbolic volume
of a ball is concentrated near its outer radius) and the results for the sphere averages
Aτ , we see that for all 0 ≤ δ < 1, assuming τ is sufficiently large depending on δ, we
have for all z ∈ H,

(Bτα
1+δ)(z) ≤ c0α

1+δ(z) + b0,

where c0 < 1 and b0 = b0(δ, τ).

Products of upper half planes. Suppose X = H×H is a product of two copies of
the hyperbolic plane. We consider X with the supremum metric (i.e. distance on X
is the supremum of the distances in the two factors). Then, the ball of radius τ in X
is the product of the balls of radius τ in the two factors. Hence if BX

τ is the averaging
operator over the ball in X of radius τ , then BX

τ = B1
τB

2
τ , where B1

τ is the averaging
operator over the ball of radius τ in the first factor, and B2

τ is the analogous thing in
the second factor.

For z = (z1, z2) ∈ X, let α1(z) = α(z1), α2(z) = α(z2).

Lemma 4.6. Suppose 0 ≤ δ < 1. Let

u(z) = ε(α1(z)α2(z))1+δ + α1(z)1+δ + α2(z)1+δ,

Then, (provided τ is large enough depending on δ) and ε is chosen sufficiently small
depending on δ and τ , u is a Margulis function for the averages BX

τ on X, with Y = ∅.
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Proof. We have

(4.6) BX
τ (εα1+δ

1 α1+δ
2 ) = ε(B1

τα
1+δ
1 )(B2

τα
1+δ
2 ) ≤ ε(c0α

1+δ
1 + b0)(c0α

1+δ
2 + b0) ≤

≤ εc2
0α

1+δ
1 α1+δ

2 + εb0α
1+δ
1 + εb0α

1+δ
2 + εb2

0.

Also, for i = 1, 2,

BX
τ (α1+δ

i ) ≤ c0α
1+δ
i + b0.

Thus,

BX
τ u ≤ εc2

0α
1+δ
1 α1+δ

2 + (εb0 + c0)α1+δ
1 + (εb0 + c0)α1+δ

2 + εb2
0 + 2b0.

We now choose ε is sufficiently small so that c1 ≡ εb0 + c0 < 1. We get

BX
τ u ≤ c1u+ b1,

where c1 < 1 and b1 = εb2
0 + 2b0. This completes the proof. �

Similar constructions work for the product of any number of copies of H, but the
coefficients ε become more complicated. The Minsky product region theorem [Mi96]
states that the geometry at infinity of Teichmüller space is similar to that of products
of hyperbolic planes (with the supremum metric). In view of this an analogue of the
function u of Lemma 4.6 was used in [EMi11] to show that most closed geodesics
return to a given compact set. A more refined version (which can deal with random
geodesics on strata of quadratic or abelian differentials) was proved in [EMR12].

5. Construction of Margulis functions: SL(n,R)/SL(n,Z).

Let ∆ be a lattice in Rn. We say that a subspace L of Rn is ∆-rational if L ∩∆ is
a lattice in L. For any ∆-rational subspace L, we denote by d∆(L) or simply by d(L)
the volume of L/(L ∩∆). Let us note that d(L) is equal to the norm of u1 ∧ · · · ∧ u`
in the exterior power

∧`(Rn) where ` = dimL, (u1, · · · , u`) is a basis over Z of L∩∆,
and the norm on

∧
(Rn) is induced from the Euclidean norm on Rn. If L = {0} we

write d(L) = 1. A lattice is ∆ unimodular if d∆(Rn) = 1. The space of unimodular
lattices is canonically identified with SL(n,R)/SL(n,Z).

Let us introduce the following notation:

αi(∆) = sup
{ 1

d(L)

∣∣∣ L is a ∆-rational subspace of dimension i
}
, 0 ≤ i ≤ n,

α(∆) = max
0≤i≤n

αi(∆).
(5.1)

The classical Mahler compactness theorem states that for any M > 0 the set
{∆ ∈ SL(n,R)/SL(n,Z) : α(∆) ≤M} is compact.

Let G = SL(n,R), Γ = SL(n,Z), K̂ ∼= SO(n) is a maximal compact subgroup

of G, H ∼= SO(p, q) ⊂ G and K = H ∩ K̂ is a maximal compact subgroup of H.
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Let G is SL(n,R), Γ = SL(n,Z), K̂ ∼= SO(n) is a maximal compact subgroup of G,

H ∼= SO(p, q) ⊂ G, K = H ∩ K̂ be a maximal compact subgroup of H.
For any K-invariant function f on G/Γ, let (Atf)(x) =

∫
K
f(atkx) dm(k), where

m is the normalized Haar measure on K. Suppose x ∈ G/Γ and the stabilizer of
x in H is trivial. Then K\Hx is isomorphic to the symmetric space K\H, with x
corresponding to the origin. If rankK\H = 1, then (Atf)(x) can be interpreted as
the average of f over the sphere of radius 2t centered at the origin in the symmetric
space K\Hx.

If p ≥ 3 and 0 < s < 2, or if (p, q) = (2, 1) or (2, 2) and 0 < s < 1, it is shown
in [EMM98, Lemma 5.6] that for any c > 0 there exist t > 0, and ω > 1 so that the
the functions αsi satisfy the following system of integral inequalities in the space of
lattices:

(5.2) Atα
s
i ≤ ciα

s
i + ω2 max

0<j≤min(n−i,i)

√
αsi+jα

s
i−j,

where At is the averaging operator (Atf)(∆) =
∫
K
f(atk∆), and ci ≤ c. If (p, q) =

(2, 1) or (2, 2) and s = 1, then (5.2) also holds (for suitably modified functions αi),
but some of the constants ci cannot be made smaller than 1. (The proof of [EMM98,
Lemma 5.6] is a much more complicated version of the direct proof of Lemma 4.5 in
§4.)

In [EMM98, §5.4] it is shown that if the αi satisfy (5.2) then for any ε > 0, the
function f = fε,s =

∑
0≤i≤n ε

i(n−i)αsi satisfies the scalar inequality:

(5.3) Atf ≤ cf + b,

where t, c and b are constants. (This proof is a more complicated version of the proof
of Lemma 4.6 in §4.) If c < 1, which occurs in the case p ≥ 3, it follows that f is a
Margulis function (for the case Y = ∅).

If c = 1, which will occur in the SO(2, 1) and SO(2, 2) cases, then (5.3) implies
that (Arf)(1) is growing at most linearly with the radius.

Throughout [EMM98] one considers the functions α(g)s for 0 < s < 2 even though
for the application to quadratic forms one only needs s = 1 + δ for some δ > 0.
This yields a better integrability result, and is also necessary for the proof of the
convergence results [EMM98, Theorem 3.4] and [EMM98, Theorem 3.5].

Even though the function f is not a strictly speaking a Margulis function for the
case s = 1, p = 2, q = 2, it plays a key role in the analysis of the (2, 2) case of the
quantitative Oppenheim conjecture in [EMM05].

6. Large deviation estimates

For simplicity we state the results for the SL(2,R)-action setting. For the random
walk setting, see [Ath06, Theorem 1.2].

Let C` = {x ∈ X : f(x) < `}. Let m denote the uniform measure on SO(2) ⊂
SL(2,R). We refer to the trajectories of the group {at : t ∈ R} as “geodesics”.
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Theorem 6.1. ([Ath06, Theorem 1.1])

(1) For all l sufficiently large and all x /∈ Cl, there are positive constants c1 =
c1(l, x), c2(l), with

m{θ : atrθx /∈ Cl, 0 ≤ t ≤ T} ≤ c1e
−c2T

for all T sufficiently large. That is, the probability that a random geodesic
trajectory has not visited Cl by time T decays exponentially in T .

(2) For all l, S, T sufficiently large and all x ∈ X, there are positive constants
c3 = c3(S, l, x), c4 = c4(l), with

m{θ : atrθx /∈ Cl, S ≤ t ≤ S + T} ≤ c3e
−c4T .

That is, the probability that a random geodesic trajectory does not enter Cl in
the interval [S, S + T ] decays exponentially in T .

(3) Let x ∈ X. For any 0 < λ < 1, there is a l ≥ 0, and 0 < γ < 1, such that for
all T sufficiently large (depending on all the above constants)

m{θ :
1

T
|{0 ≤ t ≤ T : atrθx /∈ Cl}| > λ} ≤ γT .

Result (3) above may be thought of as a large deviations result for the “geodesics”.
Suppose µQ is an SL(2,R)-invariant measure on X (which we think of as the volume).
While ergodicity guarantees that 1

T
|{0 ≤ t ≤ T : atx ∈ Cl}| → µQ(Cl) for µQ-almost

every x ∈ X, Theorem 6.1 gives explicit information for any x ∈ X about the
likelihood of bad trajectories starting in the set SO(2)x. Notice, however, this is not
a traditional large deviations result, which estimates the probability of a deviation of
any ε > 0 from the ergodic average.

7. Other constructions and applications

Homogeneous dynamics. Let G be a semisimple Lie group, and let Γ be a lattice
in G. Suppose µ is a probability measure on G; then µ defines a random walk on
G/Γ.

In [EMa05], provided that the group generated by the support of µ is Zariski dense
in G, a Margulis function for this random walk (and Y = ∅) was constructed; in the
case G = SL(n,R) and Γ = SL(n,Z) the function is in fact the same as the function
in §5.

In [BQ12], a Margulis function for this random walk (again with Y = ∅) was con-
structed under the weaker assumption that the Zariski closure of the group generated
by the support of µ is semisimple. For a treatment of the case where Y is a closed
orbit of some semisimple subgroup wee [BQ13].

In [GM10] a different Margulis function was used in conjunction with Fourier anal-
ysis to give polynomial error terms for the quantitative Oppenheim conjecture in at
least five variables. This also gives an alternative proof of the definite case of the
Oppenheim conjecture in five or more variables first proved in [G04].
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A Margulis function (for Y = ∅) was constructed for the space of inhomogeneous
lattices in [MM11] in order to prove the analogue of the quantitative Oppenheim
conjecture for inhomogeneous quadratic forms.

In [HLM17], the construction of the Margulis function on the space of lattices was
extended to the S-arithmetic case and used to prove the S-arithmetic version of the
quantitative Oppenheim conjecture.

In [EK12] and [KKLM17] a modification of the Margulis function from [EMM98]
was used to control the entropy contribution from the thin part of the space of lattices.
In [Kh18], a Margulis function was used to study the Hausdorff dimension of the set
of diverging trajectories of a diagonalizable element on the space of lattices.

Teichmüller dynamics. The idea of Margulis functions has played a key role in
Teichmüller dynamics. In [EMas01], a Margulis function for the action of SL(2,R)
for Y = ∅ on strata of Abelian or quadratic differentials has been constructed. The
construction has some parallels to that of §5. This function was used in [Ath06]
to prove some exponential large deviation estimates for Teichmüller geodesic rays
starting at a given point in the space. Athreya’s results were later used in [AthF08]
to control deviation of ergodic averages in almost all directions for a billiard flow in a
rational polygon. The Margulis function of [EMas01] was later used in [AG13] in their
proof of exponential decay of correlations for the Teichmüller geodesic flow. Building
on the work of [EMas01] and [Ath06] a Margulis function for the same action but
arbitrary SL(2,R) invariant submanifolds Y was constructed in [EMM15]. Together
with the measure classification theorem of [EMi18], this function played a key role
in the proof that SL(2,R)-orbit closures are invariant submanifolds. This function is
also used in many related results such as [CE15].

A modified (and independently developed) version of the Margulis function tech-
nique was used in [AF07] to prove that that the generic interval exchange transfor-
mation is weak mixing.

Other applications. Suppose µ is a probability measure on SL(n,R). We may
then consider random products of independent matrices, each with the distribution
µ. We can then ask if the Lyapunov exponents λi(µ) of these random products de-
pend continuously on µ. In [V14, Chapter 10] a new version of the Margulis function
technique, due to Avila and Viana, which involves a modification of the natural aver-
aging operator so that a Margulis function can be constructed, was used to show that
in dimension 2, a natural continuity statement holds; namely if µj → µ in the weak
star topology and also the support of µj tends to the support of µ in the Hausdorff
topology then for i = 1, 2, λi(µj) → λi(µ). (The assumption about the support is
necessary, see [V14, Chapter 10] for a counterexample). A more complicated proof
was given previously in [BV10] without use of Margulis functions.

The result of [V14, Chapter 10] was extended in [MV14] to the case of Markov
processes. (For the case n ≥ 2 see the next paragraph).
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Additive Margulis functions. Suppose we have a decomposition of X = C ∪ D
where C ∩ D = ∅. Let A be an averaging operator. An additive Margulis func-
tion (relative to this decomposition) is a function φ : X → R+ with the following
properties:

(a) There exists a constant κC > 0 such that for x ∈ C,

(7.1) (Aφ)(x) < φ(x)− κC

(b) There exists a constant κD > 0 such that for x ∈ D,

(7.2) (Aφ)(x) < φ(x) + κD

Suppose f is a Margulis function, and choose Λ > b/c. Let

C = {x ∈ X : f(x) > Λ} D = {x ∈ X : f(x) ≤ Λ}.

Then, it follows from Jensen’s inequality that log f is an additive Margulis function
relative to the decomposition X = C ∪D.

However, it is not true that if φ is an additive Margulis function, then eφ is a
multiplicative one. In fact, the inequality (1.1) is very sensitive to the “worst case
behavior” of eφ on the support of the measure µx defining A; on the other hand, the
inequalities (7.1) and (7.2) depend more on the “average case” behavior of φ. Because
of this effect, it is often much easier to construct an additive Margulis function than
a multiplicative one. (In fact we do not know how to construct a useful multiplicative
Margulis function in the setting of [V14, Chapter 10] beyond the case n = 2).

Additive Margulis functions are useful because of the following:

Lemma 7.1. Suppose φ is an additive Margulis function for A relative to the decom-
position X = C ∪D, and suppose η is a measure on X with

∫
X
φ dη < ∞. Suppose

also
∫
X

(Aφ)(x) dη(x) ≥
∫
X
φ(x) dη(x) (for example this holds if η is A-invariant).

Then,

(7.3) η(D) ≥ κC
κC + κD

η(X).

Proof. We have∫
X

φ(x) dη(x) ≤
∫
X

(Aφ)(x) dη(x) <

∫
X

φ(x) dη(x)− κCη(C) + κDη(D).

Thus, −κCη(C) + κDη(D) > 0, which implies (7.3). �

This circle of ideas was used in [AEV] in order to extend the results on continuity
of Lyapunov exponents in [V14, Chapter 10] to arbitrary dimensions, and also in
[BBB15] in a non-linear setting.
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8. Comparasion to other techniques

In the homogeneous dynamics setting, there is another technique for proving results
similar in flavor to what can be obtained using Margulis functions. For the case Y = ∅,
this originates with the paper [Mar71], and was further developed in [Dan84], [Dan86].
These ideas were used in many of the foundational papers in homogeneous dynamics
such as [DM89, DM90] and [Ra91]. For other Y , the key result is the “linearization”
technique of [DM93] (in which in particular the asymptotically exact lower bounds
for the quantitative Oppenheim conjecture were proved). An abstract framework for
these methods is terms of “(C, α)-good” functions defined in [EMS97] is developed
in [KMar98]. These techniques (and in particular the framework in [KMar98]) have
numerous applications to diophantine approximations and other areas, which are
beyond the scope of this survey.

The “(C, α)-good” techniques rely essentially on the variants of polynomial nature
of the unipotent flow, and have limited applicability outside of homogeneous dynam-
ics. (An exception are [MW02], [MW14], where the authors manage to obtain results
on non-divergence in the Teichmüller dynamics setting using essentially polynomial
techniques). In the homogeneous setting, one usually obtains sharper estimates if
one manages to construct a Margulis function; for example the quantitative Oppen-
heim conjecture can not be proved by (C, α)-good techniques since the estimates one
obtains that way are too weak. (This is in fact the original motivation for Margulis
functions). However, a construction of a Margulis function is not always possible, e.g.
for the action of a single unipotent. This is related to the fact that (1.1) has to hold
for all x ∈ X. This can be easier to do if one considers additive Margulis functions
instead, but then the results are even weaker than what is obtained by (C, α)-good
methods. In general, (non-additive) Margulis functions are an extremely powerful
tool, but in many cases, their construction is a difficult engineering challenge.
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