Algebra 1 : Third homework - due Monday, October 20

Do the following exercises from Fulton and Harris:
2.33 (b) and (c), 3.2, 3.4, 3.5, 3.11, 3.16, 3.24, 3.25

Also do the following exercises:

1. If V is a three dimensional representation of a group G over a field k, and $\wedge^{2} V$ is reducible, prove that V itself is reducible.
2. Let H be a subgroup of a group G, and let U_{1} and U_{2} be two H-representations over a field k. If $f_{1} \in \operatorname{Ind}_{H}^{G} U_{1}$ and $f_{2} \in \operatorname{Ind}_{H}^{G} U_{2}$ (so f_{i} is a function $G \rightarrow U_{i}$ such that $f_{i}(h g)=h f_{i}(g)$ for all $\left.g \in G, h \in H\right)$, define $f_{1} \cdot f_{2}: G \rightarrow U_{1} \otimes U_{2}$ via

$$
\left(f_{1} \cdot f_{2}\right)(g):=f_{1}(g) \otimes f_{2}(g) .
$$

Show that $f_{1} \otimes f_{2} \mapsto f_{1} \cdot f_{2}$ defines a G-equivariant morphism

$$
\left(\operatorname{Ind}_{H}^{G} U_{1}\right) \otimes\left(\operatorname{Ind}_{H}^{G} U_{2}\right) \rightarrow \operatorname{Ind}_{H}^{G}\left(U_{1} \otimes U_{2}\right) .
$$

Recall the following from class: Let G be a finite group, let H be a subgroup, and let $\underline{1}_{H}$ (resp. $\underline{1}_{G}$) denote the trivial representation of H (respectively G). Prove that there is a G-equivariant surjection $\operatorname{Ind}_{H}^{G} \underline{1}_{H} \rightarrow \underline{1}_{G}$, which is unique up to scaling.
3. Let G be a finite group and H a subgroup, and let U be a finite-dimensional representation of H over \mathbf{C}. If U^{*} denotes the contragredient to U, then note that there is a natural H-equivariant map

$$
\begin{equation*}
U \otimes U^{*} \rightarrow \underline{1}_{H} \tag{}
\end{equation*}
$$

Combining this with (2) and the result from class we just recalled, one obtains G-equivariant maps

$$
\left(\operatorname{Ind}_{H}^{G} U\right) \otimes\left(\operatorname{Ind}_{H}^{G} U^{*}\right) \rightarrow \operatorname{Ind}_{H}^{G}\left(U \otimes U^{*}\right) \rightarrow \operatorname{Ind}_{H}^{G} \underline{1}_{H} \rightarrow \underline{1}_{G} .
$$

(The first map arises from (2), the second from functoriality of induction applied to $\left(^{*}\right.$), and the third from (3).) Show that this map gives a non-degenerate pairing between $\operatorname{Ind}_{H}^{G} U$ and $\operatorname{Ind}_{H}^{G} U^{*}$, and hence realizes the latter as the contragredient of the former.
4. Use (5) to prove that any permutation representation of a finite group over \mathbf{C} is isomorphic to its own contragredient. Can you give another, different, proof?

