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0. Introduction

0.1. Let X be a connected smooth projective curve over C of genus

g>1,

G a semisimple group over C, g the Lie algebra of G. Denote by

Bung = Bung(X) the moduli stack of G-bundles on X. In [Hit87] Hitchin

defined a remarkable algebra 3¢ = 3%(X) of Poisson-commuting functions

on the cotangent stack of Bung(X).

0.2. In this note the following is shown:

(a)

The Hitchin construction admits a natural quantization. Namely, we
define a commutative ring 3 = 3(X) of twisted differential operators
on Bung such that the symbols of operators from j form exactly
the ring 3% of Hitchin’s Hamiltonians. Here “twisted” means that
we consider the differential operators acting on a square root of
the canonical bundle wpyn,. The twist is essential: one knows
that the only global untwisted differential operators on Bung are
multiplications by locally constant functions.

The spectrum of 3 identifies canonically with the moduli of Lg-opers,
which is a (Lagrangian) subspace of the moduli of irreducible (LG) ad"
local systems on X. Here “G is the Langlands dual of G, g its Lie
algebra, (LG) g the adjoint group; for a brief comment on opers see
0.3.

For an “g-oper § denote by Nz the quotient of the sheaf of twisted
differential operators modulo the left ideal generated by the maximal
ideal mg C 3. This is a non-zero holonomic twisted D-module on
Bung.

One assigns to an “G-oper § a usual (non-twisted) D-module Mz on

12 % N (in

Bung. If G is simply connected My is isomorphic to Whune

1/2

Bung 15 unique and on the other hand

the simply connected case w
N3 makes sense because there is no difference between LG-opers

and “g-opers). In general Mg = )\gl ® Nz where F is the Ig-oper
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corresponding to § and Az is a certain invertible sheaf on Bung
equipped with a structure of twisted D-module (see 5.1.1). The
isomorphism class of Az depends only on the connected component
of § in the moduli of “G-opers.

(e) Main theorem: Mg is a Hecke eigensheaf with eigenvalue § (see
?77for the precise statement). In other words Mz corresponds to the

local system § in the Langlands sense.

0.3. The notion of oper (not the name) is fairly well known (e.g., the
corresponding local objects were studied in [DS85]). A G-oper on a smooth
curve Y is a G-local system (=G-bundle with connection) equipped with
some extra structure (see 3.1.3). If G = SL, (so we deal with local
systems of vector spaces),the oper structure is a complete flag of sub-bundles
that satisfies the Griffiths transversality condition and the appropriate non-
degeneracy condition at every point of Y. A PSLo-oper is the same as
a projective connection on Y, i.e., a Sturm-Liouville operator on Y (see
[Del70] ( )). By definition, a g-oper is an oper for the adjoint group G-

If Y is complete and its genus is positive then a local system may carry at

most one oper structure, so we may consider opers as special local systems.

0.4. The global constructions and statements from 0.2 have local counter-
parts which play a primary role. The local version of (a), (b) is a canonical
isomorphism between the spectrum of the center of the critically twisted
(completed) enveloping algebra of g((t)) and the moduli of “g-opers on the
punctured disc Spec C((t)). This isomorphism was established by Feigin and
Frenkel [FF92] as a specialization of a remarkable symmetry between the W-
algebras for g and g. We do not know if this “doubly quantized” picture
can be globalized. The local version of 0.2(c), (d) essentially amounts to an-

other construction of the Feigin-Frenkel isomorphism based on the geometry



HITCHIN’S INTEGRABLE SYSTEM 5

of Bruhat-Tits affine Grassmannian. Here the key role belongs to a vanish-
ing theorem for the cohomology of certain critically twisted D-modules (a

parallel result for “less than critical” twist was proved in [KT95]).

0.5. This note contains only sketches of proofs of principal results. A
number of technical results is stated without the proofs. A detailed

exposition will be given in subsequent publications.

0.6. We would like to mention that E. Witten independently found the idea
of 0.2(a—d) and conjectured 0.2(e). As far as we know he did not publish

anything on this subject.
0.7. A weaker version of the results of this paper was announced in [BD96].

0.8. The authors are grateful to P. Deligne, V. Ginzburg, B. Feigin, and
E. Frenkel for stimulating discussions. We would also like to thank the
Institute for Advanced Study (Princeton) for its hospitality. Our sincere
gratitude is due to R. Becker, W. Snow, D. Phares, and S. Fryntova for

careful typing of the manuscript.
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1. Differential operators on a stack

1.1. First definitions. A general reference for stacks is [LMB93].

1.1.1. Let Y be a smooth equidimensional algebraic stack over C. Denote
by ©y the tangent sheaf; this is a coherent sheaf on ). The cotangent
stack T*) = Spec Sym ©y need not be smooth. Neither is it true in general
that dim7*) = 2dim ) (consider, e.g., the classifying stack of an infinite
algebraic group or the quotient of sl,, modulo the adjoint action of SL,).

However one always has
(1) dimT*Y > 2dim Y
We say that Y is good if
(2) dim7T*Y = 2dim Y

Then T*Y is locally a complete intersection of pure dimension 2dim ).
This is obvious if J = K\S for some smooth variety S with an action
of an algebraic group K on it (in this case T*) is obtained from 7S by
Hamiltonian reduction; see 1.2.1), and the general case is quite similar.

It is easy to show that (2) is equivalent to the following condition:
(3) codim{y € Y|dim G, =n} >n for allm > 0.

Here G is the automorphism group of y (recall that a point of a stack may

have non-trivial symmetries). ) is said to be very good if
(4) codim{y € Y|dim G, =n} >n for alln > 0.

It is easy to see that ) is very good if and only if 7*)V is dense in T*) where
W = {y € Y|dimG, = 0} is the biggest Deligne-Mumford substack of V.
In particular if Y is very good then T™*)); is irreducible for every connected
component Y; of ).

Remark “Good” actually means “good for lazybones” (see the remark at

the end of 1.1.4).
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1.1.2. Denote by Vs, the smooth topology of Y (see [LMB93, Section 6]).
An object of Vg, is a smooth 1-morphism 7g : S — ), S is a scheme.
A morphism (S,7g) — (5, 7g) is a pair (¢,a), ¢ : S — S’ is a smooth
morphism of schemes, « is a 2-morphism wg = ws:¢p. We often abbreviate
(S,ms) to S.

For S € Ysm we have the relative tangent sheaf ©g/y which is a locally

free Og-module. It fits into a canonical exact sequence
@S/y — Og — W;@y — 0.

Therefore 75 Sym©y = Sym©g/I where [¢ = (Sym©s)Og/y. The
algebra Sym Og considered as a sheaf on the étale topology of S carries the
usual Poisson bracket {}. Let P C Sym ©g be the {}-normalizer of the ideal
I¢. Set (Py)g := P/I¥, so (Py)g is the Hamiltonian reduction of Sym Og
by ©g/y. This is a sheaf of graded Poisson algebras on Sg. If S — S’ is a
morphism in Vs, then (Py)g equals to the sheaf-theoretic inverse image of
(Py)gr. So when S varies (Py)g form a sheaf Py of Poisson algebras on YV,
called the algebra of symbols of ). The embedding of commutative algebras

Py — Sym Oy induces an isomorphism between the spaces of global sections
(5) LY, Py)=RT(Y,SymOy) =T(1T"Y,0)

1.1.3. For S € Y, consider the sheaf of differential operators Dg. This is
a sheaf of associative algebras on Sg. Let Dg C Dg be the normalizer of
the left ideal I := DsOg/y C Dg. Set (Dy)g = DS/I. This algebra acts on
the Dg-module (Dy)g := Dg/I from the right; this action identifies (Dy)q
with the algebra opposite to Endp, ((Dy)g)-

For any morphism (¢,a) : S — S in Yy, we have the obvious
isomorphism of Dg-modules ¢* ((Dy)g/) = (Dy)g which identifies (Dy)g
with the sheaf-theoretic inverse image of (Dy)g. Therefore (Dy)g form
an Oy-module Dy (actually, it is a D-module on Y in the sense of 1.1.5),

and (Dy)g form a sheaf of associative algebras Dy on Vs, called the sheaf
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of differential operators on ). The embedding of sheaves Dy — Dy induces

an isomorphism between the spaces of global sections
(6) I'(Y,Dy)=T (¥, Dy).

1.1.4. The Oy-module Dy carries a natural filtration by degrees of the
differential operators. The induced filtration on Dy is an algebra filtration
such that gr Dy is commutative; therefore gr Dy is a Poisson algebra in the
usual way.

We have the obvious surjective morphism of graded Oy-modules
Sym ©y — grDy. The condition (2) from 1.1.1 assures that this is an iso-
morphism. If this happens then the inverse isomorphism gr Dy = Sym Oy

induces a canonical embedding of Poisson algebras
(7) oy : gl"Dy — Py

called the symbol map.

Remark In the above exposition we made a shortcut using the technical
condition (2). The true objects we should consider in 1.1.2-1.1.4 are
complexes sitting in degrees < 0 (now the symbol map is always defined);
the naive objects we defined are their zero cohomology. The condition (2)
implies the vanishing of the other cohomology, so we need not bother about
the derived categories (see 7.3.3 for the definition of the “true” Dy for an

arbitrary smooth stack V).

1.1.5. D-modules are local objects for the smooth topology, so the notion
of a D-module on a smooth stack is clear 1. Precisely, the categories M*(S)
of left D-modules on S, S € Yy, form a sheaf M’ of abelian categories
on Vs (the pull-back functors are usual pull-backs of D-modules; they are
exact since the morphisms in Ys,, are smooth). The D-modules on ) are
Cartesian sections of M over Vs,,; they form an abelian category MEY).

In other words, a D-module on Y is a quasicoherent Oy-module M together

IThe definition of the derived category of D-modules is not so clear; see 7.3.
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with compatible Dg-module structures on each Og-module Mg, S € V.
The usual tensor product makes M%()) a tensor category. One defines
coherent, holonomic, etc. D-modules on ) in the obvious way. Note that a
D-module M on Y defines the sheaf of associative algebras EndM on Vg,
EndM(S) = EndMsg.

For example, in 1.1.3 we defined the D-module Dy on Y; the algebra Dy
is opposite to EndDy.

1.1.6. Let £ be a line bundle on Y and A € C. Any S € ), carries the
line bundle 7%5L. Therefore we have the category ME(S),x of m§(L£)®A-
twisted left D-modules (see, e.g., [BB93]). These categories form a sheaf
MZLA of abelian categories on YVs,,. The category M%()) x of L& -twisted
D-modules on ) is the category of Cartesian sections of /\/lzﬁ. There is a
canonical fully faithful embedding M%), < M*(L") which identifies a

L% -twisted D-module on Y with the A-monodromic D-module on £'; here

L is the Gy,-torsor that corresponds to L (i.e., the space of £ with zero
section removed). See Section 2 from [BB93].

We leave it to the reader to define the distinguished object Dy, px €
M (V) and the sheaf Dy, s» of filtered associative algebras on Vey,. All

the facts from 1.1.3-1.1.5 render to the twisted situation without changes.

1.1.7. In Section 5 we will need the notion of D-module on an arbitrary
(not necessarily smooth) algebraic stack locally of finite type. In the case of
schemes this notion is well known (see, e.g., [Sa91]). It is local with respect

to the smooth topology, so the generalization for stacks is immediate.
1.2. Some well-known constructions.

1.2.1. Let K be an algebraic group acting on a smooth scheme S over
C. Consider the quotient stack ) = K \ S. Then S is a covering of )
in Vem, and D-modules, line bundles and twisted D-modules on ) are the
same as the corresponding K-equivariant objects on S. The K-action on

T*S is Hamiltonian and 7™} is obtained from T7*S by the Hamiltonian
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reduction (i.e., T*Y = K \ p~1(0) where p : T*S — £* is the moment
map, ¢ := Lie(K)). The Poisson structure on I'(T*Y, Or-y) is obtained by
identifying it with I" (), Py) (see 1.1.2) which can be computed using the

covering S — )

®) D(Y. Py) = I (S, Ps/19) ™.
Here P C Sym Og is the {}-normalizer of the ideal I¢ := (Sym ©g) ¢ (and ¢

is mapped to ©g C Sym Og). According to 1.1.3
9) T()V, Dy) = I'(S, Dg/Is)™"

where 133 C Dg is the normalizer of Ig := Dg - &.
The following construction of symbols, differential operators, and D-

modules on Y is useful.

1.2.2. We start with a Harish-Chandra pair (g, K) (so g is a Lie algebra
equipped with an action of K, called adjoint action, and an embedding
of Lie algebras ¢ — g compatible with the adjoint actions of K). Let
p(gyK) C Sym g be the {}-normalizer of I&K) := (Sym g)t and D(97K) CUg
be the normalizer of I(y k) := (Ug)t. Set

~ c o (K
(10) Py = (Sym(a/e)" = (Pgr0/Ithi) ™™
mo(K)

(11) Dgx) = (Us/(Ua)t)" = (Digr)/T.i))™"".

Then P ) is a Poisson algebra and D4 k) is an associative algebra. The
standard filtration on Ug induces a filtration on D4 ) such that gr D
is commutative. So gr D4 ) is a Poisson algebra. One has the obvious
embedding of Poisson algebras o = oy i) : gr D(g k) = Py, 1)

The local quantization condition for (g, K) says that

(12) 0(g,K) 18 an isomorphism.
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Remark Sometimes one checks this condition as follows. Consider the

obvious morphisms
(13) @ ((Symg)")™ ™) = P i), a: (Center Ug)™") — Dig ).

If a“ is surjective, then (12) is valid (because grCenter Ug = (Sym g)?).
Actually, if a® is surjective, then a is also surjective and therefore D4y is

commutative.

1.2.3. Assume now that we are in the situation of 1.2.1 and the K-
action on S is extended to a (g, K )-action (i.e., we have a Lie algebra
morphism g — ©g compatible with the K-action on S in the obvious sense).
Comparing (8) with (10) and (9) with (11), one sees that the morphisms

Symg — Sym ©Og and Ug — Dg induce canonical morphisms
(14) h: Poxy =TV, Py), h:Dyx —T(Y,Dy)

of Poisson and, respectively, filtered associative algebras.

If YV is good in the sense of 1.1.1 then we have the symbol map oy :
grDy — Py, and the above morphisms are o-compatible: hClo(%K) =
oy grh.

The global quantization condition for our data says that
(15) h is strictly compatible with filtrations.

In other words, this means that the symbols of differential operators from
h (D(M()) lie in hCla(gvK) (gr D(g,K))- If both local and global quantization
conditions meet then the algebra h (D(& K)) of differential operators is a
quantization of the algebra h% (P(& K)) of symbols: the symbol map oy
induces an isomorphism grh (D(QJ()) = hel (P(g,K))-

Remark The local and global quantization conditions are in a sense
complementary: the local one tells that D(q g is as large as possible, while

the global one means that h (D(g, K)) is as small as possible.
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1.2.4. Denote by M(g, K) the category of Harish-Chandra modules. One
has the pair of adjoint functors (see, e.g., [BB93])

A: Mg, K) = M), T:MYY)— M(g, K).

Namely, for a D-module M on ) the Harish-Chandra module T'(M) is the
space of sections I' (S, Mg) equipped with the obvious (g, K)-action (e.g.,
g acts via g — Og C Dg) and for a (g, K)-module V' the corresponding
K-equivariant D-module A(V)g is Ds @, V-

For example, consider the “vacuum” Harish-Chandra module Vac :=
Ug/(Ug)t. For any V € M(g, K) one has Hom(Vac,V) = VX so there
is a canonical bijection End(Vac) — VacX = Dy k) (see (11)) which is
actually an anti-isomorphism of algebras. One has the obvious isomorphism
A(Vac) = Dy, and the map A : End(Vac) — End(Dy) = I'(Y, Dy)°
coincides with the map h from (14).

1.2.5. The above constructions have twisted versions. Namely, assume
we have a central extension (g, K) of (g,K) by C, so C C g, g/C = g.
Denote by U’g the quotient of Ug modulo the ideal generated by the
central element 1 — 1, 1 € C C g. This is a filtered associative algebra;
one identifies gr U’'g with Sym g (as Poisson algebras). We get the filtered
associative algebra DEg’K) .= (U'g/ (U'g) &)X equipped with the embedding
o:gr DEg,K) — Plg,i)- The twisted local quantization condition says that o
is an isomorphism. Notice that the remark at the end of 1.2.2 is not valid
in the twisted case because gr Center U’'g may not be equal to (Sym g)®?.
Let £ be a line bundle on S. Assume that the (g, K)-action on S lifts to
a (g, K)-action on £ such that 1 acts as multiplication by A~! for certain
A € C*. Equivalently, we have a (g, K)-action on £ which extends the K-
action, is compatible with the g-action on S, and 1 acts as —A~1t0;, € O ..
Set D’y = Dy ,x. One has the morphism of filtered associative algebras
h : DEng) - (Y, D’y) such that ogrh = h% . The twisted global

quantization condition says that h is strictly compatible with filtrations.
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Denote by M(g, K)’ the full subcategory of (g, K) mod that consists of
those Harish-Chandra modules on which 1 acts as identity. One has the
adjoint functors A,T" between M (g, K)' and M*(Y)x defined exactly as
their untwisted version. Again for Vacd := U’g/ (U’g) € one has A (Vad) =
Dy, ra; the algebra End(Vac') is opposite to Di; ey and A: End (Vad) —
End Dy, o» = T'(Y, DY) coincides with h.

1.2.6. An infinite-dimensional version. Let K be an affine group scheme
over C (so K is a projective limit of algebraic groups) which acts on a scheme

S. Assume the following condition:

There exists a Zariski open covering {U;} of S such
that each U; is K-invariant and for certain normal
(16) group subscheme K;CK with K/K; of finite type U;
is a principal K;-bundle over a smooth scheme T; (so

T; = K;\U;).

Then the fpgc-quotient ) = K \ S is a smooth algebraic stack (it is
covered by open substacks (K/K;) \ T;).

Let us explain how to render 1.2.1-1.2.5 to our situation. Note that
t = Lie K is a projective limit of finite dimensional Lie algebras, so it is a
complete topological Lie algebra. Consider the sheaf ©g = Der Og and the
sheaf Dg C Endc(Og) of Grothendieck’s differential operators. These are
the sheaves of complete topological Lie (respectively associative) algebras.
Namely, for an affine open U C S the bases of open subspaces in I'(U, Og)
and I'(U, Dg) are formed by the annihilators of finitely generated subalgebras
of I'(U, Oy). The topology on Og defines the topology on Sym Og; denote
by Sym©g the completed algebra. This is a sheaf of topological Poisson
algebras. Let Igl C Sym®Og be the closure of the ideal (Sym©gs)t, and
Pg C SymOg be its { }-normalizer. Similarly, let Is C Dg be the closure of
the ideal Dg - £ and Dg be its normalizer. Then the formulas from (8), (9)

remain valid.
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In the definition of a Harish-Chandra pair (g, K') we assume that for any
Ad(K)-invariant open subspace a C k the action of K on g/a is algebraic.
Then g is a complete topological Lie algebra (the topology on g is such
that € C g is an open embedding). The algebras Symg, Ug carry natural
topologies defined by the open ideals (Symg)a, (Ug)a where a C g is an
open subalgebra. Denote by Symg, Ug the corresponding completions. Let
T,
normalizer). Similarly, we have I(y ) C D(q x) C Ug. Now we define P g,
D4 k) by the formulas (10), (11). The rest of 1.2.2-1.2.5 remains valid,

except the remark at the end of 1.2.2. It should be modified as follows.

k) C Sym g be the closure of the ideal (Symg)¢ and ]3(&]() be its { }-

1.2.7. The algebras Symg and Ug carry the usual ring filtrations Sym, g =
@ogign%ig and U;g; however in the infinite dimensional situation the
union of the terms of these filtrations does not coincide with the whole
algebras. One has the usual isomorphism oy : gr; U gﬁ%ig. The same
facts are true for Sym©g and Dg.

The morphisms a®, a from the end of 1.2.2 extend in the obvious way to

the morphisms
17y a: ((Symo)*)™ ™ = Py, a: (CenterUg)™™ = Dig .

The local quantization condition (12) from 1.2.2 and the surjectivity of a

follow from the surjectivity of a0l59 :gr (Center U g)FO(K)

— P(Eh K)- The
same is true in the twisted situation. Note that the equality gr Center Ug =

(Sym g)9 is not necessarily valid (even in the non-twisted case!).
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2. Quantization of Hitchin’s Hamiltonians

2.1. Geometry of Bung. We follow the notation of 0.1; in particular G

is semisimple and X is a smooth projective curve of genus g > 1.

2.1.1. One knows that Bung is a smooth algebraic stack of pure dimension
(9 —1)dim G. The set of connected components of Bung can be canonically
identified (via the “first Chern class” map) with H?(X, 7$'(Q)) = m1(G).
Here 7$*(G) is the fundamental group in Grothendieck’s sense and 7 (G) is
the quotient of the group of coweights of G modulo the subgroup of coroots;
they differ by a Tate twist: 7$*(G) = m1(G)(1).

For 7 € Bung the fiber at F of the tangent sheaf © = Opyy, is
H' (X,g7). Let us explain that for a G-module W we denote by Wr the
F-twist of W, which is a vector bundle on X; we consider g as a G-module
via the adjoint action.

By definition, the canonical line bundle w = wWRun,, is the determinant of
the cotangent complex of Bung (see [LMB93]). The fiber of this complex
over F € Bung is dual to RT'(X, gr)[1] (see [LMB93]), so the fiber of w over
F is det RT(X, gr).2

2.1.2. Proposition. Bung is very good in the sense of 1.1.1.

A proof will be given in 2.10.5. Actually, we will use the fact that Bung
is good. According to 1.1 we have the sheaf of Poisson algebras P = Pgun,
and the sheaves of twisted differential operators D* = Dy, o.wh- One knows
that for A # 1/2 the only global sections of D* are locally constant functions.
In Sections 2 and 3 we will deal with D’ := D'/2; we refer to its sections as

simply twisted differential operators.

2.2. Hitchin’s construction I.

2The authors shouldn’t forget to check that [LMB93] really contains what is claimed

here!!



16 A. BEILINSON AND V. DRINFELD

2.2.1. Set C = C, := Spec(Sym g)“; this is the affine scheme quotient of
g* with respect to the coadjoint action. C' carries a canonical action of the
multiplicative group Gy, that comes from the homotheties on g*. A (non-
canonical) choice of homogeneous generators p; € (Symg)“ of degrees d;,
i € I, identifies C with the coordinate space C’, an element A € G,,, acts by

the diagonal matrix ()\di).

2.2.2. Denote by C,, the wx-twist of C' with respect to the above G-
action (we consider the canonical bundle wx as a Gy,-torsor over X). This

is a bundle over X; the above p; identify C,, with []; w%?di. Set
Hitch(X') = Hitchg(X) :=I'(X, Coy ).

In other words, Hitch(X) = Mor ((Sym’ 9. T (X,w%)) (the morphisms of
graded algebras). We consider Hitch(X) as an algebraic variety equipped
with a G,,-action; it is non-canonically isomorphic to the vector space
[T, (X, w?d"). There is a unique point 0 € Hitch(X') which is fixed by the
action of G,,. Denote by 3% (X) = 3SZ(X) the ring of functions on Hitch(X);
this is a graded commutative algebra. More precisely, the grading on 3%(X)
corresponds to the G,,-action on 3°(X) opposite to that induced by the

Gp-action on C; so the grading on 3°(X) is positive.

2.2.3. By Serre duality and 2.1.1 the cotangent space T-Bung at F € Bung
coincides with I'(X, g% ® wx). The G-invariant projection g* — C yields
the morphism g% ® wx — C,y and the map pr : T5Bung — Hitch(X).

When F varies we get a morphism
p: T*Bung — Hitch(X)
or, equivalently, a morphism of graded commutative algebras
hs - 3%(X) = I (T*Bung, ©) = T' (Bung, P).

p is called Hitchin’s fibration.



HITCHIN’S INTEGRABLE SYSTEM 17

We denote by Bung? the connected component of Bung corresponding

to v € m(G) (see 2.1.1) and by p” the restriction of p to 7% Bun/,.

2.2.4.

Theorem. ([Hit87], [Fal93], [Gi97]).

(i) The image of hS consists of Poisson-commuting functions.

(ii)
(iii)

(iv)

(v)

dim Hitch(X) = dimBung = (¢ — 1) - dim g.

p is flat and its fibers have pure dimension dim Bung. For each
v € m(X), p¥ is surjective.

There exists a non-empty open U C Hitch(X) such that for any
v € m(G) the morphism (p?)~'(U) — U is proper and smooth,
and its fibers are connected. Actually, the fiber of p¥ over u € U
is isomorphic to the product of some abelian variety A, by the
classifying stack of the center Z C G.

For each v € m1(X) the morphism 3¥(X) — TI'(Bung,P) is an

isomorphism. O

Remarks

(i)

(i)

(iif)

Needless to say the main contribution to Theorem 2.2.4 is that of
Hitchin [Hit87].

Theorem 2.2.4 implies that p is a Lagrangian fibration or, if
you prefer, the Hamiltonians from h$(3¢(X)) define a completely
integrable system on T*Bung. We are not afraid to use these words
in the context of stacks because the notion of Lagrangian fibration is
birational and since Bung is very good in the sense of 1.1.1 T*Bung
has an open dense Deligne-Mumford substack T*Bun% which is
symplectic in the obvious sense (here Bun((]; is the stack of G-bundles
with a finite automorphism group).

Hitchin gave in [Hit87] a complex-analytical proof of statement (i).

We will give an algebraic proof of (i) in 2.4.3.
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(iv) Hitchin’s proof of (ii) is easy: according to 2.2.2 dim Hitch(X) =
S, dim DX, wx®h), dim T(X, wx®%) = (g—1)(2d; — 1) since g > 1,
and finally (¢ —1)>_,(2d; — 1) = (g — 1) dim g = dim Bung.

(v) Statement (iv) for classical groups G was proved by Hitchin [Hit87].
In the general case it was proved by Faltings (Theorem III.2
from [Fal93)).

(vi) Statement (v) follows from (iii) and (iv).

(vii) Some comments on the proof of (iii) will be given in 2.10.

2.2.5. Our aim is to solve the following quantization problem: con-
struct a filtered commutative algebra 3(X) equipped with an isomor-
phism oyx) @ grj(X Y= 3%(X) and a morphism of filtered algebras hx :
3(X) — T'(Bung,D’) compatible with the symbol maps, i.e., such that
OBungo 8L hx = hgéoaj(x) (see 1.1.4 and 1.1.6 for the definition of opun).
Note that 2.2.4(v) implies then that for any vy € 71 (X) the map hY : 3(X) —
r (Buné, D’ ) is an isomorphism. Therefore if G is simply connected then
such a construction is unique, and it reduces to the claims that I'(Bung, D’)
is a commutative algebra, and any global function on T*Bung is a symbol
of a global twisted differential operator.

We do not know how to solve this problem directly by global considera-
tions. We will follow the quantization scheme from 1.2 starting from a local
version of Hitchin’s picture. Two constructions of the same solution to the
above quantization problem will be given. The first one (see 2.5.5) is easier
to formulate, the second one (see 2.7.4) has the advantage of being entirely
canonical. To prove that the first construction really gives a solution we
use the second one. It is the second construction that will provide an iden-
tification of Spec3(X) with a certain subspace of the stack of (XG),q-local
systems on X (see 3.3.2).

2.3. Geometry of Bung II. Let us recall how Bung fits into the

framework of 1.2.6.
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2.3.1. Fix a point z € X. Denote by O, the completed local ring of x
and by K, its field of fractions. Let m, C Ox be the maximal ideal. Set
ol = Ox/m? (so Op = EiLnOén)). The group G(Oi«n)) is the group of C-
points of an affine algebraic group which we denote also as G (Og(gn)) by abuse
of notation; G(Oé”)) is the quotient of G(Oénﬂ)). So G(Oy) = {iinG(Og(gn))
is an affine group scheme.

Denote by Bung, . the stack of G-bundles on X trivialized over Spec Og(,;n)
(notice that the divisor nz is the same as the subscheme Spec O;(cn) C X).
This is a G(Oén))—torsor over Bung. We denote a point of Bung ., as

(.7: , a(")). We have the obvious affine projections Bung (,,41), — Bung na.

Set Bung , := lim Bung p; this is a G(O;)-torsor over Bung.
= —

2.3.2. Proposition. Bung, is a scheme. The G(Oy)-action on Bung,
satisfies condition (16) from 1.2.6. O

2.3.3. It is well known that the G(O;)-action on Bung , extends canonically
to an action of the group ind-scheme G(K,) (see 7.11.1 for the definition
of ind-scheme and 7.11.2 (iv) for the definition of the ind-scheme G(K3) ).
Since Lie G(K,) = g ® K, we have, in particular, the action of the Harish-
Chandra pair (g ® K;,G(O,)) on Bung ;.

Let us recall the definition of the G(K)-action. According to 7.11.2 (iv)
one has to define a G(R®K,)-action on Bung 4 (R) for any C-algebra R. To
this end we use the following theorem, which is essentially due to A.Beauville

and Y.Laszlo. Set X’ := X \ {z}.

2.3.4. Theorem. A G-bundle F on X ® R is the same as a triple (Fi, Fa, @)
where Fj is a G-bundle on X’ @ R, F» is a G-bundle on Spec(R@Ox), and
 is an isomorphism between the pullbacks of F; and Fs to Spec(R@Kx).
More precisely, the functor from the category (=groupoid) of G-bundles
F on X ® R to the category of triples (F1,F2,¢) as above defined by
F1 := Flx'eor, F2 = the pullback of F to Spec(R®0,), ¢ := id, is an

equivalence.
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According to the theorem an R-point of Bung , is the same as a G-bundle
on X’ ® R with a trivialization of its pullback to Spec(R®K,). So G(R®K,)
acts on Bung ;(R) by changing the trivialization. Thus we get the action of
G(K,) on Bung , .

The proof of Theorem 2.3.4 is based on the following theorem, which is a

particular case of the main result of [BLa95].

2.3.5. Theorem. (Beauville-Laszlo). The category of flat quasi-coherent
Oxgr-modules M is equivalent to the category of triples (M7, Ma, ¢) where
M7 is a flat quasi-coherent O-module on X’ ® R, M is a flat quasi-coherent
O-module on Spec(R(X\)Ox), and ¢ is an isomorphism between the pullbacks
of M; and My to Spec(R®K,) (the functor from the first category to the
second one is defined as in Theorem 2.3.4). M is locally free of finite rank

if and only if the corresponding M; and My have this property.

Remark. If R is noetherian and the sheaves are coherent then there is a
much more general “glueing theorem” due to M.Artin (Theorem 2.6 from
[Ar]). But since subschemes of G(K,) are usually of infinite type we use the

Beauville-Laszlo theorem, which holds without noetherian assumptions.

To deduce Theorem 2.3.4 from 2.3.5 it suffices to interpret a G-bundle
as a tensor functor {G-modules}—{vector bundles}. Or one can interpret
a G-bundle on X ® R as a principle G-bundle, i.e., a flat affine morphism
7 : F — X ® R with an action of G on F satisfying certain properties; then
one can rewrite these data in terms of the sheaf M := 7,Or and apply

Theorem 2.3.5.

2.3.6. Remark. Here is a direct description of the action of g ® K, on
Bung, induced by the action of G(K,) (we will not use it in the future
777). Take (F,a) € Bungg, & = h&la("). The tangent space to Bung
at (.7-",04(”)) is H'(X,gr(—nx)), so the fiber of Opyns, at (F,a) equals
@Hl (X,g97(—nx)) = HYX \ {z},97). We have the usual surjection

0r Qo Ko —» HI(X\{z},97). Use & to identify gr Q¢ Kz with g K.
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When (F, &) varies one gets the map g® K; — Opung,z. Our g® Ky -action

is minus this map (777).

2.3.7. Remark. Let D C X ® R be a closed subscheme finite over Spec R
which can be locally defined by one equation (i.e., D is an effective relative
Cartier divisor). Denote by D the formal neighbourhood of D and let A
be the coordinate ring of D (so D is an affine formal scheme and Spec A is
a true scheme). Then Theorems 2.3.4 and 2.3.5 remain valid if X' ® R is
replaced by (X @ R) \ D, R®0, by A, and Spec(R®K,) by (Spec A) \ D.
This follows from the main theorem of [BLa95] if the normal bundle of D
is trivial: indeed, in this case one can construct an affine neighbourhood
U O D such that inside U the subscheme D is defined by a global equation
f =0, f € H(U,Oy) (this is the situation considered in [BLa95]).> For
the purposes of this work the case where the normal bundle of D is trivial
is enough. To treat the general case one needs a globalized version of the
main theorem of [BLa95] (see 2.12). Among other things, one has to extend
the morphism D — X @ R to a morphism Spec A — X ® R (clearly such an

extension is unique, but its existence has to be proved); see 2.12.
2.4. Hitchin’s construction II.

2.4.1. Set wo, = lim_ Wo, (m) where Wo, () 18 the module of differentials
of 0, = 0,/m?. Denote by Hitch{” the scheme of sections of Cuy
(n)

over Spec Oz ’. This is an affine scheme with (G,,-action non-canonically

isomorphic to the vector space M/m}IM, M := Hw%ﬁi. Set
Hitch,, = Hitchy(O,) := {iLnHitchg”) .

This is an affine scheme with G,,-action non-canonically isomorphic to

M = ngji. So Hitch, is the scheme of sections of C,,, over Spec O,.

3To construct U and f notice that for n big enough there exists ¢, € HO(X ®
R,Oxgr(nD)) such that Oxgr(nD)/Oxgr((n — 1)D) is generated by ¢,; then put
U := (X ® R) \ {the set of zeros of ¢Ynnt1}, [ := ¢©n/ePnt+1 (this construction works if

the map D — Spec R is surjective, which is a harmless assumption).
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Denote by 3¢ = 3El(0x) the graded Poisson algebra Pgk,.c0,) =
Sym(g ® K,/0,)%©=) from 1.2.2. We will construct a canonical G,,-
equivariant isomorphism Spec 3? —» Hitch, (the Gj,-action on 5? is
opposite to that induced by the grading; cf. the end of 2.2.2).

The residue pairing identifies (K,/O;)* with wp,, so SpecSym(g ®
K;/O;) = g* ® wo,. The projection g* — C' yields a morphism of affine
schemes g* ® wp, — Hitch,. It is G(O)-invariant, so it induces a morphism
Spec 3¢l — Hitch,. To show that this is an isomorphism we have to prove
that every G(O;)-invariant regular function on g* ® wp, comes from a
unique regular function on Hitch,. Clearly one can replace g* ® wo, by
9" ® O, = Paths(g*) and Hitch, by Paths(C') (for a scheme Y we denote
by Paths(Y) the scheme of morphisms Spec O, — Y). Regular elements
of g* form an open subset g/, such that codim(g*\gj.,) > 1. So one can
replace Paths(g*) by Paths(g.,). Since the morphism gy, — C is smooth

and surjective, and the action of G on its fibers is transitive, we are done.

2.4.2. According to 1.2.2 3¢ = PeK,,G(0,)) 1s a Poisson algebra. Actually
the Poisson bracket on 3¢ is zero because the morphism @ : (Sym(g ®
K,))8®Ea s 3¢ from 1.2.7 is surjective (this follows, e.g., from the
description of 3¢ given in 2.4.1) and (Sym(g ® K,))%®%+ is the Poisson
center of Sym(g ® K,).

Remark (which may be skipped by the reader). Actually for any algebraic
group G the natural morphism @ : (Sym(g ® K,))¢=) — 3o = 351(095) is
surjective and therefore the Poisson bracket on 3¢ is zero. The following
proof is the “classical limit” of Feigin-Frenkel’s arguments from [FF92],
p. 200-202. Identify O, and K, with O := C[[t]] and K := C[[t]]. Let
f be a G(O)-invariant regular function on g* ® 0. We have to extend it to a
G(K)-invariant regular function f on the ind-scheme g*® K := h_r}ng*@t‘"O

(actually g* can be replaced by any finite dimensional G-module). For
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¢ € g°((t)) define hy, € C((C)) by

N
ho(C) = f (Z so“f)(ot’f/k!)
k=0

where NN is big enough (h,, is well-defined because there is an m such that f
comes from a function on g* ® (O /t™0)). Write hy(¢) as Y, hn(¢)¢". The
functions h,, : g* ® K — C are G(K )-invariant. Set f := hy.

2.4.3. According to 2.3 and 1.2.6 we have the morphism
he 2 3¢ — T'(Bung, P).

analogous to the morphism h¢ from 1.2.3. To compare it with h_c)l( consider
the closed embedding of affine schemes Hitch(X) < Hitch, which assigns
to a global section of C,, its restriction to the formal neighbourhood of x.
Let 0 : 3¢ — 3°(X) be the corresponding surjective morphism of graded

algebras. It is easy to see that
[ l pcl
hS = h 0y .

Since the Poisson bracket on 3 is zero (see 2.4.2) and h¢! is a Poisson algebra
morphism the Poisson bracket on ImhS = Im h$ is also zero. So we have

proved 2.2.4(i).

2.5. Quantization I.

2.5.1. Let g ® K, be the Kac-Moody central extension of g ® K, by C
defined by the cocycle (u,v) — Res, ¢(du,v), u,v € g ® K,, where

1
(18) c(a,b) := ) Tr(ad,-ady), a,beg.
As a vector space gié)\l?x equals g® K, ®C-1. We define the adjoint action*
of G(K,) on g@?x by assigning to g € G(K,) the following automorphism

4As soon as we have a central extension of G(K,) with Lie algebra g@l?z the action
(19) becomes the true adjoint action (an automorphism of g ® K, that acts identically on

C-1 and g ® K, is identical because Hom(g ® K., C) = 0).
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of g@f?gcz

(19) 1—=1, ur gug '+ Resyc(u,g tdg) -1 foruc g K,

In particular we have the Harish-Chandra pair (g ® K, G (Ox)>, which is a
central extension of (g ® K, G(O,)) by C. Set

30 = 35(02) = Digor, G(0.) »

where D’ has the same meaning as in 1.2.5.

2.5.2. Theorem. ([FF92]).

(i) The algebra 3, is commutative.
(ii) The pair (g@?I,G(Ox)> satisfies the twisted local quantization
condition (see 1.2.5). That is, the canonical morphism o, : gr 3, —

S is an isomorphism. ([l

Remark Statement (i) of the theorem is proved in [FF92] for any algebraic
group G and any central extension of g® K, defined by a symmetric invariant
bilinear form on g. Moreover, it is proved in [FF92] that the mo(G(Ky))-
invariant part of the center of the completed twisted universal enveloping
algebra ﬁ/(g ® K,) maps onto 3;. A version of Feigin—Frenkel’s proof of (i)
will be given in 2.9.3-2.9.5. We have already explained the “classical limit”
of their proof in the Remark at the end of 2.4.2.

2.5.3. The line bundle wpyn, defines a G(O;)-equivariant bundle on
Bung,. The (g® K., G(Oz))-action on Bung, lifts canonically to a
(gﬁz, G(Oﬁ)-aetion on this line bundle, so that 1 acts as multiplication
by 2. Indeed, according to 2.1.1 wpun, = f*(det R[') where f : Bung —
Bungy,g) is induced by the adjoint representation G' — SL(g) and det RI" is
the determinant line bundle on Bungy,g). On the other hand, it is well known
(see,e.g., [BLa94]) that the pullback of det RI" to Bungy,, , is equipped with
the action of the Kac-Moody extension of sl,(K,) of level —1.
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Remark. In fact, the action of this extension integrates to an action of
a certain central extension of SL,(K;) (see, e.g., [BLa94]). Therefore one
gets a canonical central extension

(20) 0— Gy — G(K;) —» G(K;) =0

that acts on the pullback of wpyn, to Bung, so that A € G,, acts as

multiplication by A. The extension 0 - C - g® K, — g® K; — 0 is
one half of the Lie algebra extension corresponding to (20). In Chapter 4 we
will introduce a square root® of WBRung (the Pfaffian bundle) and a central
extension

(21) 0— G — G(Ky) - G(Ky) =0

(see 4.4.8), which is a square root of (20). These square roots are more

important for us than wgyn,, and (20), so we will not give a precise definition

of @)
2.5.4. According to 2.5.3 and 1.2.5 we have a canonical morphism of filtered

algebras

hy : 32 — T (Bung, D').

In 2.7.5 we will prove the following theorem.

2.5.5. Theorem. Our data satisfy the twisted global quantization condition

(see 1.2.5). O

As explained in 1.2.3 since the local and global quantization conditions
are satisfied we obtain a solution 3(*)(X) to the quantization problem from
2.2.5: set 3% (X) = hy(3,) and equip 3 (X) with the filtration induced
from that on I'(Bung, D’) (2.5.5 means that it is also induced from the
filtration on 3,); then the symbol map identifies gr3(*)(X) with k¢ (3¢) and
according to 2.4.3 h<(3¢1) = h:(38(X)) ~ 3%(X).

5This square root and the extension (21) depend on the choice of a square root of wx.
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The proof of Theorem 2.5.5 is based on the second construction of the
solution to the quantization problem from 2.2.5; it also shows that 3(*) (X)
does not depend on .

Remark If G is simply connected then 2.5.5 follows immediately from

2.2.4(v).
2.6. Dx-scheme generalities.

2.6.1. Let X be any smooth connected algebraic variety. A Dx-scheme is an
X-scheme equipped with a flat connection along X. Dx-schemes affine over
X are spectra of commutative Dy-algebras (= quasicoherent Ox-algebras
equipped with a flat connection). The fiber of an Ox-algebra A at =z € X is
denoted by A,; in particular this applies to Dx-algebras. For a C-algebra C'
denote by Cx the corresponding “constant” Dx-algebra (i.e., Cx is C®Ox

equipped with the obvious connection).

2.6.2. Proposition. Assume that X is complete.
(i) The functor C' ~» Cx admits a left adjoint functor: for a Dx-algebra
A there is a C-algebra Hy (X, A) such that

(22) Hom(A, Cx) = Hom(Hy (X, A), C)

for any C-algebra C.

(ii) The canonical projection 64 : A — Hy(X,A)x is surjective. So
Hy(X,A)x is the maximal “constant” quotient Dx-algebra of A. In
particular for any x € X the morphism 64, : A, — (Hv(X,A)x). =
Hy (X, A) is surjective.

Remarks. (i) Here algebras are not supposed to be commutative,
associative, etc. We will need the proposition for commutative A.

(ii) Suppose that A is commutative (abbreviation for “commutative
associative unital”). Then Hy(X,.A) is commutative according to statement
(ii) of the proposition. If C is also assumed commutative then (22) just

means that Spec Hy (X, A) is the scheme of horizontal sections of Spec A.
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From the geometrical point of view it is clear that such a scheme exists
and is affine: all the sections of Spec. A form an affine scheme S (here we
use the completeness of X; otherwise S would be an ind-scheme, see the
next Remark) and horizontal sections form a closed subscheme of S. The
surjectivity of 64, and 64 means that the morphisms Spec Hy (X, A) —
Spec A, and X x Spec Hy (X, A) — Spec A are closed embeddings.

(iii) If X is arbitrary (not necessary complete) then Hy (X, .A) defined
by (22) is representable by a projective limit of algebras with respect to a
directed family of surjections. So if A is commutative then the space of

horizontal sections of Spec A is an ind-affine ind-scheme®.

Proof. (a) Denote by M(X) the category of Dx-modules and by Monst (X)
the full subcategory of constant Dx-modules, i.e., Dx-modules isomorphic
to V. ® Ox for some vector space V (actually the functor V — V ® Ox
is an equivalence between the category of vector spaces and M onst(X))-
We claim that the embedding Mconst(X) — M(X) has a left adjoint
functor, i.e., for F € M(X) there is an Fy € Mconst(X) such that
Hom(F,€&) = Hom(Fy,E) for £ € Mconst(X). It is enough to construct
Fy for coherent F. In this case Fy := (Homp, (F,Ox))* ® Ox (here we
use that dim Homp, (F,Ox) < oo because X is complete).

(b) Since Ox is an irreducible Dx-module a Dx-submodule of a constant
Dx-module is constant. So the natural morphism F — Fy is surjective.

(c) If Ais a Dx-algebra and Z is the ideal of A generated by Ker(A — Ay)
then A/7 is a quotient of the constant Dx-module Ay. So A/Z is constant,
ie., A/T = Hy(X,A) ® Ox for some vector space Hy (X, A). A/T is a
Dx-algebra, so Hy (X, A) is an algebra. Clearly it satisfies (22). O

6This is also clear from the geometric viewpoint. Indeed, horizontal sections form a
closed subspace in the space Sx of all sections. If X is affine Sx is certainly an ind-scheme.
In the general case X can be covered by open affine subschemes Uy, ..., Uy; then Sx is a

closed subspace of the product of Sy,’s.
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Remark. The geometrically oriented reader can consider the above
Remark (ii) as a proof of the proposition for commutative algebras. However
in 2.7.4 we will apply (22) in the situation where A is commutative while
C =T'(Bung, D’) is not obviously commutative. Then it is enough to notice
that the image of a morphism A — C ® Ox is of the form C’' ® Ox (see
part (b) of the proof of the proposition) and C’ is commutative since A is.
One can also apply (22) for C := the subalgebra of I'(Bung, D’) generated
by the images of the morphisms h, : 3, — I'(Bung,D’) for all z € X
(this C' is “obviously” commutative; see 2.9.1). Actually one can show that
I'(Bung, D’) is commutative using 2.2.4(v) (it follows from 2.2.4(v) that for

gl

any connected component Bun/, C Bung and any z € X the morphism

32 — I'(Bun,, D) induced by h, is surjective).

2.6.3. In this subsection all algebras are assumed commutative. The
forgetful functor {Dx-algebras} — {Ox-algebras} has an obvious left
adjoint functor J (JA is the Dx-algebra generated by the Ox-algebra
A). We claim that Spec JA is nothing but the scheme of oco-jets of
sections of Spec A. In particular this means that there is a canonical
one-to-one correspondence between C-points of Spec(J.A), and sections
SpecO, — Spec A (where O, is the formal completion of the local ring

at ). More precisely, we have to construct a functorial bijection

N

(23) Home, (JA, B) — Homp, (A, B)

where B is a (quasicoherent) O x-algebra and Bis the completion of Ox ®c B
with respect to the ideal Ker(Ox ®c B — B). Here B is equipped with the
Ox-algebra structure coming from the morphism Ox — Ox ®c B defined
by a — a ® 1. Let us temporarily drop the quasicoherence assumption in
the definition of Dx-algebra. Then Bis a Dx-algebra (the connection on
B comes from the connection on Ox ®c B such that sections of 1 ® B are

horizontal). So Home, (A, B) = Homp, (J.A, B) and to construct (23) it is
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enough to construct a functorial bijection

(24) Homo, (R, B) +— Homp, (R, B)

for any Dx-algebra R and Ox-algebra B (i.e., to show that the functor B —
B is right adjoint to the forgetful functor {Dx-algebras} — {Ox-algebras}).
The mapping (24) comes from the obvious morphism B — B. The reader
can easily prove that (24) is bijective.

For a Dx-algebra A and a C-algebra C we have
Hompx—alg(jA’ C®0x)= Homox—alg(A’ C ® Ox)

This means that the canonical morphism Spec J A — Spec A identifies the
ind-scheme of horizontal sections of Spec JA with that of (all) sections of
Spec A. If X is complete then, by 2.6.2, these spaces are actually schemes.
Finally let us mention that the results of this subsection can be globalized
in the obvious way. The forgetful functor {Dx-schemes} — {X-schemes}
has a right adjoint functor J : {X-schemes} — {Dx-schemes}. For an X-
scheme Y, JY is the scheme of co-jets of sections of Y. For an Ox-algebra A
we have J Spec A = Spec JA. The canonical morphism JY — Y identifies
the space’ of horizontal sections of JY with the space of (all) sections of Y.

If X is complete and Y is quasiprojective then our space is a scheme.

2.6.4. Let (I, P) be a Harish-Chandra pair in the sense of 1.2.6 (so P can
be any affine group scheme; we do not assume that it is of finite type®).

Definition. An ([, P)-structure on X is a morphism 7 : X" — X together
with an action of (I, P) on X" such that

(i) X" is a P-torsor over X.

(ii) The action of [ on X” is formally free and transitive, i.e., it yields an

isomorphism [ROxr = O xn.

"In the most general situation “space” means “functor {C-algebras} — {Sets}”.

8As follows from the definition below Lie P has finite codimension in [ (equal to dim X).
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Remark. Let L be the group ind-scheme with LieL = [, L,.q = P
(see 7.11.2(v)). Consider the homogenuous space P\ L = SpfO where
O = Oy py = (Ul/(UNp)*. Take z € X and choose " € 7~ *(x). The map
L — X", | — Iz, yields a morphism a,zs : Spf O — X, which identifies
Spf O with the formal neighbourhood of x. For | € L, a € Spf O one has
aygr (@) = agn(al). Note that if the action of P on O is faithful then 2" is

uniquely defined by a .

2.6.5. Ezample. Set O = O,, := C|[t1, .., tn]]. The group of automorphisms
of the C-algebra O is naturally the group of C-points of an affine group
scheme Aut® O over C. Denote by Aut O the group ind-scheme such that, for
any C-algebra R, (Aut O)(R) is the automorphism group of the topological
R-algebra R®O = R|[[t1,..,t]]. So Aut’O is the group subscheme of
AutO; in fact, Aut’O = (AutO),q. One has LieAutO = DerO,
Lie Aut® O = Der® O := mg-Der O. Therefore Aut O is the group ind-scheme
that corresponds to the Harish-Chandra pair Aut’¢ O := (Der O, Aut® O).
By abuse of notation we will write Aut O instead of Aut’¢ O.

As explained by Gelfand and Kazhdan (see [GK]|, [GKF], and [BR]) any
smooth variety X of dimension n carries a canonical? Aut O-structure. The

space X" = X/

Lom 18 the space of ”"formal coordinate systems” on X. In

other words, a C-point of X" is a morphism Spec O — X with non-vanishing
differential and an R-point of X” is an R-morphism « : Spec(R@O) —- X®R
whose differential does not vanish over any point of Spec R. The group ind-
scheme Aut O acts on X’ in the obvious way, and we have the projection
m: X" - X, a— «a0). It is easy to see that X" (together with these
structures) is an Aut O-structure on X.

We will use the canonical Aut O,-structure in the case n = 1, i.e.,
when X is a curve, so O = CJ[t]]. Here the group AutO looks as
follows. There is an epimorphism Aut® O — Aut(tO/t?0) = G,,, which

M fact, an Aut O-structure on X is unique up to unique isomorphism (this follows

from the Remark in 2.6.4).
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we call the standard character of Aut’O; its kernel is pro-unipotent.
For a C-algebra R an automorphism of R[[t]] is defined by ¢t — >, ¢;t!
where ¢; € R* and ¢p is nilpotent. So AutO is the union of schemes
SpecC[cO,cl,cfl,CQ,c;;,...]/(clg), k € N. Aut’O is the group subscheme
of Aut O defined by ¢y = 0.

Some other examples of ([, P)-structures may be found in ?7.

2.6.6. Let X be a variety equipped with an (I, P)-structure X" (we will
apply the constructions below in the situation where X is a curve, [ = Der O,
P = Aut’ O (or a certain covering of Aut’ O), O := CJ[t]]). Denote by
M(X,0) the category of O-modules on X, and by M!(X) that of left D-
modules. For Fy € M(X, ) its pull-back Fxr to X" is a P-equivariant
O-module on X, If F is actually a left Dx-module then Fixx is in addition
[-equivariant (since, by 2.6.4(ii), an [-action on an Oxs-module is the same
as a flat connection). The functors M (X, Q) — {P-equivariant O-modules
on X"}, MY(X) — {(I, P)-equivariant O-modules on X"} are equivalences
of tensor categories.

One has the faithful exact tensor functors
(25) M(P) — M(X,0), M(L,P) — M'(X)

which send a representation V' to the Ox- or Dx-module Vx such that Vxa
equals to V' ® Oxn (the tensor product of P- or (I, P)-modules). In other
words, the Ox-module Vx is the twist of V by the P-torsor X”*. Therefore
any algebra A with P-action yields an Ox-algebra Ax; if A actually carries
a (I, P)-action then Ax is a Dy-algebra. Similarly, any scheme H with P-
action (a P-scheme for short) yields an X-scheme Hy. If H is actually a
(I, P)-scheme then Hx is a Dx-scheme. One has (Spec A) x = Spec(Ax).

Remarks. (i) The functor M(I,P) — MY (X) coincides with the
localization functor A for the (I, P)-action on X" (see 1.2.4).

(ii) The functors (25) admit right adjoints which assign to an Ox- or
Dx-module Fx the vector space I'(X”, Fxn) equipped with the obvious P-
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or (I, P)-module structure. Same adjointness holds if you consider algebras
instead of modules.

(iii) Let C' be a C-algebra; consider C' as an ([, P)-algebra with trivial
Aut O-action. Then Cx is the “constant” Dx-algebra from 2.6.1.

2.6.7. The forgetful functor {(I, P)-algebras} — {P-algebras} admits a left
adjoint (induction) functor J. For a P-algebra A one has a canonical

isomorphism
(26) (T A)x = J(Ax).

Indeed, the natural Ox-algebra morphism Ax — (JA)x induces a Dx-
algebra morphism J(Ax) — (JA)x. To show that it is an isomorphism
use the adjointness properties of J and A — Ax (see 2.6.3 and Remark (ii)
of 2.6.6).

Here is a geometric version of the above statements. The forgetful functor
{(1, P)-schemes} — {P-schemes} admits a right adjoint functor!® 7. For a
P-algebra A one has J(Spec A) = Spec J(A). For any P-scheme H one has
(TH)x = J(Hx).

2.7. Quantization II. From now on O := C[[t]], K := C((%)).

2.7.1. Consider first the “classical” picture. The schemes Hitch,, =z € X,
are fibers of the Dx-scheme Hitch = JC,,, affine over X; denote by 3 the
corresponding Dx-algebra. By 2.6.3 the projection Hitch — C,, identifies
the scheme of horizontal sections of Hitch with Hitch(X). In other words

3(X) = Hy (x.57),

and the projections 0 : 3¢ — 3%(X) from 2.4.3 are just the canonical

morphisms 0, from Proposition 2.6.2(ii).

10For affine schemes this is just a reformulation of the above statement for P-algebras.
The general situation does not reduce immediately to the affine case (a P-scheme may
not admit a covering by P-invariant affine subschemes), but the affine case is enough for

our purposes.
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Consider C' as an Aut? O-scheme via the standard character Aut’® O —
Gy, (see 2.6.5). The X-scheme C,, coincides with the X”-twist of C.

Therefore the isomorphism (26) induces a canonical isomorphism
l 1
3 =35 (0)x

where 53(0) is the Aut O-algebra J(Symg)®, and the Aut’ O-action on

(Sym g)¢ comes from the G,,-action opposite to that induced by the grading

of (Sym g)% (cf. the end of 2.2.2).

/

2.7.2. Let us pass to the “quantum” situation. Set 34(O) := DyeK.c(0)
This is a commutative algebra (see 2.5.2(i)). AutO acts on 34(O) since
35(0) is the endomorphism algebra of the twisted vacuum module Vac' (see
1.2.5) and Aut O acts on Vac. (The latter action is characterized by two
properties: it is compatible with the natural action of Aut O on g/é)??( and
the vacuum vector is invariant; the action of Aut O on 9/55?( is understood in
the topological sense, i.e., Aut(O®R) acts on @@R for any commutative
C-algebra R.) Consider the Dx-algebra

3=135:=35(0)x

corresponding to the commutative (Aut O)-algebra 34(O) (see 2.6.5, 2.6.6).
Its fibers are the algebras 3, from 2.5.1. A standard argument shows that
when z € X varies the morphisms h, from 2.5.4 define a morphism of Ox-

algebras h : 3 — I'(Bung, D) x.

2.7.3. Horizontality Theorem. h is horizontal, i.e., it is a morphism of Dx-
algebras.

For a proof see 2.8.
2.7.4. Set

(27) 3(X) = 3(X) == Hy(X,3) -
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According to 2.6.2(i) the Dx-algebra morphism h induces a C-algebra
morphism

hy :3(X) — I'(Bung, D)

We are going to show that (3(X),hx) is a solution to the quantization
problem from 2.2.5. Before doing this we have to define the filtration on
3(X) and the isomorphism oy(x) : gr3(X) — 59(X).

The canonical filtration on 34(0) is Aut O-invariant and the isomorphism
o50) : grgg(O)ﬁggl(O) (see 2.5.2(ii)) is compatible with Aut O-actions.
Therefore 3 carries a horizontal filtration and we have the isomorphism of
Dx-algebras

051 8r3~ 3Cl
which reduces to the isomorphism o;, from 2.5.2(ii) at each fiber. The
image of this filtration by 6, : 3 - Hv(X,3)x = 3(X)x is a horizontal
filtration on 3(X)x which is the same as a filtration on 3(X). Consider the
surjective morphism of graded Dx-algebras (gr 63)0';1 3% = gr3(X)x. By
adjunction (see (22)) it defines the surjective morphism of graded C-algebras
j3N(X) = Hy (X,57) — grj(X).

Note that hx is compatible with filtrations, and we have the commutative
diagram

hel
34(X) < T'(Bung,P)
(28) i TBung
gr3(X) grhy grI'(Bung, D)
Therefore j is an isomorphism and grhyx (hence hx) is injective. Define
o5x) ¢ 8r3(X) 5 3(X) by Oy(x) = §~L. The triple (3(X), hx,05x)) is a

solution to the quantization problem from 2.2.5.

2.7.5. Let us prove Theorem 2.5.5 and compare 3®)(X) from 2.5.5 with
3(X). Clearly h, = hx -6, where 6,, : 3, — 3(X) was defined in
Proposition 2.6.2(ii). 6,, is surjective (see 2.6.2(ii)) and strictly compatible
with filtrations (see the definition of the filtration on 3(X) in 2.7.4). hx
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is injective and strictly compatible with filtrations (see the end of 2.7.4).
So h; is strictly compatible with filtrations (which is precisely Theorem
2.5.5) and hx induces an isomorphism between the filtered algebras 3(X)
and 5 (X) := ha(3a)-

2.8. Horizontality. In this subsection we introduce Dx-structure on some
natural moduli schemes and prove the horizontality theorem 2.7.3 modulo
certain details explained in 4.4.14. The reader may skip this subsection for
the moment.

In 2.8.1-2.8.2 we sketch a proof of Theorem 2.7.3. The method of 2.8.2 is
slightly modified in 2.8.3. In 2.8.4-2.8.5 we explain some details and refer
to 4.4.14 for the rest of them. In 2.8.6 we consider very briefly the ramified

situation.

2.8.1. Let us construct the morphism h from Theorem 2.7.3.

Recall that the construction of h, from 2.5.3-2.5.4 involves the scheme
Bung g4, i.e., the moduli scheme of G-bundles on X trivialized over the formal
neighbourhood of z. It also involves the action of the Harish-Chandra pair
(@ K4, G(O,)) on Bung, and its lifting to the action of (gié)\ix, G(Ogz)) on
the line bundle 7 wRun, Where 7, is the natural morphism Bung , — Bung.
These actions come from the action of the group ind-scheme G(K;) on
Bung, and its lifting to the action of a certain central extension'! G/(Ia)
O T3 WRung -

To construct h one has to organize the above objects depending on x
into families. One defines in the obvious way a scheme M over X whose
fiber over x equals Bung ;. One defines a group scheme J(G) over X and a
group ind-scheme J™(G) over X whose fibers over x are respectively G(O;)
and G(K;). J(G) is the scheme of jets of functions X — G and J™(G)

is the ind-scheme of “meromorphic jets”. J™(G) acts on M. Finally one

HThis extension was mentioned (rather than defined) in the Remark from 2.5.3. This

is enough for the sketch we are giving.
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defines a central extension J* (@) and its action on m*wpun,, Where 7 is the
natural morphism M — Bung. These data being defined the construction

of h: 3 — I'(Bung, D') x is quite similar to that of hy, (see 2.5.3-2.5.4).

2.8.2. The crucial observation is that there are canonical connections along
X on J(G), JOT(G), J(G), M and T WBung Such that the action of
J7(G) on M and the action of J™(G) on T WBung are horizontal. This
implies the horizontality of h.

For an X-scheme Y we denote by JY the scheme of jets of sections
X — Y. It is well known (and more or less explained in 2.6.3) that JY
has a canonical connection along X (i.e., JY is a Dx-scheme in the sense
of 2.6.1). In particular this applies to J(G) = J(G x X). If F is a principal
G-bundle over X then the fiber of 7 : M — Bung over F equals J.F, so it is
equipped with a connection along X. One can show that these connections
come from a connection along X on M.

To define the connection on M as well as the other connections it is
convenient to use Grothendieck’s approach [Gr68]. According to [Gr68] a
connection (=integrable connection = “stratification”) along X on an X-
scheme Z is a collection of bijections ¢a5 : Mora (S, Z) — Morg(S, Z) for
every scheme S and every pair of infinitely close “points” «a,5 : S — X
(here Mor, (S, Z) is the preimage of o in Mor (S, Z) and “infinitely close”
means that the restrictions of & and f to Sieq coincide); the bijections ¢qs
are required to be functorial with respect to S and to satisfy the equation
PByPap = Pay:

For instance, if Z is the jet scheme of a scheme Y over X then
Mor, (S, Z) := Morx(S/,,Y) where S/, is the formal neighbourhood of the
graph I', € S x X and the morphism S/, — X is induced by the projection
prx : S x X — X. It is easy to show that if o and 8 are infinitely close
then Sy, = Sj, so we obtain a connection along X on Z. One can show that

it coincides with the connection defined in 2.6.3.
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The connections along X on J™ (@), J™(G), and M are defined in the
similar way. The horizontality of the action of J™*(G) on M and the action

of Ji (@) on T WRun, easily follows from the definitions.

2.8.3. The method described in 2.8.2 can be modified as follows. Recall
that O := C[[t]], K := C((t)); AutO and X" were defined in 2.6.5. Set
MM = M xx X*. So M” is the moduli space of quadruples (z,t,,F, V)
where x € X, t, is a formal parameter at z, F is a G-torsor on X, v,
is a section of F over the formal neighbourhood of z. The group ind-
scheme G(K) acts on the fiber of M over any T € X’ (indeed, this
fiber coincides with Bung, where z is the image of Z in X, so G(K) acts
on the fiber; on the other hand the formal parameter at x corresponding
to T defines an isomorphism K, — K). Actually G(K) acts on M"
(see 2.8.4) and the central extension CT(I?) acts on T wpun, Where 7 is
the natural morphism M” — Bung. This action induces a morphism

~

h : 3(0) = I'(X",0xn) @ I'(Bung, D') (see 2.7.2 for the definition of
36(0))-

On the other hand the action of Aut O on X" from 2.6.5 lifts canonically
to its action on M” (see 2.8.4) and the sheaf T*wpun, . The actions
of AutO and G{(?) on T*wpun, are compatible in the obvious sense.

Therefore h is Aut O-equivariant. So h induces a horizontal morphism

h: 3= 39(0))( — F(Bung,D’)X.

2.8.4. To turn the sketch from 2.8.3 into a proof of Theorem 2.7.3 we
first of all give a precise definition of the action of the semidirect product
AutO x G(K) on M”. Let R be a C-algebra. By definition, an R-
point of M” is a triple (a, F,7) where o : Spec R®O — X ® R is an
R-morphism whose differential does not vanish over any point of Spec R,
F is a G-torsor on X ® R, and ~ is a section of o*F. Let I', denote
the graph of the composition Spec R — Spec RRO-3X @ R and o' the
morphism Spec RORK — (X ® R) \ I'y induced by a. According to
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Beauville and Laszlo!'? (see 2.3.7 and 2.3.4) R-points of M” are in one-to-one
correspondence with triples (a, F',v') where « is as above, F' is a G-torsor
on (X ® R)\ Ty, and v is a section of o/ F’ (of course, F’ is the restriction
of F, /' is the restriction of 7). This interpretation shows that G(R®K) and
Aut(R®0) act on M”(R): the action of G(R®K) changes 7' and the action
of Aut(R®0) changes a (if a is replaced by asp, ¢ € Aut Spec R®O, then
I’y changes as a subscheme of X ® R but not as a subset, so (X ® R) \ I,
remains unchanged). Thus we obtain the action of Aut O x G(K) on M”"

mentioned in 2.8.3.

2.8.5. According to 2.8.4 Aut O acts on M” considered as a scheme over
Bung. So AutO acts on T wpun,. In 2.5.3 we mentioned the canonical
action of @) on the pullback of wpun, to Bung .. So CT(I?) acts on the
restriction of T*wpun,, to the fiber of M” over any T € X”. As explained in

2.8.3, to finish the proof of 2.7.3 it suffices to show that

—

(i) the actions of G(K) corresponding to various € X" come from an
(obviously unique) action of CT(?) on T*WRung
(ii) this action is compatible with that of AutO.
To prove (i) and (ii) it is necessary (and almost sufficient) to define the
central extension @) and its action on the pullback of wpun, to Bung .
The interested reader can do it using, e.g., [BLa94].

Instead of proving (i) and (ii) we will prove in 4.4.14 a similar statement
for a square root of WBung (because we need the square roots of WBung tO
formulate and prove Theorem 5.4.5, which is the main result of this work).
More precisely, for any square root £ of wx one defines a line bundle X, on
Bung, which is essentially a square root of wpun,, (see 4.4.1). One constructs
a central extension'? G/(\I%;) - acting on the pullback of A, to Bung, (see
4.4.7 — 4.4.8). The morphism h, : 3, — I'(Bung,D’) from 2.5.4 can be

127he normal bundle of T'w C X ® R is trivial, so according to 2.3.7 one can apply the

main theorem of [BLa95] rather than its globalized version.

13In fact, this extension is a square root of G(K,).
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naturally defined using this action (see 4.4.12 — 4.4.13). Finally, in 4.4.14
we prove the analog of the above statements (i) and (ii) for A;, which implies

the horizontality theorem 2.7.3.

2.8.6. Let A C X be a finite subscheme. Denote by Bung a the stack of G-
bundles on X trivialized over A. Denote by D’ the sheaf Dy, »» from 1.1.6 for
Y = Bung a, £ = the pullback of wpyn,, A = 1/2. Just as in the case A =)
one defines a horizontal morphism & : 3x\ o — I'(Bung a, D) ® Ox\a where
3x\a is the restriction of 3 to X\A. h induces an injection T'(N,On) —
I'(Bung a, D) where N = Na(G) is a closed subscheme of the ind-scheme

N (G) of horizontal sections of Specx\a-

Problem. Describe Na(G) explicitly.

We are going to indicate the geometric objects used in the solution of the
problem. Since we do not explain the details of the solution one can read the
rest of this subsection without knowing the answer to the problem, which
can be found in 3.8.2.

For n € Z4 denote by Ma , the stack of triples consisting of a point
x € X, a G-bundle F on X, and a trivialization of F over A + nz (here
we identify finite subshemes of X with effective divisors, so A + nz makes

sense). Ma j, is an algebraic stack and Ma := lim My ,, is a scheme over X.
—
n

Remark.  Let Ma , be the fiber of Ma over z € X. If z € X\A then
MM, is the moduli scheme of G-bundles trivialized over A and the formal

neighbourhood of z. If z € A then Ma » = Ma\{s},2-

Consider the “congruence subgroup” scheme G defined as follows: G

is a scheme flat over X such that for any scheme S flat over X
Morx (S,GA) = {f : S — G such that f|a, =1}

where Ag is the preimage of A in S. G4 is a group scheme over X. A

G-bundle on X trivialized over A is the same as a GA-bundle (this becomes
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clear if G-bundles and G A-bundles are considered as torsors for the étale
topology). So Bung a is the stack of Gx-bundles.
One can show that if D C X is a finite subscheme and A+ D is understood

in the sense of divisors then for every scheme S flat over X
Morx (S,Gayp) = {f € Morx(S,GA) such that f|p, =1}

Therefore a G-bundle on X trivialized over A + D is the same as a
G a-bundle trivialized over D. So Ma is the moduli scheme of triples
consisting of a point x € X, a Gx-bundle on X, and its trivialization
over the formal neighbourhood of . Now one can easily define a canonical
action of J™(GA) on Ma where J™(G ) is the group ind-scheme of
“meromorphic jets” of sections X — Gx. J™"(GA) and Ma are equipped
with connections along X and the above action is horizontal. And so on...

Remarks

(i) If A # 0 the method of 2.8.3 does not allow to avoid using group
ind-schemes over X.

(ii) There are pitfalls connected with infinite dimensional schemes and
ind-schemes like Ma or J™(GA). Here is an example. The
morphism Gy — G = Gy = G x X induces f : J""(Gp) —
J™(G). This f induces an isomorphism of the fibers over any
point x € X (the fiber of J™(GA) over x is G(K;), it does not
depend on A). But if A # () then f is not an isomorphism, nor even

a monomorphism.

2.9. Commutativity of 34(O). The algebras 34(0O) and 3, = 34(O,) were
defined in 2.5.1 and 2.7.2 (of course they are isomorphic). Feigin and Frenkel
proved in [FF92] that 34(O) is commutative. In this subsection we give two
proofs of the commutativity of 34(O): the global one (see 2.9.1-2.9.2) and
the local one (see 2.9.3-2.9.5). The latter is in fact a version of the original

proof from [FF92].
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The reader may skip this subsection for the moment. We will not use

2.9.1-2.9.2 in the rest of the paper.

2.9.1. Let us prove that

(29) [ha(32): hy(3y)] = 0

(see 2.5.4 for the definition of h, : 3, — ['(Bung,D’)). Since 3, is the
fiber at = of the Ox-algebra 3 = 34(O)x and h, comes from the Ox-algebra
morphism A : 3 = Ox ® I'(Bung, D’) it is enough to prove (29) for z # y.
Denote by Bung g,y the moduli scheme of G-bundles on X trivialized over
the formal neighbourhoods of z and y. G(K;) x G(K,) acts on Bung g . In
particular the Harish-Chandra pair ((g ® K;) x (g ® Ky), G(Oz) x G(Oy))
acts on Bung z,. This action lifts canonically to an action of ((978??1) X
(gﬁy), G(Oz) x G(Oy)) on the pullback of wpun, to Bung gy such that
1, € g® K, and 1, € g® K, act as multiplication by 2 and G(O,) x G(Oy)
acts in the obvious way. The action of G(O;) x G(Oy) on Bung , satisfies
condition (16) from 1.2.6 and the quotient stack equals Bung. So according
to 1.2.5 we have a canonical morphism hy,y : 3, ® 3y — I'(Bung, D). Its

restrictions to 3, and 3, are equal to h, and hy. So (29) is obvious.

2.9.2. Let us prove the commutativity of 34(0). Suppose that a €
(35(0),34(0)], a # 0. If x = y then (29) means that h,(3,) is commutative.
So for any X, z € X, and f : O — O, one has hy(f«(a)) = 0. Let
a € 55’(0) be the principal symbol of a. Then for any X, z, f as above
one has h¢(f.(a)) = 0 (see 2.4.3 for the definition and geometric description
of h¢ : 3¢ — T'(Bung, P) = I'(T*Bung, ©). This means that a considered
as a polynomial function on g* ® wo (see 2.4.1) has the following property:
for any X, z as above, any G-bundle F on X trivialized over the formal
neighbourhood of z, and any isomorphism O, — O the restriction of a
to the image of the map HO(X,g% ® wx) — ¢* @ wo, — ¢* @ wo is
zero. There is an n such that a comes from a function on g* ® (wo/m"wo)

where m is the maximal ideal of O. Choose X and z so that the mapping
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HY(X,wx) — wo, /mwo, is surjective and let F be the trivial bundle. Then
the map H°(X, g% ® wx) — g* ® (wo, /miwo,) is surjective and therefore

a = 0, i.e., a contradiction.

Remark.  Let Bung a be the stack of G-bundles on X trivialized over a
finite subscheme A C X. To deduce from (29) the commutativity of 34(O)
one can use the natural homomorphism from 3., z ¢ A, to the ring of twisted
differential operators on Bung a. Then instead of choosing (X, z) as in the

above proof one can fix (X, z) and take A big enough.

2.9.3. Denote by 3 the center of the completed twisted universal enveloping
algebra U (g ® K), K := C((t)) D C[[t]] = O. In [FF92] Feigin and Frenkel
deduce the commutativity of 34(O) from the surjectivity of the natural
homomorphism f : 3 — 34(0). We will present a proof of the surjectivity
of f which can be considered as a geometric version of the one from [FF92]
and also as a “quantization” of the remark at the end of 2.4.2. The relation

with [FF92] and 2.4.2 will be explained in 2.9.7 and 2.9.8.

Remark.  In the definition of the central extension of g ® K (see 2.5.1)
and therefore in the definition of 3 and 59(0) we used the “critical” bilinear
form ¢ defined by (18). In the proof of the surjectivity of f one can assume
that ¢ is any invariant symmetric bilinear form on g and g is any finite
dimensional Lie algebra. On the other hand it is known that if g is simple

and c is non-critical then the corresponding algebra 34(O) is trivial (see 777?).

2.9.4. We need the interpretation of U := U (g ® K) from [BD94]. Denote
by U’ the non-completed twisted universal enveloping algebra of g ® K. For
n > 0 let I, be the left ideal of U’ generated by g@m" C g® O C U’.
By definition, U’ := EiLnU//I”' Let U}, be the standard filtration of U’ and

n
U, the closure of U, in U, i.e., Uy := imU}/Iyx, Iny := I, N UL. The
—
n

main theorem of [BD94] identifies the dual space (U} /I, x)* with a certain
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topological vector space 1, ;. So
(30) Up/Ink = Q)" U= ()"

where €, = 1im ), ;, and * denotes the topological dual.
—
n
To define €, we need some notation. Denote by O, (resp. w?) the

completed tensor product of r copies of O (resp. of wp). Set wX =
wf? ®OT K, where K, is the field of fractions of O,. We identify O, with
Cl[t1,...,t,]] and write elements of wX as f(t1,...,t,)dt;...dt, where f
belongs to the field of fractions of C[[ty,. .., t]].
Definition. Qy is the set of (k+1)-tuples (wo, ..., w), w, € (g%)°" @WK,
such that
1) w, is invariant with respect to the action of the symmetric group S,
(S, acts both on (g*)®" and wX);
2) w, has poles of order < n at the hyperplanes t; =0, 1 < i < r, poles
of order < 2 at the hyperplanes ¢; =¢;, 1 <4 < j < r, and no other
poles;

3) if w, = fr(t1,...,t,)dty...dt,, r > 2, then

fT72(t17' . 'atT‘72) ®c

foltro. b)) = R
(31)
(P*(fT—l(tb ce at’f—l))
* tr—1 — 1y L

Here ¢ € g* ® g* is the bilinear form used in the definition of the central
extension of g ® K, ¢* : (g9 — (g")%" is dual to the mapping
@ g® — g®=D given by p(a1 ®...®a,) = a1 ® ... Q ar_2 @ [ar_1,ar]
and the dots in (31) denote an expression which does not have a pole at the
generic point of the hyperplane t,_1 = t,.

The topology on €, i, is induced by the embedding Q, x — [] (") ®
0<r<k

Q,Q given by (wo, ..., wg) = (no,...,nk), nr = [ 17 [T (i — tj)2 Wy
i i<j
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Let us explain that in (31) we consider f, as a function with values in
(")

We will not need the explicit formula from [BD94] for the isomorphism
(30). Let us only mention that according to Proposition 5 from [BD94] the
adjoint action of g® K on U; induces via (30) the following action of g ® K

on Q: a€g® K sends (wy,...,wg) € Q to (0,w],...,w)) where

— /
W, = ———=7 Sym w,,

o(r=1)!

w;(tl,...,tr) = (id®...®id®ada(tT))wr(t1,...,tr)
- wr_l(tl,...,tr_l)®c-da(tr).

Here Sym denotes the symmetrization operator (without the factor 1/7!),
ady,) + g — g* is the operator corresponding to a(t,) in the coadjoint

representation, and c¢: g — g* is the bilinear form of g.

Remark.  Suppose that ¢ = 0 and g is commutative. Then U /I, =
@ﬁ:o Sym"(g ® K/m") and Q, 1 = @ﬁ:o Sym (g* ® m "wp) where Sym
denotes the completed symmetric power. The isomorphism U} /I, j =
(Qy%)" is the identification of Sym(g® K /m"™) with the space of polynomial

functions on g* ® m™"wp used in 2.4.1 and 2.4.2.

2.9.5. According to 2.9.4 to prove the surjectivity of f : 3 — 34(0) it
is enough to show that any (g ® O)-invariant continuous linear functional
l: Qpr — C can be extended to a (g ® K)-invariant continuous linear

functional €2 — C. Consider the continuous linear operator

T: Qp — C((C))@Qo,k = { i anC"lan € Qo , an — 0 for n — —oo}
defined by
(32) T(wo, ..., wg) = (Wo, ..., W), Wr=wr(C+t1,...,¢+1t)
where w, (¢ + t1,...,( + t,) is considered as an element of

ATIC(O)[[trs - - tal]dty ... dty = CUO))RATIC[t1, . .., t]] dty . .. dty,
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A = H (ti — tj)2 .

1<i<j<r

If I € (Qog)* let I = Q — C((¢)) be the composition of T : Qp —
C((¢)) @20k and id ®1 : C((¢)) @20, — C((¢))- Write L as YL’ i € ()*.
If [ is g ® O-invariant then the functionals I; are g @ K —inifariant. Besides
lolog, = I-

Remark. Let G be an algebraic group such that LieG = g. Then G(K)
acts on our central extension of g® K (see (19)), so it acts on U;C; moreover,
G(0) acts on U}, /I, .. Therefore G(K) acts on €, and G(O) acts on ©,, . In
the above situation if [ is G(O)-invariant then the functionals /; are G(K)-
invariant (see formula (24) from [BD94] for the action of G(K) on ).
Notice that if G is connected G(K) is not necessarily connected, so G(K)-

invariance does not follow immediately from (g ® K )-invariance.

2.9.6. Since [ is continuous I; — 0 for i — —oo (i.e., for every n we have
I—i(Q %) = 0 if i is big enough). So the map [ ~ [ can be considered as a
S . [—
map from Uj,/Io to Wi :={ > ai(*la; € Uy, a; — 0 for i — —oo}. These

1=—00
maps define an operator

(33) O: Vad — W =W

k
where Vad = U'/Ij is the twisted vacuum module. As explained in 2.9.5, ®
induces a map
(34) 35(0) = 38C((€)) :=={ i aiC'la; € 3,a; — 0 for i — —o0}.
One can prove that (34) is a ring homomorphism (see 7?77). It is easy to
see that the composition of (34) and the projection 3&C((¢)) — 35(0)((¢))
maps 34(0) to 34(0)[[¢]] and the composition 34(0) — 3g(0)[[§]]g)>59(0) is
the identity.
Remark. Let G be a connected algebraic group such that Lie G = g. Then

all elements of the image of (34) are G(K)-invariant (see the remark from

2.9.5).
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2.9.7. One can show that (33) coincides with the operator F': Vad — W
constructed by Feigin and Frenkel (see the proof of Lemma 1 from [FF92])
and therefore 2.9.5 is just a version of a part of [FF92].

The definition of F' from [FF92] can be reformulated as follows. Set
W= U,.((0)), W, = {Zaigi € Wgla—; = 0 for i big enough}. Define
W+ cCcWhby W+ = UVV,:E IZ/VJr and W~ have natural algebra structures and
W has a natural strlfcture of (W™, W™)-bimodule (W is a left W*-module
and a right W~ -module). Consider the linear maps o : gféf( — W# such
that

and fora € g((t) =g @ K Cg® K

e (a) =alt—Q) €a(()C), ¢ (a)=alt—C)€a((O)()-

It is easy to show that ¢* are Lie algebra homomorphisms. Consider the
gié?(-module structure on W defined by a o w := ¢ (a)w — wp_(a), a €

g K, weW. Then F: Vad — W is the g ® K-module homomorphism

that maps the vacuum vector from Vac to 1 € W.

2.9.8. Let us explain the relation between (34) and its classical analog from
2.4.2.

U is equipped with the standard filtration ﬁ; (see 2.9.4). Tt induces
the filtration 3z = 3 N Uj. We identify gr,U := Uy/Uj,_, with the
completion of Symk’(g ® K), i.e., the space of homogeneous polynomial
functions g* ® wx — C of degree k where wg := wo ®o K (a function f on
g* ® wg is said to be polynomial if for every n its restriction to g* @ m™"
is polynomial, i.e., comes from a polynomial function on g* ® (m~"/m')
for some N depending on n). Denote by 3% the algebra of g ® K-invariant
polynomial functions on g* ® wg. Clearly the image of gr3 in grﬁ/ is

contained in 3.
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The filtration of 3 induces a filtration of 3®@C((¢)) and the map (34)
is compatible with the filtrations. We claim that the following diagram is

commutative:
g1, 35(0) — gr, 30C((C))

(35) o l l

500) = 378C((0)
Here the upper arrow is induced by (34), 531(0) was defined in 2.4.1, o is
the symbol map from 1.2.5, and v is defined by
(36)
v(f) :=h(), (h(Q)(p) = fle(C+1))
fe3(0), peg@ur, p(¢+1) € g™ (()tdt = (g% ® wo)SC((C)).-

Here 331(0) is identified with the algebra of g ® O-invariant polynomial

functions on g* ® wo (cf.2.4.1). The map v was considered in the Remark
from 2.4.2.

The commutativity of (35) follows from the commutativity of the diagram

~

(U];/In,k)* — Qn,k

(37) o* T T

(SymF(g @ K/g@m™)* = ((m "wo)®k)5%k

Here the upper arrow is dual to (30), o : U}/, — Sym*(g® K/g®@m") is
the symbol map, and the right vertical arrow is defined by w — (0, ..., 0, w).

The commutativity of (37) is an immediate consequence of the definition of

(30); see [BD94].

2.10. Geometry of T*Bung. This subsection should be considered as
an appendix; the reader may certainly skip it.

Set Nilp = Nilp(G) := p~!(0) where p : T*Bung — Hitch(X) is the
Hitchin fibration (see 2.2.3). Nilp was introduced in [La87] and [La88]
under the name of global nilpotent cone (if F is a G-bundle on X and
n € TEBung = H(X, g% ® wx) then (F,n) € Nilp if and only if the image
of nin H°(X, gr ® wx) is nilpotent).
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In 2.10.1 we show that Proposition 2.2.4 (iii) easily follows from the
equality

(38) dim Nilp = dim Bung .

We also deduce from (38) that Bung is good in the sense of 1.1.1. The
equality (38) was proved by Faltings and Ginzburg; in the particular case
G = PSL, it had been proved by Laumon. In 2.10.2 we give some comments
on their proofs. In 2.10.3 we discuss the set of irreducible components of
Nilp. In 2.10.4 we show that Nilp is equidimensional even if the genus of X
equals 0 or 1 (if g > 1 this follows from 2.2.4 (iii)). In 2.10.5 we prove that
Bung is very good in the sense of 1.1.1.

We will identify g and g* using an invariant scalar product on g.

2.10.1. Assuming (38) we are going to prove 2.2.4 (iii) and show that
Bung is good in the sense of 1.1.1. Let U C T*Bung be the biggest
open substack such that dimU < 2dimBung. (38) means that the fiber
of p : T*Bung — Hitch(X) over 0 has dimension dimBung. Since
dim Hitch(X) = dim Bung this implies that U D p~1(0). U is invariant with
respect to the natural action of G,, on T*Bung. Therefore U = T*Bung.
So dimT*Bung < 2dim Bung. According to 1.1.1 this means that Bung
is good and T*Bung is a locally complete intersection of pure dimension
2 dim Bung.

For an open V' C T*Bung the following properties are equivalent: 1) the
restriction of p to V is flat, 2) the fibers of this restriction have dimension
dim Bung. Let Vihax be the maximal V' with these properties. Viax is Gy,
invariant and according to (38) Vinax O p~1(0). So Vinax = T*Bung and we
have proved the first statement of 2.2.4 (iii). It implies that the image of
p? is open. On the other hand it is G,,-invariant and contains 0. So p7 is

surjective. QED.
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Since Nilp contains the zero section of T*Bung (38) follows from the

inequality dim Nilp < dim Bung, which was obtained in [La88], [Fal93],

[Gi97] as a corollary of the following theorem.

2.10.2. Theorem. ([La88], [Fal93], [Gi97]). Nilp is isotropic.

Remarks

(i)

(iii)

(iv)

Let us explain that a subscheme N of a smooth symplectic variety
M is said to be isotropic if any smooth subvariety of N is isotropic.
One can show that N is isotropic if and only if the set of nonsingular
points of Nyoq is isotropic. N is said to be Lagrangian if it is
isotropic and dim, N = %dimx M for all x € N. If Y is a smooth
algebraic stack then a substack N/ C T*) is said to be isotropic
(resp. Lagrangian) if N'xy S C (T*)) xy S C T*S is isotropic
(resp. Lagrangian) for some presentation!

S — Y (then it is true for all presentations S — ).
The proofs of Theorem 2.10.2 given in [Fal93] and [Gi97] do not
use the assumption g > 1 where g is the genus of X. If g > 1
then Faltings and Ginzburg show that Nilp is Lagrangian. Their
argument was explained in 2.10.1: (38) implies that Nilp has pure
dimension dim Bung. In 2.10.1 we used the equality dim Hitch(X) =
dim Bung, which holds only if ¢ > 1. In fact Nilp is Lagrangian even
if g=0,1 (see 2.10.4).
Since Nilp C T*Bung is Lagrangian and G,-invariant it is a union
of conormal bundles to certain reduced irreducible closed substacks
of Bung. For G = PSL, a description of some of these substacks
was obtained by Laumon (see §§3.8-3.9 from [La88]).
Ginzburg’s proof of Theorem 2.10.2 is based on the following
interpretation of Nilp in terms of 7 : Bung — Bung where B is a

Borel subgroup of G: if 7 € Bung, n € T#Bung then (F,7) € Nilp

145 presentation of ) is a smooth surjective morphism S — ) where S is a scheme.
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if and only if there is an & € 7 !(F) such that the image of 7
in T¢ Bunpg equals 0. This interpretation enables Ginzburg to prove
Theorem 2.10.2 using a simple and general argument from symplectic
geometry (see §86.5 from [Gi97]). Falting’s proof of Theorem 2.10.2
is also very nice and short (see the first two paragraphs of the proof
of Theorem II.5 from [Fal93]).

(v) The proof of Theorem 2.10.2 for G = PSL,, given in [La88] does
not work in the general case because it uses the following property
of g = sl,,: for every nilpotent A € g there is a parabolic subgroup
P C G such that A belongs to the Lie algebra of the unipotent radical
U C P, the P-orbit of A is open in Lie U, and the centralizer of A in
G is contained in P. This property holds for g = si,, (e.g., one can
take for P the stabilizer of the flag 0 C Ker A C Ker A2 C ...) but
not for an arbitrary semisimple g (e.g., it does not hold if g = spy

and A € sp, is a nilpotent operator of rank 1).

2.10.3. In this subsection we “describe” the set of irreducible components
of Nilp.

Recall that Nilp is the stack of pairs (F,n) where F is a G-bundle
on X and n € H(X,gr ® wx) = H°(X,g% ® wx) is nilpotent. For a
nilpotent conjugacy class C' C g we have the locally closed substack Nilps
parametrizing pairs (F,n) such that n(z) € C for generic z € X.

Fix some e € C and include it into an slp-triple {e, f,h}. Let g¥ be the
decreasing filtration of g such that [h, g¥] C g* and adj, acts on gF/g"t! as
multiplication by k. g* depend on e but not on h and f. Set p = p. := g".
p is a parabolic subalgebra of g. Let P C G be the corresponding subgroup.
We have the map C — G/P that associates to a € C the parabolic
subalgebra p,. Its fiber {a € Clp, = p} (i.e., the P-orbit of e € C) equals
g% N C; this is an open subset of g2. An element of g2 is said to be generic

if it belongs to g2 N C.
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Let (F,n) € Nilpg, U := {z € X|n(x) € C}. The image of n € T'(U,Cr ®
wx) in T'(U, (G/P) ) extends to a section of (G/P)r over X. So we obtain
a P-structure on F. In terms of this P-structure n € H°(X, 9_27_- ® wyx) and
n(z) is generic for x € U.

Denote by Y¢ the stack of pairs (F,n) where F is a P-bundle on X and
n € H°(X,g% ® wx) is such that n(z) is generic for almost all z € X. For
a P-bundle F let deg F € Hom(P,G,,)* be the functional that associates
to ¢ : P — Gy, the degree of the push-forward of F by ¢. Yo is the
disjoint union of open substacks Y4, v € Hom(P,G,,)*, parametrizing
pairs (F,n) € Yo such that deg F = u. It is easy to show that for each
v € Hom(P,G,,)* the natural morphism Y% — Nilps is a locally closed

embedding and the substacks Y/ C Nilp, form a stratification of Nilp.
Lemma.

1) Y/ is a smooth equidimensional stack. dim Y% < dim Bung .

2) Let Y2 be the union of connected components of Yo of dimension
dimBung. Then Y7 is the stack of pairs (F,n) € Y such that
ad, : (971/g%)F — (8'/¢%)F ® wx is an isomorphism.

Remark. (38) follows from the lemma.

Proof. The deformation theory of (F,n) € Y& is controled by the
hypercohomology of the complex C* where CY = pr = gg_-, Ccl = 92}- R wx,
C' = 0 for i # 0,1, and the differential d : C° — C' equals ad,. Since
Coker d has finite support H?(X,C") = 0. So Y is smooth and

dim(r ) Yo = x(87F @ wx) — x(a%) = —x(ar/97") — x(a%)
= —x(97) + x(g7'/a%) = dim Bung + x(g7'/0%) -

Clearly X(g;—l /go}-) depends only on v = degF. The morphism ad, :

g;_-l /8% — (9'/9%)F @ wy is injective and its cokernel A has finite support.

So 2x(g7' /%) = x(a7'/9%) — x((g'/g¥)F ® wx) = —x(A) < 0 and
x(67'/6%) = 0 if and only if A = 0. O
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Since Nilp has pure dimension dim Bung the lemma implies that the
irreducible components of Nilp are parametrized by | |mo(Y().

mo(Y4) can be identified with 7o of a simpler C;tack M defined as
follows. Set L = P/U where U is the unipotent radical of P. L acts on
V := g2/g3. Denote by D; the set of a € V such that the determinant of
(adg)’ : g7%/g7""t — g'/g"™! equals 0. D; C V is an L-invariant closed
subset of pure codimension 1. An element of g? is generic if and only
if its image in V does not belong to Ds. Therefore D; C Dy for all 4.
Denote by M¢ the stack of pairs (F,n) where F is an L-bundle on X and
n € H°(X,Vr ® wy) is such that n(z) € Dy for all z € X and n(z) € Dy
for generic x € X. It is easy to see that the natural morphism Y5 — M¢
induces a bijection m(Y2) — mo(Mc).

So irreducible components of Nilp are parametrized by | |mo(Mc).
Hopefully mo(Mc) can be described in terms of “standard’q objects
associated to C and X ...

Remark. 1f G = PSL, then Nilp; has pure dimension dim Bung for every
nilpotent conjugacy class C' C sl,, (see [La88]). This is not true, e.g., if
G = Sps and C is the set of nilpotent matrices from sp4 of rank 1. Indeed,
let (F,7n) € Y be such that n € H(X, g%®wx) has only simple zeros. Then
it is easy to show that the morphism Yo — Nilpy is an open embedding
in a neighbourhood of (F,n). On the other hand it follows from the above
lemma that if 7 has a zero then the dimension of Yo at (F,n) is less than

Bung.

2.10.4. Theorem. Nilp is Lagrangian.

In this theorem we do not assume that g > 1.
Proof. As explained in Remark (ii) from 2.10.2 we only have to show that
Nilp has pure dimension dim Bung for g < 1.

1) Let ¢ = 0. Then Nilp = T*Bung. A quasicompact open substack of

Bung can be represented as H\M where M is a smooth variety and H is an
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algebraic group acting on M. Then T*(H\M) = H\N where N C T*M is
the union of the conormal bundles of the orbits of H. Each conormal bundle

has pure dimension dim M and since g = 0 the number of H-orbits is finite.

Remark. Essentially the same argument shows that for any smooth
algebraic stack ) the dimension of T*) at each point is > dim). If
g =0 and Y = Bung then T*) = Nilp and dimT*) = dim Y according to
Theorem 2.10.2. So we have again proved Theorem 2.10.4 for g = 0.

2) Let g = 1. It is convenient to assume G reductive but not necessarily
semisimple (this is not really essential because Theorem 2.10.4 for reductive
G easily follows from the semisimple case).

Before proceeding to the proof let us recall the notions of semistability
and Shatz stratification. Fix a Borel subgroup B C G and denote by H its
maximal abelian quotient. Let P C GG be a parabolic subgroup containing
B, L the maximal reductive quotient of P, Z the center of L. Let I' (resp.
A) be the set of simple roots of G (resp. L). The embedding Z — L
induces an isomorphism Hom(Z,G,,) ® Q — Hom(L,G,,) ® Q. Denote
by p the composition Hom(H, G,,) — Hom(Z,G,,) — Hom(L,G,,) ® Q =
Hom(P,G,,) ® Q. We say that | € Hom(P,G,,)* is strictly dominant if
I(p(a)) > 0 for @ € T\A.

For a P-bundle F let degF € Hom(P,G,,)* be the functional that
associates to ¢ : P — G,, the degree of the push-forward of F by ¢.
A G-bundle is said to be semistable if it does not come from a P-bundle
of strictly dominant degree for any P # G. Semistable G-bundles form
an open substack Bung®® C Bung. Semistable G-bundles of fixed degree
d € Hom(G,G,,) form an open substack Bung**? C Bung*. If P C G

*

is a parabolic subgroup containing B and d € Hom(P,G,,)* is strictly
dominant denote by Shatzdp the stack of P-bundles F of degree d such
that the corresponding L-bundle is semistable. It is known that the natural

morphism Shatzﬁlg — Bung is a locally closed embedding and the substacks
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Shatzﬁlg for all P, d form a stratification of Bung, which is called the Shatz
stratification.

Denote by Nilp%(G) (resp. Nilp**(G), Nilp*>?(@G)) the fibered product of
Nilp = Nilp(G) and Shatz% (resp. Bung®®, Bung®**?) over Bung. To show
that Nilp(G) has pure dimension dim Bung = 0 it is enough to show that
Nilp%(G) has pure dimension 0 for each P and d. Let L be the maximal
reductive quotient of P, p := Lie P, [ := Lie L. If F is a P-bundle of strictly
dominant degree such that the corresponding L-bundle F is semistable then
H°(X,g7) = H°(X,pr), so we have the natural map n + 7 from H°(X, gr)
to HO(X,lz). Define © : Nilph(G) — Nilp*>4(L) by (F,n) — (F,7),
n € H' (X, gr @ wx) = H°(X,g7) (wx is trivial because g = 1). Using
again that g = 1 one shows that 7 is smooth and its fibers are 0-dimensional
stacks. So it is enough to show that Nilp®*(L) is of pure dimension 0.

A point of Nilp*(L) is a pair consisting of a semistable L-bundle F
and a nilpotent n € H°(X,Iz). Since Ir is a semistable vector bundle
ad, : [r = [r has constant rank. So the conjugacy class of n(z) does not
depend on = € X. For a nilpotent conjugacy class C' C [ denote by Nilp¢? (L)
the locally closed substack of Nilp**(L) parametrizing pairs (F,n) such that
n(x) € C. It is enough to show that Nilp¢?(L) has pure dimension 0 for each
C. Let Z(A) C L be the centralizer of some A € C, 3(A) := Lie Z(A). If
(F,n) € NilpZ#(L) then n € I'(X,Cr) = I'(X, (G/Z(A)) r) defines a Z(A)-
structure on F. Thus we obtain an open embedding Nilp¢¥(L) < Bunga).
Finally Buny4) has pure dimension 0 because for any Z(A)-bundle £ one
has x(3(A)g) = deg3(A)s = 0 (notice that since G/Z(A) = C has a G-
invariant symplectic structure the adjoint representation of Z(A) has trivial

determinant and therefore 3(A)¢ is trivial). O

2.10.5. Proof of Proposition 2.1.2. We must prove that (4) holds for
Y = Bung, i.e., codim{F € Bung|dim H°(X,g7) = n} > n for all n > 0.
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This is equivalent to proving that
(39) dim(A(G)\A°(@)) < dim Bung

where A(G) is the stack of pairs (F,s), F € Bung, s € H°(X,gz), and
A%G) C A(G) is the closed substack defined by the equation s = 0.
Set C' := Spec(Symg*)®. This is the affine scheme quotient of g with
respect to the adjoint action of G; in fact C' = W\h where b is a fixed
Cartan subalgebra of g and W is the Weyl group. The morphism g — C
induces a map HY(X,gr) — Mor(X,C) = C. So we have a canonical
morphism f : A(G) — C = W\h. For h € b set A,(G) = f~1(h)
where h € W\b is the image of h. Set G* := {g € G|ghg™' = h},
g" = LieG" = {a € g|[a,h] = 0}. Denote by 3; the center of g". Since
h € 35, and there is a finite number of subalgebras of g of the form 3, (39)
follows from the inequality dim(A;(G)\A°(G)) < dim Bung — dim 3. So it

is enough to prove that

(40) dim A (G) < dim Bung — dimj, for h #0

(41) dim(Ao(G)\A*(@)) < dim Bung .

Denote by Z, the center of G". Let us show that (40) follows from the
inequality (41) with G replaced by G"/Z;,. Indeed, we have the natural
isomorphisms Ag(G") — A,(G") =5 A,(G) and the obvious morphism
¢ : Ag(GM) — Ag(G"/Z1,). A non-empty fiber of ¢ is isomorphic to
Bung, , so dim A, (G) < dim Bung, + dim Ay(G"/Z}). Since dim Buny, =
(g —1) - dim 3, and (41) implies that dim Ag(G"/Zy) = (g — 1) - dim(g" /35)
we have dim A;(G) < (g — 1) - dim g" = dimBung — (g — 1) - dim(g/g") <
dim Bung — dim(g/g"). Finally dim(g/g") > 2 - dim 3;, > dim , if h # 0.

To prove (41) we will show that if Y C Ag(G) is a locally closed reduced
irreducible substack then dim Y < dim Bung and dim Y = dim Bung only if
Y C A%Q). For £ € H°(X,wx) consider the morphism mg¢ : Ao(G) — Nilp
defined by (F,s) — (F,s¢), F € Bung, s € H°(X,g7). The morphisms
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me define m : Ao(G) x H°(X,wx) — Nilp. The image of m is contained
in some locally closed reduced irreducible substack Z C Nilp. If £ # 0 then
mg induces an embedding Y < Z¢ where Z¢ is the closed substack of Z
consisting of pairs (F,n) € H(X, gr ® wx) such that the restriction of 7
to the subscheme D¢ := {z € X|[{(x) = 0} is zero. So dimY < dim Z¢ <
dim Z < dim Nilp = dim Bung. If dimY = dim Bung then Zy = Z for all
nonzero & € HY(X,wy). This means that n = 0 for all (F,n) € Z and
therefore s = 0 for all (F,s) €Y, ie., Y C A%G). O

2.11. On the stack of local systems. Denote by LSg the stack of G-
local systems on X (a G-local system is a G-bundle with a connection).
Kapranov [Kap97] explained that LS has a derived version RLS¢, which
is a DG stack. Using the results of 2.10 we will show that if g > 1 and G
is semisimple then RLSg = LSg. We also describe the set of irreducible
components of LSg. This section may be skipped by the reader; its results

are not used in the rest of the work.

2.11.1. Fix € X. Denote by LS{ the stack of G-biundles F on X
equipped with a connection V having a simple pole at x. Denote by
£ the restriction to LSE = LSE x {z} of the universal G-bundle on
LSE x X. The residue of V at x is a section R € I'(LSE, ge), and LSg
is the closed substack of LS§ defined by the equation R = 0. Consider
the open substack E:S'Zv C LS¢ parametrizing pairs (F,V) such that
V : HYX,g7) - HY(X,gr ® wx(v)) is surjective. It is easy to see that
EAS% is a smooth stack of pure dimension (2¢g — 1) - dim G and LS C Z:SZ

Consider ge as a stack over LS%. The sections R,0 € I'(LSE, ge) define
two closed substacks of gg, and RLS is their intersection in the derived
sense while LSg is their usual intersection. So the following conditions are

equivalent:

1) RLSq = LSq;
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2) LS¢ is a locally complete intersection of pure dimension (2g — 2) -
dim G}
3) dim LSg < (29 —2) - dim G.
The following proposition shows that these conditions are satisfied if g > 1

and G is semisimple.

2.11.2. Proposition. Suppose that g > 1 and G is reductive. Then LS¢ is
a locally complete intersection of pure dimension (2g — 2) - dim G + [ where

[ is the dimension of the center of G.

Proof. Let R have the same meaning as in 2.11.1. Clearly R €
I'(LSE, [, 9]¢), so it suffices to show that

(42) dim £LS¢ < (29 — 2) - dim G + L.

Denote by G.q the quotient of G by its center. Consider the projection
p : LSz — Bung,,. If the fiber of p over a G,g-bundle F is not
empty then its dimension equals dim 77 Bung,, +1(2g9 — 1), so dim LS <
dim 7" Bung,, +1(2g—1). Finally dim 7" Bung,, < dim Gaq-(29—2) because

Bung,, is good in the sense of 1.1.1 (we proved this in 2.10.1). O

2.11.3. Let Bung, C Bung denote the preimage of the connected component
of Bung/g,g) containing the trivial bundle. The image of LS¢ — Bung is

contained in Bung,.

2.11.4. Proposition. Suppose that g > 1 and G is reductive. Then the
preimage in £S¢ of every connected component of Bung, is non-empty and
irreducible.

So irreducible components of LSg are parametrized by
Ker(m1(G) — m1(G/|G, G))) = m (|G, G)).

Proof. Consider the open substack BunOGa . C Bung,, parametrizing Gaq-
bundles F such that H(X, (gaq)7) = O (this is the biggest Deligne-Mumford

substack of Bung,,). Denote by BunY the preimage of Bun(();dd in Bung,.
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Let ES% denote the preimage of BunOGadl in LS. In 2.10.5 we proved that
Bung,, is very good in the sense of 1.1.1, so dim(7™ Bung,, \T* Bun%ad) <
dim7* Bung,,. The argument used in the proof of (42) shows that
dim(LSe \ £82) < (29 — 2) - dim G + I. Using 2.11.2 one sees that £S2
is dense in LSg. So it suffices to prove that the preimage in ES% of every
connected component of Bun%’ is non-empty and irreducible. This is clear

because the morphism £S5 — Bunl/ is a torsor'® over 7" Buny/. O

2.12. On the Beauville — Laszlo Theorem. This section is, in fact, an
appendix in which we explain a globalized version of the main theorem of
[BLa95]. This version is used in 2.3.7 but not in an essential way. So this

section can be skipped by the reader.

2.12.1. Theorem. Let p : S — S be a morphism of schemes, D C S an
effective Cartier divisor. Suppose that D:= p~ (D) is a Cartier divisor in S
and the morphism D — D is an isomorphism. Set U := S\ D, U := S \ D.
Denote by C the category of quasi-coherent Og-modules that have no non-
zero local sections supported at D. Denote by C the similar category for
(S,D). Denote by C’ the category of triples (Mj, Ma, @) where M; is
a quasi-coherent Oy-module, My € C~’, @ is an isomorphism between the

pullbacks of M7 and Mj to U.

1) p* maps C to C~Z’, so we have the functor F' : C — C’ that sends
M € C to (M|y,p*M, ) where ¢ is the natural isomorphism
between the pullbacks of M|y and p*M to U.

2) F:C — (' is an equivalence.

3) M € C is locally of finite type (resp. flat, resp. locally free of finite
rank) if and only if M|y and f*M have this property.

15T he torsor structure depends on the choice of an invariant scalar product on g.
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This theorem is easily reduced to the case where S and S are affine!®
and D is globally defined by one equation (so S = Spec A, S = Specﬁ7
D = SpecA/fA, f € Ais not a zero divisor). This case is treated just as
in [BLa95] (in [BLa95] it is supposed that A = A :=the completion of A for
the f-adic topology, but the only properties of A used in [BLa95] are the
injectivity of f : A — A and the bijectivity of A/fA — /T/fg)

2.12.2. Let D be a closed affine subscheme of a scheme S. Denote by S
the completion of .S along D and by S’ the spectrum of the ring of regular
functions on S (so S is an affine formal scheme and S’ is the corresponding

true scheme). We have the morphisms 7 : S—Sandi:S— 9.

2.12.3. Proposition. There is at most one morphism p : S’ — S such that

pi = T.

Proof. Suppose that m = p1t = poi for some pi1,ps : S S LetY c §
be the preimage of the diagonal A C S x S under (p1,p2) : S = 8§ x8S.
Then Y is a locally closed subscheme of S/ containing the n-th infinitesimal
neighbourhood of D C §' for every n. So (Y\Y)N D = and therefore
Y\Y = 0, ie, Y is closed. A closed subscheme of S containing all

infinitesimal neighbourhoods of D equals 5. SoY =5 and p1 = P2. ([l

2.12.4. Suppose we are in the situation of 2.12.2 and D C S is an effective
Cartier divisor. If there exists p : &' — S such that pi = 7 then p~ (D) C g
is a Cartier divisor and the morphism p~!(D) — D is an isomorphism. So

Theorem 2.12.1 is applicable.

16pop any x € S there is an affine neighbourhood U of x and an open affine Ucs
such that U C p~ 1 (U) and UnD = p 1 U)N D. Indeed, we can assume that S is affine
and x € D. Let Uy C S be an affine neighbourhood of the preimage of z in D. Then
p(fh N 5) is an affine neighbourhood of x in D, so it contains U N D for some open affine

U C S such that 2 € U. Then U := U; x g U has the desired properties.
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2.12.5. Suppose we are in the situation of 2.12.2 and S is quasi-separated.
Then there exists p : S’ — S such that pi = w. The proof we know is rather
long. We first treat the noetherian case and then use the following fact
(Deligne, private communication): for any quasi-compact quasi-separated
scheme S there exists an affine morphism from S to some scheme of finite
type over Z.

In 2.3.7 we use the existence of p : S — S for S = X ® R where X is our

curve and R is a C-algebra. So the following result suffices.

2.12.6. Proposition. Suppose that in the situation of 2.12.2 S is a locally
closed subscheme of P* ® R for some ring R. Then there exists p : S =8

such that pi = .

Proof. We use Jouanolou’s device. Let P* be the projective space dual to
P =P" Z C P x P* the incidence correspondence, U := (P x P*) \ Z. Since
the morphism U — P is a torsor over some vector bundle on PP and S is an
affine formal scheme the morphism S — Plifts to a morphism S — U. Since
U is affine Mor(?, U) = Mor(g’,U), so we get a morphism S’ — U. The
composition S5 U P yields a morphism f : S’ - P® R. The locally
closed subscheme f1(S) C §' contains the n-th infinitesimal neighbourhood
of D C § for every n, so f~1(S) = & (cf. 2.12.3) and f induces a morphism
p: S8 =S CP®R. Clearly pi = . O

Remark.  One can also prove the proposition interpreting the morphism
S — P" as a pair (M, @) where M is an invertible sheaf on S and ¢ is an
epimorphism O"*! — M. Then one shows that (M, ) extends to a pair
(M ¢') on S'. Of course, this proof is essentially equivalent to the one

based on Jouanolou’s device.
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3. Opers

3.1. Definition and first properties.

3.1.1. Let G be a connected reductive group over C with a fixed Borel
subgroup B = Bg C G. Set N = [B, B], so H = B/N is the Cartan group.
Denote by n C b C g, h = b/n the corresponding Lie algebras. g carries a
canonical decreasing Lie algebra filtration g¥ such that g° = b, g' = n, and
for any k > 0 the weights of the action of h = gr’ g on gr” g (resp. gr—*g) are
sums of k simple positive (resp. negative) roots. In particular gr—! g = ©g?,

« is a simple negative root. Set Z = Z5 = CenterG.

3.1.2. Let X be any smooth (not necessarily complete) curve, §p a B-
bundle on X. Denote by §¢g the induced G-torsor, so §p C §g- We have
the corresponding twisted Lie algebras by := bz, and g3 = g3, = 03,
equipped with the Lie algebra filtration gg. Consider the sheaves of
connections Conn(Fp), Conn(F); these are by ® wx- and gz ® wx-torsors.
We have the obvious embedding Conn(gg) C Conn(Fg). It defines the
projection ¢ : Conn(Fg) — (g/b)z ® wx such that ¢1(0) = Conn(Fp) and
c(V+v)=c¢V)+r mod by ®wx for any V € Conn(Fq), v € g5 @ wx.

3.1.3. Definition. A G-oper on X is a pair (§p,V), V € I'(X, Conn(F¢q))
such that

(1) e(V) € gr! gz ®wx C (9/b)5 ®wx
(2) For any simple negative root o the a-component ¢(V)* € T'(X, g§ ®

wx ) does not vanish at any point of X.

If g is a semisimple Lie algebra then a g-oper is a Gy4-oper where G4 is the
adjoint group corresponding to g.

We will usually consider G-oper as a G-local system (F¢,V) equipped
with an extra oper structure (a B-flag §p C §¢ which satisfies conditions

(1) and (2) above).
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G-opers on X form a groupoid Opg(X). The groupoids Opg(X') for X'

étale over X form a sheaf of groupoids Opg on Xg.

3.1.4. Proposition. Let (§p,V) be a G-oper. Then Aut(§p,V) = Z if X
is connected. (]
In particular g-opers have no symmetries, i.e., Opg(X) is a set and Op,

is a sheaf of sets.

3.1.5. Proposition. Suppose that X is complete and connected of genus
g > 1. Let (§a,V) be a G-local system on X that has an oper structure.
Then

(i) the oper structure on (F¢,V) is unique: the corresponding flag
§B C §¢ is the Harder-Narasimhan flag;
(i) Aut(Fe, V) = Z;
(iii) (§¢, V) cannot be reduced to a non-trivial parabolic subgroup PCG.
O

Of course ii) follows from i) and 3.1.4.

3.1.6. Example. A GL,-oper can be considered as an Ox-module &
equipped with a connection V : £ = £ ® wx and a filtration &€ = &, D
En—1D D&y =0 such that
(i) The sheaves gr; £, n > i > 1, are invertible
(ii) V(&) C &41 ® wx and for n —1 > ¢ > 1 the morphism gr; & —
gr; 1 & ®wyx induced by V is an isomorphism.

One may construct GL,-opers as follows. Let A, B be invertible Ox-
modules and 0 : A — B a differential operator of order n whose symbol
o(0) € F(X,B®A®(_1)®®?}") has no zeros. Our 0 is a section
of BQo, Px Qo AP or, equivalently, an O-linear map B®(-1) —
Dx @ A°CD. Let I ¢ Dx®A®Y be the Dx-sub-module generated
by the image of this map. Let £ := Dx ® A®(-1/I; denote by & the
filtration on & induced by the usual filtration of Dx by degree of an
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operator. Then £ is a Dx-module, i.e., an Ox-module with a connection,
and the filtration &; satisfies the conditions (i), (ii). Therefore (&,{&;}, V)
is a GLp-oper. This construction defines an equivalence between the
groupoid of GL,-opers and that of the data 0 : A — B as above.
The inverse functor ¢ associates to (&,{&;}, V) the following differential
operator : A — B, A := 5{@(71),3 = wx ® (£/&,-1)®Y.  Consider
£ as a Dx-module. Let Dg];) C Dx be the subsheaf of operators of

order < k. Then the morphism Dg?fl) ®ox€1 — & is an isomorphism

and therefore the composition DE?)(X)OX& — &= Dg?il)@)oxc‘:l defines

a splitting of the exact sequence 0 — Dg?_l)@)ox& — Dg?)

w?é(_n)@)é'l — 0, i.e., a morphism w?;(_n)@)& — D§?)®OX51, which is the

®oyE1 —

same as a differential operator 9 : A — B (notice that the isomorphisms
gr; € — gr;, € @ wx induce an isomorphism & — (£/€,-1) ® w;@;(n_l),
so wl ™ @& =Wl & (£/6,1) = BED),

Applying the above functor ® to an SLs-oper one obtains a differential
operator 8 : A — wy @ A®(-D_ It is easy to show that one thus
obtains an equivalence between the groupoid of S Ls-opers and that of pairs
(A, 0) consisting of an invertible sheaf 4 and a Sturm-Liouville operator
9: A — wyxy @ A9 e, a self-adjoint differential operator d of order 2
whose symbol ¢(0) has no zeros. Notice that ¢(9) induces an isomorphism
w?f QA" wy ® AP 50 A is automatically a square root of w?}(_l).

If (A,0) is a Sturm-Liouville operator and M is a line bundle equipped
with an isomorphism M®2 =5 Ox then M has a canonical connection
and therefore tensoring (A, 9) by M one obtains a Sturm-Liouville operator
(A,9), A= A® M. We say that (A,d) and (A, d) are equivalent. It is easy
to see that the natural map Opsr,(X) — Opg,(X) identifies Opg, (X)
with the set of equivalence classes of Sturm-Liouville operators.

Opers for other classical groups may be described in similar terms (in the

local situation this was done in [DS85, section §]).
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3.1.7. Identifying sls-opers with equivalence classes of Sturm-Liouville
operators (see 3.1.6) one sees that Opg, is an w?f—torsor: a section n of
w?f maps a Sturm-Liouville operator 0 : A — A® w?}Q, AP = wy,
to @ —n. Let us describe this action of w?f on Opg, without using Sturm-
Liouville operators.

Identify n C sl with (sla/b)* using the bilinear form Tr(AB) on sly. If
§ = (8B, V) is an sly-oper then according to 3.1.3 the section ¢(V) trivializes

the sheaf (sla/b)z, @wx. So (sl2/b)z, = WY

, Nz = wx, and we have the
embedding w?f =Nz, ®wx — (sl2)z, ® wx. Translating V by a section
u of w?}z C (sl2)gp @ wx we get a new oper denoted by § + p. This w?f—
action on Opg, coincides with the one introduced above, so it makes Opg,
an w?f—torsor.

Remark Tt is well known that this torsor is trivial (even if H'(X,w$?) #

0, i.e., g < 1; Sturm-Liouville operators on P! or on an elliptic curve do

exist). However for families of curves X this torsor may not be trivial.

3.1.8. In 3.1.9 we will use the following notation. Let By C PSLs
be the group of upper-triangular matrices. Set Ny := [Bo, By],bp :=
Lie By,ng := Lie Nyg. Identify By/Ny with G,, via the adjoint action
By/Ny — Autng = G,,. Using the matrices e := (8(1)) and f := ((1]8)
we identify ng and slo/by with C. Then for an sls-oper § = (Fp,, V)
the isomorphism (sl2/bo)g, — w?;(_l) from 3.1.7 (or the isomorphism
35, — wy) induces an isomorphism between the push-forward of Fp, by

By — By/Ng = Gy, and the G,-torsor wx.

3.1.9. For any semisimple Lie algebra g we will give a rather explicit
description of Opg(X). In particular we will introduce a “canonical”
structure of affine space on Opy(X) (for g = sly it was introduced in 3.1.7).

Let G be the adjoint group corresponding to g and B its Borel subgroup.
We will use the notation from 3.1.8. Fix a principal embedding ¢ : sl — g

such that i(bg) C b; one has the corresponding embeddings i : PSLy — G,
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ip : By = B. Set V =V, = gNo. Then ny € V C n. One has the
adjoint action Ad of G,,, = By/Ny on V. Define a new G,,-action a on V'
by a(t)v :=tAd(t)v, v € V, t € Gy,.

Consider the vector bundle Vi, i.e., the wx-twist of V' with respect to
the G,-action a (we consider wx as a Gy,-torsor on X). Twisting by wx
the embedding C —» Ce = ng < V we get an embedding wx®? < V.

For any sls-oper §o = (§B,, Vo) its i-push-forward i§o = (§p,V) is a
g-oper. It follows from 3.1.8 that we have a canonical isomorphism V,,, =
Vg, ®wx and therefore a canonical embedding Vi, C by, ®@wx = by, ®wx.
Translating V by a section v of V,,, we get a new g-oper denoted by iFo+v.

Let @g be the Vi, -torsor induced from the wx®2-torsor Oy, by the
embedding wx®? C V,,,. A section of @g is a pair (§o,v) as above, and
we assume that (§o + u,v) = (o, u + v) for a section p of wx®?. We have

a canonical map
(43) @g — Opy
which sends (§o,v) to iFo + v.

3.1.10. Proposition. The mapping (43) is bijective. O

Remarks

(i) Though the bijection (43) is canonical we are not sure that it gives
a reasonable description of Opy.

(ii) The space V = V; from 3.1.9 depends on the choice of a principal
embedding ¢ : sl < g (for such an ¢ there is a unique Borel
subalgebra b C g containing i(bp)). But any two principal
embeddings sl — g are conjugate by a unique element of G = G,q.
So we can identify the V’s corresponding to various i’s and obtain a
vector space (not a subspace of g!) canonically associated to g.

(iii) Let G be the adjoint group corresponding to g, B a Borel subgroup
of G. Proposition 3.1.10 implies that for any g-oper § = (§p, V)

§B is isomorphic to a certain canonical B-bundle S% which does
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not depend on §.  Actually 393 is the push-forward of the
canonical (Aut’ O)-bundle from 2.6.5 by a certain homomorphism
ipomr : Aut’O — B. Here 7 is the projection Aut’O —
Aut(O/m3) where m is the maximal ideal of O, ¢ is an isomorphism
Aut(O/m3) = By where By is a Borel subgroup of PSLy, and
ip : Bp — B is induced by a principal embedding PSLy — G (o

and ip are unique up to a unique conjugation).

3.1.11. Assume that X is complete. Then G-opers form a smooth algebraic

stack which we again denote as Opg(X) by abuse of notation. If G is

semisimple this is a Deligne-Mumford stack (see 3.1.4); if G is adjoint then

Opa(X

) = Opy(X) is a scheme isomorphic to the affine space @g(X)

via (43).

Remarks

(i)
(i)

(iii)

If X is non-complete, then Opy(X) is an ind-scheme.

If X is complete, connected, and of genus g > 1, then dim Opy(X) =
(9—1)-dim g. Indeed, according to Proposition 3.1.10, dim Opy(X) =
dim@g(X) = dimI'(X,V,,) and an easy computation due to
Hitchin (see Remark 4 from 2.2.4) shows that dimI'(X,V,) =
(9 — 1) -dimg if ¢ > 1. Actually we will see in 3.1.13 that
['(X, V) = Hitchry(X), so we can just use Hitchin’s formula

dim Hitchr (X) = (g — 1) - dim*g=(g—1)-dimg

mentioned in 2.2.4(ii).

Let X be as in Remark ii and G be the adjoint group corresponding
to g. One has the obvious morphism i : Opg(X) — LocSysg where
LocSysg is the stack of G-local systems on X. One can show that
G-local systems which cannot be reduced to a non-trivial parabolic
subgroup P C G and which have no non-trivial automorphisms
form an open substack U C LocSyss which is actually a smooth

variety; U has a canonical symplectic structure. According to 3.1.5
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i(Opg(X)) C U and i is a set-theoretical embedding. In fact i is
a closed embedding and i(Opy(X)) is a Lagrangian subvariety of
U. Besides, i(Opg(X)) = 7~ (S) where 7 : LocSysg; — Bung
corresponds to forgetting the connection and S C Bung is the
locally closed substack of G-bundles isomorphic to S%, the G-
bundle corresponding to the B-bundle SOB introduced in Remark iii
from 3.1.10 (so S is the classifying stack of the unipotent group
Aut F2).

3.1.12. Denote by A4(X) the coordinate ring of Opy(X). We will construct
a canonical filtration on Ay(X) and a canonical isomorphism of graded

algebras
(44) oax) 1 8r Ag(X) = g,zlg(X)

where “g denotes the Langlands dual of g and the r.h.s. of (44) was defined
in 2.2.2. We give two equivalent constructions. The one from 3.1.13 is
straightforward; it involves the isomorphism (43). The construction from

3.1.14 is more natural.

3.1.13. Using 3.1.8 we identify A4(X) with the coordinate ring of @g (X).
Denote by ASZ(X ) the coordinate ring of the vector space I'(X,V,)
corresponding to the affine space @g(X ). Consider the G,,-action on
AZ(X) opposite to that induced by the Gp-action a on V' (see 3.1.7); the
corresponding grading on ASZ(X ) is positive. It induces a canonical ring
filtration on Ag(X) and a canonical isomorphism gr A4(X) — ASZ(X ).

So to define (44) it remains to construct a graded isomorphism AEI(X ) —
ﬁlg(X ), which is equivalent to constructing a G,,-equivariant isomorphism
of schemes I'(X, V., ) — Hitchzy(X). According to 2.2.2 Hitchry(X) :=
[(X,Cuy), C = Crg. So it suffices to construct a G,-equivariant

isomorphism of schemes Vj = ClLg. (Vg is equipped with the action a

from 3.1.7.)
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According to 2.2.1 Cry = Spec(Sym L g)LG where G is a connected group
corresponding to g. We can identify (Sym Lg)LG with (Sym g*)¢ because
both graded algebras are canonically isomorphic to (Sym bh*)" where W is

the Weyl group. So CLy = Cj where
(45) Cq = Spec(Sym g*)“

ie., C’é is the affine scheme quotient of g with respect to the adjoint action
of G. Finally according to Theorem 0.10 from Kostant’s work [Ko63] we

have the canonical isomorphism V; = Cé that sends v € V; to the image

00
of v+ i(( )) € g in Cy. It commutes with the G,-actions.
10

3.1.14. Here is a more natural way to describe the canonical filtration on
Ay(X) and the isomorphism (44).

There is a standard way to identify filtered C-algebras with graded flat
C[h]-algebras (here degh = 1). Namely, an algebra A with an increasing
filtration {A;} corresponds to the graded C[h]-algebra A~ = @®A;, the
multiplication by 7 is the embedding A; < A;+1. Note that A = A~ /(h —
1)A~, grA = A~ /hRA™. Passing to spectra we see that Spec A~ is a flat
affine scheme over the line A! = SpecC[h], and the grading on A™ is the
same as a G,-action on Spec A™ compatible with the action by homotheties
on Al. We are going to construct the scheme Spec Ag(X)™.

Let § be a G-torsor on X. Denote by £ the Lie algebroid of infinitesimal

symmetries of §; we have a canonical exact sequence
0—)93—)6'31)@)(—)0.

Recall that for A € C an h-connection on § is an Ox-linear map Vj :
©x — & such that 7V, = hide, (usual connections correspond to i = 1).
One defines a G — h-oper as in 3.1.3 replacing the connection V by an A-
connection Vj. The above results about G-opers render to G — h-opers.

In particular g — h-opers, i.e., h-opers for the adjoint group form an affine
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scheme Opy ;(X). For A € C* we have the isomorphism of schemes
(46) Opg,h(X) ; Opg,)\h(X)

defined by (§g, Vi) — (§B,AVs). When h varies Opg 5(X) become fibers
of an affine C[h]-scheme Opy(X)~ = Spec Ag(X)~. Using an analog of
3.1.9-3.1.10 for g — h-opers one shows that A4(X)~ is flat over C[h]. The
morphisms (46) define the action of G, on Opy(X)™, i.e., the grading of
Ag(X)~. The corresponding filtration on Ag(X) = Ag(X)~/(h—1)Aq(X)™
coincides with the filtration from 3.1.13.

To construct (44) is the same as to construct a G,,-equivariant isomor-
phism between Opgo(X) = Specgr Ag(X) and Hitchr,(X) = Specgilg(X).
As explained in 3.1.11 Hitchry(X) = ['(X, C,, ) where C" = Cy is defined

by (45). We have a canonical mapping of sheaves
(47) Opgp — CLX

which sends (§p, Vo) to the image of V € gz ® wx by the projection g —
C’. Theorem 0.10 and Proposition 19 from Kostant’s work [Ko63] imply
that (47) is a bijection. It induces the desired isomorphism Opgo(X) —
(X, C, )

3.2. Local opers and Feigin-Frenkel isomorphism.

3.2.1. Let us replace X by the formal disc SpecO, O ~ CJJt]]. The
constructions and results of 3.1 render easily to this situation. g-opers on
Spec O form a scheme Opgy(O) isomorphic to the spectrum of the polynomial
ring in a countable number of variables. More precisely, the isomorphism
(43) identifies Opy(O) with an affine space corresponding to the vector space
H°(Spec O,Vu,), V = V5. G-opers on SpecO form an algebraic stack
Opc(0) isomorphic to Opy(O) x B(Z) where B(Z) is the classifying stack
of the center Z C G and g := Lie(G/Z) (the isomorphism is not quite

canonical; see (58) for a canonical description of Opg(0)).
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Just as in the global situation (see 3.1.12-3.1.14) the coordinate ring
Ag(O) of Opy(O) carries a canonical filtration and we have a canonical
isomorphism

(48) o4 gr Ag(0) =52 (0)

(see (44)). Note that Aut O acts on all the above objects in the obvious way.
So A4(O) is a filtered Aut O-algebra and o4 is an isomorphism of graded
Aut O-algebras.

3.2.2. Theorem. ([FF92]). There is a canonical isomorphism of filtered
Aut O-algebras

(49) po : Ag(0) R 54(0)

such that oy groo = o4, where o; : grjry(0) — 3‘}}9(0) is the symbol map.
O

Remarks

(i) This isomorphism is uniquely determined by some extra compatibil-
ities; see 3.6.7.

(ii) The original construction of Feigin and Frenkel is representation-
theoretic and utterly mysterious (for us). A different, geometric
construction is given in 777; the two constructions are compared in
777,

(iii) For g = sly there is a simple explicit description of (49), which is

essentially due to Sugawara; see 777.
3.3. Global version.

3.3.1. Let us return to the global situation, so our X is a complete curve.
We will construct a canonical isomorphism between the algebras Ay(X) and

3.4(X) (the latter is defined by formula (27) from 2.7.4).
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Take x € X. The restriction of a global g-oper to Spec O, defines a

morphism of affine schemes
Opg(X) — Opy(Oy).

This is a closed embedding, so we have the surjective morphism of coordinate

rings
(50) 0 1 Ag(Oy) — Ay(X).

9;54 is strictly compatible with the canonical filtrations (to see this use, e.g.,

the isomorphism (24)).

3.3.2. Theorem. There is a unique isomorphism of filtered algebras
(51) ox  Ag(X) R 314(X)

such that for any x € X the diagram

0;
Ag(Oz) —— Ag(X)

Yo, |1 L px
0;,
30g(0z) — 314(X)
commutes (here ¢p, is the isomorphism (49) for O = 0O,;). One
has o,x)-gryx = oxx) where o4x) is the isomorphism (44) and
oyx) s er3(X) — 3°(X) was defined at the end of 2.7.4.

Proof Since 9554 and @ are surjective and strictly compatible with
filtrations it is enough to show the existence of an isomorphism @x such
that the diagram commutes. According to 2.6.5 we have a Dx-algebra
Ay = Ag(O)x with fibers Ay(O,). Any global oper § € Opy(X) defines
a section vz : X — Spec Aq, vz(x) is the restriction of § to SpecO,. The
sections 7z are horizontal and this way we get an isomorphism between

Opgy(X) and the scheme of horizontal sections of Spec Ay (the reader who
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thinks that this requires a proof can find it in 3.3.3). Passing to coordinate

rings we get a canonical isomorphism
(52) Ag(X) R Hy (X, Ag)

(see 2.6.2 for the definition of Hy). On the other hand (49) yields the

isomorphism of Dx-algebras
o Ag R i,
hence the isomorphism
(53) Hy (X, Ag) R Hy(X, 51,) = 524(X) .
Now ¢x is the composition of (52) and (53). O

3.3.3. In this subsection (which can certainly be skipped by the reader) we
prove that g-opers can be identified with horizontal sections of Spec A4 (this
identification was used in 3.3.2).

1

Denote by g* the set of all a € g~! such that the image of a in g“ is

nonzero for any simple negative root a (we use the notation of 3.1.1). g
is an affine scheme. Consider the action of Aut’ O on gt via the standard
character Aut® O — Aut(tO/t>0) = G,,. Denote by B the Borel subgroup
of the adjoint group corresponding to g. Equip B with the trivial action of
Aut® O. Applying the functor J : {Aut® O-schemes} — {Aut O-schemes}
from 2.6.7 we obtain JB = the scheme of morphisms SpecO — B and
Jg' = the scheme of g*-valued differential forms on Spec O. The group J B
acts on Jg" by gauge transformations and Opg(O) is the quotient scheme.
The action of 7B on Jg" and the morphism Jgt — Opy(O) are Aut O-
equivariant. Actually Jg* is a J B-torsor over Opg(O). Moreover, a choice
of n € wy) := wo\two defines its section S, C JgT, S, :=n-i(f) +V Qwo
(here f := ([1)8) and i,V were defined in 3.1.9). The fact that S, is a
section is just the local form of Proposition 3.1.10. The sections S, define
an Aut O-equivariant section s : Opg(O) x W(J)r — gt x wJOr of the induced

torsor gt x wh = Opy(0) x w.
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Now consider the Dx-schemes (Jg7)x, (JB)x, and Opy(O)x =
Spec Ag. Clearly (7B)x is a group Dx-scheme over X and the scheme
(Jgt)x is a (IB)x-torsor over Opg(O)x. Actually (7B)x = J(Bx)
and (Jg")x is the scheme of jets of g™-valued differential forms on X.
Clearly Op; = Sect(g})/Sect(Bx) = Sect¥((Jg")x)/Sect¥((JB)x) C
SectY (Opg(O)x). Here Sect denotes the sheaf of sections of an X-scheme
and SectV denotes the sheaf of horizontal sections of a Dx-scheme. To
show that Op,; = SectV(Opg(O) x) it remains to prove the surjectivity of
SectY ((Jg+)x) — Sect" (Opy(O)x). To this end use the morphism of Dx-
schemes Opg(O)x x (wh)x — (g7)x induced by s and the fact that (wl)x
(i.e., the scheme of jets of non-vanishing differential forms) has a horizontal
section in a neighborhood of each point of X.

So we have identified Opgy(X) with the set of horizontal sections of
Opg(O)x = Spec Ay. In the same way one identifies the scheme Opg(X)
with the scheme of horizontal sections of Spec A,.

Remark We used s only to simplify the proof 777.

3.4. G-opers and g-opers. In this subsection we assume that G is
semisimple (actually the general case can be treated in a similar way; see
Remark iii at the end of 3.4.2). We fix a non-zero y, € g for each negative
simple root a. Set Gnq := G/Z, Bag := B/Z, Haq := H/Z where Z is the

center of G.

3.4.1. There is an obvious projection Opg(X) — Opy(X) = Opg,, (X).
We will construct a section Opg(X) — Opg(X) depending on the choice
of a square root of wy, i.e., a line bundle £ equipped with an isomorphism
L% =5 wx. Let (§p,,, V) be a g-oper. Lifting it to a G-oper is equivalent to
lifting §,, to a B-bundle, which is equivalent to lifting §,, to an H-bundle
(here §p,, is the push-forward of §p,, by Baa —> Haa). In the particular
case g = sly we constructed in 3.1.8 a canonical isomorphism §g,, = wyxs

the construction from 3.1.8 used a fixed element f € sls/by. Quite similarly
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one constructs in the general case a canonical isomorphism §p,, e wy =
the push-forward of wx by the homomorphism A : G,,, — H,q such that
for any simple positive root a, A(t) acts on g* as multiplication by ¢ (the
construction uses the elements y, fixed at the beginning of 3.4). There is a

unique morphism \* : G,, — H such that
(54) M () mod Z = \(t)?

(Indeed, A\ corresponds to the coweight p := the sum of fundamental
coweights, and 2p belongs to the coroot lattice). We lift §y,, = Awx to

the H-bundle \# £ where £ is our square root of wy.

3.4.2. Denote by w!/?(X) the groupoid of square roots of wy. For a fixed

L € w'/?(X) we have an equivalence
(55) D Opg(X) x Ztors(X) — Opea(X)

where Z tors(X) is the groupoid of Z-torsors on X. ®,(F,€&) is defined as
follows: using £ lift § € Opy(X) to a G-oper (see 3.4.1) and then twist this
G-oper by £. @, depends on L in the following way:

@5@;\(3,5) = @E(S,S . OJ.A)

Here A is a square root of Ox or, which is the same, a ps-torsor on X, while

aA is the push-forward of the ps-torsor A by the morphism
(56) a:py — Z, o = N | g

Recall that A# is defined by (54).

Remarks

(i) If one considers Opy(X) as a scheme and Opg(X) and Z tors(X)
as algebraic stacks then (55) becomes an isomorphism of algebraic
stacks.

(ii) « is the restriction of “the” principal homomorphism SLy; — G to

the center o C SLs.
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(iii) If G is reductive but not semisimple and g := Lie(G/Z) then one
defines the section Opy(X) — Op(X) depending on £ € w'/?(X)
as the composition Opy(X) — Opig,g(X) — Opg(X). The
results of 3.4.2 remain valid if Z tors(X) is replaced by ZV tors(X),

the groupoid of Z-torsors on X equipped with a connection.

3.4.3. Here is a more natural reformulation of 3.4.2. First let us introduce
a groupoid Z torsy(X) (6 should remind the reader about #-characteristics,
i.e., square roots of wy). The objects of Ztorsg(L) are pairs (£,L),
£ € Ztors(X), L € w?(X), but we prefer to write £ - £ instead of (£, £).
We set Mor (&7 - L1, E2 - Lo) := Mor (&1, E2 - a(L2/L1)) where o(L2/L1) is the
push-forward of the po-torsor Lo/L1 := Lo ® ﬁ?(_l) by the homomorphism
(56). Composition of morphisms is defined in the obvious way. One can

reformulate 3.4.2 as a canonical equivalence:
(57) D : Opg(X) x Ztorsg(X) — Opa(X)

where ®(F,L-E) := &,(F,€) and D, is defined by (55).

In the local situation of 3.2.1 one has a similar canonical equivalence
(58) Opq(0) x Z torsg(O) — Opi(O)

where Z torsp(O) is defined as in the global case. Of course all the objects
of Z torsy(O) are isomorphic to each other and the group of automorphisms
of an object of Ztorsg(O) is Z. The same is true for Ztors(O). The
difference between Z torsy(O) and Z tors(O) becomes clear if one takes the

automorphisms of O into account (see 3.5.2).

3.4.4. To describe an “economical” version of Z torsg(O) we need some
abstract nonsense.

Let Z be an abelian group. A Z-structure on a category C' is a morphism
Z — Autide. Equivalently, a Z-structure on C' is an action of Z on
Mor(cq, c2), c1,c2 € ObC, such that for any morphisms 01i>02503 and

any z € Z one has z(gf) = (z29)f = g(2f). A Z-category is a category with
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a Z-structure. If C and C’ are Z-categories then a functor F : C — ('
is said to be a Z-functor if for any c1,co € C the map Mor(cq,c2) —
Mor(F'(c1), F(c2)) is Z-equivariant. If A — Z is a morphism of abelian
groups and C is an A-category we define the induced Z-category C ®4 Z
as follows: Ob(C ®4 Z) = ObC, the set of (C ®4 Z)-morphisms ¢; — ¢
is (Morg(c1, ) X Z)/A = {the Z-set induced by the A-set Morg(c1,c2)},
and composition of morphisms in C ® 4 Z is defined in the obvious way. We
have the natural A-functor C — C ®4 Z and for any Z-category C’ any
A-functor C' — C’ has a unique decomposition C' — C ®4 Z B where F
is a Z-functor.

Denote by w!/ 2(0) the groupoid of square roots of wp. This is a po-
category. Ztors(O) and Ztorsyg(O) are Z-categories. The canonical pua-
functor w'/2(0) — Ztorsg(O) induces an equivalence w'/?(0) ®,, Z —
Z torsy(O).

3.4.5. The reader may prefer the following “concrete” versions of Z torsy(X)

and Z torsy(O). Define an exact sequence

(59) 022 —Gp—0

as the push-forward of

(60) 0= stz = G DG =0, fz):=a2

by the morphism (56). Denote by Z tors,,(X) the groupoid of liftings of the
Gy-torsor wy to a Z-torsor (i.e., an object of Ztorsw(X) is a Z-torsor on X
plus an isomorphism between the corresponding Gy,-torsor and wx). The
morphism from (60) to (59) induces a functor F : w'/2(X) — Z tors,(X).
The functor Z torsg(X) — Z tors,(X) defined by

E-L—E-FL), E£eZtors(X), Lew/*X)

is an equivalence.
Quite similarly one defines Ztors,(O) and a canonical equivalence

Z torsg(0) — Z tors,,(O).
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The equivalences (57) and (58) can be easily understood in terms of

Z tors,, (X) and A tors, (0). Let us, e.g., construct the equivalence
Opg(X) X Z tors,(X) = Opa(X).
Consider the following commutative diagram with exact rows:

0 — sy — G, — G, — 0

(61) al )\#l l/\

0 — Z — H — Hy — 0

Here the upper row is (60); the lower row and the morphisms \, \# were
defined in 3.4.1. According to 3.4.1 a G-oper on X is the same as a g-oper
on X plus a lifting of the Hyq-torsor \.(wx) to an H-torsor. Such a lifting
is the same as an object of Z tors, (X): look at the right (Cartesian) square

of the commutative diagram

0—>Z—>2—>Gm—>0

o | 1 D

0 — Z — H — Hy — 0

(the upper row of (62) is (59) and the lower rows of (62) and (61) are the

same).

3.4.6. Ztors(X) is a (strictly commutative) Picard category (see Definition
1.4.2 from [Del73]) and Ztorsp(X) is a Torsor over Ztors(X); actually
Z torsg(X) is induced from the Torsor w'/?(X) over ustors(X) via the
Picard functor ug tors(X) — Z tors(X) corresponding to (56). We will use
this language in §4, so let us recall the definitions.

A Picard category is a tensor category A in the sense of [De-Mi| (i.e., a
symmetric=commutative monoidal category) such that all the morphisms of
A are invertible (i.e., A is a groupoid) and all the objects of A are invertible,
i.e., for every a € Ob A there is an @’ € Ob A such that a-a’ is a unit object
(we denote by - the “tensor product” functor A x A4 — A; in [De-Mi] and
[Del73] it is denoted respectively by ® and +). Strict commutativity means
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that for every a € Ob A the commutativity isomorphism ¢ ® ¢ — a ® a is
the identity.

An Action of a monoidal category A on a category C'is a functor A x C' —
C' (denoted by -) equipped with an associativity constraint, i.e., a functorial
isomorphism (a1-as)-¢ — a1-(az-c), a; € A, c € C, satisfying the pentagon
axiom analogous to the pentagon axiom for the associativity constraint in
A (see [Del73] and [De-Mi]); we also demand the functor F' : C — C
corresponding to a unit object of A to be fully faithful (then the isomorphism
F? =5 F yields a canonical isomorphism F — id). This definition can
be found in [Pa] and §3 from [Yet]. An A-Module is a category equipped
with an Action of A. If C' and C are A-Modules then an A-Module functor
C — C is a functor ®: C — C equipped with a functorial isomorphism
®(a-c) — a- ®(c) satisfying the natural compatibility condition (the two
ways of constructing an isomorphism ®((a; - as) - ¢) — a1 - (a2 - ®(c)) must
give the same result; see [Pa], [Yet]). A-Module functors are also called
Morphisms of A-Modules.

A Torsor over a Picard category A is an A-Module such that for some
¢ € Ob C the functor a — a-c is an equivalence between A and C' (then this
holds for all ¢ € Ob ).

Let A and B be Picard categories. A Picard functor A — B is a functor
F: A — B equipped with a functorial isomorphism F(a; - az) — F(a1) -
F(a2) compatible with the commutativity and associativity constraints.
Then F sends a unit object of A to a unit object of B, i.e., F' is a tensor
functor in the sense of [De-Mi]. In [Del73] Picard functors are called additive
functors.

Let F': Ay — Ay be a Picard functor and C; a torsor over A;, i = 1,2.
Then Cs is equipped with an Action of A;. In this situation .4;-Module

functors C7 — C9 are called F-affine functors.

Examples. 1) Let A be a commutative algebraic group. Then A tors(X)

has a canonical structure of Picard category.
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2) A morphism A — B of commutative algeraic groups induces a Picard
functor Ators(X) — Btors(X).

3) The groupoid w!/?(X) from 3.4.2 is a Torsor over the Picard category
pa tors(X). The groupoid Z torsg(X) from 3.4.3 is a Torsor over
Z tors(X).

If F: A — B is a Picard functor between Picard categories and C' is a
Torsor over A then we can form the induced Torsor B -4 C over B. The
defintion of B -4 C can be reconstructed by the reader from the following
example (see 3.4.3): if A = pgtors(X), B = Ztors(X), F comes from (56),
and C = w'2(X) then B -4 C = Ztorsg(X). The objects of B -4 C are
denoted by b-¢, b€ ObB, c € ObC (see 3.4.3).

The interested reader can formulate the universal property of B-4 C. We
need the following weaker property. Given a category C with an Action of
B and an A-Module functor ®: C' — C there is a natural way to construct
a B-Module functor U: B -4 C — C: set W(b-c) := b- ®(c), and define
U on morphisms in the obvious way (i.e., the map Mor(by - ¢1,bs - c2) —
Mor(by - ®(e1), by - ®(c2)) is the composition Mor(b; - ¢1,ba - c2) = Mor(by, ba -
ca/c1) — Mor(by - ®(c1), b - ca/cy - D(c1)) — Mor(by - ®(c1), b2 - D(c2))).
The isomorphism W(by - (bg - ¢)) — by - ¥(by - ) is the obvious one.

We will use this construction in the following situation. Suppose we have
a Picard functor ¢: B — g, a Torsor C over g, and an ¢-affine functor
®: C — C where ¢ is the composition A B %5 B. Then the above

construction yields an f-affine functor B -4 C — C.

3.4.7. Let Z be an abelian group and Z tors the Picard category of Z-torsors
(over a point). The following remarks will be used in 4.4.9.

Remarks

(i) A Picard functor from Z tors to a Picard category A is “the same
as” a morphism Z — Aut 14 where 1 4 is the unit object of A. More

precisely, the natural functor from the category of Picard functors
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Ztors — A to Hom(Z,Aut1,) is an equivalence. Here the set
Hom(Z, Aut 14) is considered as a discrete category.

(ii) The previous remark remains valid if “Picard” is replaced by
“monoidal”.

(iii) An Action of Z tors on a category C' is “the same as” a Z-structure
on C, i.e., a morphism Z — Autidg (notice that an Action of
a monoidal category A on C is the same as a monoidal functor
A — Funct(C, C) and apply the previous remark).

(iv) Let C; and Cy be Modules over Z tors. According to the previous
remark C7 and Cy are Z-categories in the sense of 3.4.4. It is easy
to see that a (Z tors)-Module functor C; — Cj is the same as a
Z-functor in the sense of 3.4.4 (i.e., a functor F' : C; — Cs has at
most one structure of a (Z tors)-Module functor and such a structure
exists if and only if F' is a Z-functor).

(v) A Torsor over Ztors is “the same as” a Z-category which is Z-

equivalent to Z tors. (do we need this???)

3.5. Local opers II. For most of the Lie algebras g (e.g., g = sl,, n > 5)
the Feigin-Frenkel isomorphism (49) is not uniquely determined by the
properties mentioned in Theorem 3.2.2 because Ay4(O) has a lot of Aut O-
equivariant automorphisms inducing the identity on gr A4(O); this is clear
from the geometric description of Opy(O) = Spec A4(O) in 3.2.1 or from
the description of A4(O) that will be given in 3.5.6 (see (65)-(68)). The
goal of 3.5-3.6 is to formulate the property 3.6.7 that uniquely determines
the Feigin-Frenkel isomorphism. This property and also 3.6.11 will be used
in the proof of our main theorem 5.2.6. In 3.7 and 3.8 we explain how to
extract the properties 3.6.7 and 3.6.11 from [FF92]. One may (or perhaps
should) read §4 and (a large part of 7) §5 before 3.5-3.8. We certainly
recommend the reader to skip 3.5.16-3.5.18 and 3.6.8-3.6.11 before 3.6.11

is used in 77.
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The idea'” of 3.5 and 3.6 is to “kill” the automorphisms of A4(O) and
its counterpart 3Lg(0) by equipping these algebras with certain additional
structures. In the case of A4(O) this is the Lie algebroid a4 from 3.5.11. Its
counterpart for 3.4(0) is introduced in 3.6.5. The definition of a4 is simple:
this is the algebroid of infinitesimal symmetries of the tautological G-bundle
T2 on Opg(0). F% and therefore ag are equipped with an action of Der O.
It turns out that the pair (44(0),T%) has no nontrivial Der O-equivariant
automorphisms (see 3.5.9) and this is “almost” true for (A4(0),a,) (see

3.5.13).

3.5.1. We have a universal family of g-opers on Spec O parametrized by
the scheme Opgy(O) = Spec A4(O) from 3.2.1. Fix a one-dimensional free

O-module wé/ 2 equipped with an isomorphism wé/ ’® wlo/ 2 wo (of

course wg % is unique up to isomorphism). Then the above universal family
lifts to a family of G-opers; see 3.4.1'8. So we have a B-bundle §p on
Spec(A4(0)R0) = Spec A4(O)[[t]] and a connection V along Spec O on the

associated G-bundle §q.

3.5.2. Consider the group ind-scheme Auty O := Aut(O,w(l)/Q). We have a

canonical exact sequence
(63) 0— p2 — Auto O — Aut O — 0

and Auts O is connected. The exact sequence (63) and the connectedness
property can be considered as another definition of Aute O. Denote by
Aut9 O the preimage of Aut® O in Auts O.

Aut O acts on Ay(O) and O, so it acts on Spec(A4(O)®0). This action
lifts canonically to an action of Aute O on (§p, V). ua C Auty O acts on §p

via the morphism (56).

Tnspired by [Phys]

1874 tell the truth we must also choose a non-zero Yo € g% for each negative simple

root « (see 3.4.1)
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3.5.3. Lemma. Let L be an algebraic group, A an algebra equipped with
an action of AutO. Consider the action of Aut O on A®O induced by its
actions on A and O. Let i : Spec A < Spec(A®O) be the natural embedding
and 7 : Spec(ARO) — Spec A the projection.

1) ¢* is an equivalence between the category of Auty O-equivariant L-
bundles on Spec(A®O) and that of Aut) O-equivariant L-bundles on Spec A.

2) 7* is an equivalence between the category of Auty O-equivariant L-
bundles on Spec A and that of Auty O-equivariant L-bundles on Spec(A®O)
equipped with an Auts O-invariant connection along Spec O.

3) These equivalences are compatible with the forgetful functors {Auts O-
equivariant bundles on Spec A} — {Aut) O-equivariant bundles on Spec A}

and {bundles with connection} — {bundles}. O

3.5.4. Denote by SOB and SOG the restrictions of §p and Fg to Opy(0) =
Spec A4(O) C Spec Ag(O)®0. F% is a B-bundle on Opy(0) and F is
the corresponding G-bundle. F% is Aut) O-equivariant and according to
3.5.3 %% is Autg O-equivariant. Since the connection V on §¢ does not
preserve § g the action of Auts O on 8’% does not preserve S%. According to
3.5.3 3% equipped with the action of Auts O and the B-structure S% C S’OG

“remembers” the universal oper (§g, V).

3.5.5. Denote by F}y the H-bundle on Opy(O) corresponding to §%. Since
Opg(O) is an (infinite dimensional) affine space any H-bundle on Opy(O) is
trivial and the action of H on the set of its trivializations is transitive. In
particular this applies to S%, so g is the pullback of some H-bundle Fg
over SpecC. According to 3.4.1 Fy is the pushforward of the G,,-bundle
ng/twé/Q over Spec C via the morphism A\# : G,, — H defined by (54). In
particular the action of Aut) O on Fy comes from the composition

Aut O — Aut(w(l)m/twé/z) =Gy, om
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So the action of Der® O on Fy is the sum of the “obvious” action (the one
which preserves any trivialization of Fy) and the morphism Der® O — b

defined by f(¢) - t% — f(0)p. Here p is the sum of fundamental coweights.

3.5.6. Here is an explicit description of A4(O) and SOG in the spirit of 3.1.9—
3.1.10. Let e, f € sly be the matrices from 3.1.8. Fix a principal embedding
i: slpg < g such that i(e) € b. If a Cartan subalgebra h C b is chosen so
that i([e, f]) € b then i([e, f]) can be identified with 2p. Just as in 3.1.9 set
V := Ker ad i(e). Choose a basis e1,...,e, € V so that e; = i(e) and all ¢;
are eigenvectors of ad p. In fact [p,e;] = (d; — 1)e; where d; are the degrees

of “basic” invariant polynomials on g (in particular d; = 2). The connection

(64) V% :%+i(f)+u1(t)el+...ur(t)er

on the trivial G-bundle defines a g-oper and according to 3.1.10 this
is a bijection between g-opers on SpecO, O := C][[t]], and r-tuples
(ui(t),...,ur(t)), uj(t) € C[t]]. Write u;(t) as ujo + ujit + .... Then
A4(0O) is the ring of polynomials in uj, 1 < j < r, 0 < k < oo. The bundles
$B, Sa, S%, SOG from 3.5.1 and 3.5.4 are trivial and we have trivialized them
by choosing the canonical form (64) for opers.

To describe the action of Der O on A4(0) and F introduce the standard
notation L, := —t"H% € DerC((t)) (so L, € DerO for n > —1). Set

uj = ujo. Then

(65) wje = (L—1)"u;/k!
(66) Lou; = dju;
(67) Loyuj=0 ifn>0, j#1
(68) Lyu; =0 ifn>0, n#2; Lou =-3.
So Ag4(O) is the commutative (Der O)-algebra with generators ug,. .., u,

and defining relations (66)—(68). Denote by LI the vector field on §% that
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comes from our trivialization of §% and the action of Der O on A4(0). Ly,

acts on %'OG as L],”L"r + M, M, € g® Ag(O). One can show that

(69) Mo =—p

(70) M, =—i(e), M,=0 forn>1

M_y =i(f)+uer + ...+ ure,
Only (69) will be used in the sequel (I'm afraid we’ll use at least (70)) 7771).

Remark. If n > 0 then M, € i(by) C b C b ® A4(O) where by := Lie By
and By C SLs is the group of upper-triangular matrices. This means that
we have identified the Aut) O-equivariant bundle §% with the pullback of a
certain Aut) O-equivariant B-bundle on Spec C and the latter comes from a

certain morphism Auty O — By — B (cf. Remark (iii) from 3.1.10).

3.5.7. Let A be an algebra equipped with an action of Aut O. Then Der O
acts on A, the action of Ly on A is diagonalizable, and the eigenvalues of
Lo : A — A are integers. Assume that the eigenvalues of Ly : A/C — A/C
are positive. Then A = C&® A, where A, is the sum of all eigenspaces of Lg
in A corresponding to positive eigenvalues. A, is the unique Lg-invariant
maximal ideal of A. The corresponding point of Spec A will be denoted by
0. Since [Lg, L] = —nL, we have L_1A; C A;. Assume that

(71) LiAL C Ay .

In particular (71) is satisfied if the eigenvalues of Ly on A/C are greater
than 1, e.g., for A = A4(O) (see (66) and (65)).

Assume that G is the adjoint group corresponding to g. Let £ be an
Aut O-equivariant G-bundle on Spec A. The algebra CL_1+CLy+CL1 ~ sl
stabilizes 0 € Spec A, so it acts on the fiber of £ over 0. Thus we obtain a

morphism o : sls — g defined up to conjugation.
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Example.  The point 0 € Spec A4(0)) = Opgy(O) is the push-forward via
the principal embedding slo — g of the sls-oper corresponding to the Sturm-
Liouville operator (d/dt)?. If A= A4(0) and € = F% then o is the principal

embedding.

3.5.8. Proposition.

1) The following conditions are equivalent:
a) the Aut O-equivariant G-bundle £ is isomorphic to go*SOG for
some Aut O-equivariant ¢ : Spec A — Opgy(O);
b) there is an Aut’ O-invariant B-structure on £ such that the
corresponding Aut” O-equivariant H-bundle is isomorphic to
the pullback of the Aut® O-equivariant H-bundle F on Spec C
defined in 3.5.5';
c) o: slp — g is the principal embedding.
2) The morphism ¢ and the isomorphism & — ¢*F, mentioned in a)
are unique.

3) The B-structure mentioned in b) is unique.

Proof. According to 3.5.5 b) follows from a). To deduce c) from b) just
look what happens over 0 € Spec A. Let us deduce a) from b) and show
that 2) follows from 3). To do this it suffices to show that if a B-structure
Ep C &€ with the property mentioned in b) is fixed there is exactly one way
to construct Aut O-equivariant ¢ : Spec A — Opg(O) and f: € — ¢*F%
so that f(£p) = ¢*F%. According to 3.5.3 £ and Ep yield a G-bundle Ea
on Spec(ARO) with a B-structure £ C &g, a connection V on &g along
Spec O, and an action of Aut O on (gg,gB, V). Now the uniqueness of ¢
and f is clear and to prove their existence we must show that (gg,gB, V)
is a family of opers, i.e., we must prove that ¢(V) defined in 3.1.2 satisfies
conditions 1 and 2 from Definition 3.1.3. In our situation ¢(V) is an Aut O-

invariant section of (g/b)z @, wo and it is enough to verify conditions 1

19Gince G is the adjoint group the action of Aut O on Fg factors through Aut® O
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and 2 for its restriction cy(V) to Spec A C Spec ARO. ¢y(V) is an Aut® O-
invariant element of H%(Spec 4, (g/b)s,) ®wo /two. Let gr¥ g have the same
meaning as in 3.1.1. Since we know the H-bundle corresponding to £ we

see that there is an Aut® O-equivariant isomorphism
(72)  H°(Spec A, gr* ge,) ® wo /two —= A® (wo/two)®* ) @ grf g.

Since Lo acts on (wo/two)®**1) as multiplication by —k — 1 the Aut® O-
invariant part of A ® (wo/two)®*+Y) equals 0 if k < —1 and C if k = —1.

Therefore
co(V)egrtgc Ao grtg= H"SpecA, grt 9ey) ® wo/two -

So we have checked condition 1 from 3.1.3 and it remains to check condition 2
over some point of Spec A, e.g., over 0 € Spec A. Denote by (gg,gg,V)
the restriction of (£g,€p,V) to {0} x SpecO C Spec(ARO). Then gg
is the trivial G-bundle, V is the trivial connection, sl acts on (gg,V)
via the morphism o : sl — g mentioned in 3.5.7 and the embedding
slo = CL_1 +CLy+ CL; — DerO, E% is invariant with respect to sls.
Since o is the principal embedding (gg, g’%, V) is the oper corresponding to
0 € Opg(0).

Let us prove 3). Set a = H(Spec A4, g¢), ai := {a € a|Loa = ka}. If a B-
structure on & is fixed then the filtration g¥ from 3.1.1 induces a filtration a*
on a. If the B-structure has the property mentioned in b) then a* is Aut® O-
invariant and a¥/af*1 is Aut® O-isomorphic to A ® (wo/two)®* ® gr*g
(see (72)). Therefore the eigenvalues of Lo on a¥/a**! are > —k and the
A-module a¥/a¥*+1 is generated by its Lg-eigenvectors corresponding to the
eigenvalue —k. So
(73) b =" Aa;.

i<—k
The B-structure on £ is reconstructed from the Borel subalgebra a® C a.
It remains to deduce b) from c). Define a* by (73). Since a is a free Lo-

k+1

graded A-module of finite type so are a*/a¥!. Therefore a* defines a vector
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subbundle of ge. If £ = 0 this subbundle is a Lie subalgebra, so it defines
a section s : Spec A — Sg where S is the scheme of subalgebras of g. An
infinitesimal calculation shows that the morphism G/B — S, g — gbg™!, is
an open embedding and since G/ B is projective it is also a closed embedding.
According to ¢) s(0) € (G/B)s C Sg, so s(Spec A) C (G/B)g and s defines
a B-structure on &£. Clearly it is Aut’ O-invariant. The corresponding
Aut® O-equivariant H-bundle on Spec A is the pullback of some Aut® O-
equivariant H-bundle F on Spec C (this is true for any Aut’ O-equivariant
H-bundle on Spec A and any torus H; indeed, one can assume that H = G,,,
interpret a G,,-bundle as a line bundle and use the fact that a graded

projective A-module of finite type is free). To find F' look what happens
over 0 € Spec A. O

Remark.  The proof of Proposition 3.5.8 shows that if c) is satisfied then

there is a unique Aut® O-invariant B-structure on €.

3.5.9. Corollary. If G is the adjoint group then the pair (Opg(0),F%) has
no nontrivial Aut O-equivariant automorphisms.

This is statement 2) of Proposition 3.5.8 for A = A4(O).

3.5.10. Recall that a Lie algebroid over a commutative C-algebra R is a Lie
C-algebra a equipped with an R-module structure and a map ¢ : a — Der R
such that 1) ¢ is a Lie algebra morphism and an R-module morphism, 2)
for a1,a2 € a and f € R one has [a1, fas] = fla1, a2] + v(f)az, v := p(a1).
Remarks
(i) [Ma87] and [Ma96] are standard references on Lie algebroids and Lie
groupoids. See also [We| and [BB93]. In this paper we need only the
definition of Lie algebroid.
(ii) Lie algebroids are also known under the name of (C, R)-Lie algebras

(see [R]) and under a variety of other names (see [Ma96)).

3.5.11. Denote by a4 the space of (global) infinitesimal symmetries of F%.
Elements of ay are pairs consisting of a vector field on Opy(O) = Spec A4(O)
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(i.e., a derivation of A4(0)) and its lifting to a G-invariant vector field on
the principal G-bundle §%. ag is a Lie algebroid over A4(0). We have a

canonical exact sequence.
0 = Guniv — ag — Der A4(0) — 0

where guniv is the space of global sections of the S%—twist of g. Of course
ag and guniv do not change if G is replaced by the adjoint group Ga.q. So a4
and gunivy do not depend on the choice of w(l)/ 2

The action of Der O on S% induces a Lie algebra morphism Der O — a.

In particular Der O acts on ay.

3.5.12. Lemma. The adjoint representation of a; on guniy defines an
isomorphism between ag and the algebroid of infinitesimal symmetries of

Juniv- U

3.5.13. Proposition. The group of Der O-equivariant automorphisms of the

pair (A4(0), ag) equals AutI" where I' is the Dynkin graph of g.

Proof. Let G be the adjoint group corresponding to g. Denote by L the
group of Der O-equivariant automorphisms of (A4(O), guniv). According to
3.5.12 we have to show that L = AutI’. We have the obvious morphisms
i: AwtI' = Aut(G,B)/B — L and 7 : L — AutT such that mi =id. Kernw
is the group of Der O-equivariant automorphisms of (Opg4(O), S%), so Kerm

is trivial according to 3.5.9. ([

3.5.14. Proposition. The pair (A4(O), ag) does not have nontrivial Der O-
equivariant automorphisms inducing the trivial automorphism of gr A4(O)

(gr corresponds to the filtration from 3.2.1).

Proof. Let T' be the Dynkin graph of g. According to 3.5.13 and (48) we
have to show that the action of AutI' on the algebra 3%(0) from 2.7.1 is
exact. So it suffices to show that the action of AutI' on W\} is exact (W

denotes the Weyl group). Let C' C Aut h be the automorphism group of the
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root system. There is an a € ) whose stabilizer in C is trivial. So the action

of AutT' = C/W on W\ is exact. O

3.5.15. We equip a4 with the weakest translation-invariant topology such
that the stabilizer of any regular function on the total space of %0G is
open (recall that ag acts on §%). This is the weakest translation-invariant
topology such that the ag-centralizer of every element of guniv is open. So
the topology is reconstructed from the Lie algebroid structure on ay.

Clearly the canonical morphism Der O — a4 is continuous.

3.5.16. Denote by a; the Lie algebroid of (global) infinitesimal symmetries
of SOB. Let byniv (resp. nyniy) denote the space of global sections of the

F%-twist of b (resp. n). There is a canonical exact sequence
0 — buniv — ap — Der A4(O) — 0.

ap is a subalgebroid of ag; in fact ap is the normalizer of byniy C ag. The
image of Der’ O in ag is contained in ap.

Nyuniv 18 an ideal in ap and ap /nyyiy is the algebroid of (global) infinitesimal

symmetries of SOH. Since S(}I is trivial and its trivialization is “almost”
unique (see 3.5.5) ap/Nyniy is canonically isomorphic to the semidirect sum
of Der A4(O) and A4(O) ® h. Denote by a, the preimage of Der A4(O) C
ap /Nypiv 0 Gp.
Remark. According to 3.5.5 the composition Der® O — ap/funiy =
Der A4(O)®(Aq(O)®b) is contained in Der A4(O)@b; it is equal to the sum of
the natural morphism Der’ O — Der Ag(O) and the morphism Der’ O — b
such that Lo +— —p, L, — 0 for n > 0.

3.5.17. We are going to describe ay, buniv, etc. in terms of the action of Ly
on ag. The following notation will be used. If Der O acts on a topological
vector space V so that the eigenvalues of Ly : V — V are integers denote
by V=F the smallest closed subspace of V containing all v € V such that

Lov = nv, n < k. Set V<F := V=k=1_If V is a topological module over



90 A. BEILINSON AND V. DRINFELD

some algebra A and W is a subspace of V' we denote by A - W the smallest

closed subspace of V' containing aw for every a € A and w € W.

3.5.18. Proposition. i) The following equalities hold:

(74) buniv = Ag(0) - (Guniv) ="
(75) Nuniv = Ag(0) - g0
(76) 1 = A4(0) - (ag)="
(77) an = 44(0) - a5

ii) The image of the morphism
(ag)=" — Ag(0)(ag)=°/A4(0)ag’ = ay/an = A5(0) ® b
equals b, so we have a canonical isomorphism

(78) (a5)="/(45(0) - ag® N (ag)=") = b

g

Proof. 1) (74)—(77) follow from (69). Or one can notice that (74) and (75)
are particular cases of (73) and prove, e.g., (76) as follows. According
to (74) Ag(O) - (ag)=0 D buniy and Ag(O) - (Der A4(0))=° = Der A4(0),
so Ag(O) - (ag)=? D ap.  AG(O) - (ag)=? C ap because (ag/ap)=0 =
(Guniv/buniv) =0 = (Guniv) =C/ (buniv)=° = 0 according to (74).

ii) The image of (ay)= in A4(0) ® b equals (44(0) @ h)=0 = . O

3.6. Feigin-Frenkel isomorphism II.

3.6.1. Let A be an associative algebra over C[h] flat as a C[h]-module. Set
Ay := A/hA. Denote by 3 the center of Ag. If 3 = Ay, ie., if Ag is

commutative, then 3 is equipped with the standard Poisson bracket

(79) {z1, 22} := [71,%22]/h mod h
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where 21,29 € 3 and Z; is a preimage of z; in A. Hayashi noticed in [Ha88]
that even without the assumption 3 = Ap (79) is a well-defined Poisson
bracket on 3 (in particular the r.h.s. of (79) belongs to 3).

Remarks

(i) In the above situation there is a canonical Lie algebra morphism
¢ : 3 — Der Ag/ Int Ag where Int Ay is the space of inner derivations.
¢ is defined by ¢(z) = D,, D,(a) := [Z,a]/h mod h where Z,a € A
are preimages of z € 3 and a € Ag. If 2/ € 3 then D,(2') = {z,2'}.
Der Ap/ Int Ag is a 3-module and p(z122) = z1¢(22) + 22¢0(21). So ¢
induces a 3-module morphism @ : Qé — Der Ap/Int Ap. In fact ®
is a morphism of Lie algebroids over 3 (see 3.5.10 for the definition
of Lie algebroid); the Lie algebroid structure on Der Ay/Int Ag is
defined in the obvious way and the one on Q% is the standard
algebroid structure induced by the Poisson bracket on 3 (cf. [We88]
), i.e., [dz,d2'] := d{z,2'} for 2,2’ € 3 and the morphism Q}J — Der 3
maps dz to grad z, (grad 2)(2') := {z,2'}.

(ii) The above constructions make sense if C[h] is replaced by C[h]/(h?).

3.6.2. Now let g be a semisimple Lie algebra and K := C((t)). Denote
by A the completed universal enveloping algebra of the Lie algebra gié?(

from 2.5.1, ie., A := @(UM)/J,L where J,, C Um is the left ideal
n

generated by g®t"CJ[[t]] C g K C m, n > 0. Consider the C[h]-algebra

structure on A defined by ha=1-a—a,a € A, where 1 e CC g® K C A.
A is flat over C[h] and A/hA is the completed twisted universal enveloping
algebra U = U/(g ® K) from 2.5.2 and 2.9.4. So (79) defines a Poisson
bracket on the center 3 of U'. It was introduced in [Ha88], so we call it the

Hayashi bracket.

3.6.3. For an open Lie subalgebra a C g ® O denote by Z, (resp. fu)
the closure of the left ideal of U’ (resp. of A = Ug/éT( ) generated by
aCg®0C g/é?( Clearly Z, is the image oficl inT'. Set I, :=7Z,n3. We
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equip 3 with the topology induced from U'. The ideals Z, (resp. Iy) form a

base of neighbourhoods of zero in U’ (resp. in 3).

3.6.4. Lemma.

(i) {Iq, 14} C I,.

(ii) The Hayashi bracket on 3 is continuous.

Proof. Use the fact that A /fa equipped with the C[h]-module structure from
3.6.2 is flat. O

3.6.5. Set I := I;g0. The canonical morphism 3 — 34(0) is surjective
(see 2.9.3-2.9.5) and its kernel equals I. So 34(0) = 3/I.

Denote by I? the closed ideal of 3 generated by elements of the form ab
where a,b € I. Then I/I? is a Lie algebroid over 34(0) (the commutator
I/I? x I/I* — I/I? and the mapping I/I? — Der 34(O) are induced by the
Hayashi bracket). The Lie algebra Der O acts on I/I? and 34(O). These
actions are continuous (I/I? is equipped with the topology induced from 3

and 34(0) is discrete).

3.6.6. Let us formulate a more precise version of Theorem 3.2.2. We have
the algebra 34(O) and the Lie algebroid I/I? over 34(0). On the other hand
denote by ©g the Langlands dual and consider the algebra AL 4(0) (see 3.2.1)
and the Lie algebroid ar, over it (see 3.5.11). I/I? and ar, are equipped
with topologies (see 3.6.5 and 3.5.15). The Lie algebra Der O acts on all
these objects. 33(0) and ALy (O) are equipped with filtrations (see 1.2.5
and 3.2.1), and we have the morphism o0, : gr3s(O) — gr ALy(O) where
o5 : gr3g(0) — 55’(0) is the symbol map and o4 is the isomorphism (48)
with g replaced by g.

3.6.7. Theorem. There is an isomorphism of filtered Der O-algebras

~

(80) po : Arg(0) — 3(0)
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such that gr gpal = 02105 and @o extends to a topological Der O-equivariant

isomorphism of Lie algebroids
(81) ar, — I/1%.

This theorem can be extracted from [FF92] (see 3.7.12-3.7.17).
Remark. According to 3.5.14 the isomorphisms (80) and (81) are unique.

In 3.6.11 we will formulate an additional property of the isomorphism

(81). But first we must define an analog of (78) for the algebroid I/I°.

3.6.8. We will use the notation from 3.5.17.

Lemma. Set Z_ := (U/)SO N Zy where a = tg[[t]] and Z, was defined in
3.6.3. Then Z_ is a two-sided ideal in (U/)SO and

(82) U= =vUge1_.

Proof. (82) is clear. Since Z_ is a left ideal and [g,Z_] C Z_ (82) implies
that Z_ is a two-sided ideal. (]

Define 7 : (U’)SO — Ug to be the morphism such that 7(Z_) = 0 and
m(a) = a for a € Ug.

Here is an equivalent definition of w. Set Vad, := U' /T, a = tg[[t)]. Then
Vad, is a left U'-module and a right Ug-module. The eigenvalues of Ly on
Vad), are non-negative and Ker(Lg : Vad, — Vad,) = Ug. So Ug C Vad,
is invariant with respect to the left action of (U’)SO. The left action of
(U’)SO commutes with the right action of Ug, so it defines a morphism

(U')<0 - Ug. This is .
3.6.9. Denote by C' the center of Ug. Then
(359 c O, m(3-3°9n3=% = 0.

Let m C C be the maximal ideal corresponding to the unit representation
of Ug. Recall that I := Ker(3 — 34(0)). Then 7(I=%) C m. Since (I*)=0
I=0. 150 4 (3. 3<91 3= one has 7((I2)<") € m2. So 7 induces a C-linear

map d: (I/I%)=% — m/m? such that 34(0) - (I/I?)<° N (1/I?)<° C Kerd.
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Ezercise. m({z1,22}) = 0 for 21, 25 € 350 (s0 d is a Lie algebra morphism).

3.6.10. Identify C with the algebra of W-invariant polynomials on h* where
W is the Weyl group. Then m consists of W-invariant polynomials on h*
vanishing at p := the sum of fundamental weights. Since p € h* is regular
we can identify m/m? with b by associating to a W-invariant polynomial

from m its differential at p. So we have constructed a map
(83) d: (I/1)=°/(34(0) - (1/T)=° N (I/T*)=°) — b

3.6.11. Theorem. The diagram

(aLg)SO/(ALg(O) : afg N (aLg)SO) — b

d: (/1220 (35(0) - (I/)=° N (I/T)) — b

anticommutes. Here the upper arrow is the isomorphism (78) with g replaced
by “g, the left one is induced by (81), and the right one comes from the scalar
product (18).

This theorem can be extracted from [FF92] (see 3.8.15-3.8.22).

3.6.12. The reason why the “critical” scalar product (18) appears in 3.6.11
is not very serious. The reader may prefer the following point of view.
Denote by B the set of invariant bilinear forms on g. For each b € B we
have the completed twisted universal enveloping algebra U;) = U;(g ® K)
corresponding to the cocycle (u,v) — Resb(du,v), u,v € g K (so U = U;
where ¢ is defined by (18)). One can associate to b € B a Poisson bracket
{ }» on 3 by applying the general construction from 3.6.1 to the family
of algebras U/C +np depending on the parameter h (the bracket from 3.6.2
corresponds to b = ¢). The Lie algebroid structure on I/I? depends on b.
Then 3.6.7 and 3.6.11 hold for every nondegenerate b € B (notice that in

(84) both vertical arrows depend on b).
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3.6.13. In fact, the action of Der O on I/I? mentioned in 3.6.6-3.6.7 comes
from a canonical morphism Der O — I, which is essentially due to Sugawara.
We will explain this in 3.6.16 after a brief overview of Sugawara formulas
in 3.6.14-3.6.15. These formulas also yield elements of 34(O); in the case
g = sl they generate 33(0). We remind this in 3.6.18. Both 3.6.18 and
3.6.19 are not used in the sequel (7).

3.6.14. In this subsection we remind the general Sugawara formulas. In
3.6.15 we remind their consequences for the critical level.

Let A be the completed universal enveloping algebra of gié?( . As a
vector space gié?( is the direct sum of g® K and C = C-1. The Sugawara
elements En € A are defined by

~ 1 .
(85) Ly = 5 Z g es\)e/(f) :

Here {e)} is a basis of g, eg\T) =et" €g(t) =g K C gf@?ff, (g™)
is inverse to the Gram matrix (ey,e,) with respect to the “critical” scalar

product (18) and

(r)y @) .
™ W0 ._ ey e&) if r<l

(86) teye
A eg)ey) if r>1

Of course summation over A and p is implicit in (85). Clearly the infinite

series (85) converges and £, — 0 for n — cc.

Remark. Ifn # 0 then : eg\r)el(f) : can be replaced in (85) by eg\r)e,(f). Indeed,

since g™ is symmetric gM [eg\r), e,(f)] =0unlessr+1=0, r #0.



96 A. BEILINSON AND V. DRINFELD

The proof of the following formulas can be found?’, e.g., in Lecture 10

from [KR] and § 12.8 from [Kac90] :

(87) ad £, = hL,
~ ~ m3—m
(88) L (L) = (m—n)Lyin + Om,—n - T (dimg)-1.
In (87) ad £, is an operator A — A, L, := —t”“% € Der K is also

considered as an operator A — A (the Lie algebra Der K acts on A in
the obvious way), and h has the same meaning as in 3.6.2, i.e., h: A — A
is multiplication by 1 — 1.

Using (87) one can rewrite (88) in the Virasoro form:

3

(89) [, E0] = (M — 1) i + O - = T (dimg)-1).

3.6.15. The image of £, in A/hA = U will be denoted by £,. According
to (87) £, belongs to the center 3 C U and

(90) {L,,2} = Ly(2), Z€3

where { } denotes the Hayashi bracket on 3. According to (88) and (89)

3 _
m o g

(91) Ly (£n) = (m—n)Lyin+ Om—n - D

3 _
T - dimg.

(92) {£m7 271} = (m - n)£m+n + 6m,—n :
3.6.16. If n > —1 then £, € I := Ker(3 — 34(0)) (indeed, a glance at (85)
shows that £, annihilates the vacuum vector from Vac'). If m,n > —1 then

3 —m) vanishes, so one has the continuous Lie

the “Virasoro term” d,, —,(m
algebra morphism Der O — [ defined by L, — £,, n > —1. It induces a

continuous algebra morphism
(93) DerO — I/17.

20The reader should take in account that experts in Kac — Moody algebras usually
equip g with the scalar product obtained by dividing (18) by minus the dual Coxeter

number.
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Remark.  According to (90) the action of Der O on I/I? induced by (93)

coincides with the action considered in 3.6.6-3.6.7.

3.6.17. Lemma. The composition of (93) and the isomorphism I/I? —
ary inverse to (81) is equal to the morphism Der O — argy from 3.5.11.
Proof The two morphisms Der O — ar, induce the same action of Der O

on arg. So they are equal by 3.5.12. O

3.6.18. Denote by £, the image of £, in 3/I = 3g(0) . If n > —1 then
£, = 0. The natural morphism C[€_2,£_3,...] — 34(0) is injective and
if g = slo it is an isomorphism. To show this it is enough to compute
the principal symbol of £, and to use the description of 331(0) from 2.4.1.
If 5?(0) is identified with the space of G(O)-invariant polynomials on
g* ® wo (see 2.4.1) then the principal symbol of £, is the polynomial
by §* ®@wo — C defined by £,(n) = 1Res(n,n)Ly; here (n,1) € wd?,

L, € w®(71), (n,n)L, € wgk, so the residue makes sense. Clearly the
mapping C[l_9,0_3,...] — 3?(0) is injective and if g = sl it is an
isomorphism.

For g = sly the Feigin — Frenkel isomorphism is the unique Der O-

equivariant isomorphism Az (O) — 34(0). An sly-oper over Spec O can

be represented as a connection % +(V4), u = u(t) = up +wt+..., or
as a Sturm — Liouville operator (%)2 —u(t) : w51/2 — wf’)/z. One has
Ag,(0) = Clug,u1,...] and the Feigin — Frenkel isomorphism maps u; to

—28_9_;.

For any semisimple g we gave in 3.5.6 a description of AL (O) as an
algebra with an action of Der O; see (64)—(68). Using the Der O-equivariance
property of the Feigin — Frenkel isomorphism one sees that if g is simple then

£_9j € 34(0) corresponds to cuij € Ary(0), ¢ = —(dimg)/6 (??7?).

3.6.19. Consider the vacuum module Vacy := Vaca /(h — ) Vaca, where
Vacy is the quotient of A modulo the closed left ideal generated by g ® O.
In 2.9.3 we mentioned that End4 Vacy = C for A # 0. The following proof
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of this statement was told us by E. Frenkel. As explained in 2.9.3-2.9.5
any endomorphism f : Vacy — Vacy comes from some central element z
of A/(h — A)A. In fact the center of A/(h — \)A equals C if A\ # 0, but
instead of proving this let us notice that [€o, z] = 0 and therefore Lo(z) = 0
(see (87)). So [Lo, f] = 0 where Ly is considered as an operator in Vacy.
Therefore f preserves the space Ker(Lg : Vacy — Vacy), which is generated
by the vacuum vector. Since the A-module Vac, is generated by this space

f is a scalar operator.
3.7. The center and the Gelfand - Dikii bracket.

3.7.1. Set Y := SpecO, Y’ := Spec K where, as usual, O = C][t]],
K = C((t)). Let A be a (commutative) Aut O-algebra. Then for any smooth
curve X one obtains a Dx-algebra Ax (see 2.6.5). Though Y and Y’ are
not curves in the literal sense the construction from 2.6.5 works for them
(with a minor change explained below). So one gets a Dy-algebra Ay and
a Dy-algebra Ay, which is the restriction of Ay to Y. The fiber of Ay at
the origin 0 € Y equals A.

Let us explain some details. The definition of Ax from 2.6.5 used
a certain scheme X”. Since Y is not a curve in the literal sense the
definition of Y should be modified as follows. Denote by A, the n-th
infinitesimal neighbourhood of the diagonal A C Spec O®0. The morphism
Spec 0RO — SpecO ® O = Y x Y induces an embedding A, — YV x Y
(if n > 0 then A, is smaller than the n-th infinitesimal neighbourhood
of the diagonal A C Y x Y). Now in the definition of an R-point of
Y” one should consider only R-morphisms v : Spec RRO — Y with
the following property: for any n there is an N such that the morphism
Spec O/t"O x Spec O /t"O x Spec R — Y x Y induced by ~ factors through
Ap (then one can set N = 2n — 2).

3.7.2. Sometimes we will use the section

(94) Yy - Y”"
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corresponding to the morphism ~ : Spec OR0 — Y = Spec O defined by
(95) V) =tel+10t.

The section (94) yields an isomorphism

(96) Ay = A2 Oy .

Of course (94) and (96) are not canonical: they depend on the choice of a

local parameter t € O.

3.7.3. In the situation of 3.7.1 consider the functor F' : {C-algebras} —
{Sets} such that F(R) is the set of horizontal Y’-morphisms Spec R&K —
Spec Ay or, which is the same, the set of horizontal K-morphisms
HO(Y', Ay:) — R®K. F is representable by an ind-affine ind-scheme S
(which may be called the ind-scheme of horizontal sections of Spec Ay~).
Indeed, F is a closed subfunctor of the functor R + Hom(V, R®K) where
V = H%(Y', Ay+) and Hom means the set of K-linear maps.

Denote by Ag the ring of regular functions on S. This is a complete
topological algebra (the ideals of Ax corresponding to closed subschemes of
S form a base of neighbourhoods of 0).

Af is equipped with an action of the group ind-scheme Aut K (an R-point
of Aut K is an automorphism of the topological R-algebra RRK).

The scheme of horizontal sections of Spec Ay is canonically isomorphic
to Spec A (to a horizontal section s : Y — SpecAy one associates
s(0) € Spec A). This is a closed subscheme of S = Spec Ax, so we get

a canonical epimorphism

Clearly it is Aut O-equivariant.

Ezample. Suppose that A = Clug,u1,ug,...] and v = (L_1)*uo/k!,
Loup = dug, d € Z (as usual, L, := —t”“% € Der O). Then one has the

obvious isomorphism f between the Dy-scheme Spec Ay and the scheme of



100 A. BEILINSON AND V. DRINFELD

jets of d-differentials on Y. Clearly AutO = AutY acts on both schemes
by functoriality. f is equivariant with respect to the group ind-scheme of
Aut O generated by Lo and L_1. Using f we identify horizontal sections of

Spec Ay with d-differentials on Y7, i.e., sections of wf?,d. A d-differential on

Y’ can be written as 3 w;t!(dt)®?, so Ax = C[[...%_1,Uo, U1, ..] where
i
(98) (C[[ .. ﬂ_l,ﬂo,ﬁl, N ] = {EI(C[ .. H_l, ,’170,’171, N .]/(u_n,u_n_l, .. ) .

Clearly Louy = (d + k)ug, L_1ur = (k + 1)ugy1, and the morphism (97)
maps g to ug if k>0 and to 0 if & < 0.

3.7.4. Denote by 34(K) the algebra Ax from 3.7.3 in the particular case
A = 34(0) (see 2.5.1 or 2.7.2 for the definition of 33(0)). We are going to
define a canonical morphism from 34(K) to the center 3 of the completed
twisted universal enveloping algebra U = U/(9®K ). To this end rewrite (34)
as a K-linear map 34(0)@0 K — 3®K. Using the noncanonical isomorphism

33(0)y — 345(0) ® Oy (see (96)) one gets a map
(99) HO(Y,aég(O)Y’) — 3®K7

which is easily shown to be canonical, i.e., independent of the choice of a
local parameter ¢t € O (in fact, (34) is a noncanonical version of (99); (34)
depends on the choice of t because (32) involves ¢ + ¢, which is nothing but
the noncanonical section Y/ — Y defined by (95)).

3.7.5. Theorem.
(i) The map (99) is a horizontal morphism of K-algebras. Therefore
(99) defines a continuous morphism

(100) 3g(K) — 3.

(ii) The composition 34(K) — 3 — 3¢(O) is the morphism (97) for
A =34(0).
(iii) The morphism (100) is Aut K-equivariant.
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We will not prove this theorem. In fact, the only nontrivial statement is
that (99) (or equivalently (34)) is a ring homomorphism; see 777for a proof.
The natural approach to the above theorem is based on the notion of
VOA (i.e., vertex operator algebra) or its geometric version introduced in
[BD] under the name of chiral algebra.?' In the next subsection (which can

be skipped by the reader) we outline the chiral algebra approach.

3.7.6. A chiral algebra on a smooth curve X is a (left) Dx-module A

equipped with a morphism
(101) G (AR A) = ALA

where A : X — X x X is the diagonal, j : (X x X)\ A(X) — X. The
morphism (101) should satisfy certain axioms, which will not be stated here.
A chiral algebra is said to be commutative if (101) maps AKX A to 0. Then
(101) induces a morphism A,(A® A) = j.j' (AR A) /AR A — A, A or,

which is the same, a morphism
(102) A A— A.

In this case the chiral algebra axioms just mean that A equipped with
the operation (102) is a commutative associative unital algebra. So a
commutative chiral algebra is the same as a commutative associative unital
Dx-algebra in the sense of 2.6. On the other hand, the Dx-module Vac/X
corresponding to the Aut O-module Vac by 2.6.5 has a natural structure of
chiral algebra (see the Remark below). The map 34(O)x — Vacy induced
by the embedding 34(O) — Vac' is a chiral algebra morphism. Given a point
z € X one defines a functor A — A((;)) from chiral algebras to associative
topological algebras. If A = Ax for some commutative Aut O-algebra A
then A((,)) is the algebra Ag, from 3.7.3. If A = Vady then A(@)) 18
the completed twisted universal enveloping algebra U = U/(g ® K). So

211 2.9.4 — 2.9.5 we used some ideas of VOA theory (or chiral algebra theory).
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by functoriality one gets a morphism 34(K) = 34(0)x — U Its image is
contained in 3 because 34(O)x is the center of the chiral algebra Vac.

Remark. Let us sketch a definition of the chiral algebra structure on Vacly.
First of all, for every n one constructs a D-module Vac’symn x on Sym"X
(for n = 1 one obtains Vac). The fiber Vacp, of Vacg,nx at D € Sym"X
can be described as follows. Consider D as a closed subscheme of X of order

n, denote by Op the ring of functions on the formal completion of X along

D, and define Kp by Spec Kp = (SpecOp) \ D. One defines the central

extension g ® Kp of g ® Kp just as in the case n = 1. Vad, is the twisted
vacuum module corresponding to the Harish-Chandra pair (gwp, G(Op))
(see 1.2.5). Denote by Vacy, yx the pullback of Vac/smeX to X x X. Then

(103) i Vady, x = j'(Vady R Vacy) ,

(104) AT Vady, x = Vady

where j and A have the same meaning as in (101) and AT denotes the naive

pullback, i.e., AT = H'A'. One defines (101) to be the composition
Gud' Vady W Vady = Gud' Vady  x — jud' Vacxy x/ Vacxy x = Ay Vady
where the last equality comes from (104).

3.7.7. Theorem. (i) The morphism (100) is a topological isomorphism.

(ii) The adjoint action of G(K) on 3 is trivial.

The proof will be given in 3.7.10. It is based on the Feigin - Frenkel
theorem, so it is essential that g is semisimple and the central extension
of g ® K corresponds to the “critical” scalar product (18). This was not
essential for Theorem 3.7.5.

We will also prove the following statements.

3.7.8. Theorem. The map gr3 — 3% defined in 2.9.8 induces a topological
isomorphism gr;3 — 3%) := {the space of homogeneous polynomials from

3 of degree 7}.
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3.7.9. Theorem. Denote by Z, the closed left ideal of U topologically
generated by g®t"O, n > 0. Then the ideal I, := Z,,N3 C 3 is topologically
generated by the spaces 37", m < i(1—n), where 37" := {z € 3;|Loz = mz},
3; is the standard filtration of 3, and Lg := —t% € Der O.

3.7.10. Let us prove the above theorems. The elements of the image of
(100) are G(K)-invariant (see the Remark from 2.9.6). So 3.7.7(ii) follows
from 3.7.7(i). Let us prove 3.7.7(i), 3.7.8, and 3.7.9.

By 2.5.2 gr3,(0) = 3?(0). According to 2.4.1 331(0) can be identified
with the ring of G(O)-invariant polynomial functions on g* ® wp. Choose
homogeneous generators pi, ..., p, of the algebra of G-invariant polynomials

on g* and set d; := degp;. Define vj;, € 3?(0), 1<7<r, 0Lk <o0, by
(105) Zvjk Fd)b, negtewo.

According to 2.4.1 the algebra 531(0) is freely generated by vj;. The action
of Der O on 5§l(0) is easily described. In particular v, = (L_1)*v;0/k!,
Lovjo = djvjo. Lift vjo € 351(0) = grjg(0) to an element u; € 34(0)
so that Lou; = dju;. Then the algebra 34(0) is freely generated by
ujp = (L_1)*uj/k!, 1 < j <17, 0 < k < oo. Just as in the example
at the end of 3.7.3 we see that 34(O)x = C[[...,%;,—1,Ujo, Uj1,...] and
Lo, = (dj + k).

Denote by w;j the image of uj, in 3. By 2.9.8 wj, € 34, and the image

of wj;;, in 3€éj) is the function vj;, : g* ® wx — C defined by
(106) Zvjk R, neg-owk.
We have an isomorphism of topological algebras

(107) 3% =C[[...j-1,Tj0,0j1, - ]
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because
the algebra of G(O)-invariant polynomial functions
on g* ® t "wp is freely generated by the restrictions
(108) of vjj, for k > —nd; while for k < —nd; the restriction
of vj to g* ® t™"wo equals 0.
(This statement is immediately reduced to the case n = 0 considered in
2.4.1). Theorem 3.7.8 follows from (107).

Now consider the morphism f,, : 34(O)x — 3/, where I,, was defined in

3.7.9. We will show that

fn is surjective and its kernel is the ideal J,, topolog-
(109) ically generated by u;, k < dj(1 —n).
Theorems 3.7.7 and 3.7.9 follow from (109).

To prove (109) consider the composition f, : 3,(0)x — 3/I, <
(U )T7,)%©). Equip U /T, with the filtration induced by the standard
one on U. The eigenvalues of Ly on the i-th term of this filtration
are > i(1 —n). So Ker f, D J, where J, was defined in (109). Now
gr(Ul/In)G(O) is contained in (grU//In)G(O), i.e., the algebra of G(O)-
invariant polynomials on g* ® ¢t "wp. Using (108) one easily shows that
the map 34(0)k/Jn — (U’ /Z,)¢©) induced by f,, is an isomorphism. This
implies (109). We have also shown that

(110) the map 3 — (U /Z,)%©) is surjective
and therefore
(111) 3= (0)%9),

3.7.11. Remarks
(i) Here is another proof?? of (111). Let u € (U )%(©). Take h € H(K)

where H C G is a fixed Cartan subgroup. Then h~'uh is invariant

221t is analogous to the proof of the fact that an integrable discrete representation of

g ® K is trivial. We are not able to use the fact itself because U’ is not discrete.
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with respect to a certain Borel subgroup Bj, C G. So h™'uh is G-
invariant (it is enough to prove this for the image of h~'uh in the
discrete space U /L, where Z,, was defined in 3.7.9). Therefore u is
invariant with respect to hgh™' C g ® K for any h € H(K). The
Lie algebra g ® K is generated by g ® O and hgh™!, h € H(K). So
u € 3.

In fact

3=(U)" foranyopenaCg® K.

Indeed, one can modify the above proof as follows. First write u
as an (infinite) sum of u,, x € b* := (Lie H)*, [a,uy] = x(a)uy
for a € h. Then take an h € H(K) such that the image of
h in H(K)/H(O) = {the coweight lattice} is “very dominant”
with respect to a Borel subalgebra b C g containing h, so that
h~lah > [b,b]. We see that u, = 0 unless x is dominant, and
h~lugh is g-invariant. Replacing h by h~! we see that u = uyg, etc.

Here is another proof of 3.7.7(ii). Consider the canonical filtration
U, of U'. Tt follows from (109) that the union of the spaces Uy, N 3,
k € N, is dense in 3. So it suffices to show that the action of G(K') on
U; N3 is trivial for every k. The action of G(K) on 3% is trivial (see
(107), (106)). So the action of G(K) on gr 3 is trivial. The action
of g® K on m corresponding to the action of G(K') defined by
(19) is the adjoint action, and the adjoint action of g ® K on 3 is
trivial. So the action of G(K') on 3 factors through mo(G(K)). The
group mo(G(K)) is finite (see 4.5.4), so we are done.

3.7.12. We are going to deduce Theorem 3.6.7 from [FF92]. Denote by

Ary(O) the coordinate ring of Opry(O) (i.e., the scheme of Lg-opers on

SpecO). Let o : Arg(O) — 33(0) be an isomorphism satisfying

the conditions of 3.2.2. It induces an Aut K-equivariant isomorphism

YK

Arg(K) — 34(K) where AL (K) is the algebra Ag from 3.7.3
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corresponding to A = Ar (O). Recall that Ak is the coordinate ring
of the ind-scheme of horizontal sections of Spec Ay:, Y’ := Spec K. If
A = ALy(O) then Spec Ay is the scheme of jets of Lg-opers on Y’ and
its horizontal sections are “g-opers on Y’ (cf. 3.3.3). So ALg(K) is the
coordinate ring of Opry(K) := the ind-scheme of Lg-opers on Spec K. It is
a Poisson algebra with respect to the Gelfand - Dikii bracket (we remind its
definition in 3.7.14). The Gelfand - Dikii bracket depends on the choice of a
non-degenerate invariant bilinear form on “g. We define it to be dual to the
form (18) on g (i.e., its restriction to h* = L C Lg is dual to the restriction
of (18) to h).

By 3.7.5 and 3.7.7 we have a canonical isomorphism 34(K) — 3, s0 ¢k

can be considered as an Aut K-equivariant isomorphism

(113) AL (K) — 3.

g

3 is a Poisson algebra with respect to the Hayashi bracket (see 3.6.2).

3.7.13. Theorem. [FF92]

There is an isomorphism
(114) 0+ ALg(0) — 34(0)

satisfying the conditions of 3.2.2 and such that the corresponding isomor-
phism (113) is compatible with the Poisson structures.

We will show (see 3.7.16) that an isomorphism (114) with the properties
mentioned in the theorem satisfies the conditions of 3.6.7. So it is unique

(see the Remark from 3.6.7).

Remark. As explained in 3.6.12, one can associate a Poisson bracket on 3
to any invariant bilinear form B on g (the bracket from 3.6.2 corresponds to
the form (18)). If B is non-degenerate one can consider the dual form on “g
and the corresponding Gelfand - Dikii bracket on A.;(K). The isomorphism
(113) corresponding to (114) is compatible with these Poisson brackets.
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3.7.14. Let us recall the definition of the Gelfand - Dikii bracket from
[DS85]. This is a Poisson bracket on Opg(K) (i.e., a Poisson bracket on
its coordinate ring A4(K')). It depends on the choice of a non-degenerate
invariant bilinear form (, ) on g.

Denote by g/éf( the Kac-Moody central extension of g K corresponding
to (, ). As a vector space g/<§7{ is (g ® K) @ C and the commutator in
g/@j( is defined by the 2-cocycle Res(du,v), u,v € g ® K. The topological
dual space (m )* is an ind-scheme. The algebra of regular functions on
(9/63?7( )* is a Poisson algebra with respect to the Kirillov bracket®® (i.e., the
unique continuous Poisson bracket such that the natural map from g/gff
to the algebra of regular functions on (g/gff )* is a Lie algebra morphism).
So (gi@xl/( )* is a Poisson “manifold”. Denote by (gi@x}/( )7 the space of
continuous linear functionals [ : g/gl/( — C such that the restriction of [ to

the center C C g/gf( is the identity. (g/gf( )7 is a Poisson submanifold of

(g® K)*.
We identify (gié_l/( )7 with Conn := the ind-scheme of connections on

the trivial G-bundle on Spec K: to a connection V =d+1n, n € g ® wg,
we associate | € (g?é?()f such that for any u € g® K C gié?( one has
[(u) = Res(u,n). It is easy to check that the gauge action of g® K on Conn
corresponds to the coadjoint action of g K on (;8?7( )7, and one defines the
coadjoint action?* of G(K) on (;é?()* so that its restriction to (;8?7()’{
corresponds to the gauge action of G(K) on Conn. The action of G(K) on
the Poisson “manifold” (g/@?T( )} is not Hamiltonian in the literal sense, i.e.,
one cannot define the moment map (g/é?( )7 — (g ® K)*. However one can

define the moment map (978?7( ) — (g/@??{ )*: this is the identity map.

23As explained in [We83] the “Kirillov bracket” was invented by Sophus Lie and then

rediscovered by several people including A.A. Kirillov.

2414 is dual to the adjoint action of G(K) on Q/QS_I/( defined by (19) (of course in (19)

¢ should be replaced by our bilinear form on g).
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The point is that Opy(K) can be obtained from Conn = (ﬁ()f by
Hamiltonian reduction (such an interpretation of Opy(K) automatically
defines a Poisson bracket on Ag(K)). Fix a Borel subgroup B C Gag.
Let N be its unipotent radical, n := LieN. Since the restriction of
the Kac-Moody cocycle to n ® K is trivial we have the obvious splitting
n K — ;é?( . It is B(K)-equivariant and this property characterizes it
uniquely. The action of N(K) on Conn is Hamiltonian: the moment map
u: Conn = (;@57()1* — (n® K)* is induced by the above splitting. Let
Char* C (n® K)* be the set of non-degenerate characters, i.e., the set of
Lie algebra morphisms [ : n ® K — C such that for each simple root « the
restriction of [ to g®® K is nonzero. For every [ € Char* the action of N(K)
on p~1(1) is free and the quotient N (K )\ ~'(I) can be canonically identified
with Opy(K) (indeed, p=1(1) is the space of connections V = d + n € Conn
such that n = > J, + ¢ where ¢ € b @ wg, I is the set of simple roots, and
Jo = Ja(l) is aaieifced nonzero element of g7 ® wk). So Opy(K) is obtained
from Conn by Hamiltonian reduction over | with respect to the action of
N(K), whence we get a Poisson bracket on Opy(K). It is called the Gelfand
- Dikii bracket. It does not depend on [. Indeed, for [,I’ € Char* consider

the isomorphism
(115) N(E)\ p=H (1) = N(E)\ p~ (1)

that comes from the identification of both sides of (115) with Opgy(K’). The
(co) adjoint action of H(K) on Conn = (gié?( )] preserves the relevant
structures (i.e., the Poisson bracket on Conn, the action of N(K') on Conn,
and the moment map p: Conn — (n® K)*). There is a unique h € H(K)
that transforms [ to " and (115) is induced by the action of this h. So (115)
is a Poisson map.

Remarks

(i) If the bilinear form ( , ) on g is multiplied by ¢ € C* then the Poisson
bracket on Opg(K) is multiplied by ¢ 1.
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(ii) The Gelfand - Dikii bracket defined above is the “second Gelfand -
Dikii bracket”. The definition of the first one and an explanation
of the relation with the original works by Gelfand - Dikii ([GD76],
[GD78]) can be found in [DS85] (see Sections 2.3, 3.6, 3.7, 6.5, and

8 from loc. cit).

3.7.15. Let § € Opy(K), ie.,, § = (§B,V) where §p is a B-bundle on
Spec K and V is a connection on the corresponding G-bundle satisfying
the conditions of 3.1.3 (here G is the adjoint group corresponding to g
and B C G is the Borel subgroup). We are going to describe the tangent
space T5Op,(K) and the cotangent space T35 Opg(K). Then we will write an
explicit formula for {¢, ¥ }(F), ¢, ¥ € Ag(K).

Remark. Of course §p is always trivial, so we could consider § as a
connection V in the trivial G-bundle (i.e., V.=d + ¢, ¢ € g ® wx) modulo
gauge transformations with respect to B.

To describe T3Opy(K) we must study infinitesimal deformations of
§ = (§B,V). Since Fp cannot be deformed all of them come from
infinitesimal deformations of V, which have the form V(e) = V + &g,
q € H°(Spec K, ggl ® wre) (see 3.1.1 for the definition of g=!; ggl = gg}; is
the §p-twist of g~!). Taking in account the infinitesimal automorphisms of

§B we get:

(116) T5O0pg(K) = H°(Spec K, Coker(V : by — g5' ® wi)).
Here is a more convenient description of the tangent space:

(117) T50py(K) = Coker(V : n¥ — bX @ wy)

where n? := H'(Spec K, ng), b? := H%(Spec K, bz) (the natural map from
the r.h.s. of (117) to the r.h.s. of (116) is an isomorphism). Using the
invariant scalar product ( , ) on g we identify b*, n* with g/n, g/b and get

the following description of the cotangent space:

(118) T;Opg(K) = {u € g5 |V(u) € b¥ @ wr}/nk .
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Here is an explicit formula for the Gelfand - Dikii bracket:

In this formula the differentials dz¢ and dgzi are considered as elements of
the r.h.s. of (118).

3.7.16. Theorem. *°

(i) Set I := Ker(A4(K) — Ag(O)). Then {I,I} C I and therefore I/I?
is a Lie algebroid over A4(O).
(ii) There is an Aut O-equivariant topological isomorphism of Lie

algebroids
(120) I/1* = a4

(see 3.5.11, 3.5.15 for the definition of ay).

(In this theorem I? denotes the closure of the subspace generated by ab,

acl, bel).

Theorem 3.6.7 follows from 3.7.13 and 3.7.16.

Remark. The isomorphism (120) is unique (see 3.5.13 or 3.5.14).

3.7.17. Let us prove Theorem 3.7.16. We keep the notation of 3.7.15. Take
§ € Opgy(O). Here is a description of T3Opy(O) similar to (117):

(121) T50p4(0) = Coker(V : n§ — b§ ® wo)

where ng := HY(Spec O, ng). The fiber of I/I? over § is the conormal space
Tg(’)pg(O) C T3 Opy(K). According to (121) it has the following description
in terms of (118):

(122) T3 0pqa(0) = {u € g§| V(u) € b§ @ wo}/n§ .

Now it is clear that {I,1} C I: if ¢, € I, T € Opgy(O) then dzy and
dz1 belong to the r.h.s. of (122) and therefore the r.h.s. of (119) equals 0.

25Inspired by [Phys]
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The map
(123) I/I* — Der A4(O),

which is a part of the algebroid structure on I/I%, is defined by ¢ + 9,
Iy (V) == A{p, ¥}, p € I, ¢ € Ag(K)/I = Ag(O). So according to (119) the

map
(124) T3 Opg(0) — T50p4(0)

induced by (123) is the operator

(125) V:{uegf|V(u) € bf ®wo}t/nd = (b @wo)/V(ng).

The algebroid structure on I/I? induces a Lie algebra structure on the
kernel az of the map (124). On the other hand, agz is the kernel of
(125), ie., az = {u € gg|V(u) = 0}/{u € ng|V(u) = 0}. Since
{u e ng| V(u) =0} = 0 we have

(126) ag = {u € g§| V(u) = 0}.

The r.h.s. of (126) is a Lie subalgebra of g?.

Lemma. The Lie algebra structure on ag that comes from the algebroid

structure on I/I? coincides with the one induced by (126).

Proof. Tt suffices to show that if @1, g2 € Ag(K) and dzp; € ag then

(127) dz{e1, w2} = [dze1, dzpa]

(in the r.h.s. of (127) dzy; are considered as elements of g? via (126)).
Consider a deformation () of §, €2 = 0. Write § as (Fp, V). Without loss
of generality we can assume that §(¢) = (§B,V +¢q), q € b? ® wg. Write
dg(g)goi as dgp; + €p;. Then

{e1,02}1(3(e)) = Res((V + ead q)(dgp1 + ep), dgipa + epz) =

e Res([q, dgp1], dgp2) = e Res(q, [dgp1, dypa])
(we have used that V(dzpi) = 0). The equality (127) follows. O
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According to the lemma the kernel ag of the map (124) coincides as a Lie
algebra with (guniv)g, i-€., the fiber at § of the Lie algebra gypiy from 3.5.11.
The map (124)=(125) is surjective because V : gg — gg ® wo is surjective.
It is easy to show that (121) and (122) are homeomorphisms and that the
map (124) is open.

In a similar way one shows that the morphism (123) is surjective and
open, and its kernel can be canonically identified with gun;v equipped with
the discrete topology (the identification induces the above isomorphism
a5 — (Guniv)z for every § € Opgy(O)). Lemma 3.5.12 yields a continuous
Lie algebroid morphism f : I/I? — ag such that the diagram

0 — Guniv  — I/IQ — DerAg(O) — 0

idl fl lid

0 — Guniv — g — Der Ag(O) — 0

is commutative. Since the rows of the diagram are exact in the topological

sense, f is a topological isomorphism. Clearly f is Aut O-equivariant.
3.8. Singularities of opers.

3.8.1. Let U be an open dense subset of our curve X. We are going to
represent the ind-scheme Opy(U) as a union of certain closed subschemes
Opg p(X) where D runs through the set of finite subschemes of X such that
DNU =0.

According to 3.1.9 we have a canonical isomorphism @g(U ) — Opg(U)
where @g(U) is the T'(U,V,,)-torsor induced from the T'(U,w$?)-torsor
Op,(U) by a certain embedding T'(U, w$?) C T'(U, Viy ). The definition of
this embedding and of V' = V; can be found in 3.1.9. Let us remind that V' is
a vector space equipped with a G,-action (i.e., a grading) and V,,,, denotes
the twist of V' by the G,,-torsor wx. We have dim V' = r := rank g and the
degrees of the graded components of V' are equal to the degrees di,...,d,

of “basic” invariant polynomials on g.
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If D is a finite subscheme of X one has a canonical embedding V,,, —

v

wx
I'(X, Vi, )-torsor @g(X). Clearly @g p(X) is a closed subscheme of
@g(X\D). Denote by Opg p(X) the image of @g p(X) in Opg(X\ D). If
D C D' then Opy p(X) C Opg pr(X) . For any open dense U C X we have

Opg(U) = U Opg,D(X)'
DNU=0
In 3.8.23 we will give an “intrinsic” description of Opg p(X), which does

(p)- Denote by @gD(X) the I'(X,V,(py)-torsor induced by the

s Ywx

not use the isomorphism @g — Opgy. The local version of this description

is given in 3.8.7 — 3.8.10.
3.8.2. Now we can formulate the answer to the problem from 2.8.6:
(128) NaA(G) = OPLEA(X) .

NA(G) is defined as a subscheme of an ind-scheme N (G), which is
canonically identified with Op. (X \A) via the Feigin - Frenkel isomorphism.
(128) is an equality of subschemes of Op. (X \ A).

We will not prove (128). A hint will be given in 3.8.6.

3.8.3. The definition of Opg p(X) from 3.8.1 makes sense in the following
local situation: X = SpecO, O := C[[t]], D = SpecO/t"O. In this case
we write Opg,(O) instead of Opg p(X). Opgn(O) is a closed subscheme
of the ind-scheme Opy(K). Of course Opyo(O) = Opg(O), Opgn(O) C
Opgn+1(0), and Opgy(K) is the inductive limit of Opgy,,(O).

According to 3.7.12 A4(K) is the algebra of regular functions on Opy(K).
Denote by I, the ideal of Ag(K) corresponding to Opy,(0) C Opg(K).
Clearly I, D I, 41 and Iy is the ideal I from 3.7.16 (i). The ideals I,, form
a base of neighbourhoods of 0 in Ay(K).

3.8.4. Here is an explicit description of Ag(K) and I,. We use the
notation of 3.5.6, so g-opers on Spec K are in one-to-one correspondence
with operators (64) such that u;j(t) € C((t)). Write u;(t) as > u;xt". Then
Ay(K) = CJ[...0j,—1,Ujo, Uj1,...] (We use notation (98)). T]fle ideal I, is
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topologically generated by wj,, k < —d;n. The wuj; from 3.5.6 are the
images of @, in Ag(O) = Ag(K)/I.
It is easy to describe the action of Der K on A4(K). In particular

(129) Loa]’k = (dj + k)ajk .

Just as in the global situation (see 3.1.12 — 3.1.14) the coordinate ring
Ay(K) of Opy(K) carries a canonical filtration. Its i-th term consists of those
“polynomials” in u;;, whose weighted degree is < i, it being understood that

the weight of u;, is d;.

3.8.5. Proposition. The ideal I, C A4(K) is topologically generated by the

spaces A™

M. m < i(l —n), where A" is the set of elements a from the i-th

term of the filtration of the Ay(K’) such that Loa = ma. O
The isomorphism Az, (K) — 3 (see (113)) preserves the filtrations and

is Aut K-equivariant. So Proposition 3.8.5 implies the following statement.

3.8.6. Proposition. The Feigin - Frenkel isomorphism A (K) 5 3 maps
I, C ALy(K) onto the ideal I,, from 3.7.9.
This is one of the ingredients of the proof of (128).

3.8.7. We are going to describe Opy,(O) in “natural” terms (without using
the isomorphism (43)). Denote by g* the locally closed reduced subscheme
of g consisting of all a € g such that for positive roots o one has a_, = 0
if o is non-simple, a_, # 0 if « is simple (a_4 is the component of a from
the root subspace g=%). Then for any C-algebra R the set g™ (R) consists of
a € g ® R such that a_, = 0 for each non-simple a > 0 and a_, generates
the R-module g~ ® R for each simple a.

Recall that a g-oper over Spec K is a B(K)-conjugacy class of operators
% +q(t), g € g7 (K). Here B is the Borel subgroup of the adjoint group G

corresponding to g.



HITCHIN’S INTEGRABLE SYSTEM 115

3.8.8. Definition. A (< n)-singular g-oper on Spec O is a B(O)-conjugacy
class of operators % +t "q(t), ¢ € g7 (0O).
Remarks
(i) The action of B(O) on the set of operators 4 + ¢t "q(t), ¢ € g*(0),
is free. Indeed, the action of B(K) on {% +q(t)|g € g7 (K)} is free
(see 3.1.4).

(ii) For n = 0 one obtains the usual notion of g-oper on Spec O.

3.8.9. Proposition. The map {(< n)-singular g-opers on SpecO} —
Opgy(K) is injective. Its image equals Opg ., (O).

Proof. We use the notation of 3.5.6. For every vy, ..., v, € C[[t]] the operator

(130) % +t7"0(f) Fvit)er + ...+ up(t)er)

defines a (< n)-singular g-oper on SpecO. It is easy to show that this
is a bijection between operators (130) and (< n)-singular g-opers on
Spec O. Now let us transform (130) to the “canonical form” (64) by B(K)-
conjugation. Conjugating (130) by ¢t~ we obtain

(131) % +i(f) +npt Lty (e + ..+t (t)e,

To get rid of npt~! we conjugate (131) by exp(—ne;/2t) and obtain the
operator (64) with

wj(t) =t "y;(t) for j>1,

ur(t) = 7" (t) + n(n — 2) /48, dy =2.

Clearly v; € C[[t]] if and only if u; € t "% C[[t]]. O

3.8.10. If points of Opy,(0) are considered as (< n)-singular g-opers on
Spec O then the canonical embedding Opg,(0) — Opgnt1(0) maps the
B(O)-conjugacy class of % +t7"q(t), ¢ € g7 (0), to the B(O)-conjugacy
class of tP(<& + ¢ "q(t))t 7 (it is well-defined because t* B(O)t~? C B(0)).
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3.8.11. Denote by Inv(g) the algebra of G-invariant polynomials on g.
There is a canonical morphism g — SpecInv(g) = W \ h where W is the
Weyl group.

Suppose one has a (< 1)-singular g-oper on Spec O, i.e., a B(O)-conjugacy
class of 4 +t~1¢(t), ¢ € g*(0). The image of ¢(0) € g in SpecInv(g) is

called the residue of the oper. So we have defined the residue map
(132) Res : Opg1(0) — SpecInv(g) =W\ b.

It is surjective. Therefore it induces an embedding

(133) Inv(g) — Ay(K) /I

(recall that Ag(K)/I; is the coordinate ring of Opy1(0); see 3.8.3).

3.8.12. Proposition. Res(Opy(O)) C W\ b consists of a single point, which
is the image of —p € b.

Remark. We prefer to forget that —p and p have the same image in W'\ .

Proof. We must compute the composition of the map Opy(O) — Opg1(0)
described in 3.8.10 and the map (132). If g(t) € g7 (O) then tP(L+q(t))tF =
jt +4 p + {something regular} where a belongs to the sum of the root spaces
correspondlng to simple negative roots. Now a — p and —p have the same

image in W'\ b. O

3.8.13. Proposition. Let f € Ag(K)/Ii, ie., f is a regular function on
Opg,1(0). Then the following conditions are equivalent:
(i)
(ii) f is Aut® O-invariant;
(iii) Lof = 0.

f € Inv(g), where Inv(g) is identified with its image by (133);

Proof. Clearly (i)=-(ii)=-(iii). Let us deduce (i) from (iii). Consider a
(< 1)-singular g-oper on SpecO. This is the B(O)-conjugacy class of a
connection % +t71q(t), g € g7(O). If t is replaced by At this connection is
replaced by % +t71g(\t). Since Lof = 0 the value of f on the connection
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% +t~1q(\t) does not depend on A, so it depends only on ¢(0) € g+ (because

/l\ir%q()\t) = ¢(0)). It remains to use the fact that a B-invariant regular
H

function on g* extends to a G-invariant polynomial on g (see Theorem 0.10

from [Ko63]). O

3.8.14. Remark. According to 3.8.4 the algebra Ay(K)/I; is freely gen-
erated by u;,, k > —d;, where u;, € Ag(K)/Ii is the image of u;, €
Ag(K). By 3.8.13 and (129) Inv(g) C Ay(K)/I; is generated by v; :=
Uj—d;- The isomorphism SpecClvy, ..., v, —~ SpecInv(g) is the com-
position SpecClvy,...,v,] — g — SpecInv(g) where the first map equals

i(f) — p+wvier + ...+ vee, (we use the notation of 3.5.6).

3.8.15. We are going to prove Theorem 3.6.11. In 3.8.16 — 3.8.17 we
will formulate a property of the Feigin - Frenkel isomorphism (113). This
property reduces Theorem 3.6.11 to a certain statement (see 3.8.19), which
involves only opers and the Gelfand - Dikii bracket. This statement will be

proved in 3.8.20 — 3.8.22.

3.8.16. We will use the notation of 3.5.17. Besides, if Der O acts on a vector
space V we set V0 := {v € V|Lyv = 0}.

As explained in 3.6.9, the map 7 from 3.6.8 induces a morphism
(134) (3/3 . 3<0)0 _ (5/3 _3<0>§0 _ 3§0/(3 _3<0 N 3§0) =0
where C' is the center of Ug. Now (113) induces an isomorphism
(135) (3/3-3°%)° = (Arg(K)/11)°

because by 3.8.5 It = Ary(K) - Ary(K)<°. By 3.8.13 the r.hs. of (135)
equals Inv(*g). So (134) and (135) yield a morphism

(136) Inv(fg) = C.

Denote by Inv(h*) the algebra of W-invariant polynomials on h*. Since

L = h* there is a canonical isomorphism Inv(*g) — Inv(h*). We also have
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the Harish-Chandra isomorphism C' — Inv(h*). So (136) can be considered

as a map
(137) Inv(h*) — Inv(h™).

3.8.17. Theorem. (E. Frenkel, private communication)
The morphism (137) maps f € Inv(h*) to f~ where f~ () = f(—=N),
DNSH A O

3.8.18. Using 3.8.17 we can replace the mysterious lower left corner of
diagram (84) by its oper analog. Diagram (143) below is obtained essentially
this way. Let us define the lower arrow of (143), which is the oper analog of
the map (83) constructed in 3.6.9 — 3.6.10.

According to 3.8.5

(138) I = Ay(K) - Ag(K)<".
By 3.8.13 we have a canonical isomorphism
(139) (Ag(K)/1)° == Inv(g).

For h € b denote by my, the maximal ideal of Inv(g) consisting of polynomials

vanishing at h. Set m :=m_;. By 3.8.12 the isomorphism (139) induces
(140) (I/0)° = m.
Now we obtain
(141) (I/(I? + 1)) == m/m?
(to get (141) from (140) we use that
(12)° € (1) 4 - 10 € (%2 4 Ag(K) - Ag(K)<" = (I)? + I ;

see (138)).
For a regular h € h we identify mh/m% with bh* by assigning to a W-

invariant polynomial on b its differential at h. In particular for m = m_;
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we have m/m? — h* (by the way, if we wrote m as m; we would obtain a
different isomorphism m/m? — h*).
Finally, using (138) we rewrite the Lh.s. of (141) in terms of I/I? and get

an isomorphism
(142) (1/1%)=°/(A4(0) - (I/ TN (I/1%)=°) == ™.
3.8.19. Proposition. The diagram

(ag)=°/(A4(0) - ag® M (ag)=") — b
(143) . !

(I/1?)=0/(A(0) - (I/T)<" N (I/T*)=") — b

commutes. Here the lower arrow is the isomorphism (142), the upper one
is the isomorphism (78), the left one is induced by the isomorphism (120)
(which comes from the Gelfand - Dikii bracket on Ag(K)), and the right one
is induced by the invariant scalar product on g used in the definition of the
Gelfand - Dikii bracket.

The proposition will be proved in 3.8.20 — 3.8.22.

Theorem 3.6.11 follows from 3.8.17 and 3.8.19. The commutativity of
(143) implies the anticommutativity of (84) because the following diagram

is anticommutative:

mp/(mp)* = m_p/(m_z)*
= =
b*

Here the upper arrow is induced by the map f — f~ from 3.8.17.

3.8.20. We are going to formulate a lemma used in the proof of Proposi-

tion 3.8.19. Consider the composition

(144) 1/12 — I/(IQ + Il) ;> ag/Ag(O) : ag<0 = ag/an = guniv/nuniv .

Here the second arrow comes from (120) and (138); a, and nyuj, were

defined in 3.5.16, ag was defined in 3.5.11; the equality a, = A4(O) - ag<0
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was proved in 3.5.18. The fiber of I/I% over § = (§5,V) € Opy(O) equals
{u e g?W(u) € bg ® wo}/ng (see (122)) and the fiber of guniv/Nuniv Over §
equals (gz/ng)o :=the fiber of gz/ngz at the origin 0 € Spec O. Consider the
maps
. O O O
o, {u € g5 |V(u) € by @wolt/ng — (a5/n5)o

where ¢ is induced by (144) and v is evaluation at 0.
3.8.21. Lemma. @ = ).

Proof. 1t follows from 3.7.17 that the restrictions of ¢ and v to az := {u €
gg|V(u) = 0} are equal. So it suffices to show that Ker ¢y C Ker. Clearly
Kerp = Té(’)pml(O) := the conormal space to Opg1(0O) at §. For any
q € bg the oper § := (§B,V + ¢ - %) is (< 1)-singular. So the image
of b? ® tlwo in the r.h.s. of (117) is contained in the tangent space
T50p4.1(0). Therefore Té(’)pg,l(O) C Ker. O

3.8.22. Now let us prove 3.8.19. Since the Lh.s. of (142) equals the Lh.s.
of (141) we can reformulate 3.8.19 as follows.

Let f € Inv(g), f(—p) = 0. Consider f as an element of Ay(K)/I; (see
(133)). By 3.8.12 f € I/I;. The image of f in I/(I?>+I) can be considered
as an element v € guniv/Muniv (see (144)). On the other hand, let A € h* be
the differential at —p of the restriction of f € Inv(g) to h. To prove 3.8.19

we must show that v equals the image of A under the composition
[]* — hCh® Ag(o) = buniv/nuniv - guniv/nuniv .

By 3.8.21 this is equivalent to the following statement: let § = (§p,V) €
Opy(0), q € ¢, Seq = 8B,V + Eq%), then

D (Res(3eq))emo = Map(0)

145 —
(145) de
where gy (t) € b[[t]] is the image of ¢ in bg/ng =bh®O. Just as in the proof
of 3.8.12 one shows that Res(F.,) equals the image of —p+eqy(0) in W\ b.

So (145) is clear.
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3.8.23. In this subsection (which can certainly be skipped by the reader)
we give an “intrinsic” description of the scheme Opy p(X) from 3.8.1. It is
obtained by a straightforward “globalization” of 3.8.7 — 3.8.10.

Denote by G the adjoint group corresponding to g. Suppose we are in
the situation of 3.1.2. So we have a B-bundle §g on X, the induced G-
bundle §¢, and the gz ® wx-torsor Conn(Fe). Let D be a finite subscheme
of X. Denote by Connp(§¢) the gz ® wx (D)-torsor induced by Conn(Fa);
so sections of Connp(F) are connections with (< D)-singularities. Just
as in 3.1.2 one defines ¢ : Connp(Fg) — (9/b)z ® wx (D). The notion of
(< D)-singular g-oper on X is defined as follows: in Definition 3.1.3 replace
Conn by Connp and wx by wx (D).

If X is complete then (< D)-singular g-opers on X form a scheme. Just as
in 3.8.9 one shows that the natural morphism from this scheme to Opy(X\ D)
is a closed embedding and its image equals Opg p(X). So one can consider
Opg,p(X) as the moduli scheme of (< D)-singular g-opers on X.

If D C D' then Opg p(X) C Opg,pr(X), so we should have a natural way
to construct a (< D')-singular g-oper (§5,V’) from a (< D)-singular g-
oper (§p, V). Of course (§, V') should be equipped with an isomorphism
a: (§5 V)xa — Fs V)lx\a where A C X is the finite subscheme
such that D' = D + A if D, D', A are considered as effective divisors. The
connection V' is reconstructed from V and «, while (§'5, @) is defined by
the following property (cf. 3.8.10): if x € A, f is a local equation of A at z
and s is a local section of §p at = then there is a local section s’ of §'5 at «
such that a(s") = A(f)s where X : G,, — H is the morphism corresponding
to p.
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4. Pfaffians and all that

4.0. Introduction.

4.0.1. Consider the “normalized” canonical bundle

(146) w%ung ‘= WBung ® w(?_l

where wy is the fiber of wpun, over the point of Bung corresponding to the
trivial G-bundle on X. In this section we will associate to an “G-oper § the
invertible sheaf A\z on Bung mentioned in 0.2(d). Az will be equipped with
an isomorphism )\?2” — (w%unG)@’” for some n # 0. This isomorphism
induces the twisted D-module structure on Az required in 0.2(d).
According to formula (57) from 3.4.3 OprLg(X) = Opry(X) X Z torse(X)
where Z is the center of G. Actually Az depends only on the image of §

in Ztorsg(X). So our goal is to construct a canonical functor
(147) A Ztorsg(X) — poo torsg(Bung)

where pio torsg(Bung) is the groupoid of line bundles A on Bung equipped

with an isomorphism A®2" -~ (wﬂBung)‘@" for some n # 0.

4.0.2. The construction of (147) is quite simple if G is simply connected.
In this case Z is trivial, so one just has to construct an object of
oo torsg(Bung). Since G is simply connected Bung is connected and simply
connected (interpret a G-bundle on X as a G-bundle on the C'*° manifold
corresponding to X equipped with a O-connection). So the problem is to
show the existence of a square root of w%una (then peo torsg(Bung) has a
unique object whose fiber over the point of Bung corresponding to the trivial
G-bundle is trivialized). To solve this problem we use the notion of Pfaffian.

To any vector bundle @ equipped with a non-degenerate symmetric form
Q®Q — wy Laszlo and Sorger associate in [La-So] its Pfaffian Pf(Q), which
is a canonical square root of det RI'(X, Q). In 4.2 we give another definition

of Pfaffian presumably equivalent to the one from [La-So].
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Fix £ € w'/?(X) (i.e., £ is a square root of wy). Then the line bundle on

Bung whose fiber at F € Bung equals
(148) Pf(gr © L) ® Pf(g® £)®"

is a square root of w%unc (see 4.3.1 for details).

So to understand the case where G is simply connected it is enough to
look through 4.2 and 4.3.1. In the general case the construction of (147) is
more complicated. The main point is that the square root of w]gunc defined

by (148) depends on £ € w'/?(X).

4.0.3. Here is an outline of the construction of (148) for any semisimple G.
As explained in 3.4.6 Ztorsg(X) is a Torsor over the Picard category
Z tors(X) and pe torsg(Bung) is a Torsor over the Picard category

(149) oo tors(Bung) := lim p,, tors(Bung)
—
n

The functor (147) we are going to construct is (-affine in the sense of 3.4.6
for a certain Picard functor ¢ : Ztors(X) — pueo tors(Bung). We define ¢
in 4.1. The Torsor Z torse(X) is induced from w!/?(X) via a certain Picard
functor po tors(X) — Z tors(X) (see 3.4.6). So to construct A it is enough
to construct an #-affine functor X' : w'/2(X) — pis torsg(X) where ¢ is the
composition pg tors(X) — Ztors(X)imoo tors(Bung). We define X' by
L — N, where X, is the line bundle on Bung whose fiber at F € Bung
equals (148). The fact that )\ is ¢-affine is deduced in 4.4 from 4.3.10,
which is a general statement on SO,,-bundles®S. Actually in subsections 4.2

and 4.3 devoted to Pfaffians the group G' does not appear at all.

4.0.4. Each line bundle on Bung constructed in this section is equipped
with the following extra structure: for every x € X a central extension of
G(K,) acts on its pullback to the scheme Bung , from 2.3.1. This structure
is used in 4.3. We will also need it in Chapter 5.

261 fact 4.3.10 is a refinement of Proposition 5.2 from [BLaSo].
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4.1. pco-torsors on Bung.

4.1.1. Let G be a connected affine algebraic group, Il a finite abelian
group, 0 — II(1) - G — G — 0 an extension of G. Our goal is to
construct a canonical Picard functor £ : TIY tors(X) — oo tors(Bung) where

MV := Hom(I1, fioo)-

Remark. If G is semisimple and G is the universal covering of G then
II = m(G) and IIV is canonically isomorphic to the center Z of “G (the
isomorphism is induced by the duality between the Cartan tori of G and
L@). So in this case £ is a Picard functor Z tors(X) — poo tors(Bung), as

promised in 4.0.3.

We construct £ in 4.1.2-4.1.4. We “explain” the construction in 4.1.5
and slightly reformulate it in 4.1.6. In 4.1.7-4.1.9 the action of a central
extension of G(K,) is considered. In 4.1.10-4.1.11 we give a description
of the fundamental groupoid of Bung, which clarifies the construction of

torsors on Bung. The reader can skip 4.1.5 and 4.1.10—4.1.11.

4.1.2. For F € Bung denote by F the II(1)-gerbe on X of G-liftings of
F. Its class ¢(F) is the image of cl(F) by the boundary map H'(X,G) —
H? (X, H(l)) = II. For a finite non-empty S C X the gerbe f"x\s is neutral.
Therefore | F(X\S)| (:= the set of isomorphism classes of objects of F(X\S))
is a non-empty H'! (X \ S, H(l))-torsor. Denote it by ¢g 7. When F varies
¢s.7 become fibers of an H' (X \ S, H(l))—torsor ¢g over Bung.

4.1.3. For any = € X the set |F(Spec O,)| has a single element. We use it
to trivialize the II-torsor |F(Spec K,)| (note that IT = H' (Spec K5, 11(1))).
Thus the restriction to Spec K, s € S, defines a Resg-affine map Res, 7 :
¢s,7 — II where Res, : H' (X \ S,II(1)) — II is the residue at s. For ¢ € II
set IS = {mg = (ms) : > ms =c} C I®. The map Resgr := (Res; ) :

Os.F — I1° has image Hf(f).
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4.1.4. Recall that ITV is the group dual to II, so we have a non-degenerate
pairing () : IT x ITY — oo -

Let £ be a IIV-torsor on X. Set £g := [[ g & = the set of trivializations
of £ at S; this is a (ITY)%-torsor. For any e € £g we have the class
cl(€,e) € HY(X \ S,I1V). Denote by lse F a jico-torsor equipped with a

map

(150) (, )e:0srxEs = LlseF

such that for ¢ € ¢sr, e = (e5) € Es, h € H' (X \ S,1I(1)), x = (xs) €
(ITV)® one has

(90 + h, e)@ - (h7 Cl(gv 6))73(@, e)f
(151)

(v, xe)e = (Ress @, x) (@, ).

Here (, )p : HY(X \ S,II(1)) x HY(X \ S,1IY) — o is the Poincaré
pairing and (Resg ¢, X) := [[;cg(Ress ¢, Xs) € tioo. Such (Use 7, ()e)) exists
and is unique. If S © S then we have obvious maps ¢g r < ¢g/ 7, Esr — s,
and there is a unique identification of pi-torsors £5¢ 7 = £s/ ¢ 7 that makes
these maps mutually adjoint for (, )s. Thus our ps-torsor is independent
of S and we denote it simply /¢ .

When F varies {¢g r become fibers of a poo-torsor f¢ over Bung. The

functor
(152) ¢=¢C .11 tors(X) — peo tors(Bung),

€ — [Lg, has an obvious structure of Picard functor. The corresponding
homomorphism of the automorphism groups IV — T'(Bung, pieo) is X —
(¢ x)-

Remark. In fact £ is a functor ITY tors(X) — puy, tors(Bung) where m is

the order of II. This follows from the construction or from the fact that

(152) is a Picard functor.
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4.1.5. For an abelian group A denote by Agerbes(X) the category
associated to the 2-category of A-gerbes on X (so Agerbes(X) is the
groupoid whose objects are A-gerbes on X and whose morphisms are 1-
morphisms up to 2-isomorphism). In 4.1.2-4.1.4 we have in fact constructed

a bi-Picard functor

(153) ITY tors(X) x II(1) gerbes(X) — pioo tors

where po tors denotes the category of poo-torsors over a point. In this
subsection (which can be skipped by the reader) we give a “scientific
interpretation” of this construction.

In §1.4.11 from [Del73] Deligne associates a Picard category to a complex
K" of abelian groups such that K = 0 for i # 0, —1. We denote this Picard
category by P(K'). Its objects are elements of K° and a morphism from
r € K toy € K%is an element f € K~! such that df =y — 2.

In 4.1.4 we implicitly used the interpretation of IIY tors(X) as P(Kj)
where K2 = H!(X\S,IIV) = the set of isomorphism classes of IIV-torsors
on X trivialized over S, Kgl = H°(S,11V). In 4.1.3 we implicitly used the
interpretation of I1(1) gerbes(X) as P(Lg) where LY = H2(X,II(1)) = I1%,
Lg' = HY(X\S,II(1)) (LY parametrizes TI(1)-gerbes on X with a fixed
object over X\S). The construction of the bi-Picard functor (153) given in
4.1.4 uses only the canonical pairing Kg X Ly — pioo[1].

For S’ D S we have canonical quasi-isomorphisms Ky — Kj and
Ly — L. The corresponding equivalences P(Kg,) — P(Ky) and P(Ly) —
P(Lg,) are compatible with our identifications of P(Kg) and P(Ky,) with
ITY tors(X) and also with the identifications of P(Ly) and P(Lg,) with
II(1) gerbes(X). The morphism Ly — L, is adjoint to Ky — Kg with
respect to the pairings Kg x Ly — pioo[1] and Ky, x Ly — pioo[1]. Therefore
(153) does not depend on S.

Remarks
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(i) Instead of Kg and Ly it would be more natural to use their images in
the derived category, i.e., (7<1 RI'(X,IIV))[1] and (751 R['(X, I1(1)))[2].
However the usual derived category is not enough: according to
§81.4.13-1.4.14 from [Del73] the image of K" in the derived category
only gives P(K') up to equivalence unique up to non-unique iso-
morphism. So one needs a refined version of the notion of derived
category, which probably cannot be found in the literature.

(ii) From the non-degeneracy of the pairing Ky x Ly — jiso[1] one can
easily deduce that (153) induces an equivalence between IIV tors(X)
and the category of Picard functors I1(1) gerbes(X) — poo tors (this
is a particular case of the equivalence (1.4.18.1) from [Del73]).

4.1.6. The definition of £¢ from 4.1.4 can be reformulated as follows. Let
S C X be finite and non-empty. For a fixed e € £s we have the class ¢ =
cl(€,e) € HLY(X\S,11V) and therefore a morphism )\, : H'(X\S,TI(1)) —
Hoo defined by Ac(h) = (h,c)p. Denote by lg¢ . the A.-pushforward of the
HY(X\S,II(1))-torsor ¢g from 4.1.2. The torsors {g . for various e € g are
identified as follows.

Let & = e, x € (ITV)®. Then As(h)/Ae(h) = (Resg(h), x) where Resg is
the boundary morphism H'(X\S,II(1)) — HZ(X,II(1)) = II°. So lez/le.e
is the pushforward of the IT°-torsor (Resg)«¢s via x : II® — pioo. The
map Resgr : ¢s7 — I1° from 4.1.3 induces a canonical trivialization of
(Resg)«¢s and therefore a canonical isomorphism Z¢ . = lez. So we can
identify l¢  for various e € £g and obtain a jis.-torsor on Bung, which does

not depend on e € £g. Clearly it does not depend on S. This is l¢.

4.1.7. Let S C X be a non-empty finite set, Og := [[ O, Kg := [[ K»
where O, is the completed local ring of x and K, ig e1?8 field of fra?cisons.
Denote by S the formal neighbourhood of S and by Bung s the moduli
scheme of G-bundles on X trivialized over S (in 2.3.1 we introduced Bung 4,

which corresponds to S = {z}). One defines an action of G(Kg) on Bung g
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extending the action of G(Og) by interpreting a G-bundle on X as a G-
bundle on X \ S with a trivialization of its pullback to Spec Kg (see 2.3.4
and 2.3.7).

Let £¢ be the po-torsor on Bung corresponding to a ITV-torsor £ on X (see
4.14, 4.1.6). Denote by Eg the inverse image of f¢ on Bung g. The action
of G(Og) on Bung g canonically lifts to its action on £2. We claim that a
trivialization of £ over S defines an action of G(Kg) on £2 extending the
above action of G(Og) and compatible with the action of G(Kg) on Bung g.
Indeed, once e € £g is chosen E:g can be identified with Kg’ . = ()\e)*ggg where
<Z~>g is the pullback of ¢g to Bung g and A was defined in 4.1.6. G(Kg) acts
on ¢g because ¢s,7 depends only on the restriction of F to X \S. So G(Kg)
acts on Eé o

The isomorphism ég . = ﬁgé induced by the isomorphism /¢ . = le g
from 4.1.6 is not G(Kg)-equivariant. Indeed, if € = xe, x € (IIV)%, then
according to 4.1.6 ﬁgé/ége is the pushforward of the IT°-torsor (Res).ds
via x : II® = jo. The identification (Res).ds = Bungg xII° from
4.1.6 becomes G(Kg)-equivariant if G(Kg) acts on ITI° via the boundary
morphism ¢ : G(Ks) — H'(Spec Kg,TI(1)) = II¥ (we should check
the sign!ll). Therefore the trivial peo-torsor égé/ége is equipped with a
nontrivial action of G(Kg): it acts by x¢ : G(Kg) — fico-

So to each e € Eg there corresponds an action of G(Kg) on bg, and if e
is replaced by xe, x € (ITV)® = Hom(IT%, p1s ), then the action is multiplied
by x¢ : G(Kg) = fico-

Remark. By the way, we have proved that the coboundary map ¢ :
G(Ks) — H'(Spec Kg,II(1)) = II® is locally constant®” (indeed, G(Kg)
acts on (Res).dg as a group ind-scheme, so ¢ is a morphism of ind-
schemes, i.e., ¢ is locally constant. The proof can be reformulated as
follows. Without loss of generality we may assume that S consists of a

single point . The group ind-scheme G(K,) acts on Bung, (see 2.3.3 —

27GSee also 4.5.4.
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2.3.4), so it acts on mo(Bung,) = mo(Bung). One has the “first Chern
class” map c¢: mo(Bung) — II. Tt is easy to show that ¢(gu) = ¢(g)c(u) for
u € mo(Bung), g € G(K,) where ¢ : G(K,) — H'(K,,II(1)) = II is the
coboundary map. So ¢ is locally constant.

e

4.1.8. Denote by G(Kg)¢ the group generated by fio, and elements (g, e),
g € G(Kg), e € Eg, with the defining relations

<919276> = <glae><927e>
(g1,x¢) = x(¢(9))-(g,€), x€ 1Y) =Hom(II", o)
O‘<g?e> = <g,e>a, Q€ oo

—_—

G(Ks)¢ is a central extension of G(Kg) by fieo. The extension is trivial: a
choice of e € £g defines a splitting

P

(154) oe: G(Ks) = G(Kg)e, g+ (g,€).

P P

It follows from 4.1.7 that G(Kg), acts on €2 so that e C G(Kg), acts
in the obvious way and the action of G(Kg) on ¢2 corresponding to e € Eg
(see 4.1.7) comes from the splitting (154).

4.1.9. Consider the point of Bung g corresponding to the trivial G-bundle
on X with the obvious trivialization over S. Acting by G(Kg) on this
point one obtains a morphism f : G(Kg) — Bungg. Suppose that G is

semisimple. Then f induces an isomorphism.
(155) G(Ks)/G(As) — Bung g

where Ag := HY(X \ S,Ox) (see Theorem 1.3 from [La-So] and its proof in
§3 of loc.cit). It is essential that G(Kg) and G(Ag) are considered as group
ind-schemes and G(Kg)/G(Ag) as an fppf quotient, so (155) is more than a

bijection between the sets of C-points. We also have an isomorphism

(156) G(0s) \ G(Ks)/G(As) — Bung .
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It is easy to see that the puoo-torsors ¢ and Efg defined in 4.1.4 and 4.1.7 can

be described as

(157) 2 = GKs)e/G(As)
(158) le = G(Og)\G(Kg)s/G(As)
where 5(?(?) ¢ is the central extension from 4.1.8. Here the embeddings

i: G(O) = G(Kg)g and j : G(As) = G(Kg)e are defined by

(159) Z(g) = <g7 €> , €€ ES

(160) ilg) = {g.e)- ((9),cl(E e))p . e€&s

(we should check the sign!!!) where 9 is the boundary morphism G(Ag) —
HY(X\ S, TI(1)) and cl(€,e) € HY(X \ S,I1V) is the class of (£, ¢) (the r.h.s.
of (159) and (160) do not depend on e).

Remark. The morphisms ¢ : G(Kg) — II° and ¢ : G(As) —
H(X \ S,TI(1)) induce a morphism

(161)  Bung = G(Os) \ G(Ks)/G(As) — IS /H (X \ $,T1(1))

where the r.h.s. of (161) is understood as a quotient stack. Clearly (¢ is the
pullback of a certain fi-torsor on the stack I1°/H'(X \ S, TI(1)).

4.1.10. The reader can skip the remaining part of 4.1.

Let C be a groupoid. Denote by C the corresponding constant sheaf of
groupoids on the category of C-schemes equipped with the fppf topology. If
the automorphism groups of objects of C' are finite then C is an algebraic
stack. By abuse of notation we will often write C' instead of C (e.g., if C'is

a set then C' = C x Spec C is usually identified with C).

Examples. 1) If C has a single object and G is its automorphism group

then C is the classifying stack of G.
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2) If C = P(K") (see 4.1.5) then C is the quotient stack of K° with
respect to the action of K~!. So according to 4.1.5 the r.h.s. of
(161) is the stack corresponding to the groupoid II(1) gerbes(X).

3) If C = Agerbes(X) then C is the sheaf of groupoids associated to
the presheaf S +— Agerbes(X x 5).

Consider the groupoid II(1) gerbes(X) as an algebraic stack. In 4.1.2 we

defined a canonical morphism
(162) ¢: Bung — II(1) gerbes(X)

that associates to a G-bundle F the II(1)-gerbe of G-liftings of F (by the
way, the morphism (161) defined for semisimple G coincides with ¢). ¢
is a refinement of the Chern class map ¢ : Bung — H?(X,II(1)) = II;
more precisely, ¢ is the composition of ¢ and the canonical morphism
II(1) gerbes(X) — H2?(X,I(1)) = the set of isomorphism classes of
II(1) gerbes(X).

The poo-torsors on Bung constructed in 4.1.4 come from poo-torsors on
I1(1) gerbes(X). The following proposition shows that if G' is the universal
covering of G then any local system on Bung comes from a unique local

system on II(1) gerbes(X).

4.1.11. Proposition. Suppose that G is the universal covering of G (so
IT = m(G)). Then the morphism (162) induces an equivalence between
the fundamental groupoid of Bung and TI(1) gerbes(X).

Let us sketch a transcendental proof (since it is transcendental we
will not distinguish between II and II(1)). Denote by X'P the C°
manifold corresponding to X; for a G-bundle F on X denote by JFt°P
the corresponding G-bundle on X*°P. Consider the groupoid Buntc?p whose
objects are G-bundles on X'°P and morphisms are isotopy classes of C'™
isomorphisms between G-bundles. It is easy to show that the natural functor

top

Bung;” — IIgerbes(X™P) = IIgerbes(X) is an equivalence. So we must

prove that for a G-bundle £ on X'*P the stack of G-bundles F on X equipped
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with an isotopy class of isomorphisms F%*P =5 ¢ is non-empty, connected,
and simply connected. This is clear if a G-bundle on X is interpreted as a

G-bundle on X°P equipped with a d-connection.

Remark. In 4.1.2 we defined the H'(X\ S, II(1))-torsor ¢5 — Bung. If S =
{a} for some z € X then H'(X\S,1I(1)) = H'(X,1I(1)), so ¢y, — Bung is
a H'(X,II(1))-torsor. Proposition 4.1.11 can be reformulated as follows: if
G is the universal covering of G then the Chern class map mp(Bung) — I is
bijective and the restriction of ¢(,; — Bung to each connected component
of Bung is a universal covering. This is really a reformulation because a

choice of x defines an equivalence.
(163) I1(1) gerbes(X) — I x H'(X, (1)) tors

(to a I1(1)-gerbe on X one associates its class in H?(X,II(1)) = II and the
H'(X,TI(1))-torsor of isomorphism classes of its objects over X \ {z}).

4.2. Pfaffians I. In this subsection we assume that for (Z/2Z)-graded
vector spaces A and B the identification of A ® B with B ® A is defined by
a®b — (—1)P@POp @ q where p(a) is the parity of a. Following [Kn-Mu] for
a vector space V of dimension n < oo we consider det V' as a (Z/2Z)-graded

space of degree n mod 2.

4.2.1. Let X be a smooth complete curve over C. An w-orthogonal bundle
on X is a vector bundle Q equipped with a non-degenerate symmetric pairing
0O ® Q — wx. Denote by w-Ort the stack of w-orthogonal bundles on X.
There is a well known line bundle det RI' on w-Ort (its fiber over Q is
det RT'(X, Q)). Laszlo and Sorger [La-So] construct a (Z/27Z)-graded line
bundle on w-Ort (which they call the Pfaffian) and show that the tensor
square of the Pfaffian is det RI'. For our purposes it is more convenient to
use another definition of Pfaffian. Certainly it should be equivalent to the

one from [La-So], but we did not check this.
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We will construct a line bundle Pf on w-Ort which we call the Pfaffian;
its fiber over an w-orthogonal bundle Q is denoted by Pf(Q). The action
of —1 € Aut Q on Pf(Q) defines a (Z/27Z)-grading on Pf. Since Pf is a line
bundle, “grading” just means that there is a locally constant p : (w-Ort) —
7./27 such that Pf(Q) has degree p(Q). Actually p(Q) = dim H°(Q) mod 2
(the fact that dim H°(Q) mod 2 is locally constant was proved by M. Atiyah
and D. Mumford [At, Mu]).

For an w-orthogonal bundle Q denote by Q~ the same bundle Q equipped
with the opposite pairing Q ® Q — wx. Set P{™(Q) := Pf(Q7). We will
define a canonical isomorphism Pf @ Pf~ —+ det RT". Define isomorphisms
fri : PE(Q) —= Pf(Q7) by fi; := (¢+i)« wherei = /=1 and ¢; : @ — Q~
is multiplication by i. Identifying Pf and Pf~ by means of fi; we obtain
isomorphisms cy; : Pf®? =5 det RI" such that (¢;)"'c_; : Pf(Q)®? =
Pf(Q)®? is multiplication by (—1)P(<).

Remarks

(i) If Q is an w-orthogonal bundle then by Serre’s duality H*(X, Q) =
(H°(X,Q))*, so detRI'(X,Q) = det H°(X,Q)®2. The naive
definition would be Pf*(Q) := det H°(X, Q), but this does not make
sense for families of Q’s because dim H°(X, Q) can jump.

(ii) Let Q be the orthogonal direct sum of Q; and Q. Then
det RT'(X, Q) = det RT'(X, Q1) ® det RT'(X, Q). From the defini-
tions of Pf and Pf ® Pf~ —— det RT it will be clear that there is a
canonical ismorphism Pf(Q) — Pf(Q;) ® Pf(Qs) and the diagram

Pf(Q) @ Pf(Q™) — Pf(Q1) ® Pf(Q]) ® Pf(Q2) ® Pf(Qy)
! l

det RT(X,Q) 5 det RI(X, Q1) ® det RT(X, Qo)

~

is commutative. Therefore the isomorphisms ci; : Pf(Q)%?

det RT'(X, Q) are compatible with decompositions Q = Q1 @& Qo.
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(iii) One can define cx : Pf(Q)®2 5 det RI'(X, Q) by cx = i*P(Q%
where p(Q)? is considered as an element of Z/4Z. Then ci does
not change if ¢ is replaced by —i. However c+ do not seem to be
naturalobjects, e.g., they are not compatible with decompositions
Q = Q1 ® Qy (the “error” is (—1)P(QUP(Q2)),

(iv) The construction of Pf(Q) works if C is replaced by any field k such
that char k # 2. The case char k = 2 is discussed in 4.2.16.

4.2.2. A Lagrangian triple consists of an even-dimensional vector space
V' equipped with a non-degenerate bilinear symmetric form ( , ) and
Lagrangian (= maximal isotropic) subspaces Ly, L_ C V. If X and Q
are as in 4.2.1 and Q' C Q is a subsheaf such that H°(X, Q') = 0 and
S := Supp(Q/Q’) is finite then one associates to (Q, Q') a Lagrangian triple
(Vi Ly, L) as follows (cf. [Mu]):

(1) V:=H(X,Q"/Q) where Q" := Hom(Q',wx) D Q;

() Ls = H(X,Q/Q) C Vs

(3) L. :=H"(X,Q") CV;

(4) the bilinear form on V is induced by the natural pairing Q”/Q" ®

Q"/Q" = (jswx\s)/wx and the “sum of residues” map H(X, (juwx\s)/wx) —

C where j is the embedding X\S — X. In this situation one can

identify RT'(X, Q) with the complex

(164) 0—-L_—V/Ly—0

concentrated in degrees 0 and 1. In particular H°(X, Q) = Ly NL_,
HY(X,Q)=V/(Ly+ L_) and Serre’s pairing between H°(X, Q) =
LiNL_and HY(X, Q) = V/(Ly + L_) is induced by the bilinear

form on V.
4.2.3. For a Lagrangian triple (V; Ly, L_) set

(165) det(V; Ly, L_):=det Ly @ det L_ ® (det V)*.
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det(V; Ly, L_) is nothing but the determinant of the complex (164).
Formula (165) defines a line bundle det on the stack of Lagrangian triples. In
4.2.4 and 4.2.8 we will construct a Z/2Z-graded line bundle Pf on this stack
and a canonical isomorphism Pf®Pf~ — det where Pf~(V;L,,L_) :=
Pf(V7;Ly,L_) and V™ denotes V equipped with the form —(, ). The naive
“definition” would be Pf*(V; Ly, L_) := det(LyNL_) or Pf*(V; Ly, L_)* :=
det((Ly+ NL_)*) =det(V/(Ly + L-)) (cf. Remark (i) from 4.2.1).

4.2.4. For a Lagrangian triple (V; Ly, L_) define Pf(V; Ly, L_) as follows.
Denote by Cl(V') the Clifford algebra equipped with the canonical (Z/2Z)-
grading (V' C C1(V) is odd). Let M be an irreducible (Z/2Z)-graded C1(V)-
module (actually M is irreducible even without taking the grading into
account). M is defined uniquely up to tensoring by a 1-dimensional (Z/27Z)-
graded vector space. Set M;_ = M/L_M, M*+ := {m € M|L,m = 0}.
Then M+ and Mj,_ are 1-dimensional (Z/27Z)-graded spaces. We set

(166) Pf(V; Ly, L) := M"* @ (Mp_)*.
In particular we can take M = C1(V)/ Cl(V)L,. Then M*+ = C, so
(167) PE(V; Ly, L) = CI(V)/(L_ - CL(V) + CUV) - L.).

Clearly (166) or (167) defines Pf as a (Z/27Z)-graded line bundle on the
stack of Lagrangian triples.?® The grading corresponds to the action of
—1e€Aut(V; Ly, L) on Pf(V; Ly, L_).

If V is the orthogonal direct sum of V; and V5 then CI(V) is the tensor
product of the superalgebras C1(V;) and C1(Vz). Therefore if (V1; L1, L)

and (V% L%, L?) are Lagrangian triples one has a canonical isomorphism
(168) Pf(VieV: Liol?, Lt oL?) =Pf(VL L L) oPf(VE L2 12).

where @ denotes the orthogonal direct sum.

28In other words, passing from individual Lagrangian triples to families is obvious.
This principle holds for all our discussion of Pfaffians (only in the infinite-dimensional

setting of 4.2.14 we explicitly consider families because this really needs some care).
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Pf(V; L4, L_) is even if and only if dim(Ly N L_) is even. This follows

from (168) and statement (i) of the following lemma.

4.2.5. Lemma.

(i) Any Lagrangian triple (V;Ly,L_) can be represented as an
orthogonal direct sum of Lagrangian triples (V'1; L}r,Ll_) and
(V% L%, L?) such that L N L =0, L2 = L%,

(ii) Moreover, if a subspace A C L is fixed such that Ly = A® (L4 N
L_) then one can choose the above decomposition (V;Ly,L_) =
(VL LY, LY) @ (V2 L2, L?) so that L1 = A.

Proof

(i) Choose a subspace P C V such that V = (L4 + L_) @& P. Then set
VZ:i=(LinLy)®P, V= (V)L

(ii) Choose a subspace P C A+ such that A* = L, @ P (this implies
that V = (Ly + L_) ® P because A*/L, — V/(Ly + L_) is an

isomorphism). Then proceed as above. O

4.2.6. In this subsection (which can be skipped by the reader) we
construct a canonical isomorphism between Pf(V; Ly, L_) and the naive
Pt’(V; Ly, L_) from 4.2.3. Recall that Pf*(V; Ly, L_) := det(Ly N L_),
so PfY(V; Ly, L)* = det((Ly N L_)*) = det(V/(Ly + L_)), it being
understood that the pairing det W @ det W* — C, W := Ly N L_, is defined
by (e1 A...Aep) @ (e¥ A...Ae') = 1 where eq,. .., e is a base of W and
el,...,e" is the dual base of W* (this pairing is reasonable from the “super”
point of view; e.g., it is compatible with decompositions W = W @ Wa).

To define the isomorphism Pf(V; Ly, L_) —» Pf*(V; Ly, L_) we use the
canonical filtration on Cl(V') defined by

(169) Clo(V) =C, C1k+1(V) = Clk(V) +V. Clk(V) .

We have Cly(V)/Cli_1(V) = A*V. Set r := dim(Ly N L_). One
has the canonical epimorphism ¢ : CL.(V) — A"V — A"(V/(Ly +
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L)) = det(V/(Ly + L)) = Pf*(V;Ly,L_)*. It is easy to deduce
from 4.2.5(i) that the canonical mapping Cl.(V) — CL(V)/(L_ - CI(V) +
Cl(V)-Ly) = Pf(V; Ly, L_)* factors through ¢ and the induced map
f:Pf(V; Ly, L_)* — Pf(V;Ly,L_)* is an isomorphism. f* is the desired
isomorphism Pf(V; Ly, L_) —» Pf*(V;Ly,L_).

Here is an equivalent definition. Let M be an irreducible (Z/27Z)-graded
C1(V)-module. The canonical embedding det(Ly NL_) C A"(Ly NL_) =
Cl(Ly N L_) C CYV) induces a map det(Ly N L_) ® My, np_ — ME+NE-,
which is actually an isomorphism. It is easy to deduce from 4.2.5(i)
that the composition ML+ — MI+NE- =5 det(Ly N L_) ® My, np. —
det(Ly+ N L_) ® My _ is an isomorphism. It induces an isomorphism
Pf(V;Ly,L_) := MM @ (Mp )®!' — det(Ly NL_) = Pf(V;L,,L_),

which is actually inverse to the one constructed above.

4.2.7. Before constructing the isomorphism Pf®@Pf~ =5 det we will

construct a canonical isomorphism
(170) P{(V@V* Ly ® Ly, L@ LE) ~ det(V; Ly, L)

where V is a finite dimensional vector space without any bilinear form on it,
Ly C V are arbitrary subspaces and V & V* is equipped with the obvious
bilinear form (the Lh.s. of (170) makes sense because L4 @® L1 is Lagrangian,

the r.h.s. of (170) is defined by (165)). Set
(171) M=AV&(detLy)*, AV:=aAV.

M is the irreducible CI(V @ V*)-module with ME+®LE = C, so according
to (166) Pf(V & V* L, @ L{,L_ & L) = (M, 4;1)*. Clearly
My = AN(V/L-) ® (det Ly)* and M} _o;1 = det(V/L-) ® (det L4)* =
det(V; Ly, L_)* (see (165)). So we have constructed the isomorphism (170).
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4.2.8. Now let (V;Ly,L_) be a Lagrangian triple. We will construct a

canonical isomorphism
(172) Pf(V;Ly, L )®@Pf(V ;Ly,L_) —sdet(V;Ly,L_)

where V'~ denotes V' equipped with the bilinear form —(, ). If W is a finite
dimensional vector space equipped with a nondegenerate symmetric bilinear
form then (V@ W; Ly @ W,L_ ® W) is a Lagrangian triple. (170) can be

rewritten as a canonical isomorphism.
(173) det(V; Ly, L) = Pf(VRH;L,  H/L_® H)

where H denotes C? equipped with the bilinear form ((1) (1)) On the other
hand (168) yields an isomorphism

(174) Pf(V; Ly, L Y@Pf(V ;Ly, L) S Pf(VeH L, ® H,L_® H')

where H’ denotes C? equipped with the bilinear form (é _01). So an

isomorphism ¢ : H' — H induces an isomorphism

o PE(V; L, L )®Pf(V 3Ly, L) s det(V;Ly,L_).
Lemma. 1If ¢ € Aut H' then
(175) (o), = (det ¥)"o,, n = dim(Ls N L_).

Proof. Aut H' acts on the r.h.s. of (174) by some character y : Aut H' — C*.
Any character of Aut H is of the form ¢ +— (dety)™, m € Z/2Z.
x(o'9) = (=1)" n:=dim(Ly NL_), because —1 € Aut(V; Ly, L_) acts
on PI{(V; Ly, L_) as (—1)" (see 4.2.4). Som =n mod 2. O

We define (172) to be @, for any ¢ : H' — H such that detp = 1.
Remarks
(i) (172) is compatible with decompositions of (V;L4,L_) into or-
thogonal direct sums; i.e., if one has such a decomposition

(ViLy, L) = (VL LY LY) @ (V% L2, L%) then the isomorphisms
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(172) for (V;Ly, L), (VY LY, LY), and (V% L2,L%) are compat-
ible with (168) and the canonical isomorphism det(V;Ly,L_) =
det(V'; L1, LY) @ det(V?; L%, L?).

(ii) (170) is compatible with decompositions of (V; L4, L_) into direct

sums.

4.2.9. In this subsection (which can be skipped by the reader) we give
an equivalent construction of (172). We will use the superalgebra anti-
isomorphism * : CI(V~) — CI(V) identical on V (for any v,...,vp € V.
one has (vy ...uv,)* = (—=1)#*k=D/2y;, . v;). We also use the canonical map
sTr: CI(V) = Cl,(V) — ClL,(V)/Cl,—1(V) = det V where n = dim V' and
Clg(V) is defined by (169). It has the “supertrace property”

(176) sTr(ab) = (—1)P@P®) §Tr(ba)

where a,b € CI(V') are homogeneous of degrees p(a),p(b) € Z/2Z. Indeed,
it is enough to prove (176) in the case a € V, p(ab) = n mod 2; then
b e Cl,—1(V) and (176) is obvious. Or one can check that sTr(a) coincides
up to a sign with the supertrace of the operator a : M — M where M is an
irreducible Cl(V)-module.

Now consider the map
(177)  detL_ @ Pf(V; L4, L )" ®@det Ly @ PE(V™; Ly, L_)* — detV

defined by a— @ r®ay @y — sTr(a_xayy*). Here ayx € det Ly C A*(Ly) =
Cl(Ly) c CYV), 2z € PI(V; Ly, L_)* = C(V)/(L_-CI(V) + CIV) - Ly),
y* € C(V)/(Ly -C(V)+ ClV)-L_), so (177) is well-defined. It is easy
to see (e.g., from 4.2.5 (i)) that (177) is an isomorphism. It induces an

isomorphism
Pf(V; Ly, L )®@Pf(V "Ly, L ) — det Ly ®det L_®(det V)* = det(V; Ly, L_)

One can show that this isomorphism equals (172).
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4.2.10. Let X and Q beasin 4.2.1 and @' C Q asin 4.2.2. To these data we
have associated a Lagrangian triple (V; L, L_) such that det(V; Ly, L_) =
det RT'(X, Q) (see 4.2.2). Set Pfo/(Q) := Pf(V; Ly, L_). According to 4.2.9
we have a canonical isomorphism Pfgo (Q) ® Pfg/(Q~) — det RT(X, Q).
To define Pf(Q) it is enough to define a compatible system of isomorphisms
Pfg(Q) — Pfg,(Q) for all pairs (Q',Q') such that Q' C Q'. To define
Pf(Q) ® Pf(Q~) — det RI'(X, Q) it suffices to prove the commutativity of

Pfo/(Q) @ Pfo(Q7) — det RT'(X, Q)
_>

~

Pf5(Q) ®Pfs(Q7)

The Lagrangian triple (‘7;5+7Z_) corresponding to Q' is related to the
triple (V; Ly, L_) corresponding to Q' as follows: if A = HO(X,Q'/Q') C
HY(X,Q/Q') = Ly then

(178) V=AYA, Li=L /ACV, L_=L_NAt<V

(notice that AN L_ = HY(X,Q') = 0). So it remains to do some linear
algebra (see 4.2.11). It is easy to check that our definition of Pf(Q) and
Pf(Q) ® Pf(Q~) — det RI'(X, Q) makes sense for families of Q’s.

4.2.11. Let (V; L4, L_) be a Lagrangian triple, A C L, a subspace such
that AN L_ = 0. Then (V;L,,L_) defined by (178) is a Lagrangian
triple. In this situation we will say that (f/, L.,L_) is a subquotient of
(ViLy,L_). It is easy to show that a subquotient of a subquotient is
again a subquotient. So we can consider the category T' with Lagrangian
triples as objects such that a morphism from (V;Ly,L_) to (V';L/,,L")
is defined to be an isomorphism between (V;L,,L_) and a subquotient
of (V/;L! ,L"). Consider also the category C' whose objects are finite
complexes of finite dimensional vector spaces and morphisms are quasi-
isomorphisms. Denote by T the category whose objects are (Z/2Z)-graded

1-dimensional vector spaces and morphisms are isomorphisms preserving
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the grading. The complex (164) considered as an object of C' depends
functorially on (V;L,,L_) € T: if (V;Ly,L_) is the subquotient of

Vi L,,L_) corresponding to A C Ly then we have the quasi-isomorphism
7 L+ P g + q b

L. — V/L,
— —

z_ — ‘7/2/+:AL/L+

Applying the functor det : C — 1T from [Kn-Mu] we see that
det(V; Ly, L_) € 1 depends functorially on (V; Ly, L_) € T. If (V; Ly, L_)
is the subquotient of (V; Ly, L_) corresponding to A C Ly then the iso-
morphism between det(V; Ly, L_) = (detLy) ® (det L_) ® (det V)* and
det(V;Ly,L_) = (det L) ® (det L_) ® (det V)* comes from the natural
isomorphisms det L, = detA @ det Ly, det L_ = det L_ ® det(V/AL),
det V = det A ® det V @ det(V/AL).

As explained in 4.2.10 we have to define Pf as a functor 7' — 1 and to show
that the isomorphism Pf(V; L, L )@ Pf(V;L,,L_) — det(V;Ly,L_)
from 4.2.8 is functorial.

If (17, E+, E_) is the subquotient of (V; Ly, L_) corresponding to A C L4
then

PE(V;L, L )" = CIV)/(L_-ClV)+ClV)-L,)

PHT L L)

CIAY)/(L-nAY)-Cl(AY) +Cl(AY) - Ly) .
So the embedding CI(A+) — CI(V) induces a mapping
(179) PE(V;Ly,L_)* — PE(V; Ly, L_)".

This defines Pf* as a functor T' — {(Z/27)-graded 1-dimensional spaces}
(it is easy to see that composition corresponds to composition). It remains

to show that

a) (179) is an isomorphism,
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b) (179) is compatible with the pairings Pf(V; Ly, L_)*®@Pf(V~; L, L_)* —
det(V; L, L_)* and PE(V; L, L_)*@Pf(V~; Ly, L_)* — det(V; Ly, L_)*
from 4.2.8.

b) can be checked directly and a) follows from b). One can also prove a)
by reducing to the case where (‘7, E+, E_) is a mazimal subquotient, (i.e.,

A® (Ly NL_)=Ly) and then using 4.2.5 (ii).

4.2.12. Let E be a vector bundle on X. Then F & (E* ® wx) has the
obvious structure of w-orthogonal bundle. We will construct a canonical

isomorphism
(180) Pf(E @ (E* @ wy)) — det RT'(X, E) .

Choose a subsheaf E/ C E and a locally free sheaf £ O E so that
HY(X,E') = 0, HY(X,E") = 0, and E”/E’ has finite support. Set
V := HYX,E"/E"), Ly := H'(X,E'/E) C V, L_ := H'(X,E") C V.
Then RI'(X, E) can be identified with the complex 0 — L_ — V/L, — 0
and det RI'(X, F) with det(V;Ly,L_). On the other hand the Pfaffian
of @ = E & (E* ® wx) can be computed using the subsheaf Q' :=
E' @& (E")* ® wx) € Q. Then Pfo(Q) equals the Lh.s. of (170). So
(170) yields the isomorphism (180). One checks that (180) does not depend
on E' and E”.

4.2.13. The notion of Lagrangian triple has a useful infinite dimensional

generalization. First let us recall some basic definitions.

Definition. A Tate space is a complete topological vector space having a
base of neighbourhoods of 0 consisting of commensurable vector subspaces

(i.e., dim Uy /(U1 NU2) < oo for any Uy, Us from this base).

Remark.  Tate spaces are implicit in his remarkable work [T]. In fact,
the approach to residues on curves developed in [T] can be most naturally

interpreted in terms of the canonical central extension of the endomorphism
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algebra of a Tate space, which is also implicit in [T]. A construction of the

Tate extension can be found in 7.13.18.

Let V be a Tate space. A vector subspace P C V is bounded if for
every open subspace U C V there exists a finite set {v1,...,v,} C V such
that P C U + Cv; + ...Cuv,. The topological dual of V is the space V*
of continuous linear functionals on V' equipped with the (linear) topology
such that orthogonal complements of bounded subspaces of V' form a base
of neighbourhoods of 0 € V*. Clearly V* is a Tate space and the canonical
morphism V' — (V*)* is an isomorphism.

Ezample (coordinate Tate space). Let I be a set. We say that A, B C I
are commensurable if A\ (ANB) and B\ (BNA) are finite. Commensurability
is an equivalence relation. Suppose that an equivalence class A of subsets
A C I is fixed. Elements of A are called semi-infinite subsets. Denote
by C((I,A)) the space of formal linear combinations }_ ¢ie; where ¢; € C
vanish when ¢ ¢ A for some semi-infinite A. This is z; Tate vector space
(the topology is defined by subspaces C[[A]] := {}_ cie;} where A is semi-
infinite). The space dual to C((Z,.4)) is C((L ,;16’1)4) where A’ consists of
complements to subsets from A. Any Tate vector space is isomorphic to
C((I,.A)) for appropriate I and A; such an isomorphism is given by the
corresponding subset {e;} C V called topological basis of V.

A c-lattice in V is an open bounded subspace. A d-lattice” in V is a
discrete subspace I' C V such that I' + P = V for some c-lattice P C V. If
W C V is a d-lattice (resp. c-lattice) then there is a c-lattice (resp. d-lattice)
W’ C V such that V. =W & W’'. If W C V is a d-lattice (resp. c-lattice)
then W+ C V* is also a d-lattice (resp. c-lattice) and (W+)+ = W.

A (continuous) bilinear form on a Tate space V' is said to be nondegenerate
if it induces a topological isomorphism V — V*. Let V be a Tate space
equipped with a nondegenerate symmetric bilinear form. A subspace L C V

is Lagrangian if L+ = L.

)¢ and d are the first letters of “compact” and “discrete”.
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Definition. A Tate Lagrangian triple consists of a Tate space V equipped
with a nondegenerate symmetric bilinear form, a Lagrangian c-lattice Ly C

V', and a Lagrangian d-lattice L_ C V.

Example. Let Q be an w-orthogonal bundle on X. If z € X let Q ® O,
(resp. Q ® K,) denote the space of global sections of the pullback of Q
to SpecO, (resp. SpecK,). Q ® K, is a Tate space equipped with the
nondegenerate symmetric bilinear form Res(, ). For every non-empty finite
S C X we have the Tate Lagrangian triple

(181) V:= eeas(Q@)Kx), L, = %(Q@Ox), L_:=T(X\S, Q).

Let (V; Ly, L_) be a Tate Lagrangian triple. Then for any c-lattice A C
L. such that AN L_ = 0 one has the finite-dimensional Lagrangian triple
(Vi:Ly,L_) defined by (178). As explained in 4.2.11 Pf(V;L,,L_) and
det(V; Ly, L_) do not depend on A. Set Pf(V;Ly, L_) := Pf(V; Ly, L_),
det(V; Ly, L_) :=det(V; Ly, L_). Equivalently one can define det(V; L, L_)
to be the determinant of the complex (164) and Pf(V; L4, L_) can be de-
fined by (166) or (167) (the C1(V')-module M from (166) should be assumed

discrete, which means that {v € Vjvm = 0} is open for every m € M).

Ezample. If (V; Ly, L_) is defined by (181) then Pf(V; Ly, L_) = Pf(Q),
det(V; Ly, L_) =det RI'(X, Q).

The constructions from 4.2.7 and 4.2.8 make sense in the Tate situation
with the following obvious changes: a) in 4.2.7 one should suppose that L
is a c-lattice and L_ is a d-lattice, b) (171) should be replaced by the

following formula:

—

(182) M =1lim A(V/U) ® det(L /U)*
U

where U belongs to the set of c-lattices in L. The r.h.s. of (182) is the
fermionic Fock space, i.e., the direct sum of semi-infinite powers of V (cf.

Lecture 4 from [KR] and references therein).
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Remark.  The expression for Pf(Q) in terms of the triple (181) can be
reformulated as follows. For x € X consider the abelian Lie superalgebras
ap, C ag, such that the odd component of ap, (resp. ag,) is Q® Oy (resp.
Q ® K,) and the even components are 0. The bilinear symmetric form on
Q ® K, defines a central extension 0 - C — ag, — ax, — 0 with a
canonical splitting over ap,. The Clifford algebra Cl(Q ® K) is the twisted
universal enveloping algebra U'ag, and M, := Cl(Q ® K;)/Cl(Q ® K) -
(Q ® Oy) is the vacuum module over U'ag,. According to (167) Pf(Q)* is
the space of coinvariants of the action of I'(X\S, Q) on x@ez)SMx.

4.2.14. In this subsection we discuss families of Tate Lagrangian triples.
Let R be a commutative ring. We define a Tate R-module to be a topological
R-module isomorphic to P & Q* where P and @ are (infinite) direct sums
of finitely generated projective R-modules (a base of neighbourhoods of
0 € P® Q* is formed by M+ C Q* for all possible finitely generated
submodules M C Q). This bad™) definition is enough for our purposes.
In fact, we mostly work with Tate R-modules isomorphic to Vo®R where Vj
is a Tate space.

The discussion of Tate linear algebra from 4.2.13 remains valid for Tate

R-modules if one defines the notions of c-lattice and d-lattice as follows.

Definition. A c-lattice in a Tate R-module V is an open bounded
submodule P C V such that V/P is projective. A d-lattice in V is a
submodule I' C V such that for some c-lattice P C V one has 'N P = 0

and V/(I' + P) is a projective module of finite type.”)

Now if % € R we can define the notion of Tate Lagrangian triple just as
in 4.2.13 (of course, if 1 ¢ R one should work with quadratic forms instead
of bilinear ones, which is easy). The Pfaffian of a Tate Lagrangian triple

“JA projective R((t))-module of finite rank is not necessarily a Tate module in the
above sense. Our notion of Tate R-module is not local with respect to Spec R. There are

also other drawbacks.

*)Then this holds for all c-lattices P’ C P.
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(V; Ly, L_) over R is defined as in 4.2.13 with the following minor change:
to pass to the finite-dimensional Lagrangian triple (\7, er, E,) defined by
(178) one has to assume that A C Ly is a c-lattice such that ANL_ =0
and V/(A 4+ L_) is projective (these two properties are equivalent to the
following one: A+ +L_ =V).
Example. Let D C X ® R be a closed subscheme finite over Spec R that
can be locally defined by one equation (i.e., D is an effective relative Cartier
divisor). Let Q be a vector bundle on X ® R. Suppose that the morphism
D — Spec R is surjective. Then

V = limlim H°(X ® R, Q(nD)/Q(-mD

i (X ® R, Q(nD)/Q( )
is a Tate R-module”) ,
Ly:= li;nHO(X ® R,Q/Q(—mD)) CV
m

is a c-lattice, and
L_.:=H((X®R)\D,Q) CV

is a d-lattice. If Q is an w-orthogonal bundle then (V;L,,L_) is a
Lagrangian triple and Pf(Q) = Pf(V; Ly, L_) (cf. 4.2.13).

4.2.15. Denote by B the groupoid of finite dimensional vector spaces over C
equipped with a nondegenerate symmetric bilinear form. In this subsection
(which can be skipped by the reader) we construct canonical isomorphisms
(183)

PI(VQW; L, @W,L_@W) =5 Pf(V; Ly, L_)24mWg| det w|2P(Viks L)

(184) Pf(Q®@ W) =5 PEH(Q)® 4™ W & | det W|2P(Q)

“Mn fact, V is isomorphic to Vo®R for some Tate space Vo over C. Indeed, we can
assume that R is finitely generated over C and then apply 7.12.11. We need 7.12.11 in
the case where R is finitely generated over C and the projective module from 7.12.11 is a
direct sum of finitely generated modules; in this case 7.12.11 follows from Serre’s theorem

(Theorem 1 of [Se]; see also [Ba68], ch.4, §2) and Eilenberg’s lemma [Ba63].
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where W € B, (V;Ly,L_) is a (Tate) Lagrangian triple, Q is an w-
orthogonal bundle on X, | det W] is the determinant of W considered as a
space (not super-space!), and p(V; Ly, L_), p(Q) € Z/27Z are the parities of
Pf(V; Ly, L), Pf(Q). | det W|®™ makes sense for n € Z/27Z because one has
the canonical isomorphism |det W|®? — C, (w1 A. . .Aw,)®? — det(w;, w;).

To define (183) and(184) notice that B is a tensor category with & as
a tensor “product” and both sides of (183) and (184) are tensor functors
from B to the category of 1-dimensional superspaces (to define the r.h.s. of
(184) as a tensor functor rewrite it as | Pf(Q)|® 1™ W & (det W)®P(Q) where
| Pf(Q)| is obtained from Pf(Q) by changing the (Z/27Z)-grading to make it
even and det W is the determinant of W considered as a superspace).

We claim that there is a unique way to define (183) and (184) as
isomorphisms of tensor functors so that for W = (C,1) (183) and (184)
equal id. Here 1 denotes the bilinear form (z,y) — xy, =,y € C.

To prove this apply the following lemma to the tensor functor F' obtained

by dividing the Lh.s. of (183) or (184) by the r.h.s.
Lemma.  Every tensor functor F' : B — {l-dimensional vector spaces}
is isomorphic to the tensor functor Fj defined by Fy(W) = L[&dmW,
L := F(C,1). There is a unique isomorphism F — F; that induces the
identity map F(C,1) — Fi(C,1).

Proof. For every W € B the functor F' induces a homomorphism fy :
AutW — C*. Since AutW is an orthogonal group fy(g) = (detg)™")
for some n(W) € Z/2Z. Clearly n(W) = n does not depend on W. Set
Wy := (C,1). F maps the commutativity isomorphism ((1) (1)) Wi e W, —
W1 @ Wy to id. So n = 0, i.e., fi is trivial for every W. The rest is clear

because the semigroup |B| of isomorphism classes of objects of B is Z,. O

Remarks

(i) (183) was implicitly used in 4.2.8.
(ii) We will use (183) in 4.2.16.
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4.2.16. In this subsection (which can certainly be skipped by the reader) we
explain what happens if C is replaced by a field k of characteristic 2. In this
case one must distinguish between quadratic forms (see [Bourb59], §3, n°4)
and symmetric bilinear forms. In the definition of Lagrangian triple V should
be equipped with a nondegenerate quadratic form. So in the definition of
w-orthogonal bundle @ should be equipped with a nondegenerate quadratic
form Q@ — wx (since k has characteristic 2 nondegeneracy implies that the
rank of Q is even). The construction of Pf @ Pf~ = det from 4.2.8 has to
be modified. If (V; L4, L_) is a Lagrangian triple and W is equipped with
a nondegenerate symmetric bilinear form then (V@ W; Ly @ W, L_®@ W) is
a Lagrangian triple. The bilinear forms ((1) _01) and (? (1)) are not equivalent
in characteristic 2, but one can use (183) for W = H and W = H' to
construct Pf @ Pf~ — det. Finally we have to construct (183) and (184)
in characteristic 2. Let us assume for simplicity that k is perfect. Then the
characteristic property ~) of the isomorphisms (183) and (184) is formulated
just as in 4.2.15, but the proof of their existence and uniqueness should be
modified. The semigroup |B| (see the end of the proof of the lemma from
4.2.15) is no longer Z ; it has generators a and b with the defining relation
a+b = 3a (a corresponds to the matrix (1) of order 1 and b corresponds to

([1) (1))) So the group corresponding to B is Z, which is enough.
4.3. Pfaffians II.

4.3.1. Fix an n-dimensional vector space W over C and a nondegenerate
symmetric bilinear form ( ) on it. To simplify notation we write O,, and
SO,, instead of O(W) and SO(W).

Let F be an SO,,-torsor on X. The corresponding rank n vector bundle
Wr carries the bilinear form ( )z, and we have a canonical isomorphism

detWr = Ox @ det W. Let £ € w'/?(X), ie., L is a square root of wy.

*)To formulate this property in the non-perfect case one should consider B as a stack

rather than a groupoid.
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Then Wx ® L is an w-orthogonal bundle, so Pf(Wx ® £) makes sense (see
4.2). Consider the “normalized” Pfaffian

(185) Pfrr =Pt(Wr® L)@ PI(W @ L)®!
and the “normalized” determinant

(186) v(F) := det RT'(X,Wr) ® det RT'(X, Ox @ W)®~1,

~

As explained in 4.2.1 there are canonical isomorphisms cy; : Pf®? =

det RI'. Using, e.g., ¢; one obtains an isomorphism*)

(187) Pf %% =5 vp(F)
where
(188) ve(F) := det RT(X, Wr ® L) @ det RT(X, W @ £)®~".

Construction 7.2 from [Del87] yields a canonical isomorphism

ve(F) = v(F) @ (det Wr @ (det W)® 1, L)
Since det Wr = Ox ® det W one has v, (F) = v(F) and
(189) Pf. %% = v(F).

When F varies Pf; 7 and v(F) become fibers of line bundles on Bungo,,
which we denote by Pf, and v.
Denote by v'/2(Bungp, ) the category of square roots of v. We have the

functor
(190) Pf: w'/2(X) — v'/%(Bungo,)
defined by £ — Pf,.

*)So the isomorphism (187)=(189) depends on the choice of a square root of -1. This
dependence disappears if one multiplies (187) by P where p is the canonical map
Bunso, — mo(Bunso, ) = m1(SO0,) = Z/2Z and p(F)* € Z/4Z. We prefer not to do it

for the reason explained in Remark (iii) from 4.2.1.
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w'?(X) and vY/?(Bungp,) are Torsors over the Picard categories
potors(X) and g tors(Bungp,). We have the Picard functor ¢SPin
pators(X) — potors(Bungp,); this is the functor ¢ = (¢ from 4.1 in
the particular case G = SO,, G = Spin,, Il = Z/2Z. In 4.3.8-4.3.15
we will show that the functor Pf : w!'/2(X) — v'/2(Bungo, ) has a canonical
structure of £SP"_affine functor. Before doing it we show in 4.3.2-4.3.7 that
for a finite S C X the action of SO, (Kg) on Bungo,, s defined in 4.1.7 lifts
to an action of a certain central extension of SO, (Kg) on the pullback of
Pf; to Bungo, s. Once this action is introduced it is easy to characterize
the ¢SPi_affine structure on the functor Pf essentially by the SO, (Ks)-

invariance property (see 4.3.8-4.3.10).

4.3.2. Let V be a Tate space equipped with a nondegenerate symmetric
bilinear form of even type, i.e., there exists a Lagrangian c-lattice L C V'
(see 4.2.13); if dim V' < oo this means that dim V' is even. Denote by O(V)
the group of topological automorphisms of V' preserving the form. Let us

remind the well known construction of a canonical central extension
(191) 05C*=0O(V)—=0(V)—=0.

Let M be an irreducible (Z/27Z)-graded discrete module over the Clifford
algebra Cl(V') (discreteness means that {v € V|vm = 0} is open for every
m € M). Then M is unique up to tensoring by a 1-dimensional (Z/2Z)-
graded space. So there is a natural projective representation of O(V') in M.

(191) is the extension corresponding to this representation, i.e.,
O(V) :={(g,9)lg € O(V), p € Autc M, p(vm) = g(v) - p(m) for m € M}.

Clearly O(V) does not depend on the choice of M (in fact Autc M is
the group of invertible elements of the natural completion of CI(V)). If
(g,¢) € O(V) then ¢ is either even or odd. Let x(g) € Z/2Z denote the
parity of ¢. Then x : O(V) — Z/27 is a homomorphism.
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The preimages of —1 € O(V) in O(V) are not central. Indeed, if
0 : M — M, o(m) = m for even m and p(m) = —m for odd m then
[—1] := (=1,¢) € O(V) and

(192) [—1]-g=(-1)X9 .. [-1], geO(V)

where § denotes a preimage of g in O(V).

O(V) and Autc M have natural structures of group ind-schemes. More
precisely, the functors that associate to a C-algebra R the sets O(V®R) and
Autc(M ® R) are ind-schemes (if dim V' = co then they can be represented
as a union of an uncountable filtered family of closed subschemes.) So O(V')
is a group ind-scheme.

Denote by Lagr(V') the set of Lagrangian c-lattices in V. It has a natural
structure of ind-scheme: Lagr(V) = li_n}lLagr(AL/A) where A belongs to the
set of isotropic c-lattices in V' (so an R-point of Lagr(V') is a Lagrangian
c-lattice in V@R in the sense of 4.2.14). Denote by P = P, the line bundle
on Lagr(V') whose fiber over L € Lagr(V) equals M' := {m € M|Lm = 0}.
The action of O(V) on Lagr(V) canonically lifts to an action of O(V) on P.

Lagr(V) has two connected components distinguished by the parity of
the 1-dimensional (Z/2Z)-graded space M, L € Lagr(V). The proof of this
statement is easily reduced to the case where dim V is finite (and even). The
same argument shows that Li, Ly € Lagr(V') belong to the same component
if and only if dim(L; /(L1 N Lg)) is even. Clearly the connected components
of Lagr(V) are invariant with respect to g € O(V) if and only if x(g) = 0.
Therefore x : O(V') — Z/2Z is a morphism of group ind-schemes.

Let us prove that (191) comes from an exact sequence of group ind-

schemes
(193) 0= Gy —OV)=0(V)—=0.

We only have to show that the morphism O(V) — O(V) is a G,,-torsor.
To this end fix L € Lagr(V) and set M = CI(V)/ Cl(V)L, so that the fiber
of P = Py over L equals C. Define f : O(V) — Lagr(V) by f(g) = gL.
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Set P’ := P\ {zero section}; this is a G,,-torsor over Lagr(V). It is easy to
show that the natural morphism O(V) — f*P’ is an isomorphism, so O(V)

is a Gy,-torsor over O(V).

Remark. Let L € Lagr(V). Then (193) splits canonically over the stabilizer
of Lin O(V): if g € O(V), gL = L, then there is a unique preimage of g in
O(V) that acts identically on ME.

4.3.3. Set O :=C[[t]], K := C((t)). Denote by wo the (completed) module
of differentials of O. Fix a square root of wp, i.e., a 1-dimensional free O-
module wlO/ 2 equipped with an isomorphism wlO/ ’® wlO/ R wo. Let W
have the same meaning as in 4.3.1. We will construct a central extension of

On(K) := O(W ® K) considered as a group ind-scheme over C.

Set w}(ﬂ = w(l)/Q ®Ro K, wg = wo ®o K. Consider the Tate space
V o= w}(/Q ® W. The bilinear form on W induces a K-bilinear form

V xV — wg. Composing it with Res : wxg — C one gets a nondegenerate
symmetric bilinear form V' x V' — C of even type. Restricting the extension

(193) to O, (K) < O(V) one gets a central extension

(194) 0= Gpm — Op(K) = Op(K) — 0.

It splits canonically over O, (0O) C O, (K) (use the remark at the end of 4.3.2
for L = w(l)/ QW C V). The group Aut wlo/ 2 = peo acts on the extension
(194) preserving the splitting over O, (O).

4.3.4. Lemma. The automorphism of O, (K) induced by —1 € Aut wé/ 2

maps § € On(K) to (—=1)%@§ where g is the image of § in O,(K) and
0: O,(K)— K*/(K*)? =7/27 is the spinor norm.

Proof. According to (192) we only have to show that x(g) = 6(g) for
g € O,(K) C O(V). According to the definition of 8 (see [D71], ch. II, §7) it
suffices to prove that if g is the reflection with respect to the orthogonal

complement of a non-isotropic x € K™ then x(g) equals the image of

(v,7) € K* in K*/(K*)? = Z/27Z. We can assume that € O", z &€ tO".
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L = wlo/Q ® W is a Lagrangian c-lattice in V, so x(g) is the parity of
dimL/(LNgL) =dimO/(z,z)0. O
Remarks

(i) Instead of using reflections one can compute the restriction of y to
a split Cartan subgroup of SO, (K) and notice that x(g) = 0 for
g € 0,(C).

(ii) The restriction of 6 to SO, (K) is the boundary morphism

(195) SO, (K) — HY (K, up) = 7.)27

for the exact sequence 0 — pg — Spin,, = SO,, — 0.
(iii) If g € Oy (K) = O(W @ K) then dim(W®O) /(W ®0)Ng(W ®0))
is even if and only if 6(g) = 0. This follows from the proof of Lemma

4.3.4.

4.3.5. Consider the restriction of the extension (194) to SO, (K):

(196) 0— Gy — SOL(K) = SO, (K) — 0.

It splits canonically over SO,(O). The extension (196) depends on the
choice of w(lj/ ? 5o one should rather write SE,T(?()C where C is a square
root of wp. Let C’ be another square root of wp, then ¢’ = C ® A where
A is a po-torsor over Spec O (or over Spec C, which is the same). Consider
the (trivial) extension of Z/27Z by G,, such that A is the us-torsor of its

splittings. Its pullback by (195) is a (trivial) extension

(197) 0— Gy = SOR(K) 4 — SOR(K) =0

equipped with a splitting over SO, (O) (in 4.1.8 we have already introduced

this extension in a more general situation).

P

Lemma 4.3.4 yields a canonical isomorphism between SO,,(K) and the

P e N o

sum of the extensions SO, (K), and SO, (K) 4. It is compatible with the
splittings over SO, (0).
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4.3.6. Let S, Og, and Kg have the same meaning as in 4.1.7. Fix

L e w/ 2(X) and denote by w}(/j the space of sections of the pullback of

L to Spec Kg. Then proceed as in 4.3.3: set V = w%ﬁ ® W, define the
scalar product on V using the “sum of residues” map wg, — C, embed

SO, (Kg) into O(V') and finally get a central extension

P

(198) 0= Gp — SOR(Ks), = SO, (Kg) =0

with a canonical splitting over SO, (Og).

Remark.  (198) is the “super-sum” of the extensions (196) for K = K,
x € S. Let us explain that if G;, i € I, are groups equipped with morphisms
0; . G; — Z/27 and @Z are central extensions of G; by G,, then the super-
sum of these extensions is the extension of @ G; by G, obtained from the
usual sum by adding the pullback of the starlldard extension
0 Gm — A— P(Z/22) -0
i€l

where A is generated by G,, and elements e;, ¢ € I, with the defining
relations 612 =1, ce; = ejc for ¢ € Gy, €65 = (—1) - eje; for i # j. In our
situation 6, : SO, (K,) — Z/2Z is the spinor norm.

If £,L € w'/?(X) then £ = L®E where & is a po-torsor. It follows from

—~—

4.3.5 that there is a canonical isomorphism between SO, (Kg) and the sum

P e

of the extensions SO, (Ks), and SO, (Kg)g (see 4.1.8 for the definition of

—_~—

SO, (Ks)e)-

4.3.7. In 4.3.1 we defined the line bundles Pf; on Bungo,, £ € wl/2(X).
Denote by Pff; the pullback of Pf, to the scheme Bungp, s defined in 4.1.7.
We have the obvious action of SO, (Og) x G, on Pf2 ( A € G,, acts as

multiplication by X). We are going to extend it to an action of SO, (Kg),

on Pfg compatible with the action of SO, (Kg) on Bungo, s.

Let v € Bungo,,s, § € SOn(Kg),. Denote by F and F' the SO(W)-

bundles corresponding to u and gu where g € SO, (Kg) is the image of

g. We must define an isomorphism Pf,; - Pf c,F', i.e., an isomorphism
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Pf(Wr®L) — Pf(Wz®L). According to 4.2.13 it suffices to construct an

isomorphism Pf(V;L,,L_) — Pf(V;L,,L" ) where V is the Tate space

from 4.3.6, L, = wé/; QW CV,and L_,L" CV are discrete Lagrangian

subspaces such that L’ = gL_. According to (166) this is equivalent to

constructing an isomorphism f : (M )®~1 = (M, )®~!. We define f

to be induced by the action of § € O(V) on M.

Attention: X\ € G,,, C SO, (Kg), acts on Pff; as multiplication by A~1.

4.3.8. As explained in 4.3.1 our goal is to define a canonical ¢SP-affine
structure on the functor (190). This means that for £ € w!'/?(X) and a

wo-torsor £ on X we must define an isomorphism

~

(199) Pl @™ S Plpy, L i=LOE.

We must also check certain compatibility properties for the isomorphisms
(199).

To simplify notation we will write /¢ instead of K?pin. Let S C X be finite.

In 4.1.7-4.1.8 we constructed an action of the central extension SO, (Ks)
on Zg := the pullback of /¢ to Bungo, s. So it follows from 4.3.6-4.3.7 that

SOn(Ks)p acts both on Pf? @¢2 and PfZ,. Recall that the fibers of both
sides of (199) over the trivial SO,-bundle equal C.

4.3.9. Theorem. There is a unique isomorphism (199) such that for every S

the corresponding isomorphism Pff; ®€§ = Pfg, is SOp(Ks) i-equivariant
and the isomorphism between the fibers over the trivial SO,-bundle induced
by (199) is identical.

The proof will be given in 4.3.11-4.3.13. See §5.2 from [BLaSo] for a short

proof of a weaker statement.

4.3.10. Proposition. The isomorphisms (199) define an ¢SP"-affine struc-
ture on the functor Pf : w'/2(X) — v'/2(Bungo,,).

The proof will be given in 4.3.15.
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4.3.11. Let us start to prove Theorem 4.3.9. The uniqueness of (199) is

clear if n > 2: in this case SO, is semisimple, so one has the isomorphism

(155) for G = SOy, S # 0. If n = 2 the action of SO, (Kg) on Bungp, g is

not transitive, but SO,, over the adeles acts transitively on I(E1 Bungo, s(C),
S

which is enough for uniqueness.

While proving the existence of (199) we will assume that n > 2. The
case n = 2 can be treated using the embedding SO; — SO3 and the
corresponding morphism Bungp, — Bungp, or using the remark at the
end of 4.3.14.

Consider the SO, (Kg)-equivariant line bundle Cy := Pf2 @62 @ (PfZ,)*
on Bungp, s. The stabilizer of the point of Bungp, g corresponding to the
trivial SO,-bundle with the obvious trivialization over S equals SO, (Ag),
Ag = HY(X\ S,0x). So the action of SO, (Kg) on Cg induces a morphism
fs: SOn(Ag) — G- Tt suffices to prove that fg is trivial for all S (then
for S # () one can use (155) to obtain a SO, (Kg)-equivariant trivialization
of Cg and of course these trivializations are compatible with each other).

Denote by ¥ the scheme of finite subschemes of X (so ¥ is the disjoint
union of the symmetric powers of X). Ag, Og, and Kg make sense for a
non-necessarily reduced” § € ¥ (e.g., Og is the ring of functions on the
completion of X along S) and the rings Ag, Og, Kg are naturally organized
into families (i.e., there is an obvious way to define three ring ind-schemes
over 3 whose fibers over S € ¥ are equal to Ag, Og, Kg respectively).

It is easy to show that the morphisms fs form a family (i.e., they come
from a morphism of group ind-schemes over ¥). Clearly if S C S’ then the
restriction of fgr to SO, (Ag) equals fg. In 4.3.12-4.3.13 we will deduce
from these two facts that fg = 1.

*)This is important when S varies. For a fixed S the rings As, Os and Kgs depend

only on Sred-
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4.3.12. Let Y be a separated scheme of finite type over C and R a C-algebra.

Set Yiat(R) = li_n)lMor(U, Y’) where the limit is over all open U C X ® R such

U
that the fiber of U over any point of Spec R is non-empty. In other words,

elements of Y;4t(R) are families of rational maps X — Y parameterized by
Spec R. The functor Y;,¢ is called the space of rational maps X — Y. It is
easy to show that Y}, is a sheaf for the fppf topology, i.e., a “space” in the
sense of [LMB93].

We have the spaces Y (Ag), S € X, which form a family (i.e., there is a
natural space over ¥ whose fiber over each S equals Y (Ag)). So a regular
function on Yia defines a family of regular functions fg on Y (Ag), S € 3,
such that for S C S’ the pullback of fg to Y(Ag) equals fg. It is easy to

see that a function on Y, is the same as a family of functions fg with this

property.

4.3.13. Proposition. Let G be a connected algebraic group.

(i) Every regular function on G4t is constant. In particular every group
morphism Gy — Gy, is trivial.
(ii) Moreover, for every C-algebra R every regular function on Gyt ® R

is constant (i.e., an element of R).

Proof. Represent G as UUi where U; are open sets isomorphic to (Al \
{0})" x A% (e.g., let U ZC G be the big cell with respect to some Borel
subgroup, then G is covered by a finite number of sets of the form gU,
g € G). One has the open covering Gyay = U(Ui)rat and (U;)rat N (Uj)rat # 0.
So it is enough to prove the proposition f01fi G = (Gn)" x (Gg)®. Moreover,
it suffices to prove (ii) for G, and Gy,,.

Consider, e.g., the G,, case. Choose an ample line bundle A on X and
set V;, := HY(X, A®"), V! := V,, \ {0}. Define 7, : V! x V! = (Gyn)rat by
(f,9) — f/g. A regular function ¢ on (G, )at ® R defines a regular function

mr on (V! x V))® R, which is invariant with respect to the obvious action

of G, on V) x V,!. For n big enough dimV,, > 1 and therefore 7} ¢ extends
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to a Gy,-invariant regular function on (V,, x V,,) ® R, which is necessarily a

constant. So ¢ is constant. U

4.3.14. This subsection is not used in the sequel (except the definition of
GRASG needed in 5.3.10).

Let G be a connected algebraic group. The following approach to Bung
seems to be natural.

Denote by GRASg the space of G-torsors on X equipped with a
rational section. The precise definition of this space is quite similar to the
definition of Yt from 4.3.12. We would call GRASq the big Grassmannian
corresponding to G and X because for a fixed finite S C X the space
of G-bundles on X trivialized over X \ S can be identified with the ind-
scheme G(Kg)/G(Og) = [] G(K3)/G(Oy) (see 5.3.10), and G(K,)/G(Oy)
is called the affine Gmssvf@ea):mian or loop Grassmannian (see 4.5 or [MV]).

The morphism 7© : GRASs; — Bung is a Giai-torsor for the smooth
topology (the existence of a section S — GRAS¢ for some smooth surjective
morphism S — Bung is obvious if the reductive part of G equals GL,,, SL,,
or Spy; for a general G one can use [DSim]).

Consider the functor
(200) 7 Vect(Bung) — Vect(GRASq)

where Vect denotes the category of vector bundles. It follows from 4.3.13
that (200) is fully faithful. One can show that for any scheme T every vector

bundle on Gyat X T comes from T'. This implies that (200) is an equivalence.

Remark. Our construction of (199) can be interpreted as follows: we
constructed an isomorphism between the pullbacks of the l.h.s. and r.h.s.
of (199) to GRASs0,, then we used the fact that (200) is fully faithful. It
was not really necessary to use the isomorphism (155). So the construction

of (199) also works in the case of SO,.
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4.3.15. Let us prove Proposition 4.3.10. The isomorphisms (199) are
compatible with each other (use the uniqueness statement from 4.3.9). It

remains to show that the tensor square of (199) equals the composition
(201) PE3? v v 5 v — PES?

where v is defined by (188).

Fix an SO,-torsor F on X and its trivialization over X \ S for some
non-empty finite S C X. Using the trivialization we will compute the
isomorphisms Pf%?]_- — Pf%,%]_- induced by (199) and (201).

Recall that Pf, 7 := Pf(Wr ® £) @ PF(W ® £)®~1. According to 4.2.13
Pf(Wr® L) =Pf(V;Ly,L-), Pf(W®L)=PfV;L), L)

where V = Lg, W, L_ =T(X\S,LoW), Lg = Lo ®W, and Ly is the
space of sections of the pullback of Wr ® L to Spec Og (we use the notation
of 4.3.6). Using (166) one gets

(202) Pty = MM @ (MM)*

where M is an irreducible Z/2Z-graded discrete module over C1(V'). Pfz
has a similar description in terms of V', L', (L)', L’ where V' = Ly @W,
etc. Fix a trivialization of the po-torsor £ from 4.3.8 over S. It yields a

trivialization of £ over Spec Og and therefore an identification

Since L_ is not involved in (202) we obtain an isomorphism Pf; r ——
Pf 7. It is easy to show that it coincides with the one induced by (199)
(notice that the trivialization of F over X \ S and the trivialization of &
over S induce a trivialization of fgpin over F because the L.h.s. of (150) has
a distinguished element).

Now we have to show that the isomorphism Pf??}- = Pf%% # induced by
(201) is the identity provided Pf. » and Pf;/ 7 are identified with the r.h.s.
of (202).
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The trivialization of F over X \ S yields an isomorphism v (F) —
d(L%, Ly) where d(L%, L) is the relative determinant, i.e., d(L%,L}) =
det(Ly/U) ® det(LY/U)®~! for any c-lattice U € L N LY. We have a
similar identification vz (F) = d((L%)’,L’.). The isomorphism v, (F) —
ver(F) from (201) is defined in [Del87] as follows. One chooses any
isomorphism f between the pullbacks of £ and £’ to SpecOg. f yields
an isomorphism f, : (V,Ly,LY) — (V/,L,,(LY%)) and therefore an
isomorphism d(L%, L}) — d(L',,(LY)"), which actually does not depend
on the choice of f. It is convenient to define f using the above trivialization
of the po-torsor € = £ ® LZ~! over Spec Og. Then f, coincides with (203).

Thus we have identified v, (F) and v (F) with d(L9, L}) so that the
isomorphism v (F) — v (F) from (201) becomes the identity map. We
have identified both Pf; r and Pfz r with the r.h.s. of (202). It remains

to show that the isomorphism (187) and its analog for £’ induce the same

isomorphism
(204) (M"+ @ (MMH)*)®2 =5 (L9, L)

According to 4.2.8 and 4.2.13 the isomorphism (204) induced by (187)

can be described as follows. We have the canonical isomorphism
(205) NL+&H @ (NFE®HY >y (19 1)

where N is an irreducible (Z/2Z)-graded discrete module over the Clifford
algebra C1(V @ V*) = Cl(Va V) = Cl(V® H) and H denotes C? equipped
with the bilinear form (9§) (to construct (205) take for N the r.h.s. of
(182)). On the other hand, P := M ® M is an irreducible (Z/2Z)-graded
discrete module over C1(V)®C1(V) = CI(V®H") where H” denotes C? with
the bilinear form (§ ¢). Rewrite the Lh.s. of (204) as PL+®H" & (PL(?F@H”)*.
So an orthogonal isomorphism ) : H” —~+ H induces an isomorphism (204).
To get the isomorphism (204) induced by (187) we must normalize ¢ by
dety =i (or —i 77 we should check!).
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Since L_ is not involved in the above description the analog of (187) for

L' induces the same isomorphism (204), QED.

4.3.16. This subsection and 4.3.17 will be used in 4.4.14 (end of the proof
of the horizontality theorem 2.7.3) and in the proof of Theorem 5.4.5 (which
is the main result of this work). However the reader can skip them for the
moment.

As usual, we set O := C[[t]], K := C((t)). Fix £ € w'/?(X), ie., L is a
square root of wx. Fix also a square root of wo and denote it by w(l)/ ?. Then
one defines a 2-sheeted covering X4' of the scheme X" from 2.6.5. Recall
that an R-point of X’ is an R-morphism a : Spec(R®0) — X @ R whose
differential does not vanish over any point of Spec R. Denote by Lp the
pullback of £ to X ® R. By definition, the fiber of X4'(R) over v € X\(R) is
the set of isomorphisms H°(Spec RRO, a*Lg) — R@wg 2) in the groupoid
of square roots of RQwo.

The group ind-scheme Auty O := Aut(O,wlo/ 2) introduced in 3.5.2 acts
on X4 by transport of structure.

Let M be the scheme from 2.8.1 in the particular case G = SO(W) =
SO,,. Denote by M4 the fiber product of M and X2 over X (so M3 is
a 2-sheeted covering of the scheme M” from 2.8.3). Then the semidirect

product Auts O x SO, (K) acts on M. Indeed, M4 is the fiber product of
M and X2 over X", and Auty O x SO, (K) acts on the diagram

M/\
!

Xy — XA

(the action of Aut Ox SO, (K) on M”" was defined in 2.8.4; Auty Ox SO, (K)
acts on X' and X" via its quotients Aute O and Aut O).

Denote by Pf} the pullback to M3 of the line bundle Pf; on Bungo,
defined in 4.3.1. We will lift the action of Auty O x SO, (K) on M} to an

P e

action of Auty O x SO, (K) on Pf}, where SO,,(K) is the central extension
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(196) corresponding to wé/ ?. The action of Auty O on Pf} is clear because

Auty O acts on M4 considered as a scheme over Bungp,. On the other

hand, SO, (K) acts on Pf;; :=the restriction of Pf} to the fiber of M}

over T € X4'. Indeed, this fiber equals Bungp, , where z is the image of

Z in X, and by 4.3.7 the central extension SO, (K,), acts on the pullback
of Pfz to Bungp, . This extension depends only on L, :=the pullback
of £ to SpecO,. Since T defines an isomorphism between (O,w(l)/ %) and

(O, H%(Spec O, L)) we get an isomorphism SO, (K,), — SO, (K) and
therefore the desired action of SO, (K).

4.3.17. Proposition.

—_—~—

(i) The action of SO,(K) on Pf} 3, T € X2, comes from an (obviously

—_—~—

unique) action of SO,,(K) on Pf}.
(i) The actions of Auto O and SO, (K) on Pf} define an action of

—_—~—

Auts O x SO, (K).

Remark. Statement (ii) can be interpreted in the spirit of 2.8.2: the action
of Auto O yields a connection along X on 7* Pf, where 7 is the morphism
M — Bung, and the compatibility of the action of Aute O with that of

SO, (K) means that the action on 7* Pf; of a certain central extension

Jmer (SO, is horizontal.

P

Proof. To define the action of Auty O x SO, (K) on Pfj with the desired
properties we proceed as in 4.3.7. Let R be a C-algebra. Consider an R-
point u of M4' and an R-point g of Auts O x SO, (K). Recall that SO, is an
abbreviation for SO(W). Denote by F and F’ the SO(W)-torsors on X @ R

corresponding to u and gu where ¢ is the image of g in Auty O x SO, (K).

We have to define an isomorphism
(206) Pf(Wr ® Lg) — Pf(Wr ® LR)

where L is the pullback of £ to X ® R.
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Set V = w10/2 ®o K ® W. This is a Tate space over C equipped with a

nondegenerate symmetric bilinear form (see 4.3.3). By 4.2.14

(207) Pf(Wr® L) = PE(VRR; LL&R, L")

where L := wéﬂ ®@ W CV (so Ly is a Lagrangian c-lattice in V') and the

Lagrangian d-lattice L* C V&R is defined as follows. The point u € M3'(R)
is a quadruple (o, F,~, f) where o, F, v have the same meaning as in
2.8.4 (in our special case G = SO(W)) and f is an isomorphism between
H(Spec R®K, a*Lp) and R@wéﬁ in the groupoid of square roots of R®wo.

Let I'y, have the same meaning as in 2.8.4. Then
©
L' .= HY(X®R)\To, Wr®LR) C H(Spec ROK, a*Wr@a*Lg)——VOR

(the isomorphism ¢ is induced by ~ and f).
Taking (207) into account we see that constructing (206) is equivalent to

defining an isomorphism
(208) Pf(VRR; L, ® R, L*) = Pf(V®R; L, ® R, L™").

The group ind-scheme Aute O x SO(W ® K) acts on V' in the obvious way,
and it is easy to see that LY = gL“. By (166) the L.h.s. of (208) is inverse to
(M ® R)r,_ whereM is the Clifford module C1(V)/Cl(V)L4 and L_ := L*.
So it remains to construct an isomorphism (M ® R), — (M @ R)gr,_. We

define it to be induced by the action™ of § on M @ R. (]
4.4. Half-forms on Bung.

4.4.1. Let G be semisimple. Fix a G-invariant non-degenerate symmetric
bilinear form on g. Set n := dimg and write SO, instead of SO(g).
The adjoint representation G — SO(g) induces a morphism f : Bung —
Bunggp,. For L € w1/2(X) set N, := f*Pf; where Pf; is the line bundle

“JRecall that g is an R-point of Autz O x 86:(?() = Aut2 O x SO% K). By the
definition of SO, (K) it acts on M. The group ind-scheme Aut; O acts on (V, Ly) and

therefore on M.
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from 4.3.1; so the fiber of . over F € Bung equals Pf(gr®L)2Pf(goL)® L.

The isomorphism (189) induces an isomorphism

(209) (A\2)®2 = wh

1

Bung

the fiber of w]ﬁ?)ung over F € Bung equals det RI'(X, gr) ® (det RT'(X, g ®
Ox))®_1.

Here w is the normalized canonical bundle (146); according to 2.1.1

4.4.2. Consider the functor
(210) N w2(X) = (wH'?(Bung),

L — MN.. By 43.10 X is affine with respect to the Picard functor
7 : pators(X) — pgtors(Bung) that sends a po-torsor £ on X to £, :=

the pullback to Bung of the torsor E?pin on Bungp, .

4.4.3. Proposition. ! = (' where ¢ is the composition of the functor
po tors(X) — Ztors(X) induced by (56) and the functor ¢ : Z tors(X) —
oo tors(Bung) constructed in 4.1.1-4.1.4. Here Z = m1(G)" =the center of
L@ (see the Remark from 4.1.1).

Assuming the proposition we define a canonical ¢-affine functor
(211) A Ztorsg(X) — poo torsg(Bung)

by €L v Aep i= lg - Ny, € € Ztors(X), £ € w'/?(X). (Attention:
normalization problem!!!??77?)

To prove Proposition 4.4.3 notice that ' is the functor (152) corresponding
to the extension of G by po induced by the spinor extension of SO(g).
Therefore ¢ is the composition of ¢ : Z tors(X) — fis tors(Bung) and the
v

functor g tors(X) — Z tors(X) induced by the morphism po — Z = m1(G)
dual to m1(G) — m(SO(g)) = Z/27Z. So it suffices to prove the following.
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4.4.4. Lemma. The morphism 71 (G) — m1(SO(g)) = Z/2Z is dual to the
morphism (56) for the group “G.

Proof. We have the canonical isomorphism f : P/Pg — Hom(m1(G)(1), ftoo)
where Pg is the group of weights of G and P is the group of weights of its
universal covering é; a weight A € P is a character of the Cartan subgroup
H C G and f(\) is its restriction to 7, (G)(1) € H. Let M be a spinor rep-
resentation of so(g). Then G acts on M and 71 (G)(1) C G acts according to
some character x € Hom(m (G)(1), ptoo). According to the definition of (56)
(see also the definition of \# in 3.4.1) the lemma just says that x = f(p)
where p € P is the sum of fundamental weights.

Let b C g be a Borel subalgebra. Choose a b-invariant flag 0 C V; C
... C V, = g such that dim V}, = k, VkL = V,_k, and b is one of the Vj. Let
b’ be the stabilizer of this flag in so(g). This is a Borel subalgebra of so(g)
containing b. Let m € M be a highest vector with respect to b’. Then Cm
is b-invariant and the corresponding character of b equals one half of the

sum of the positive roots, i.e., p. So x = f(p). (|

Remark.  According to Kostant (cf. the proof of Lemma 5.9 from [Ko61])
the g-module M is isomorphic to the sum of 2["/2 copies of the irreducible

g-module with highest wight p (where r is the rank of g).

4.4.5. Our construction of (211) slightly depends on the choice of a scalar
product on g (see 4.4.1). Since there are several “canonical” scalar products
on g the reader may prefer the following version of (211).

To simplify notation let us assume that G is simple. Then the space of
invariant symmetric bilinear forms on g is 1-dimensional. Denote it by (.
Choose a square root of 3, i.e., a 1-dimensional vector space 3Y/2 equipped
with an isomorphism /2 @ gY/2 =5 5. So g ® B'/2 carries a canonical
bilinear form. Consider the representation G — SO(g ® '/2?) and then
proceed as in 4.4.1-4.4.3 (e.g., now the fiber of X, over F € Bung equals

Pf(gr ® L ® SY2) @ Pf(g® L @ /2)®1). The functor (211) thus obtained
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slightly depends on the choice of 8Y/2. More precisely, —1 € Aut 3'/2 acts
on X, and therefore on Ay, M € Ztorsg(X), as multiplication by (—1)?

where p : Bung — Z/27 is the composition
Bung — mo(Bung) = m1(G) — 71(SO(g)) = Z/2Z.
Do we want to consider Ay as a SUPER-sheaf??!

4.4.6. We have associated to £ € Z torsp(X) a line bundle Az on Bung (see
4.4.1-4.4.3). For z € X denote by Az, the pullback of Az to Bung,. In
4.4.7-4.4.10 we will define a central extension G(K;), of G(K;) that acts

—_~—

on Az z. In 4.4.11-4.4.13 we consider the Lie algebra of G(K3),.

4.4.7. Let O, K and wp have the same meaning as in 4.3.3. Fix a square
root L of wp. Then we construct a central extension of group ind-schemes
(212) 0-G, =-GK),—=GK)—=0

as follows. L defines the central extension (196). Fix a non-degenerate
invariant symmetric bilinear form”) on g and write SO, instead of SO(g),
n := dimg. We define (212) to be the central extension of G(K) opposite
to the one induced from (196) via the adjoint representation G — SO(g) =
SO,,. The extension (212) splits over G(O).

P

Remark. In the case G = SO, our notation is ambiguous: G(K) #

P

SO, (K). Hopefully this ambiguity is harmless.

4.4.8. Let £ € w'/?(X), 2 € X. According to 4.4.7 the restriction of £
to Spec O, defines a central extension of G(K,), which will be denoted by

P

G(K;)c. Denote by A7, the pullback to Bung , of the line bundle A, from
4.4.1. It follows from 4.3.7 that the action of G(K;) on Bung, lifts to a

e~

canonical action of G(K,), on X,. The subgroup G,, C G(K,), acts on

e~

X7 in the natural way (see the definition of G(K3), in 4.4.7 and the last

“Vnstead of fixing the form on g the reader can proceed as in 4.4.5.
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—_—

sentence of 4.3.7). The action of G(O) C G(K;), on A}, is the obvious

one.
4.4.9. In 4.4.7 we defined a functor
(213) w'2(0) — {central extensions of G(K) by G,,}

where w!/2(0) is the groupoid of square roots of wp. The Lh.s. of (213)
is a pg-category in the sense of 3.4.4. The r.h.s. of (213) is a Z-category,
Z :=m(G)Y = Hom(m1(G),Gy,). Indeed, the coboundary morphism”)

(214) G(K) —» HYK,n$"(@)) = m(G) = 2"
induces a morphism*)
(215) Z — Hom(G(K),G,,),

i.e., a Z-structure on the r.h.s. of (213). Using the morphism py — Z
defined by (56) we consider the r.h.s. of (213) as a ua-category. Then (213)
is a po-functor (use 4.3.4, Remark (ii) from 4.3.4, and 4.4.4). So by 3.4.4
the functor (213) yields a Z-functor

(216) Z torsp(O) — {central extensions of G(K) by G,,}.

The central extension of G(K) corresponding to £ € Z torsy(O) by (213)
will be denoted by G(K),. The extension

P

(217) 0—+Gp—+GK), - GEK)—=0
splits over G(O).
Remarks

(i) According to 3.4.7 (i) the Z-structure on the r.h.s. of (213) yields a

Picard functor

(218) Z tors(O) = Z tors — {central extensions of G(K) by G, }.

A priori (214) is a morphism of abstract groups, but according to the Remark from
4.1.7 it is, in fact, a morphism of group ind-schemes. See also 4.5.4.

“JIn fact, an isomorphism (see 4.5.4)
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Explicitly, (218) is the composition of the canonical equivalence

(219) {trivial extensions of Z¥ by G,,} = Z tors

an extension — the Z-torsor of its splittings

and the functor from the Lh.s. of (219) to the r.h.s. of (218) induced
by (214). In other words, (218) is the functor £ — C/J(\I?)g from
4.1.8.

(ii) By 3.4.7 (iv) the functor (216) is affine with respect to the Picard

functor (218).

4.4.10. Let £ € Ztorsg(X). According to 4.4.9 the image of L in
Z torsp(Oy) defines a central extension of G(K,), which will be denoted

—_~—

by G(K,),. Denote by A, the pullback of Az to Bung,. The action of

G(K;) on Bung, lifts to a canonical action of G(K,), on Az, (use 4.3.7—
4.3.9, 4.1.8, and the Remarks from 4.4.9). G(O,) x G, C G(K,), acts on

Azz in the obvious way.

4.4.11. Proposition. The Lie algebra extension corresponding to (217) is
the extension

0—>C—>gi€57(—>g®K—>0

from 2.5.1.

Proof. The Lie algebra extension corresponding to (217) does not depend
on L € Ztorsg(O), so instead of (217) one can consider (212) and finally
(194). So it is enough to use the Kac-Peterson-Frenkel theorem which says

that the Lie algebra extension

—_—

(220) 0—=C—onp(K)—o0,(K)—0

corresponding to (194) is defined by the cocycle (u,v) — 3 ResTr(du,v),
u,v € op(K). In fact, to use [KP] or Proposition 1.3.11 from [Fr81] one

—_

has to use the following characterization of o, (K) (which does not involve

—~—

the group O, (K)): let V have the same meaning as in 4.3.3 and let M be

an irreducible discrete module over C1(V'), then one has a representation of
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—~—— e~ —

on(K) in M compatible with the action of o0,(K) on Cl(V) and such that

1eCcC o/n(x/K) acts on M identically. O
4.4.12. Let Az and Az, have the same meaning as in 4.4.10. According to
4.4.10 and 4.4.11 the action of g ® K, on Bung, lifts to a canonical action
of gg_f?m on Az whose restriction to C x (g® O;) C giéff?r is the obvious
one; in particular 1 € C C gg_lzr acts as multiplication by 1.

Az is equipped with an isomorphism /\%2" = (wgunc)‘@” for some n # 0,

so the sheaf of differential operators acting on Az is D’. Therefore according

to 1.2.5 the action of g ® K, on A, induces a canonical morphism
hy : 3. — T'(Bung, D').
Clearly h, does not depend on L € Ztorsy(X).

4.4.13. In this subsection we prove that the h, from 4.4.12 coincides with
the h, from 2.5.4. The reader can skip this proof and simply forget the old
definition of h, (it was introduced only to avoid the discussion of square
roots of wpyn,, in Section 2).

To prove that the two definitions of h, are equivalent it suffices to show

that if £ is a square root of wx then the isomorphism )\%2 = w% ung induces

a g@?x—equivariant isomorphism between their pullbacks to Bung .. This
can be proved directly, but in fact it cannot be otherwise. Indeed, the
obstruction to gié\fz—equivariance is a 1-cocycle gié)?x — H°(Bung g, O).
Since Hom(g@?x, C) = 0 it is enough to show that every regular function f
on Bung, is locally constant. According to 2.3.1 Bung ; is the inverse limit
of Bung nz, n € N. Clearly f comes from a regular function on Bung j, for

some n. So it suffices to prove the following lemma.
Lemma. Every regular function on Bung ,; is locally constant.
Proof. Choose y € X\{x} and consider the scheme M parametrizing G-

bundles on X trivialized over na and the formal neighbourhood of y (here

the divisor nz is considered as a subscheme). G(K,) acts on M and a regular
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function f on Bung ., is a G(Oy)-invariant element of H°(M, Oyy). Clearly
H°(M, Oy) is an integrable discrete g ® Ky-module. It is well known and
very easy to prove that a (g ® O,)-invariant element of such a module is
(g ® Ky)-invariant. So f is (g ® K,)-invariant. Since the action of g ® K

on M is (formally) transitive f is locally constant. O

Remark.  The above lemma is well known. A standard way to prove it
would be to represent Bung ,,, as T'\G(K,)/G(Oy) for some I' C G(K) (see
[La-So| for the case n = 0) and then to use the fact that a regular function

on G(K,)/G(Oy) is locally constant.

4.4.14. Now we will finish the proof of the horizontality theorem 2.7.3 (see
2.8.3 — 2.8.5 for the beginning of the proof).

Let M be the scheme over X whose fiber over x € X is Bung,. Fix
L € w/?(X) and £ € w'/2(0) (i.e., £ is a square root of wx, L°° is a
square root of wp). Then one has the scheme X' defined in 4.3.16. Denote
by M4 the fiber product of M and X4 over X. The semidirect product
Auty O x G(K) acts on M4 (cf. 4.3.16).

One has its central extension Auty O X g‘(\K/) where E(\K/) is the central
extension (212) corresponding to £'°¢ and Auts O = Aut(O, £1°°) acts on
E(\I_(/) = 5(}_(/) rloe by transport of structure. Denote by A} the pullback to
Mj of the Pfaffian line bundle X, from 4.4.1. Since Auty O acts on M3
as on a scheme over Bung one gets the action of Auto O on A}. On the

other hand, G(K) acts on A} - :=the restriction of A} to the fiber of M3

over T € XJ'. Indeed, this fiber equals Bung, where z is the image of

Z in X, and by 4.4.8 the central extension G(K;), acts on A\, = A} .
This extension depends only on L, :=the pullback of £ to Spec O,. Since
Z defines an isomorphism (O, L;) — (O, £°°) we get an isomorphism

G(K,); — G(K) and therefore an action of G(K) on A} -. As explained
in 2.8.5, to finish the proof of 2.7.3 it suffices to show that




HITCHIN’S INTEGRABLE SYSTEM 171
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i) the action of G(K) on )\275 corresponding to various T € X4' come from
an (obviously unique) action of G(K) on A},
ii) this action is compatible with that of Aute O (i.e., we have, in fact, an

action of Auty O x G(K) on A\}).

This follows immediately from 4.3.17.

4.4.15. In this subsection and the following one we formulate and prove a
generalization of statements i) and ii) from 4.4.14, which will be used in the
proof of the main result of this work (Theorem 5.4.5). The generalization
is obvious (w!/?(X) is replaced by Ztorsg(X), etc.), and the reader can
certainly skip these subsections for the moment.

Fix £ € Ztorsg(X) and L°° € Ztorsg(O). Denote by X4 the
etale Z-covering of X" such that the preimage in X72(R) of a point of
X"(R) corresponding to a morphism a : Spec(R®0O) — X is the set of
isomorphisms Elﬁc 5 o*L in the groupoid”) Z torsy(R®0), where 55%(:
is the pullback of £°¢ to Spec R®RO. The group ind-scheme Auty O =
Aut(0O, £!°°) from 4.6.6 acts on X} by transport of structure. Denote by M,
the fiber product of M and X% over X. Let A} denote the pullback to M2 of
the line bundle A defined in 4.4.3. The semidirect product Autz O x G(K)

P

acts on M7%. One has its central extension Autz O x G(K), where G(K) is

the central extension (217) corresponding to £!°¢ and Auty O = Aut(O, £°°)

P

acts on G(K) = G(K) f1oc by transport of structure. Let us lift the action

P

of Autz O x G(K) on M} to an action of Autz O x G(K) on \}.

Just as in 4.4.14 one defines the action of Autz O on Af: and the action

——~—

of G(K) on A} . :=the restriction of A\ to the fiber of M7} over T € Xy

4.4.16. Proposition.

—_

(i) The actions of G(K) on A} - corresponding to various Z € X7 come

e

from an (obviously unique) action of G(K) on A}.

*)Here it is convenient to use the definition Z torsg from 3.4.5
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(ii) The actions of Autz O and G(K) on A} define an action of Autz O x
G(K).

Proof. Represent £ € Ztorsy(X) as L = & - Lo, € € Ztors(X), Ly €
w?(X). By definition, Ay = lg ® Ar, (see 4.1.4 or 4.1.6 for the definition
of the poo-torsor lg on Bung).

Consider £°¢ as an object of w!/2(0) (this is possible because both
Z torsg(0) and w'/2(0) have one and only one isomorphism class of objects).
Using Lo and £°¢ construct X4, M3\, and A3, (see 4.4.14).

Consider € as a Z-covering & — X. Set X{ 1= Exx XN, ML = Exx M",
where X and M” have the same meaning as in 2.6.5 and 2.8.3. Denote by
12 the pullback of lg to MZ.

Set Mg, = & xx Mj. One has the etale coverings M, — My,
Mg, — MY, and p : Mg, — My. Clearly p*A} is the tensor product
of the pullbacks of Iz and A} to Mg',. Now consider Ig and A} separately.

The semidirect product AutO x G(K) acts on M{, and the action of
Aut O on M lifts canonically to its action on 12 (cf. 4.4.14 or 2.8.5). G(K)
acts on the restriction of [2 to the fiber over each point of X2 (see 4.1.7). It
is easy to see that these actions come from an action of Aut O x G(K) on [3.
On the other hand, by 4.4.14 we have a canonical action of Aute O x Cj(\l?)
on Az .

e~

So we get an action of Auty O x G(K) on p*\;, which is compatible with

P

the action of Auto O on A} and with the action of G(K) on A} -, T € XJ.

P

Since p is etale and surjective the action of Auty O x G(K) on p*A\}} descends

P

to an action of Auty O x G(K) on Aj. Since Autyz O is generated by Auty O

and Z it remains to show that the action of Z C Autz O on A} is compatible

—_—

with that of G(K'). This is clear because the actions of Z and G(K) on A} -

are compatible for every T € X2. O

4.5. The affine Grassmannian. The affine Grassmannian GR is the fpqc
quotient G(K)/G(O) where O = C[[t]], K = C((¢)). In this section we recall
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some basic properties of GR. In 4.6 we construct and investigate the local
Pfaffian bundle; this is a line bundle on GR.

The affine Grassmannian will play an essential role in the proof of our
main theorem 5.2.6. However the reader can skip this section for the
moment.

In 451 — 7 (G denotes an arbitrary connected affine algebraic
group. Connectedness is a harmless assumption because G(K)/G(O) =

GY(K)/G°(0O) where G° is the connected component of G.

4.5.1. Theorem.

(i) The fpqc quotient G(K)/G(O) is an ind-scheme of ind-finite type.
(ii) G(K)/G(O) is formally smooth.”)
(iii) The projection p : G(K) — G(K)/G(O) admits a section locally for
the Zariski topology.
(iv) G(K)/G(O) is ind-proper if and only if G is reductive.
(v) G(K), or equivalently G(K)/G(O), is reduced if and only if
Hom(G, G,,) = 0.

Remark. The theorem is well known. The essential part of the proof
given below consists of references to works by Faltings, Beauville, Laszlo,

and Sorger.

Proof. (i) and (iv) hold for G = GL,,. Indeed, there is an ind-proper ind-
scheme Gr(K"™) parametrizing c-lattices in K™ (see 7.11.2(iii) for details).
GL,(K)/GL,(O) is identified with the closed sub-ind-scheme of Gr(K")
parametrizing O-invariant c-lattices. To prove (i) and (iv) for any G we

need the following lemma.

Lemma. Let G; C G2 be affine algebraic groups such that the quotient

U := G1\ G2 is quasiaffine, i.e., U is an open subscheme of an affine scheme

*)The definition of formal smoothness can be found in 7.11.1.
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Z. Suppose that the fpqc quotient Go(K)/G2(0O) is an ind-scheme of ind-
finite type. Then this also holds for G1(K)/G1(O) and the morphism

(221) G1(K)/G1(0) = G2(K)/G2(0)
is a locally closed embedding. If U is affine then (221) is a closed embedding.

The reader can easily prove the lemma using the global interpretation of

G(K)/G(O) from 4.5.2. We prefer to give a local proof.

Proof. Consider the morphism f : G1(K) — Z(K). Clearly Z(O) is a
closed subscheme of Z(K), and U(O) is an open subscheme of Z(O). So
Y := f~1(U(0)) is a locally closed sub-ind-scheme of Go(K); it is closed if
U is affine. Clearly Y - G2(O) =Y, so Y is the preimage of a locally closed
sub-ind-scheme Y’ C G2(K)/G2(0); if U is affine then Y’ is closed. Since

G1(K) C Y we have a natural morphism
(222) Gi(K) =Y.

We claim that (222) is a G1(O)-torsor (G1(0O) acts on G1(K) by right
translations) and therefore G1(K)/G1(0) = Y'. To see that (222) is a
G1(O)-torsor notice that the morphism Y — Y’ is a G3(O)-torsor, the
morphism ¢ : Y — U(O) = G1(0) \ G2(0O) is G2(O)-equivariant, and
G1(K) = ¢~ !(e) where € € G1(O) \ G2(0O) is the image of e € G2(0). O

Let us prove (i) and (iv) for any G. Choose an embedding G < GL,,. If
G is reductive then GL, /G is affine, so the lemma shows that G(K)/G(O)
is an ind-proper ind-scheme. For any G we will construct an embedding
i: G— G :=GL, x Gy, such that G'/i(G) is quasiaffine; this will imply
(i). To construct i take a GL,,-module V' such that G C GL,, is the stabilizer
of some 1-dimensional subspace [ C V. The action of G in [ is defined by
some Y : G — G,y,. Definei: G < G’ := GL, x G,, by i(g) = (g, x(9)").
To show that G'/i(G) is quasiaffine consider V' as a G’-module (\ € G, acts
as multiplication by A) and notice that the stabilizer of a nonzero v € [ in

G’ equals i(G). So G'/i(G) ~ G'v and G'v is quasiaffine.
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Let us finish the proof of (iv). If G(K)/G(O) is ind-proper and G’ is
a normal subgroup of G then according to the lemma G'(K)/G’'(O) is also
ind-proper. Clearly G,(K)/G4(O) is not ind-proper. Therefore G(K)/G(O)
is ind-proper only if G is reductive.

To prove (iii) it suffices to show that p: G(K) — G(K)/G(O) admits a
section over a neighbourhood of any C-point x € G(K)/G(O) (here we use
that C-points are dense in G(K)/G(O) by virtue of (i)). Since p is G(K)-
equivariant we are reduced to the case where x is the image of e € G(K).
So one has to construct a sub-ind-scheme I' C G(K) containing e such that

the morphism
(223) I['xGO) = G(K), (v,9)—9

is an open immersion. According to Faltings [Fal94, p.350-351] the
morphism (223) is an open immersion if the set of R-point of I" is defined
by
T'(R) = Ker(G(R[t"1))-5+G(R)) € G(R((1))) = G(REK)

where f is evaluation at ¢ = oo. The proof of this statement is due to
Beauville and Laszlo (Proposition 1.11 from [BLa94]). It is based on the
global interpretation of G(K)/G(O) in terms of X = P! (see 4.5.2) and on
the following property of G-bundles on P': for a G-bundle F on S x P! the
points s € S such that the restriction of F to s x P! is trivial form an open
subset of S (indeed, H!(P', O ® g) = 0, g := Lie G).

Let us deduce”) (i) from (iii). Since G(K) is formally smooth it
follows from (iii) that each point of G(K)/G(O) has a formally smooth
neighbourhood. Since G(K)/G(0O) is of ind-finite type this implies (ii).

It remains to consider (v). G(O) is reduced. So G(K) is reduced
if and only if G(K)/G(O) is reduced. Laszlo and Sorger prove that
if Hom(G,G,,) = 0 then G(K)/G(O) is reduced (see the proof of

Proposition 4.6 from [La-So]); their proof is based on a theorem of

“JIn fact, one can prove (ii) without using (iii).



176 A. BEILINSON AND V. DRINFELD

Shafarevich. If Hom(G,G,,) # 0 there exist morphisms f : G, — G
and x : G — Gy, such that xf = ¢,, n # 0, where ¢,(\) := A\". The
image of the morphism G,,(K) — G,,(K) induced by ¢,, is not contained
in Gy, (K)red, so G(K) is not reduced. O

4.5.2. Let X be a connected smooth projective curve over C, z € X(C), O,
the completed local ring of x, and K, its field of fractions. Then according
to Beauville — Laszlo (see 2.3.4) the fpqc quotient G(K,)/G(O;) can be
interpreted as the moduli space of pairs (F,~) consisting of a principal G-
bundle F on X and its section (=trivialization) v : X \ {z} — F: to (F,7)
one assigns the image of v/, in G(K,)/G(O,) where 7, is a section of F
over Spec O, and /v, denotes the element g € G(K,) such that v = g7,
(we have identified G(K,)/G(O,) with the moduli space of pairs (F,v) at
the level of C-points; the readers can easily do it for R-points where R is

any C-algebra).

4.5.3. Let us recall the algebraic definition of the topological fundamental
group of G. Denote by §'(G) the fundamental group of G in Grothendieck’s
sense. A character f: G — G, induces a morphism 7¢*(G) — 7$(G,,) =
Z(1) and therefore a morphism f, : (75(G))(—1) — Z. Denote by m1(G)
the set of a € (7$*(G))(—1) such that f.(a) € Z for all f € Hom(G, Gy,).
We consider 7 (G) as a discrete group. In fact, m1(G) does not change if G
is replaced by its maximal reductive quotient. For reductive G one identifies
7m1(G) with the quotient of the group of coweights of G modulo the coroot
lattice.

For any finite covering p : G — G one has the coboundary map G(K) —
HY(K,A) = A(-1), A := Kerp. These maps yield a homomorphism
G(K) — (m$%(GQ))(—1). Tts image is contained in m(G). So we have

constructed a canonical homomorphism

(224) v: GK)— m(G)
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where G(K) is understood in the naive sense (i.e., as the group of K-points
of G or as the group of C-points of the ind-scheme G(K)). The restriction
of (224) to G(O) is trivial, so (224) induces a map

(225) G(K)/G(O) = m(G)

where G(K)/G(O) is also understood in the naive sense.
Now consider G(K) and G(K)/G(O) as ind-schemes. The set of C-points
of G(K)/G(O) is dense in G(K)/G(O), and the same is true for G(K).

4.5.4. Proposition.

(i) The maps (224) and (225) are locally constant.

(ii) The corresponding maps

(226) mo(G(K)) = m(G)

(227) mo(G(K)/G(0)) = m(G)
are bijective.

Proof. We already proved (i) using a global argument (see the Remark
at the end of 4.1.7). The same argument can be reformulated using the
interpretation of G(K,)/G(O,) from 4.5.2: the map (225) equals minus the
composition of the natural map G(K,)/G(0O,) — Bung and the “first Chern
class” map ¢ : mp(Bung) — m1(G). For a local proof of (i) see 4.5.5.

Now let us prove (ii). The map mo(G(K)) — mo(G(K)/G(O)) is bijective
(because G is connected). So it suffices to consider (226). Since G can be
represented as a semi-direct product of a reductive group and a unipotent
group we can assume that G is reductive. Fix a Cartan subgroup H C G. We
have mo(H(K)) = m(H) and the composition mo(H(K)) — m(G(K)) —
71(G) is the natural map m1(H) — 71(G), which is surjective. So (226)
is also surjective. The map mo(H (K)) — mo(G(K)) is surjective (use the
Bruhat decomposition for the abstract group G(K)). Therefore to prove the
injectivity of (226) it suffices to show that the kernel of the natural morphism
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f:m(H(K)) — m1(G) is contained in the kernel of 7o(H (K)) — mo(G(K)).
Since Ker f is the coroot lattice it is enough to prove that for any coroot
v : Gy — H the image of G,,(K) in G(K) belongs to the connected
component of e € G(K). A coroot G,, — H extends to a morphism
SL(2) — G, so it suffices to notice that SL(2, K) is connected (because
any matrix from SL(2,K) can be represented as a product of unipotent

matrices). O

In the next subsection we give a local proof of 4.5.4(i).

4.5.5. Lemma. Let M = Spec R be a connected affine variety, A a finite
abelian group, a € H(Spec R((t)),A). For x € M(C) denote by a(x)
the restriction of a to the fiber of Spec R((t)) — SpecR over z, so
a(z) € HY (SpecC((t)), A) = A(—1). Then a(x) € A(—1) does not depend

on x.

Proof. It suffices to show that for any smooth connected M’ and any
morphism M’ — M the pullback of o to M’(C) is constant”). So we can
assume that M is smooth. Set V := Spec R|[[t]], V' := Spec R((t)). We can
assume that A = p,. Then « corresponds to a p,-torsor on V'  i.e., a line
bundle A on V' equipped with an isomorphism v : A®™ =5 Oy. Since V is
regular A extends to a line bundle Aon V. Then 1 induces an isomorphism

A 25 tk Oy for some k € Z. Clearly a(x) € Z/nZ is the image of k. [

Here is a local proof of 4.5.4(i). Since G(K)/G(O) is of ind-finite type
it suffices to prove that for every connected affine variety M = Spec R and
any morphism f : M — G(K) the composition M(C) - G(K) — m1(G)
is constant. For any finite abelian group A an exact sequence 0 — A —
G — G — 0 defines a map m(G) — A(—1) and it is enough to show that
the composition M(C) — G(K) — m(G) — A(—1) is constant. To prove

this apply the lemma to o = ¢*( where ¢ : Spec R((t)) — G corresponds

“Mn fact, it is enough to consider only those M’ that are smooth curves.
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to f: Spec R — G(K) and 8 € HL(G, A) is the class of G considered as an

A-torsor on G.

Remark. In fact, one can prove that for every affine scheme M = Spec R

over C the “Kinneth morphism”

(228)  He(M, A) © HO(M,Z) ® Hey(Spec C((¢)), A) — Hey (M((1)), A),

M((t)) := Spec R((t)),

is an isomorphism (clearly this implies the lemma). A similar statement

holds for any ring R such that the order of A is invertible in R.

4.5.6. Proposition. Let A C G be a finite central subgroup, G’ := G/A.

(i) The morphism G(K)/G(0O) — G'(K)/G'(O) induces an isomor-
phism between G(K)/G(O) and the union of some connected com-
ponents of G'(K)/G'(O).

(ii) The morphism G(K) — G'(K) is an etale covering.

Remark. By 4.5.4 the components mentioned in (i) are labeled by elements

of Im(71(G) — m1(G")). The same is true for the connected components of

the image of G(K) in G'(K).

Proof. Clearly (i) and (ii) are equivalent.

Let us prove (i) under the assumption of semisimplicity of G (which
is equivalent to semisimplicity of G’). In this case the morphism f :
G(K)/G(O) — G'(K)/G'(O) is ind-proper by 4.5.1(iv). By 4.5.4(i) the
fibers of f over geometric points”) of components C' ¢ G'(K)/G’(O) such
that f~1(C) # 0 contain exactly one point, and it is easy to see that
these fibers are reduced. By 4.5.1(v) G'(K)/G'(O) is reduced. So in the

semisimple case (i) is clear.

“)The statement for C-points follows immediately from 4.5.4(i). Since 4.5.4 remains
valid if C is replaced by an algebraically closed field £ D C the statement is true for

E-points as well.
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Now let us reduce the proof of (ii) to the semisimple case. We can
assume that A is cyclic. It suffices to construct a morphism p from G
to a semisimple group G; such that p|4 is injective and p(A) C Gi is
central (then the morphism G(K) — G'(K) is obtained by base change from
G1(K) = GY(K), G| :== G1/p(A)). To construct Gy and p one can proceed
as follows. Fix an isomorphism x : A — j,,. Let V be a finite-dimensional
G-module such that Z acts on V' via x. Denote by W, the direct sum of p
copies of V and ¢ copies of Sym™ ! V*. If p-dim V = g(n—1)-dim Sym™ * V
then one can set G := SL(W,,) (indeed, the image of GL(V') in GL(Wy,)
is contained in SL(W,). O

Remarks

(i) Proposition 4.5.6 is an immediate consequence of the bijectivity of
(228).
(ii) It is easy to prove Proposition 4.5.6 using the global interpretation

of G(K)/G(O) from 4.5.2.

4.5.7. Suppose that G is reductive. Denote by G.q the quotient of G by
its center. Set T := G/[G,G|, G' := Gaq x T. Then G' = G/A for
some finite central subgroup A C G. So by 4.5.6 G(K)/G(O) can be
identified with the union of certain connected components of G'(K)/G'(O) =
Gad(K)/Gad(0) x T(K)/T(O).

The structure of T'(K)/T(O) is rather simple. For instance, the reduced
part of G,,(K) /G, (O) is the discrete space Z and the connected component
of 1 € G (K)/Gy,(0) is the formal group with Lie algebra K/O.

4.5.8. From now on we assume that G is reductive and set GR :=
G(K)/G(O).

Recall that G(O)-orbits in GR are labeled by dominant coweights of G or,
which is the same, by P, (*G) := the set of dominant weights of “G. More
precisely, x € Py (“G) defines a conjugacy class of morphisms v : G,, — G
and, by definition, Orb,, is the G(O)-orbit of the image of v(7) in GR where
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7 is a prime element of O (this image does not depend on the choice of ).
Clearly Orb, does not depend on the choice of v inside the conjugacy class,
so Orb,, is well-defined. According to [IM] the map x + Orb, is a bijection
between P, (“G) and the set of G(O)-orbits in GR. It is easy to show that

(229) dim Orb, = (x,2p)

where 2p is the sum of positive roots of G.

Remark. Clearly Orb, is Aut® O-invariant.

4.5.9. We have the bijection (227) between mo(GR) and m(G). Let Z
be the center of the Langlands dual group “G. We identify 71(G) with
ZV :=Hom(Z,G,,) using the duality between the Cartan tori of G and *G.

So the connected components of GR are labeled by elements of ZV.

Remark.  The connected component of GR containing Orb, corresponds

to xz € Z" where Yz is the restriction of y € P*(LG) to Z.

4.5.10. There is a canonical morphism « : po — Z. If G is semisimple we
have already defined it by (56). If G is reductive this gives us a morphism
po — Z' where Z' is the center of the commutant of “G; then we define a
to be the composition g — 2" — Z.

According to 4.4.4 the dual morphism " : m(G) — Z/2Z is the
morphism of fundamental groups that comes from the adjoint representation

G— 50(955)7 Oss - = [gag]'

The composition of (227) and «" defines a locally constant parity function
(230) p: GR — Z/27.

We say that a connected component of GR is even (resp. odd) if (230) maps
it to 0 (resp. 1).

4.5.11. Proposition. All the G(O)-orbits of an even (resp. odd) component

of GR have even (resp. odd) dimension.
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Proof. Let z = gG(O) € GR. Using the relation between a¥ and the adjoint
representation (see 4.5.10) as well as Remarks (ii) and (iii) from 4.3.4 we see

that x belongs to an even component of GR if and only if
(231) dim gss ® O/ ((8ss ® 0) N Ady(gss © O))
is even. But (231) is the dimension of the G(O)-orbit of x. O

Here is another proof. Using (229) and the Remark from 4.5.9 we see
that the proposition is equivalent to the formula yz(a(—1)) = (—1)&27),
which is obvious because according to (56) « : g — Z is the restriction of

the morphism A\ : G,,, — H C G corresponding to 2p.

4.5.12. The following properties of G(O)-orbits in GR will not be used in
this work but still we think they are worth mentioning.

The closure of Orb, is the union of Orb,/, X’ < x. Indeed, if p : G —
GL(V) is a representation with lowest weight A then for g € Orb, one has
p(g) € tXN End(V ® 0), p(g) ¢ tXNT1 End(V ® O). So if Orb,s € Orb,,
then (x — x/,A) < 0 for every antidominant weight A of G and therefore
X — X’ is a linear combination of simple coroots of G with non-negative
coefficients; by 4.5.4(i) these coefficients are integer, so x' < x. On the
other hand, a GL(2) computation shows that the set of weights x’ of LG
such that Orb,s C Orb,, is saturated in the sense of [Bour75], Ch. VIIIL, §7,
no. 2. So Proposition 5 from loc.cit shows that Orb,, C Orb, for every
dominant x’ such that y’ < .

The above description of Oribx implies that Orb, is closed if and only
if x is minimal. If G is simple then y is minimal if and only if x = 0
or x is a microweight of “G (see [Bour68], Ch. VI, §2, Exercise 5). So
on each connected component of GR there is exactly one closed G(O)-
orbit (use 4.5.4 and the first part of the exercise from loc.cit). If Orb, is
closed it is projective, so in this case G(O) acts on Orb,, via G = G(0/tO)
and Orb, is the quotient of G' by a parabolic subgroup. In terms of 9.1.3
Orby = orb, = G/P, .
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If G is simple then there is exactly one x such that Oribx\ Orb, consists
of a single point”); this y is the coroot of g := Lie G corresponding to the
maximal root amax of g (see [Bour75], Ch. VIII, §7, Exercise 22). In this
case Orb, can be described as follows. Set V := g ® (m~!/O) where m is
the maximal ideal of O. Denote by V the projective space containing V'
as an affine subspace. So V is the space of lines in V @ C; in particular
V* = g* ® (m/m?) acts on V preserving 0 € V. Denote by C the set of
elements of V that are G-conjugate to ga,,., ® (m~!/0). This is a closed
subvariety of V. Its projective closure C' C V is V*-invariant because C is a
cone. It is easy to show that the morphism exp : C' — G(K)/G(O) extends
to an isomorphism f : C — Orb,. Clearly f is Aut® O-equivariant and
G-equivariant. The action of Ker(G(O) — G(O/m)) on C induced by its

action on Orb,, comes from the action of V* on C and the isomorphism
Ker(G(O/m?) — G(O/m)) = g@m/m? = V*

where the last arrow is induced by the invariant scalar product on g such

that (amax, Omax) = 2.

4.6. Local Pfaffian bundles. Consider the affine Grassmannian GR :=
G(K)/G(O) where O = C][t]], K = C((t)). Set Z := Hom(m(G),Gy,)
(by the Remark from 4.1.1 Z is the center of “G). In this subsection we
will construct and investigate a functor £ +— Ay = )\ILOC from the groupoid
Z torsg(O) (see 3.4.3) to the category of line bundles on GR. We call Az the
local Pfaffian bundle corresponding to L.

We recommend the reader to skip this subsection for the moment.

—~—

4.6.1. In 4.4.9 we defined a functor £ — G(K), from Ztorsg(O) to the

category of central extensions of G(K) by G,,. For L € Z torsg(O) we have

the splitting G(O) — G(K), and therefore the principal G,,-bundle

P

(232) G(K),/G(0) = G(K)/G(0) =GR .

“of course, this point is the image of e € G(K).
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4.6.2. Definition. A is inverse to the line bundle on GR corresponding to
the G,,-bundle (232).
Clearly Az depends functorially on £ € Z torsy(O).

—_——

4.6.3. Remark. G(K), depends on the choice of a non-degenerate invariant

bilinear form on g (see 4.4.7). So this is also true for A..

4.6.4. Let € € GR denote the image of the unit e € G. Our Ag is the

—_—~—

unique G(K),-equivariant line bundle on GR trivialized over € such that

any ¢ € G, C G(K), acts on Az as multiplication by c L.

follows from the equality Hom(G(O), G,,) = 0.

Uniqueness

—_~— —~——

4.6.5. By 4.4.11 the action of G(K'), on A induces an action of g ® K on
Az such that 1 € C C ;657( acts as multiplication by —1. It is compatible
with the action of g ® K on GR by left infinitesimal translations.

4.6.6. The push-forward of (63) by the morphism (56) is an exact sequence
(233) 0—7Z— AutzO — AutO — 0.

For any £ € Z tors(O) the exact sequence

(234) 0—Z — Aut(0,L) - AutO — 0

can be canonically identified with (233). Here Aut(O, L) is the group ind-
scheme of pairs (o,p), 0 € AutO, ¢ : L — 0.L (the reader may prefer
to consider £ as an object of the category Z tors,(O) from 3.4.5). The
isomorphism between (233) and (234) is induced by the obvious morphism
Aut O := Aut(O,wg2) — Aut(O, £).

Autz O = Aut(O, L) acts on the exact sequence (217) by transport
of structure; the action of Autz O on G,, is trivial and its action on
G(K) comes from the usual action of AutO on G(K). The subgroup

P

G(0) C G(K), is Autz O-invariant.
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4.6.7. It follows from 4.6.6 that the action of Aut O on GR lifts canonically
to an action of Autz O on the principal bundle (232) and the line bundle
Az. The action of Autz O on Az induces an action of Der O = Lie Autz O

on \..

4.6.8. The action of Z = Aut L on the extension (217) comes from (215).

So Z acts on Az via the morphism
(235) Z — H°(GR,O%R)

inverse to the composition of (215) and the natural embedding Hom(G(K), G,,) <
H°(GR,O%). Recall that mo(GR) = ZV (see 4.5.9), so z € Z defines
f» : m(GR) — C* and (235) is the map z — f, 1.

4.6.9. Remark. (Do we need it 777). Consider the category of line bundles
on GR as a Z-category in the sense of 3.4.4, the Z-structure being defined
by (235). By 3.4.7 (i) we have a canonical Picard functor

(236) Z tors(O) = Z tors — {line bundles on GR}.

Explicitly, (236) assigns to £ € Z tors the E-twist of Ogr equipped with the
Z-action (235). By 3.4.7 (iv) the functor £ — Az, L € Z torsy(O), is affine
with respect to the Picard functor (236).

4.6.10. The morphism « : ps — Z defined by (56) induces an action of
w on Ag, L € Ztorsg(O). It defines a (Z/2Z)-grading on Az. In 4.5.10 we
introduced the notions of even and odd component of GR. According to
4.6.8 the restriction of the (Z/2Z)-graded bundle Az to an even (resp. odd)

component of GR is even (resp. odd).
4.6.11. The functor
(237) Z torsg(O) — {line bundles on GR}, L +— A¢

is a Z-functor in the sense of 3.4.4 provided the Z-structure on the r.h.s. of

(237) is defined by (235). Since Z torsg(O) is equivalent to w'/?(0) @y, Z
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(see 3.4.4) the functor (237) is reconstructed from the corresponding functor
(238) w'2(0) — {line bundles on GR}

where w!/2(0) is the groupoid of square roots of w(Q). Since the extension
(212) essentially comes from the “Clifford extension” (193) it is easy to give
a Cliffordian description of (238). Here is the answer.

Let £ € w'/?(0). We have fixed a nondegenerate invariant symmetric
bilinear form on g, so the Tate space V = V; := L ®p (g ® K) carries a
nondegenerate symmetric bilinear form (see 4.3.3) and L:=L®g C V is a
Lagrangian c-lattice. Set M = M := Cl(V')/ Cl(V')L; this is an irreducible
(Z/27)-graded discrete module over C1(V'). We have the line bundle Py; on
the ind-scheme Lagr(V') of Lagrangian c-lattices in V' (see 4.3.2). We claim
that

(239) Ar = ¢ "Pu,

where the morphism® ¢ : G(K)/G(O) — Lagr(V) is defined by ¢(g) :=

L. in other words

gLg™
(240) the fiber of Az over g € G(K)/G(O) is M9L9™" .=

{m € M¢|(gLg™') - m = 0}.
Indeed, the central extension (212) is opposite to the one induced from (193)
and therefore the action of O(V) on P, (see 4.3.2) induces an action of
CT(\I?)L on ¢*Pyy, such that c € Gy, C C?(\I?)L acts as multiplication by ¢~ ;
besides, the fiber of ¢*Pys,. over € is C.

Clearly the isomorphism (239) is functorial in £ € w'/2(0).

4.6.12. Remarks
(i) The line bundle Py from 4.3.2 is (Z/2Z)-graded. So both sides of
(239) are (Z/2Z)-graded. The gradings of both sides of (239) are
induced by the action of ps = Aut L (to prove this for the r.h.s.

Nt is easy to show that ¢ is a closed embedding and its image is the ind-scheme of

A € Lagr(V) such that OA = A and £7' ®o A is a Lie subalgebra of g ® K.
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notice that the (Z/27Z)-grading on Cl(V) is induced by the natural
action of ps on V). Therefore (239) is a graded isomorphism.

(ii) According to 4.6.10 —1 € pus = Aut L acts on the r.h.s. of (239) as
multiplication by (—1)P where p is the parity function (230). This
also follows from the equality x = 0 (see the proof of Lemma 4.3.4)
and Remark (ii) at the end of 4.3.4.

4.6.13. We should think about super-aspects, in particular: what is the
inverse of a 1-dimensional superspace? (maybe this should be formulated in
an arbitrary Picard category; there may be troubles if it is not STRICTLY
commutative).

Consider a G(O)-orbit Orb, C GR, x € P+ (FG) (see 4.5.8). We will
compute Az, := the restriction of Az to Orb,, £ € Ztorsg(O). By 4.6.4 Az
is G(O)-equivariant. The orbit Orb, is Aut’ O-invariant and by 4.6.7 Az,
is Aut% O-equivariant where Aut% O is the preimage of Aut’ O in Autyz O
(see (233)). Finally Az, is Z/2Z-graded (but in fact A, is even or odd
depending on x; besides, the Z/2Z-grading can be reconstructed from the
action of Z C Aut% O.....). The groups G(O) and Aut% O also act on the
canonical sheaf worn, (Aut O acts via Aut’ O). In 4.6.17-4.6.19 (?7?) we

will construct a canonical isomorphism
(241) Aey = worby, ® (0cx) ™"

for a certain 1-dimensional vector space 0. ,. This space is equipped with
an action of G(0O) and Aut O and (241) is equivariant with respect to these

groups.

4.6.14. Let us define o, . Of course the action of G(O) on 0., is defined
to be trivial (G(O) has no nontrivial characters). So we have to construct

for each y a functor

(242) Z torsg(0) — {Aut) O-mod}, L~ 0z,



188 A. BEILINSON AND V. DRINFELD

where {Aut) O-mod} denotes the category of Aut% O-modules. First let us

define a functor

(243) w'2(0) = {Aut) O-mod}, L+ IRy

For £ € w'/?(0) set

(244) Vo = (Lo)240)

where Lg is the fiber of £ over the closed point 0 € Spec O and
(245) d(x) := (x,2p) = dim Orb,

Define the representation of Aut% O ind z,x as follows: Aut O = Aut’ (0, £)

acts in the obvious way and Z C Aut) O acts via
(246) xz:Z — G

where yz is the restriction of y € PY(Y'G) to Z C “G (these two actions
are compatible because the composition of yz and the morphism (56) maps
—1 € p to (—1)X2)),

So we have constructed (243). w'/2(0) is a po-category in the sense of
3.4.4, {Aut) O-mod} is a Z-category, and (243) is a ug-functor (the pso-
structure on {Aut% O} comes from the morphism (56) or, equivalently, from
the canonical embedding ps — Aut3O). So (243) induces a Z-functor
Ztorsg(0) = w'?(0) @, Z —{Auty O-mod}. This is the definition of
(242).

4.6.15. Clearly Lie Aut%O = Der? O acts on the one-dimensional space

0z, as follows:
1.
(247) Lo~ (x,p) = —3 dim Orby, , L, — 0forn >0

As usual, L,, := —t”H% € Der? O.
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4.6.16. Remark. The definition of 0., from 4.6.14 can be reformulated
as follows. Using the equivalence Z torsg(O) — Ztors,(O) from 3.4.5
we interpret £ € Ztorsy(O) in terms of (59) as a lifting of the G,,-torsor
wo to a Z-torsor. We have the canonical morphism Z — “H from (62)
where “H is the Cartan torus of “G or, which is the same, “H is a Cartan
subgroup of “G with a fixed Borel subgroup containing it. Denote by Xz
the composition of Z — “H and y : “H — G,,. The Z-torsor £ on Spec O
and the 1-dimensional representation x ; : 7 — Gy, define a line bundle a(ﬁ),x
on Spec 0. According to 4.6.6 Autz O = Aut(O, L), so the action of Aut O
on Spec O lifts to a canonical action of Autz O on Dg’x. Therefore Aut) O
acts on the fiber of Dg,x at 0 € Spec O. The reader can easily identify this
fiber with the ?. , from 4.6.14.

4.6.17. Let us construct the isomorphism (241) for £ € w'/?(0). We use
the Cliffordian description of Ay. Just as in 4.6.11 we set V = V, =
L2 (@ K), L:=L®g CV, M = Mg := Cl(V)/C|(V)L. For
r € GR = G(K)/G(O) set L, := gLg~! where g is a preimage of z in
G(K). By (240) the fiber of Az at = equals

(248) MY .= {m € M¢|L, -m = 0}

Suppose that = € Orb,. Since Orb, is the G(O)-orbit of 2 the tangent space
to Orby at 2 s (g © 0)/((a® 0) N g(g© O)g™") = £ 80 (L/(LN L))
where g € G(K) is a preimage of xz. So the fiber of W(;gbx at = equals
(L£0)®~?) @ det(L/(L N L)) where d(x) = dim Orb,. Taking (244) into
account we see that the fiber of the r.h.s. of (241) at x equals

(249) (det(L/(L N Ly))~"
So it remains to construct an isomorphism

(250) det(L/(L N L,)) @ Mt= =5 C
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4.6.18. Lemma. Consider a Tate space V equipped with a nondegenerate
symmetric bilinear form. Let L, A C V be Lagrangian c-lattices and M an
irreducible discrete module over the Clifford algebra CI(V'). Consider the

operator
(251) NLoM— M

induced by the natural map A°L — AV — CL(V). If d = dim L/(L N A)

then (251) induces an isomorphism
(252) AL/ (LOA) @ MA =5 M*
The proof is reduced to the case where dimV < oo and V = L & A.

4.6.19. We define (250) to be the isomorphism (252) for A = L, (in the
situation of 4.6.17 ML = C). So for £ € w'/?(0) we have constructed
the isomorphism (241), which is equivariant with respect to G(O) and
Autd O = Aut®(0, L).

Denote by Cy the category of line bundles on Orb,. Both sides of (241)

are po-functors w!'/2(0) — O, extended to Z-functors
Z torsg(0) = w2(0) @, Z — C,,

(the Z-structure on C), is defined by the character of Z inverse to (246));
for the Lh.s of (241) this follows from 4.6.8. Clearly (241) is an isomorphism
of functors w'/2(0) — C,. Therefore (241) is an isomorphism of functors
Z torsg(O) — Cy. The isomorphism (241) is Aut} O-equivariant because it

is Aut) O-equivariant and Z-equivariant.

4.6.20. Recall that Az depends on the choice of a nondegenerate invariant
bilinear form on g (see 4.6.3 and 4.4.7). As explained in the footnote to 4.4.7
there is a more canonical version of Az. In the case where G is simple this
version AF" depends on the choice of 1/2 where f is the line of invariant

bilinear forms on g (cf. 4.4.5); A7 comes from the version of (212) obtained
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by using SO(g ® 8/?) instead of SO(g). It is easy to see that the (Z/27)-
grading on A", corresponding to the action of —1 € Aut /2 coincides with

the grading from 4.6.10. The “canonical” version of (241) is an isomorphism
(253) EX > worh, @ (d2) 7 @ (B1/2)F 700

where d(y) is defined by (245). Details are left to the reader.
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5. Hecke eigen-D-modules
5.1. Construction of D-modules.

5.1.1. In this subsection we construct a family of D-modules on Bung
parametrized by Oprs(X), i.e., the stack of “G-opers on X.

Denote by Z the center of “G. According to formula (57) from 3.4.3
we must associate to L € Ztorsg(X) a family of D-modules on Bung
parametrized by Opry(X). In 4.4.3 we defined Az € oo torsg(Bung). Az is
a line bundle on Bung equipped with an isomorphism )\%2” = (w]ugunc)®”
for some n # 0 (see 4.0.1). So Az is a D'-module. Therefore M, :=
)\Zl ®0BunG D' is a left D-module on Bung. According to 3.3.2 and 2.7.4
there is a canonical morphism of algebras hx¢x : Ary(X) — I'(Bung, D').
So the right action of I'(Bung, D') on D' yields an AL;(X)-module structure
on My. Therefore we may consider M, as a family of left D-modules on
Bung parametrized by Spec Arg(X) = Opry(X).

So we have constructed a family of left D-modules on Bung parametrized
by Opre(X). For an “G-oper § the corresponding D-module Mz is
Mg/mgMy = ;' ® D'/D'mg where £ is the image of § in Z torsy(X)

and mg C Ary(X) is the maximal ideal of the Lg-oper corresponding to §.

5.1.2. Proposition.

(i) For every L € Ztorsg(X) M is flat over ALy (X).
(ii) For every “G-oper § the D-module Mj is holonomic. Its singular

support coincides as a cycle with the zero fiber of Hitchin’s fibration.

Proof. According to 2.2.4 (iii) gr D’ is flat”) over gr Ary(X). So D' is flat over
Ary(X). This implies i) and the equality gr(D'/D'I) = grD'/(gr D" - gr 1)

for any ideal I C AL (X). If I is maximal we obtain ii). O

*)This means that if f: S — Bung is smooth and S is affine T'(S, f* grD’) is a free
module over gr Az (X) (a flat Z-graded module over a Z-graded ring A with Ag = C

is free).
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5.2. Main theorems I: an introduction.

5.2.1. Our main global theorem 5.2.6 asserts that the D-module M5 is an
eigenmodule of the Hecke functors. In order to define them we introduce
the big Hecke stack Hecke. The groupoid of S-points Hecke(S) consists of
quadruples (F1, Fa, z, o) where Fi, Fa are G-torsors on X x S, x € X(9),
and « : Fi|ly — Fa|y is an isomorphism over the complement U to the
graph of . One has the obvious projection pi 2 x = (p1, p2,px) : Hecke —
Bung x Bung x X.

The stack Hecke is ind-algebraic and the projections p;, p; x are ind-
proper. Precisely, there is an increasing family of closed algebraic substacks
Hecke; C Heckey C .-+ C Hecke such that Hecke = |JHecke, and

p;i : Hecke, — Bung, p; x : Hecke, — Bung x X are proper morphisms.

5.2.2. Remarks. (i) The composition of a’s makes Hecke an X-family of
groupoids on Bung.

(ii) Hecke is a family of twisted affine Grassmannians over Bung x X.
Precisely, for (F2,7) € Bung x X the fiber Hecke(r, ) := p;’;(}"g,x) is
canonically isomorphic to the affine Grassmannian GR, = G(K;)/G(Oy)
twisted by the G(Oj)-torsor F2(O,) (with respect to the left G(O,)-action).
In the case where F3 is the trivial bundle we described this isomorphism in
4.5.2. In the general case the construction is similar: for fixed vy € F2(Oy)
we assign to (F1, Fa, x, ) the image of vy /(1) in G(K;)/G(Oy) where v;
is any element of F1(0O,) and ~2/a(71) denotes the element g € G(K,) such
that ga(y1) = 72; by 2.3.4 the morphism Hecke(z, ,) — G(K:)/G(O) is an

isomorphism.

5.2.3. The set of conjugacy classes of morphisms v : G,, — G can be
canonically identified with the set Py (“G) of dominant weights of “G. Recall
that G(O,)-orbits in GR, = G(K,)/G(O,) are labeled by x € Py (*G); by
definition, Orb, is the orbit of the image of v(t;) € G(K;) in GR, where

v: G,, — G is of class x and t, € O, is a uniformizer.
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According to 5.2.2 (ii) the stratification of GR, by Orb, yields a
stratification of the stack Hecke by substacks Hecke,, x € P.(*G). The C-
points of Hecke,, are quadruples (Fi, Fa, x, ) such that for some ; € F;(O;)
and a formal parameter ¢, at = one has vo = v(t;)a(y1) where v : G, - G
is of class x. The involution (Fi,Fo,z,a) +— (Fo,F1,7,a ') identifies
Hecke, with Hecke,o where x° is the dual weight. So the fibers of
p2.x : Heckey, — Bung x X are twisted forms of Orb, while the fibers
of p1 x : Hecke, — Bung x X are twisted forms of Orb,e..

For every x the stack Hecke, is smooth over Bung x X. Usually its
closure HTkeX is not smooth.

Remarks. (i) According to 4.5.12 Hecke,, is the union of the strata
Hecke,r, X' < x.

(ii) If G = GL(n) then our labeling of strata coincides with the “natural”
one. Namely, let V1, V5 be the vector bundles corresponding to §1,82. Then
Hecke, consists of all collections (Vi, Va, z, ) such that for certain bases of

Vi’s on the formal neighbourhood of = the matrix of a equals 5.

5.2.4. Let us define the Hecke functors T} : M(Bung) — M(Bung x X)
where M denotes the category of D-modules, x € Py (*G), i € Z.

For x € P (*G), M € M(Bung) denote by pj M the minimal
(= Goresky-MacPherson) extension to Hecke,, of the pullback of M by the
smooth projection p1, : Hecke, — Bung, p1, = pl\HECkeX. Notice that the
fibration p1x : Hecke, — Bung x X is locally trivial (see 5.2.2 (ii), 5.2.3), so
the choice of a local trivialization identifies p7, M (locally) with the external
tensor product of M and the “intersection cohomology” D-module on the
closure of the corresponding G(O)-orbit™) on the affine Grassmannian.

Define the Hecke functors T} : M(Bung) — M(Bung x X) by
(254) Ty, = H'(pa,x)«Piy

*)This orbit is Orbyo where x° is the dual weight, see 5.2.3.
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where H'(pa x )« is the cohomological pushforward functor for the projection

p2,x : Heckey, — Bung x X.

Remark. For a representable quasi-compact morphism f : X — ) of
algebraic stacks of locally finite type the definition of H' f, : M(X) — M(Y)
is clear. Indeed, in the case of schemes one has a definition of H’f, and one

knows that H®f, commutes with smooth base change.

5.2.5. For x € P, (*G) we denote by VX the irreducible “G-module of
highest weight x with marked highest vector. If § is an “G-oper on X (or,
more generally, an “G-bundle with a connection) denote by Vgx the §-twist

of VX; this is a smooth D-module on X.

5.2.6. Main Global Theorem. Let § be an “G-oper on X and Mz the D-
module on Bung defined in 5.1.1. Then T;;Mg = 0 for 7 # 0 and there is a

canonical isomorphism of D-modules on Bung x X
(255) TY Mz — Mz R V.

The isomorphisms (255) are compatible with composition of Hecke
correspondences and tensor products of VX. For the precise statement see

5.4.3. All this means that Mg is a Hecke eigen-D-module of eigenvalue §.

5.2.7. Laumon defined (see §§5.3 and 4.3.3 from [La87]) a conjectural
“Langlands transform” Kp of an irreducible local system E on X (Kg does
exist if rank F < 2). Kg is a holonomic D-module on Bungy,,, n = rankF,
and at least for n = 2 its singular support is the zero fiber of Hitchin’s
fibration (see §5.5 from [La87]). Besides Kg has regular singularities and
its restriction to each connected component of Bungy, is irreducible. If E
is an SL, local system then Kg lives on Bunpgy,, .

Taking in account 5.1.2 and 5.2.6 it is natural to conjecture that for
G = PGL,, the D-module Mz from 5.1.1 equals K3 (some results in this

direction can be found in [Fr]). It would also be interesting to find out (for
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any (G) whether Mz has regular singularities and whether its restrictions to

connected components of Bung are irreducible.

5.2.8. It is convenient and important to rewrite 5.2.6 in terms of the D-
modules M from 5.1.1, £ € Z torsg(X). According to (57) L € Z torsg(X)
defines a family §, of “G-opers on X parametrized by Spec Arg(X ). Thus
& is an “G-torsor on X x Spec ALQ(X) equipped with a connection along X.
For x € P, (*G) the F,-twist of VX is a vector bundle on X x Spec Arg(X)
equipped with a connection along X. We consider it as a D-module VEX on
X equipped with an action of ALy (X).

Now consider the D-module M on Bung (sec 5.1.1); ALy(X) acts on it.
It is easy to see (use 5.1.2 (i)) that 5.2.6 is a consequence of the following

theorem.

5.2.9. Theorem. There is a canonical isomorphism of D-modules on
BunG x X
256 oM =My, R VX
( ) X L L ALB(X) L
compatible with the action of AL (X), and T;Mg =0 for ¢ # 0.

5.2.10. We will deduce the above global theorem from its local version
which we are going to explain now. Consider the affine Grassmannian
GR := G(K)/G(O) where O := CJ[t]], K = C((t)). This is an ind-proper
ind-scheme. Thus we have the “abstract” category M(GR) of D-modules on
GR defined as hi>n./\/l(Y) where Y runs over the set of all closed subschemes
Y C GR.

We are not able to represent GR as a union of an increasing sequence of
smooth subschemes. However GR is a formally smooth ind-scheme. This
permits to treat D-modules on GR as “concrete” objects in the same way
as if GR were a smooth finite dimensional variety, i.e., to identify them with
certain sheaves of O-modules equipped with some extra structure. Namely,

assume we have an O-module P on GR such that each local section of P
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is supported on some subscheme of GR. Then one easily defines what is a
continuous right action of Der Oggr on P. Such P equipped with such an
action is the same as a D-module on GR (we also assume an appropriate

quasi-coherency condition). Details can be found in 777.

5.2.11. Remark. We see that it is the right D-modules that make sense
as sheaves in this infinite dimensional setting. The reason for this is quite
finite dimensional. Indeed, if ¢ : Y — Z is a closed embedding of smooth
manifolds and M is a D-module on Y then in order to identify M with a

subsheaf of 7, M one needs to consider right D-modules.

5.2.12. According to 3.4.3 one has the groupoid Z torsy(O), which is the
local analog of Z torsg(X). A choice of L € Ztorsg(O) (which essentially
amounts to that of square root of wp) defines the “local” Pfaffian line bundle
Me¢ on GR (see 4.6). The action of g ® K on GR by left infinitesimal
translations lifts to the action of the central extension g/@é?( from 2.5.1 on
)\IEOC such that 1 € C C g/é?( acts as multiplication by —1 (see 4.6.5).
This yields an antihomomorphism U — T'(GR,D’) where U = U (g ® K)
is the completed twisted universal enveloping algebra defined in 2.9.4 and
['(GR,D’) is the ring of Alﬁoc—twis‘ced differential operators on GR. Hence for
any D-module M on GR the algebra U’ acts on M)\Zl = M®0g, (A)®~1,
So I'(GR, M)\Zl) is a (left) U'-module.

For example, consider the D-module I; of §-functions at the distinguished

point of GR. The TU'-module I'(gR, 11/\21) is the vacuum module Vac'.

5.2.13. Recall (see 4.5.8) that GR is stratified by G(O)-orbits Orb, labeled
by x € P+(YG). Denote by I, the irreducible “intersection cohomology”
D-module on GR that corresponds to Orb,.

Here is the first part of our main local theorem.

5.2.14. Theorem. The U -module I'(GR, I, \;') is isomorphic to a sum of
several copies of Vac, and H*(GR, I,A;') = 0 for i > 0.
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Remark. This theorem means (see 5.4.8, 5.4.10) that the Harish-Chandra
module Vac is an eigenmodule of the Harish-Chandra version of the Hecke

functors from 7.8.2, 7.14.1.

5.2.15. The group AutO acts on GR, and the action of its Lie algebra
Der O lifts to Al (see 4.6.7). The second part of our theorem describes the
action of Der O on I'(GR, IX)\ZI).

Consider the scheme of local “g-opers Op.4(O) = Spec Az, (O) from 3.2.1.
Write A instead of Ary(O). Just as in 5.2.8 £ defines a family of “G-opers
on Spec O parametrized by Spec A. This family defines an “G-torsor Fa
over Spec A equipped with an action of Der O compatible with its action on
A; see 3.5.4"). The F-twist of the LG-module VX is a vector bundle over

Spec A. Denote by VX, the A-module of its sections; Der O acts on it.
5.2.16. Theorem. There is a canonical isomorphism of U'-modules
(257) T(GR, L") = Vad @4V},

compatible with the action of Der O.
Here we use the A-module structure on Vac' that comes from the Feigin—

Frenkel isomorphism (80).

5.2.17. A few words about the proofs. The global theorem follows from the
local one by an easy local-to-global argument similar to that used in 2.8.
The proof of the local theorem is based on the interplay of the following two

key structures:

(i) The Satake equivalence ([Gi95], [MV]) between the tensor category
of representations of “G and the category of D-modules on GR
generated by I,’s equipped with the “convolution” tensor structure.

(ii) The “renormalized” enveloping algebra U®.  The morphism of

algebras U — I'(GR,D’) is neither injective (it kills the annihilator

“)n 3.5.4 we used the notation 5% instead of 4 and we considered the “particular”

case where L is a square root of wo.
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I of Vacd in the center 3 of U/) nor surjective (its image does not
contain Der O). We decompose it as U - U — I'(GR,D’) where
U is obtained by “adding” to U//IU/ the algebroid I/I? from 3.6.5
(the commutation relations between 34(0) = 3/I C U'/IT and
I/I? come from the algebroid structure on /1%, they are almost of
Heisenberg type). The vacuum representation Vac' is irreducible as

an Uf-module; the same is true for T(GR, LA™Y, x € P(*Q).

5.2.18. Here is the idea of the proof of 5.2.16 (we assume 5.2.14). Set
3 = 3¢(0). Consider the 3-modules VLX;, := Homg (Vad,T'(GR, L), so
T(GR, I\ = Vac’@Vg. Some Tannakian formalism joint with Satake
equivalence yields a cajnonical LG-torsor §; over Spec 3 such that VZ; are §-
twists of VX. The Ufmodule structure on I'(gR, IX)\ZI) defines the action
of the Lie algebroid I/I? on ;. Some extra geometric considerations define a
canonical B-structure on §;, which satisfies the “oper” property with respect
to the action of Der O C I/I%. Now the results of 3.5, 3.6 yield a canonical
identification (Spec 3, §;) =(Spec A, §4) such that A= 3 is the Feigin-Frenkel

isomorphism, and we are done.

5.2.19. DO WE NEED IT???

Here is a direct construction of M that does not appeal to twisted
D-modules. For z € X consider the scheme Bung; (see 2.3.1). For
L € Ztorsy(X) denote by Az z the pull-back of the line bundle Az to Bung 5.

Let g ® K, be the central extension of g ® K, from 2.5.1, so the g ® K-
action on Bungj; lifts canonically to a g@?x—action on Az gz such that
1 € C acts as identity (see 4.4.12). Denote by Bung £z the space of the
Gy -torsor over Bung z that corresponds to Az z. We have a Harish-Chandra

pair (g ® K;,Gy, x G(Oy)),LieG,, = C C g® K,. The gﬁx-action on

Bung ¢ z extends to the action of this pair in the obvious way.
Note that Bung = G, x G(O;) \ Bung 1 z. Therefore by 1.2.4 and 1.2.6
we have the functor A, : (gi@z\?l,,@m X G’(Ox)> mod — M*(Bung).
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Consider the projection G,,, x G(O,) — Gy, as a character; let Vac™ be the

corresponding induced Harish-Chandra module. One has
(258) Mp = Ar(Vac™).

Let us identify the A. (X)-module structure on M. The action
of End(Vac™) = 34(0;) on Ag(Vac™) identifies, via Feigin-Frenkel’s
isomorphism ¢o, (see 3.2.2) with an AL (O;)-action. This action factors

through the quotient Ay (X).

5.3. The Satake equivalence. We recall the basic facts and construc-
tions, and fix notation. For details and proofs see [MV]. The authors of

[MV] use perverse sheaves; we use D-modules.

5.3.1. Consider the affine (or loop) Grassmannian GR = G(K)/G(O) (as
usual K = C((¢)), O = C][[t]]); this is a formally smooth ind-projective
ind-scheme (see 4.5.1). It carries the stratification by G(O)-orbits Orb,,
X € Py (*G) (see 4.5.8). Each stratum is Aut® O-invariant.

In 4.5.10 we introduced the notion of parity of a connected component of

GR. According to 4.5.11

(259) All the strata of an even (resp. odd) component of
259
GR have even (resp. odd) dimension.

5.3.2. Lemma.

(i) Each stratum Orb, is connected and simply connected.
(ii) Any smooth D-module on Orb, is constant.

(ili) Orb, has cohomology only in even degrees.

Proof. Denote by Stab, the stabilizer of x € GR in G(O). The image
of Stab, in G(O/tO) = G is a parabolic subgroup P, and the morphism
G(0)/Stab, — G/P, is a locally trivial fibration whose fibers are
isomorphic to an affine space. Now (i) and (iii) are clear. Notice that Orb,

is projective and according to (259) Orb,, \ Orb, has codimension > 2. So by
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Deligne’s theorem™ a smooth D-module on Orb, has regular singularities
and therefore (ii) follows from (i).

O

Denote by P the category of coherent (or, equivalently, holonomic) D-

modules on GR smooth along our stratification.

5.3.3. Proposition.
(i) The category P is semisimple.
(ii) If M € P is supported on an even (resp. odd) component then
H%R(GR, M) =0 if a is odd (resp. even).

Proof. Denote by I, the intersection cohomology perverse sheaf of C-
vector spaces on Oribx Denote by GR(y) the connected component of GR
containing Orb, and by p(x) the parity of GR(,). According to Lusztig
(Theorem 11c from [Lu83] ) I, has the following property: the cohomology
sheaves H'(I,) are zero unless i mod 2 = p(x). Denote by C the category
of all objects of Db(gR(X)) having this property and smooth along our
stratification. It follows from (259) and 5.3.2 (iii) that for any M, N € C
one has H'(GR(,), M) = 0 unless i mod 2 = p(x) and Ext'(M,N*) = 0
for odd i (here N* is the Verdier dual of N). In particular H*(GR,I,,) = 0
unless i mod 2 = p(x) and Ext'(I,,I,,) = 0. Using 5.3.2 (ii) one gets the
Proposition. O

5.3.4. According to 5.3.2 (ii) the simple objects of P are “intersection
cohomology” D-modules I, of the strata Orb,. Thus 5.3.3 (i) implies
that any object of P has a structure of G(O)-equivariant or Aut’ O
G(O)-equivariant D-module. Such structure is unique and any morphism

is compatible with it (since our groups are connected). We see that

“Vnstead of using Deligne’s theorem one can notice that for any vector bundle on Orb,,
its analytic sections are algebraic. Applying this to horizontal analytic sections of a vector

bundle on Orb,, equipped with an integrable connection one sees that (ii) follows from (i).
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P coincides with the category of G(O)-equivariant or Aut®O x G(O)-

equivariant coherent D-modules on GR.

Remark. The existence of G(O)-equivariant structure follows also directly
from the facts that G(O) is connected and Hom(G(O),G,,) = 0 (and
5.3.2 (ii)); one needs not to evoke 5.3.3 (i) and therefore Lusztig’s theorem

(which is a deep result).

5.3.5. The category P carries a canonical tensor structure. There are two
ways to describe it: the ”convolution” construction (see 5.3.5 - 5.3.9) and
the ”fusion” construction (presented, after certain preliminaries of 5.3.10 -
5.3.12, in 5.3.13 - 5.3.16); for the equivalence of these definitions see 5.3.17.
We begin with the convolution picture *). We have to define the convolution
product functor ® : P x P — P, the associativity constraint for ®, and the
commutativity constraint.

According to [MV] the functor ® is defined as follows. Denote by
G(K) x(0)GR the quotient of G(K)x GR by G(O) where u € G(O) acts on
G(K) x GR by (g,2) ~ (gu', ux). The morphism p : G(K) X0y GR —
G(K)/G(0O) = GR defined by (g,z) — g mod G(O) is the locally tivial
fibration with fiber GR associated to the principal G(O)-bundle G(K) — GR
and the action of G(O) on GR. So G(K) Xgo) GR is a twisted form of
GR x GR. Let M, N € P. Using the G(O)-equivariant structure on M one
defines a D-module M X' N on G(K) X0y GR, which is a “twisted form”
of M X N. Then

(260) M®N =m,(MX' N)
where m : G(K) X0y GR — GR comes from the action of G(K) on GR.
5.3.6. Miraculous Theorem (Lusztig). If M, N € P then M®N € P. O

*)What follows is an algebraic version of Ginzburg’s topological construction [Gi95];

we leave it to the interested reader to identify the two constructions.
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Remark. The nontrivial statement is that M ® N is a D-module (not
merely an object of the derived category). Since this D-module is coherent

and G(O)-equivariant it belongs to P.

Remark.  G. Lusztig’s original proof [Lu83] of 5.3.6 is based on explicit
estimates showing that the map m restricted to the (twisted) product of
two strata in GR is semi-small. Much later D. Gaitsgory observed [Ga2001]
that 5.3.6 is immediate once we take in consideration geometric structures

involved in the definition of the fusion tensor product.

So we have defined ® : P x P — P. The associativity constraint for ®
is defined in the obvious way. The commutativity constraint will be defined

in 5.3.8.

5.3.7. Remarks. (i) Suppose that G(K) is replaced by an ind-affine group
ind-scheme G and G(O) by its closed group subscheme K; assume that G/
is an ind-scheme of ind-finite type. The construction of ® : P x P — P from
5.3.5 is based on the miracle 5.3.6. In general there is no convolution on
the category of K-equivariant D-modules on G/ and one has to consider
a certain derived category H (the Hecke monoidal category; see 7.6.1 and
7.11.17). This is a triangulated category with a t-structure whose core is the
category of K-equivariant D-modules on G/K; in general ® : H x H — H
is not t-exact and there is no commutativity constraint for ®. In the case
of (G(K),G(0)) the functor ® is t-exact by 5.3.6 and the core of H is the
category of ind-objects of P.

(ii) The construction of H mentioned above is a part of the “Hecke
pattern” developed in §7. Later we will see that this pattern is useful

(or maybe indispensable) even in the miraculously good situation of

(G(K),G(0)).

5.3.8. Let us define the commutativity constraint for ®. Let § : G — G
be an automorphism that sends any dominant weight to its dual. The anti-

automorphism 6'(g) := 6(g)~" of G yields an anti-automorphism 6}, of the
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monoidal category H, so for any M, N € H one has a canonical isomorphism
Lot 0 (M ® N) = B (N) @ O3 ().

For any M € P C H there is a canonical isomorphism eys : M = 6}, (M).
To define ey it suffices, according to 5.3.3 (i), to consider the case M = I,.
The action of § on G(K) preserves the stratification G(K), by the double
G(O)-classes (here G(K), is the preimage of Orb, C G(K)/G(O)). So we
have the induced automorphism ¢ of G(K). As an object of H our I, is
the Q-complex Qg (k), [dim Orb, ] on G(K). Now ey, is the action of #] on
Q(x)-

For M, N € P define

(261) stM®N=N®M
as the composition
M&®N=0,(M®N)= 0y, (N)®0y, (M)~ N&M

where the first arrow is the isomorphism e corresponding to M ® N and the

other arrows are [j7,y and e]_\,1 ®e]T/[1.

5.3.9. Proposition. s is a commutativity constraint for the convolution

tensor product ®.

Proof. In 5.3.17 below we identify the convolution tensor product with the
fusion tensor product in a way compatible with all the constraints. Since
the latter data obviously define a tensor category structure on P we are

done. O

So we have defined the promised convolution tensor structure on P.

5.3.10. The fusion description of the tensor structure on P ) is based on
the important chiral semigroup structure on the ”space” GRAS = GRASq

from 4.3.14. This structure may be described as follows.

*)The construction apparently involves a curve X, but actually it is purely local.
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(i) For a C-algebra R and S € X(R) (we use notation from 4.3.11, so
S is a subscheme of X ® R finite and flat over Spec R) one has a subset
GRAS(R)s € GRAS(R) defined as the set of pairs (F,v) where F is a
G-torsor on X ® R, « is a section of F over the complement to S.

(ii) If S is a disjoint union of subschemes S;, i € I, then one has a canonical

identification

(262) GRAS(R)s = [ [ GRAS(R)s,

Namely, we identify (F,v) with the collection (F;,~;), ¢ € I, where
(Fi,vi) € GRAS(R)g, coincides with (F,v) over the complement to the
union of Sy, i' # i.

The data (i), (ii) enjoy the following properties:

a. If for S1,5 € X(R) one has Siyeq C Soreq then GRAS(R)g, C
GRAS(R)g,. The union of GRAS(R)g, S € X(R), coincides with GRAS(R).
So GRAS(R)s form a filtration on GRAS(R). This filtration is functorial
(with respect to R).

b. The isomorphisms (ii) are also functorial and compatible with
subdivisions of I in the obvious manner.

¢. The subfunctor GRy C ¥ x GRAS defined by
GRs(R) = {(S,F,7)IS € B(R), (F,7) € GRAS(R)s}

is an ind-scheme formally smooth over X.

Remark. Let us explain why GRy. = gng is an ind-scheme for any affine
algebraic group GG. Moreover we will show that GRy is of ind-finite type and
if G is reductive then GRy is ind-proper. First consider the case G = GL,,.
Then GRy is the direct limit of GRyx , where GRy ) parametrizes pairs
consisting of a finite subscheme D C X and a subsheaf £ C O% (kD) such
that £ D O%(—kD). The morphism GRy, — X is proper, so GRy, is ind-

proper. As explained in the proof of Theorem 4.5.1, to reduce the general
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case to the case of GL, it suffices to show that if G C G’ and G'/G is
affine (resp. quasiaffine) then the morphism GRE — gRg/ is a closed (resp.
locally closed) embedding. This is easy.

5.3.11. For a finite set J we have the morphism X7/ — ¥ that assigns to

(zj) € X7 the subscheme D C X corresponding to the divisor Y z;. Denote
J

by GR xs the fibered product of GRy and X7 over ¥. So an R-point of
GR . is a collection ((z;), F,v) where (z;) € X7(R), F is a G-bundle on
X ® R, and ~ is a section of F over the complement to the union of the
graphs of the z;’s. Our GR xs is a formally smooth ind-proper ind-scheme
over X7 (see the Remark at the end of 5.3.10).

According to 4.5.2 there is a canonical isomorphism between the fiber
of GRx over x € X(C) and the ind-scheme GR, := G(K,)/G(O;). So
according to 5.3.10 (ii) the fiber of GR y over (z;) € X7(C) equals [] GR,
where S is the subset {z;} C X. e

The following description of GR x will be of use. Consider the scheme X"
of “formal parameters” on X (its points are smooth morphisms Spec O — X,
see 2.6.5). This is an Aut® O-torsor over X; a choice of coordinate,i.e., étale
Al-valued map, on an open U C X defines a trivialization of X" over U.
Now GRx is the X”-twist of GR (with respect to the Aut® O-action on GR).

The stratification of GR defines a stratification of GR x by strata Orb, x

smooth over X.

5.3.12. For the future references let us list some of the compatibilities
between GR ys’s that follow directly from 5.3.10.
a. For a surjective map 7 : J —» J’ there is an obvious Cartesian diagram
GRyr 25 GRy
(263) 1 1

A(m)
x/ = x/



HITCHIN’S INTEGRABLE SYSTEM 207

where A(™ is the m-diagonal embedding. If |.J'| = 1 we have AV) : X < X/
and AY) : GRx < GRyJ.

b. Let v : UM) < X7 be the complement to the diagonal divisor. By
5.3.10 (ii) the restrictions to U(/) of the X”/-ind-schemes GR s and (GRx )’
are canonically identified. Therefore we have a Cartesian diagram

7(J)

GRx) |py = GRx
(264) l !
g xa

5.3.13. Now we are ready to define the fusion tensor structure on P. This
amounts to a construction of tensor product functors )
(265) ®: P 5P
J
for any finite non-empty set J together with identifications

266 =0 @ (@
(266) 2 J,(j,ej,(rl(j,)))

for any surjective map J 5.

The construction goes as follows.

5.3.14. Since any M € P is Aut® O-equivariant it defines a D-module
on GRx (see the description of GRx at the end of 5.3.11). Denote by
Mx € D(GRx)(:= DM(GRx)) its shift by 1 in the derived category. In
other words for any open U as above and a trivialization 6 of X”* over U one
has My = 77!9M, where My = MX'gRU’ my . GRy — GR is the projection
that corresponds to 6, and we glue these objects together using the Aut® O-
action on M. The functor P — D(GRx), M — My, is fully faithful. Its
essential image consists of (shifted by 1) D-modules isomorphic to a direct
sum of (finitely many) copies of “intersection cohomology” D-modules I, x

that correspond to the trivial local system on Orb, x.

“Here P®7 denotes the tensor product of J copies of P (since P is semisimple the

definition of tensor product is clear).
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Let now {M,}jes be a collection of objects of P. Using (264) one
interprets gMjX’U(J) as a D-module on GR ys }UU) shifted by |J|. Denote
by BM;x € D(GR ) its minimal (i.e., 5!(*‘])—) extension to GR xs. This is

a D-module on GR x shifted by |J|. Therefore we have defined a functor
(267) B P — D(GRx1), ®M;—BEM,;x
which is obviously fully faithful.

5.3.15. Proposition. ([MV])
For any 7 : J — J' the complex ﬁ(”)!@]MjX) € D(QRE‘(]/)) belongs to

the essential image of %} O
5.3.16. We get a functor
(268) ®: PO o pol

such that %]@ = K(”)!%]. In particular for |J'| = 1 we have the functor
'
® : P®/ — P which is our tensor product functor (265). The obvious
J
identification ® = ® ( ® ) (look at our D-modules over U")) and
s

Jed’ w=1(j')
the standard isomorphism A() = (AMAUN) = AUVAM! yield the
compatibility isomorphisms (266). So P is a tensor category. It is easy

to see that I is a unit object in P.

5.3.17. Let us identify the convolution and fusion tensor structures on P.
Below in this subsection we denote by ®° the convolution tensor product,
and by ®/ the fusion tensor product on P. We have to construct for
M, N € P a canonical isomorphism M &° N = M ® N compatible with the
associativity and commutativity constraints.”)

Let GR'y» be the ind-scheme over X? such that GR'.(R) is the set
of collections (z1,z2, F1,F2,71,72) where x1,20 € X(R), F1,F2 are G-
torsors over X ® R, 1 is a section of F; over the complement to the

“)The construction is borrowed from [MV] where it is written in more details; however

the commutativity constraint 5.3.8 was not considered there.
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graph of x1, 72 is an isomorphism F; — F» over the complement to the
graph of z. We have the projection ¢ : GR'y» — GRx> that sends
the above data to ((x1,x2),Fa,7271). This projection is ind-proper; over
U := X2\ {the diagonal} it is an isomorphism.”)

Denote by Mx®'Nx € D(GR';») the minimal extension to GR'» of
Mx X NX‘U' This is a D-module on QR’XQ shifted by 2. According to
[MV] the obvious identification over U extends (uniquely) to a canonical

isomorphism
(269) q*(MX/Nx) @ng]NX

Now QR’X2 is a twisted form of (QRX)2. Indeed, a trivialization of F7 on
the formal neighbourhood of x5 yields an identification of the data (F2,y2)
above with GR,.. These trivializations together with formal parameters at xs
form an Aut® O x G(O)-torsor over GRx x X, and QR/XQ identifies with the
corresponding twist of GR. So Mx X 'Ny is the “twisted form” of Mx X N.
Restricting this picture to the diagonal X — X x X we see that the pull-back
of ¢ : GR2 — GRx2 to X coincides with the X”-twist of the morphism
m : G(K) xg0) GR — GR from (260) and the pull-back of MxB'Nx to
the preimage of X in GR';» equals (M X' N)x where M X' N has the same
meaning as in (260). Comparing (269) and (260) (and using the base change
isomorphism) we get the desired canonical isomorphism M &° N = M @' N.

Its compatibility with the associativity constraints comes from the
similar picture over X3. WRITE DOWN THE COMAT WITH COM
CONSTRAINTS (use Bung and Hecke)!

“)Over the diagonal the fibers of ¢ are isomorphic to GR; more precisely, the
closed embedding GRy> — (GRx) Xx (GRx2) defined by (z1,z2, F1,F2,71,72) —
(z1, 22, F1,71,F2,72y1) becomes an isomorphism when restricted to the diagonal X <
X2. So the maximal open subset over which ¢ is an isomorphism has the form GR y2 \Z

where Z has codimension 1; this is an infinite-dimensional phenomenon.
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5.3.18. For M € P set h'(M) := Hpp(GR, M). This is a Z-graded vector
space; denote by h®(M) the corresponding Z/27Z-graded vector space.

Consider the projection p : GRx — X. The D-modules H%p,(Mx) on X
are constant, i.e., isomorphic to a sum of copies of wx (recall that we play
with right D-modules). The corresponding fiber is h'(M): for any z € X
one has H'i\p,(Mx) = h' (M) (here i, is the embedding {z} — X).

5.3.19. Proposition. ([MV])
For any collection { M} ey of objects of P the D-modules H“pi‘]) (KM;x)
on X7 are constant. ([l

For any (z;) € X7 one has
. J .
(270) Hi, ) @M, x) = @h'(M;).
This is clear from 5.3.18 for (x;) € U); then use 5.3.19.

5.3.20. For (z;) € X C X7 (270) yields a canonical isomorphism
h'(®M;) = ®h'(M;) which is obviously compatible with “constraints”
(266). We see that

(271) h": P — Vect’, h® : P — Vect®

are tensor functors. Here Vect™ is the tensor category of Z-graded vector
spaces with the ”super” commutativity constraint, Vect® is the analogous

tensor category of Z/27Z-graded vector spaces.

5.3.21. One may twist the tensor structure on P to get rid of super vector
spaces. To do this note that the objects of P carry a canonical Z/2Z-
grading & by parity of the components of support (see 4.5.10). This grading
is compatible with ®.

Denote by P! the full subcategory of even objects in P* := P @ Vect®
(with respect to tensor product of the Z/2Z-gradings). This is a tensor
subcategory in P¢. The “forgetting of the grading” functor o, : Vect® — Vect
yields an equivalence P?=P. This is an equivalence of monoidal categories

(i.e., it is compatible with the tensor products and associativity constraints);
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the commutativity constraints A @ BRB @ A for P and P? differ by
(—1)P(Ap(B),
The functor h® is compatible with the Z/2Z-gradings by 5.3.3 (ii).

Therefore it defines a tensor functor
(272) h: PP — Vect .

Note that h carries a canonical Z-grading which we denote also by h’
by abuse of notation. So A’ is a tensor functor on P! with values in the
tensor category of graded vector spaces equipped with the plain (not super)

commutativity constraint.

5.3.22. According to [MV] (WHAT ABOUT GINZBURG 77) the tensor
category P is rigid, i.e., each object has a dual in the sense of §2.1.2 from
[Del91] (the dual objects are explicitly constructed in [MV]). The tensor
functor (272) is C-linear and exact,”) so it is a fiber functor in the sense
of [Del91]. Therefore by the general Tannakian formalism (272) induces an
equivalence between the tensor categories P? and Rep(Aut® h) where Aut® h
denotes the group scheme of tensor automorphisms of h and Rep means the
category of finite-dimensional representations. According to [MV] there is
an isomorphism s : “G = Aut® h, so we may rewrite the above equivalence

as
(273) h: Pi=ReplG.

Here “G is the Langlands dual group, i.e., it is a semisimple group together
with a fixed Cartan torus “H C G, an identification of the corresponding
root datum with the dual to the root datum of GG, and a collection of fixed

non-zero vectors y, € (L g)* for simple negative roots a.

*)Exactness is clear since P? is semisimple. Mirkovié¢ and Vilonen [MV] have to prove
exactness because they want their proofs to work for perverse sheaves over arbitrary

commutative rings.
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5.3.23. We are going to define a canonical isomorphism
(274) s FGRAW® h

by listing some properties of the action of “G on h, which determine

uniquely.
(i) Denote by
(275) t s 12

the morphism G,, — “H corresponding to the weight 2p of G. Then t?* acts
on h* as multiplication by t~% (so the action of the 1-parameter subgroup
(275) corresponds to the grading A" of h).

It follows from (i) that the action of “H on h preserves the grading of h.

(ii) For any x € P4 (FG) the group “H acts on h™"([,) = h~dimOrbx (],
by the character .

This means that the highest weight of the irreducible “G-module h(I,)
equals .
Remark.  Since dim Orb, = (x,2p) there is no contradiction between (i)
and (ii).

The properties (i) and (ii) can be found in [MV]. They uniquely determine
the restriction of (274) to “H. So (274) is determined by (i) and (ii) up to

L H-conjugation. We normalize (274) by the following property.

(iii) Let ¢ € (Sym? g*)¢ be an invariant bilinear form on g (or on [g, g in

the reductive case???). Set
777
(276) Je = o Z c(a, a)ya € Lg
(03

(the expression c(a, @) makes sense because o € (“h)* = h C g). Then the
Lie algebra element f, acts on h(M) = Hpp(GR, M), M € Pl = P, as

multiplication by v(c) where

(277) v (Sym?g*)® = H)p(GR)
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is the standard morphism whose definition will be reminded in 5.3.24.

Remark.  (iii) is formulated by V.Ginzburg [Gi95] in a slightly different
form. In fact, he describes in a similar way the action on h of the whole

centralizer of f. in Lg.

5.3.24. In this subsection (which can be skipped by the reader) we define
the canonical morphism (277). We use the folowing ad hoc definition: for
any ind-scheme Z one has Hf,,(Z) := {ElH (Y, Qy) where Y runs over the
set of all closed subschemes of Z and €2y is the de Rham complex of Y (in the
most naive sense). To define v let us assume for simplicity (simplicity twice??
BAD STYLE) that G is semisimple ). Then the projection G(K) — GR
induces an isomorphism H3,(GR)~ H%,(G(K)) (indeed, this projection
is a G(O)-torsor, G(O) is connected, and H},(G(0)) = H3,(G(0)) = 0).
Now our ¢ defines the Kac-Moody cocycle u, v — Resi—g ¢(du,v) on g ® K.
Let w. be the corresponding right invariant closed 2-form on G(K). The
image of its class by the inverse map to the above isomorphism is v(c) €

H2,(GR). WHAT ABOUT THE SIGN???

Remark. In 5.3.23(iil) we used the action of H,r(GR) on Hpp(GR, M)
where M is a D-module on GR. It is defined as follows. Consider the Q'-
complex QM (see 7.11.13). Then Hpp(GR, M) = li_r)nH'(Y, QMyy) where
Y runs over the set of all subschemes of GR. Now QM(y) is an Q-complex
on Y, so H'(Y,Qy) acts on H'(Y,QMy)). Therefore Hpp(GR) acts on
Hpp(GR, M).

5.3.25. The brief characterization of the canonical isomorphism (274) given

in 5.3.23 is enough for our purposes. Those who want to understand (274)

5.3.26.

*)We leave it to the reader to define v for arbitrary G.
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Remark. Recall (see 4.5.9) that the connected components of GR are
labeled by elements of Z(*G)Y where Z(FG)V is the group of characters of
the center Z(“G) c FG. The connected component of GR corresponding
to ¢ € Z(*G)V will be denoted by GR;. The support decomposition
D(GR) = [[ D(GR¢), P = &P defines a Z(FG)V-grading, i.e., a Z(*G)-
action, on h. This action coincides with the one induced by the “G-action.

In the rest of the section we explain how the above constructions are
compatible with passage to a Levi subgroup of “G. When this subgroup is
LH c @G this amounts to an explicit description of the action of “H on the

fiber functor h due to Mirkovié¢ — Vilonen.

5.3.27. Let P C G be a parabolic subgroup, Np C P its unipotent radical,
F := P/Np the Levi group. The Cartan tori of F' and G are identified in
the obvious way, and the root datum for F' is a subset of that for G. So
LF is a Levi subgroup of “G for the standard torus “H c “F c “G. Thus
Z(*G) c Z(*F).

We are going to define a canonical tensor functor
(278) i PL = Ph

which corresponds, via the equivalences hg, hr, to the obvious restriction

functor 74 : Rep G — Rep I'F.

5.3.28. The diagram G <+ P — F yields the morphisms of the

corresponding affine Grassmanians
(279) GRE - GRF T GRY .

Here 7 is a formally smooth ind-affine surjective projection. Its fibers are
Np(K)-orbits. Hence 7 yields a bijection between the sets of connected
components of GRY and GR¥. For any ¢ € Z(LF)V let gR? be the
corresponding component. Then the restriction i¢ : QR? — QRG of 7
is a locally closed embedding; its image lies in QR? where ¢ := (| Z2(EG)-

The ind-schemes QR? form a stratification of GRE (i.e., for any closed
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subscheme Y C GRE the intersections Yo=Y N ng form a stratification
of V).

Set par = pg—pr € b*. Since 2pgr is a character of F' (the determinant
of the adjoint action on np) we may consider it as a one-parameter subgroup
of Z(tF) c FH. So for any ¢ as above one has an integer (¢,2pgr). Let
GREY be the union of components Q’Rg with ((,2pgr) = n. We have
the corresponding decomposition D(GRY) = [[D(GRE), PF = aPk.
Set PF' = @PF[-n] ¢ D(GRY). As in 5.3.18 for M € P we set
hin(M) = H (GRY, M) € Vect'.

5.3.29. Proposition.

(i) The functor rgF = il D(QRG) — D(QRF) sends P to P, so

we have
(280) PG pe o pit
(ii) There is a canonical identification of functors
(281) he = hiprSE . PY — Vect™ .

Proof. Assume first that P = B is a Borel subgroup. Then F' = H and
GRZ, = (YH)V, so D-modules on GRY are the same as (“H)V-graded
vector spaces, i.e., “H-modules. The strata QR? are just Np(K)-orbits on
GRY. Thus 5.3.29 is just the key theorem of [MV].

Recall that the identification (281) is constructed as follows (see [MV]).
Let Qin C GRY be the closure of GREZ := 771 (GRH) in GRY. Then GrR”
is a decreasing filtration on GR®. For any M € P% the obvious morphisms
R rGH(M) = HY(GREB,i'M) «+— H?g%f(gRG,M) — H"(GR®,M) =
h¢ (M) are isomorphisms. Their composition is (281).

Now let P be any parabolic subgroup. Choose a Borel subgroup B C P,
so Brp := B/Np N B is a Borel subgroup of F. Consider the functors
r&H . D(GRY) — D(GRM), rEH . D(GRY) — D(GRY). By base

GH = pEHGE Lot

change one has a canonical identification of functors r =TrH
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PH < D(GRM) be the category defined by B C G, so we know that
rGH(PSY ¢ PH" and (since pgr = pa — pr) one has rEH(PF'y c P
The functor rG : PF " — PH' is faithful (since up to shift if coincides
with h},). Hence an object T € D(GR') such that all H*T are in P¥ belongs
to P’ if and only if r5H(T') ¢ PH'. Applying this remark to T = r&F (M),
M € P, we see that rGF (M) € PF'| which is 5.3.29 (i). We also know
that hy(M) = hiy(r§HT(M)) = hyy(r5H(M)) = hpr@F (M) which is the
identification 5.3.29 (ii). We leave it to the reader check that it does not

depend on the auxiliary choice of a Borel subgroup B C P. (I

5.3.30. The category P¥" has a canonical tensor structure (defined by the
same constructions that were used for P¥). The functor rgF . PG pF
is a tensor functor in a canonical manner. Indeed, (279) are morphisms of
chiral semi-groups, so we may consider the corresponding functors rgF =
i D(QR)G(J) — D(GR%.,) . We leave it to the reader to check (hint: use
5.3.19) that for M; € PC this functor sends B M; to Er$F (M;) (see 5.3.14
for notation). Since (by base change) it also commutes with the functors
AN we get the desired tensor product compatibilities. As in 5.3.19 we see
that (281) is an isomorphism of tensor functors.

Finally let us replace, as in 5.3.21, the tensor category P by P%4. Since
pcr = pg — pr we see that rgF yields a tensor functor r&F . PG —

PFE compatible with the fiber functors he, hp. It defines a morphism

r: Aut® hp — Aut® he.

5.3.31. Lemma. The morphism %517'%;7 . L'F — L@ coincides with the

canonical embedding from 5.3.27. ([

5.4. Main Theorems 1I: from local to global. In this section we give
the precise version of the main theorems from 5.2 and show that the local
main theorem implies the global one. We use in essential way the ”Hecke
pattern” from Chapter 7. To understand what is going on it is necessary

(and almost sufficient) to read 7.1.1 and 7.9.1.
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5.4.1. We start with the definition of Hecke eigen-D-module. Consider
the pair (G(K),G(0O)) equipped with the action of AutO. Let H be
the corresponding (Der O, Aut® O)-equivariant Hecke category as defined
in 7.9.2". Since any object of P is an Aut O-equivariant D-module in
a canonical Way*) our P is a full subcategory of H. It follows from the
definitions that the embedding P — H is a monoidal functor.

Consider the canonical AutO-structure X" on X (see 2.6.5) and the
scheme M” over X" defined in 2.8.3; it carries a canonical action of
Aut O x G(K) (see 2.8.3 - 2.8.4). The quotient stack (Aut® O x G(0))\ M"
equals Bung x X. We arrive to the setting of 7.9.1, 7.9.4". Thus H acts
on D(Bung x X). Therefore D(Bung x X) is a P-Module. Identifying the
monoidal category P ) with Rep “G via the Satake equivalence (273) one
gets a canonical Action of Rep “G on D(Bung x X) called the Hecke Action.
We denote it by ®.

Note that D(Bung x X) also carries an obvious Action of the tensor
category Vectv(X ) of vector bundles with connection on X (or, in fact, of
the larger tensor category of torsion free left D-modules on X) which we
denote by ®. It commutes with the Hecke Action, so D(Bung x X) is a
(Rep “@G, VectY (X))-biModule.

Let § be an “G-bundle with a connection on X. It yields a tensor functor
Rep “G — VectV (X), V — Vz, hence the corresponding Action of Rep ‘G
on D(Bung x X).

5.4.2. Let M be a D-module on Bung. Let M x) € M(Bung x X) be the

pull-back of M. Assume that for any V € Rep G we are given a natural

“Oour (G(K),G(0)), (Der O, Aut® O) are (G, K), (I, P) of 7.9.2.
>k)According to 5.3.4 any object of P carries a unique strong Aut® O-action which is
the same as a strong Aut O-action.

“)Our X" and M” are X” and Y of 7.9.4.

“)In this section (except Remarks 5.4.6) we use only the monoidal structure on P (the

commutativity constraint plays no role). So we may identify P with Ph.
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isomorphism ay : V&M x)R Mx) ® Vs (so, in particular, V@M is
a D-module, and not merely an object of the derived category). We say
that the ay’s define a Hecke F-eigenmodule structure on M if for any
Vi, Vo € Rep G one has ay, g, = av; o (V1 ®ay,). We call such (M, ay),
or simply M, a Hecke §-eigenmodule.

Remark. For any “G-local system F on X one would like to define the
triangulated category of Hecke S—eigenmodules*).

The following theorem is the precise version of Theorem 5.2.6.

5.4.3. Theorem. For any “G-oper § the D-module Mz defined in 5.1.1 has
a natural structure of Hecke §-eigenmodule.
We leave it to the reader to check that the functor T;; coincides with

H'VX® (see 5.2.4, 5.2.5 for notation). Thus Theorem 5.4.3 implies 5.2.6.

5.4.4. We need a version of 5.4.1-5.4.3 ”"with parameters”. Let A be a
commutative ring. Denote by M(Bung x X, A) the category of A-modules
in M(Bung x X) (i.e., D-modules with A-action). It has a derived version
D(Bung x X, A), which is a t-category with core M(Bung x X, A) (see
7.3.13). The category D(Bung x X, A) carries, as in 5.4.1, the Hecke Action
of Rep LG.

We also have the obvious Action of the tensor category of A ® Ox-flat
A®Dx-modules on D(Bung x X, A) which commutes with the Hecke Action.
Therefore any flat A-family F4 of “G-bundles with connection on X yields
an Action of Rep “G on D(Bung x X, A).

Now for M € M(Bung,A) one defines the notion of Hecke Fa-
eigenmodule structure on M as in 5.4.2. The following theorem is the precise

version of 5.2.9; by 5.1.2(i) it implies 5.4.3.

*)Certainly, in the above definition of Hecke eigenmodule you may take for M any
object of D(Bung) instead of just a D-module. However in this generality the definition

does not look reasonable (such objects do not form a triangulated category).
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5.4.5. Theorem. The D-module My € M(Bung, Ay(X)) defined in 5.1.1

has a canonical structure of Hecke §,-eigenmodule.

5.4.6. Remarks. (i) Sometimes (when you want to use the commutativity
constraint, see, e.g., the next Remark or the next section) it is convenient to
deal with the above notions in the setting of super D-modules. Note that any
D-module M on Bung has a canonical Z/2Z-grading such that M is even
or odd depending on whether M is supported on even or odd components
of Bung. We denote this super D-module by M?. So f identifies M (Bung)
with a full subcategory M (Bung)® of M(Bung)® := M(Bung)® Vect®. The
same applies to D(Bung) and D(Bung x X).

The Action of P on D(Bung x X) yields an Action of P¢ on D(Bung x X)®.
The Action of P% C P preserves D(Bung x X)f, as well as the VectV (X)-
Action. Now one defines the notion of Hecke §-eigenobject of M (Bung )"
exactly as in 5.4.2. This definition brings nothing new: a D-module M is a
Hecke F-eigenmodule if and only if M7 is.

(ii) In the above definition of the F-eigenmodule structure on M €
M(Bung) we used the convolution construction of the tensor structure on
P. One may rewrite it instead using the fusion construction of ® as follows.

DOPISAT"!!!

5.4.7. Let us turn to the main local theorems from 5.2. We are in the setting
of 5.2.12, so we fix L € Ztorsy(O), which defines the central extension
C/J(\I?) = Cj(\l?)ﬁ of G(K) split over the group subscheme G(O) (see 4.4.9).
We have the corresponding category of twisted Harish-Chandra modules
M(g ® K,G(0)) and the derived category D(g ® K,G(O))" of Harish-
Chandra complexes (see 7.8.1 and 7.14.1)*). According to 7.8.2, 7.14.1,
D(g® K, G(0O))’ carries a canonical Action ® of the Hecke monoidal category
H of the pair (G(K),G(0O)). Since P is a monoidal subcategory of (the core

of) H our D(g ® K,G(0))" is a P-Module.

So1eCcC g/(g?( acts on the objects of these categories as identity.
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Let Vad € M(g® K,G(O))" be the twisted vacuum module.

5.4.8. Theorem. For any object P € P the object P® Vad € D(g ®
K,G(0))" is isomorphic to a direct sum of copies of Vac ™.

This theorem is equivalent to 5.2.14. Indeed, according to (335) of 7.8.5
and 7.14.1, there is a canonical identification of (g/é?( ,G(0))-modules

(282) HY (P® Vad) = H'(GR, PA;1).

Here P/\Z1 =P® )\Zl. The interested reader may pass directly to the proof

of this theorem, which can be found in 777.

5.4.9. We need to incorporate the Aut O symmetry in the above setting.
Recall (see 4.6.6) that the action of AutO on G(K) lifts to the action of
Autz O on g‘(xK/) that preserves G(O). So we are in the setting of 7.9.5").
Let Dpe be the derived category of Harish-Chandra complexes as defined in
7.9.5. This is a t-category with core Mpy¢c equal to the category of Harish-
Chandra modules for the pair (Der O x g?é?(, Aut), O x G(0)) (we assume
that the center C C ;é?( acts in the standard way).

The (Der O, Aut} O)-equivariant Hecke category for (G(K),G(0O)) (see
7.9.2) contains the corresponding (Der O, Aut® O)-equivariant categories H
and H¢ as full monoidal subcategory. So, by 7.9.5, Dyc is an H-Module.
hence it is a P-Module.

We will need to change slightly our setting. Let as usual 3 be the
center of the completed twisted universal enveloping algebra of g ® K and
3 the endomorphism ring of the twisted vacuum module Vacd'; we have the
obvious morphism of algebras e : 3 — 3. Let Dpc; be the corresponding

derived category of Harish-Chandra complexes as defined in 7.9.8 (see also

“)n particular it is a single Harish-Chandra module, not merely a complex of those.

“Jour (Der O, Aut% O) and (5(\1_(/),6‘(0)) are (I, P) and (G', K) of 7.9.5.
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7.9.7(iii))”). This is a t-category with core Mpc; equal to the category of
Harish-Chandra modules killed by Kere.

Let H; be the 3-linear version of the (Der O, AutY, O)-equivariant Hecke
category for (G(K),G(0)) as defined in 7.9.7(i). According to 7.9.8 it acts
on Dyc;. Due to the obvious monoidal functor H — H; (see the Remark in
7.9.7) H; contains P, so Dyc; is a P-Module. Asin 5.4.1 we will replace P by
Rep “G by means of the Satake equivalence and denote the corresponding
Action of Rep G on Dgcy by ®. On the other hand H; contains in its
center the tensor category M(Auty O)gc L of flat 3-modules equipped with
Autz O-action (see 7.9.7(i)). The corresponding Action of M(Auty O){l
on Dpc; is the obvious one: for W € M(Autz O){l, V € Dpc; one has
W®V =W®V :=WaV. Therefore D¢, is a (Rep “G, M(Auty O)jﬂ)—
biModule. 3

Let § be an Autz O-equivariant “G-torsor on Specj. It yields the tensor
functor Rep “G — M(Auty O); l, V +— V5, hence the corresponding Action
of Rep G on Dpc;.

5.4.10. Let us repeat the definition from 5.4.2 in the present Harish-
Chandra setting. Namely, a Hecke §-eigenmodule is a Harish-Chandra
module M € Mpgc; together with natural isomorphisms ay : V@M= M ®
Vz, V€ Rep’G, such that for any V1,V2 € Rep’G one has ay,gy, =
ay, o (Vi®ay,).

Now we can formulate the precise version of 5.2.16. As in 5.2.15, our
L € Ztorsg(O) (see 5.4.7) defines an Auty O-equivariant”) LG-torsor over
the moduli scheme of local “g-opers. Identifying this scheme with Spec}
via the Feigin-Frenkel isomorphism (80) we get the corresonding Auty O-

equivariant torsor §, over Specj.

“Jour Drcy is Dfjo 4 of 7.9.8. In 7.9.8 3 denotes the set of G(K)-invariant elements
of the center, but according to 3.7.7(ii) all elements of the center are G(K)-invariant.

*)The action of Autz O comes from the identification Autz O = Aut(O, L); see 4.6.6.
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From now on we consider Vac' as an object of M ¢y (with respect to the

Autz O-action that fixes the vacuum vector).

5.4.11. Theorem. Vac has a canonical structure of Hecke §,-eigenmodule.
This theorem implies 5.2.16. Indeed, the isomorphism (282) is Auty O-
equivariant since Autz O acts on both sides of (282) by transport of
structure.
Where will it be proved???

Now we may turn to the main result of this section.

5.4.12. Theorem. Theorem 5.4.11 implies 5.4.5.

Proof. We will show that an appropriate ”localization functor” LA trans-
forms the local picture into the global one .

We need to modify slightly the setting of 5.4.1 to be able to use the
7equivariant Hecke pattern” from 7.9. Recall that in the formulation of
the global theorem 5.4.5 we fixed £8P € Ztorsg(X) (see 5.2.8), while in
the local theorem 5.4.11 we used £°¢ € Z torsg(0O). Consider the schemes
X% and M7 from 4.4.15 corresponding to L£8°P and £°¢ (they are etale Z-
coverings of the schemes X" and M” used in 5.4.1). Recall that Autz O acts
on X% and Autyz Ox G(K) acts on M} (see 4.4.15). One has Aut}, O\ X} =
X, and the quotient stack (Aut} O x G(O)) \ M} equals Bung x X. It is
clear that in the construction of the Hecke Action on D(Bung x X) in 5.4.1
we may replace (M”", Aut O x G(K)) by (M2, Autz O x G(K)).

Asin 5.1.1 let Apgob be the Pfaffian line bundle on Bung that corresponds
to £8°P. Denote by 2 = /):Eglob its pull-back to M7. The action of
Autz O x G(K) on M} lifts in a canonical way to an action on X of the

—_——

central extension Autz O x G(K) (see 4.4.16). So we are in the setting of

*)The reader may decide if there is a method in this madness.
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7.9.6*), and therefore, one has the right t-exact localization functor
LA DHC — D(BunG X X)

One has also the corresponding picture in the setting of 3-modules. Indeed,
following 7.9.7(ii), consider the Dx-algebra 3x ) (which we already used in
2.7) and the corresponding category D(Bung x X, 3x) which is the derived
category of D-modules on Bung x X equipped with 3x-action (see 7.3.13).

It carries a canonical Action of H;. One has a canonical localization functor
LAz : DHC;, — D(BunG X X,gx)

which is a Morhism of H;-Modules. The above LA’s are compatible (they
commute with the forgetting of 3-action).
Now our theorem is immediate consequence of the following facts:

(a) There is a natural identification

(283) LA(Vacd) = A(Vacd) = Mpgor X Ox

such that the 3x-action on A(Vac) = A;(Vacd) coincides with the action
of 3x on M goo X Ox through the maximal constant quotient 3(X)® Ox =
ALy(X) ® Ox and the standard Ay (X)-module structure on M gob. For a
proof see 7.14.9 (and note that 3x acts by transport of structure).

(b) The functor LA, is a Morphism of (Rep “G, M (Aut O)Z{l)-biModules.

Indeed, this is a Morphism of H;-Modules.

(c) For any W € M(Auty O);l, T € D(Bung x X,3x) one has W& T =
Wx ® T where W is the 3x-module that corresponds to W.

3X

For a proof see 7.9.7(i).

*)Sorry for a terrible discrepancy of notations: our M2, X", X, Der O, Aut% O, C?(?(/),
G(O) are Y, X", L*, I, P, G', K of 7.9.6.
*)Any Aut O-module V yields the Dx-module Vx, see 2.6.6.
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(d) For any V € Rep “G there is a canonical identification
(V3 proc ) x ©(G(X) @ Ox) R Vg0
L ix L
compatible with tensor products of V’s (here §ioc is §¢ from 5.4.10). O

5.5. The birth of opers. In this section we assume Theorem 5.4.8. We
first show that this theorem implies that Vac' is a Hecke F-eigenmodule
for some Auty O-equivariant “G-torsor F on Spec 3. The main point of this
section is that F comes naturally from an Auty O-equivariant 3-family of
local opers. Later we will see that the corresponding map from Spec 3 to the
moduli of local opers coincides with the Feigin-Frenkel isomorphism, which

yields the main local theorem.
5.5.1. For any V € Rep G set
(284) Fy(V) = Homg@?( Vad,V@Vad) = (Ve Vad )4,

This is an Autz O-equivariant 3-module”). According to 5.4.8 it is a free

3-module, so Fy (V) € M(Auty O)gl. One has a canonical isomorphism
(285) VeVad =Vad @ Fu(V).

Since the Action of M(Auty O)g ! commutes with the Hecke Action we get a
canonical identification Fy (V7 @ Vo) = Fy (V1) ® F(V3), which means that
(286) Fy : Rep*G — M(Autz 0)]!

is a monoidal functor.

5.5.2. Lemma. For any V € Rep G the free 3-module Fy (V) has finite

rank.

Proof. Since Fy is a monoidal functor Fp (V*) is dual to Fy (V) in the sense
of monoidal categories (see 2.1.2 of [Del91]). If a free 3-module has a dual
in the sense of monoidal categories then its rank is finite. ([

*)The two 3-module structures on V ® Vac' coincide because the Hecke functors are

3-linear.
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Let
(287) F5. : Rep"G — M(Autz 0)!

be the tensor functor Fy.(V) = Vs, (see 5.4.10).

Now our main local theorem 5.4.11 may be restated as follows.

5.5.3. Theorem. The monoidal functors Fp and Fj,. are canonically
isomorphic.

We are going to show that F indeed comes from a some canonically
defined family of local opers parametrized by Specj. First let us check that

F3; indeed comes from an “G-torsor on Spec3.

5.5.4. Proposition. The monoidal functor Fp is a tensor functor, i.e., it is
compatible with the commutativity constraints.

The proof has two steps. First we write down the compatibility
isomorphism Fy (V1) ® Fy(Va)= Fy(Vi ® Vi) as convolution product of
sections of (twisted) D-modules (see 5.5.5, 5.5.6). Then, using the fusion

picture for the convolution, we show that it is commutative (see 777).

5.5.5. Let us replace the tensor category of “G-modules by that of D-
modules on the affine Grassmanian using the Satake equivalence h (see

(273)). For P € P% we set Fy(P) := Fy(hP). Thus (see (282))
(288) Fy(P) =T(GR, PA;1)C©).

Remark. Recall that P is a “super” D-module and A, is a “super” line
bundle. However their parities coincide (being equal to the parity of
components of GR), so P/\Z1 is a plain even sheaf. These “super” subtleties
will be relevant when we pass to the commutativity constraint.

To describe the compatibility isomorphism Fy (Py)®@Fy (Ps) = Fy(P1 & Py)
consider the integration morphism of @'-modules (we use notation of 5.3.5;

for integration see 7.11.16 (?7))

(289) T - m.(Pl X’ PQ) - P®Db.
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The line bundle Az on GR is G(O)-equivariant and its pull-back by
m : G(K) xgo) GR — GR is identified canonically with the “twisted
product” A X' e So, twisting ¢, by Az, we get the morphism
m. (P R (PALY) — (Pr® Po)AS"

Passing to G(O)-invariant sections we get the convolution map (notice
that G(O)-invariance permits to neglect the twist)

(290)
+: T(GR, PN @ T(GR, PALY)CO) 5 T(GR, (P ® P)A1)CO)

5.5.6. Lemma. The convolution map coincides with the compatibility

isomorphism FH(Pl) & FH(PQ) ~ F%(Pl ® PQ).

Proof. Consider the canonical isomorphism (the Action constraint) a :
P®P,®Vad)=R(PL®P)®Vad. For f € Hom(Vad,PL®Vad), g €
Hom(Vacd, P, ® Vac') the compatibility isomorphism sends f®g to (P; ® g)o
f.

O

5.6. The renormalized universal enveloping algebra.

5.6.1. Let A be the completed universal enveloping algebra of m .
According to 3.6.2 A is a flat algebra over C[h], h:=1—1, and A/hA = U
The natural topology on A induces a topology on A[h~!] := A®cn Clh, h=Y;
in fact this is the inductive limit topology (represent A[h~!] as the inductive
limit of A — A — ... where each arrow is multiplication by h).

Let I C 3 be the ideal from 3.6.5. Denote by J the preimage of
U cU = A/hA in A (IU/ is understood in the topological sense,
ie., IT is the closed ideal of U generated by I). J is a closed ideal
of A containing hA. Denote by A? the union of the increasing sequence
Ac h™'Jc h™2J? C ... where J* is understood in the topological sense.
Finally set U% := A%/h A"

“)This follows since, by definition, Az comes from a central extension of G(K) equipped

with a splitting over G(O).
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A% is a topological algebra over C[h] (the topology is induced from A[h~1]).
So U" is a topological C-algebra (U* is equipped with the quotient topology).

5.6.2. Set Vacy = A/A(g® O) where A(g® O) denotes the closed left ideal
of A generated by g ® O. I acts trivially on Vad = Vaca /h Vaca. Since

Vacy is a flat C[h]-module A% acts on Vaca. Therefore U? acts on Vac.

5.6.3. Denote by Ug the image of A in U™ Ug is a subalgebra of U?. We
equip Ug with the induced topology. The map A — Ug factors through
A/hA = U’ and actually through U /1 U'. So we get a surjective continuous
homomorphism f : U /IU’ — Ug. Probably f is a homeomorphism.
Anyway f induces a topological isomorphism 3 = 3/I — f(3) (use the
action of U% on Vac'). We will identify 3 with f(3).

5.6.4. Let J; C A denote the preimage of I C U = A/hA. Denote by Ulh
the image of h=1J; in U%. Equip Ulu with the topology induced from U®.
The topological algebra U is generated by Ulh.

5.6.5. Lemma.
(1) Ulu is a Lie subalgebra of U”.

(i) Ug is an ideal of Ulu.

(iii) 3UF c U?, U%3 C UP.

() [Uf,3] <5
Proof. We will use some properties of the Hayashi bracket {,} defined in
3.6.2. (i) follows from the inclusion [Jr, Jr] C hJy, which is clear because
{I,I} C I (see 3.6.4 (i)). (ii) and (iii) are obvious. (iv) is clear because
{I,3} c{3,3} C 3. O

5.6.6. It follows from 5.6.5 that U1h / Ug is a topological Lie algebroid over j.
Multiplication by h~! defines a map J; — A%, which induces a Lie algebroid

morphism

(291) 1)1 = J1/(J? + hA) = U U]
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(see 3.6.5 for the definition of the algebroid structure on I/I? ). The
morphism (291) is continuous and surjective. In fact it is a topological

isomorphism (see 777).

5.6.7. Denote by Ul-b the set of elements of Uf annihilating the vacuum
vector from Vac, i = 0,1. Lemma 5.6.5 remains valid if Uf is replaced by
Ul-b, 1=0,1. SoU 1b / Ug is a topological Lie algebroid over 3. The natural map
U{/Ug — UE/US is a topological isomorphism. So (291) induces a surjective

continuous Lie algebroid morphism
(292) 1)1 - U3)US.

5.6.8. Let V be a topological U-module (in the applications we have in
mind V will be discrete). Then V9© is a (left) topological module over
the Lie algebroid I/I?. Indeed, first of all V92© is a 3-module. Secondly,
VIO — [y € V|Ujv = 0}, so the Lie algebra U?/U} acts on V920, If
v e VIO 2 €3 a €U /UL, then a(zv) — z(av) = 4(2)v where 8, € Der}
corresponds to a according to the algebroid structure on Ulb / Ug. So Ve®0
is a module over the algebroid U?/Uj. Using (292) we see that VI®© is a
module over the Lie algebroid I/I2.

5.6.9. According to (89) one has the continuous Lie algebra morphism
DerO — h™'J; ¢ A[h™Y] such that L, h_lzn, n > —1. It induces a
continuous Lie algebra morphism Der O — Ulb C U%. On the other hand in

3.6.16 we defined a canonical morphism Der O — I/I?. Clearly the diagram

DerO — U2
4 {
nr — Uu;
is commutative.

Remark.  The morphism Der O — Ulb / Ug induces a homeomorphism of

Der O onto its image. Since Ulb / Ug acts continuously on 3 C Ug this follows
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from the analogous statement for the morphism Der O — Derj, which is

clear (look at the Sugawara elements of 3).

5.6.10. Suppose we are in the situation of 5.6.8. According to 5.6.9 Der O
acts on V via the morphism DerO — UY, the subspace V%€ is Der O-
invariant and the action of Der O on V9%© coincides with the one that

comes from the morphism Der O — I/I.

5.6.11. Remark. The definition of g/@?T( from 2.5.1 involves the “critical”
scalar product ¢ defined by (18). Suppose we consider the central extension
0—-C— (9/837())\ — g®K — 0 corresponding to Ac, A € C*. Denote by Ay
the completed universal enveloping algebra of (9/;8??( )a. The construction
of U% and the map (291) remain valid if A and h = 1 — 1 are replaced by
Ay and hy := 1), — A7, where 1, denotes 1 € C C (@)A Denote by U)h\
and fy the analogs of U and (291) corresponding to A. One can identify Ay
and U E\ with A and U? using the canonical isomorphism gi@?_[/( = (9765_1/( A
such that 1 — A-1y. Then f) does depend on \: indeed, f) = Afi.
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6. The Hecke property 11

6.1.
6.2. Proof of Theorem 8.1.6.

6.2.1. Lemma. Let V be a non-zero U -module such that the representation
of g® O on V is integrable, and the ideal I C 3 annihilates V. Then V has

a non-zero g ® O-invariant vector.

Proof. Denote by m the maximal ideal of O. The kernel of the morphism
G(0) — G(O/m) is pro-unipotent and its Lie algebra is g@m. So V™ =£ ().
Consider the Sugawara element £y € I (see 3.6.15, 3.6.16). A glance at (85)
shows that 2Ly acts on V™ as the Casimir of g. On the other hand,
LoV = 0 because £y € I. So the action of g on V™ is trivial and
990 — 1/90m £ 0. O

6.2.2. Lemma. Let N be a 33(O)-module equipped with an action of the
Lie algebroid I/I?. Suppose that the action of Ly € DerO C I/I? on N is
diagonalizable and the intersection of its spectrum with ¢ + Z is bounded

from below for every ¢ € C. Then N is a free 34(O)-module.

Proof. Using (80), (81), and 3.6.17 we can replace 34(O) by Ay(O) and I/1?
by ary. By definition, arg is the algebroid of infinitesimal symmetries of 3?;.
In 3.5.6 we described a trivialization of S%. The corresponding splitting
Der A (O) — arg is Der® O-equivariant (see (69) and (70); the point is that
the r.h.s. of these formulas are constant as functions on Spec A.;(O)). So N
becomes a module over Der AL (O) and the mapping Der AL (O) — End N
is Der® O-equivariant. According to 3.5.6 ALy(O) is the ring of polynomials
inujp, 1 < j <r, 0< k< oo, and Louj, = (dj + k)uj, for some
d; > 0. So N is an Lp-graded module over the algebra generated by
u; and %, deg(%) = —degujy = —(d; + k) - —oo when k — oo.
Therefore every element of N is annihilated by almost all % and by all

monomials in the % of sufficiently high degree. It is well known (see,
J
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e.g., Lemma 9.13 from [Kac90] or Theorem 3.5 from [Kac97]) that in this
situation N = AL (O) ® No where Ny is the space of n € N such that
ﬁajkn =0 for all j and k. O
6.2.3. Let us prove Theorem 8.1.6. According to 5.6.8 we can apply
Lemma 6.2.2 to N := V89 So N = 3,(0) ® W for some vector space
W. We will show that the natural U -module morphism f : Vad @W =
Vad ®;,(0)N — V is an isomorphism. One has (Ker f)9®0 = Ker fAN =0,
so by 6.2.1 Ker f = 0. Suppose that Coker f # 0. Then according
to 6.2.1 there is a non-zero g ® O-invariant element of Coker f, i.e., a
non-zero U -module morphism Vac — Coker f. It induces an extension
0 — Vad @W — P — Vacd — 0 which does not split (the composition
of a splitting Vacd — P and the natural morphism P — V would yield a
g ® O-invariant vector of V' not contained in V). So it remains to prove the

following statement.

6.2.4. Proposition. Any extension of discrete U'-modules 0 — Vad @W —

P — Vacd — 0 such that TP = 0 splits (here W is a vector space).

Proof. Let p € P belong to the preimage of the vacuum vector from Vac'.
Then (g ® O) -p C Vad @W. In fact (g ® O) -p C Vad @W; for some
finite-dimensional W7 C W, so we can assume that dim W < co. Moreover,
since the functor Ext is additive we can assume that W = C.

Let p be as above. Define ¢ : g ® O — Vacd by ¢(a) = ap, so ¢ is a
1-cocycle and Ker ¢ is open. We must show that ¢ is a coboundary. One
has the standard filtration U;c of U'. The induced filtration Vacy, of Vad' is
(g ® O)-invariant because the vacuum vector is annihilated by g ® O. So
g ® O acts on gr Vad. There is a k such that Im¢ C Vac). Denote by 1
the composition of ¢ : g ® O — Vacj, and Vac), — Vad), / Vac,_, C gr Vac'.
So: g® O — gr Vad is a 1-cocycle and it suffices to show that 1 is a

coboundary (then one can proceed by induction).
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Denote by Vac® the space of polynomials on g* ® wo (by definition, a
polynomial on g* ® wp is a function g* ® wp — C that comes from a
polynomial on the vector space g* ® (wo/m"wp) for some n). According
to 2.4.1 one has a canonical g ® O-equivariant identification gr Vad =
Sym(g ® K/g ® O) = Vac? (the action of g ® O on Vac? is induced by
the natural action of g® O on g* ®wp). So we can consider 1 as a 1-cocycle

g® O — Vac®. Define B, : (g® O) x (g" @ wo) — C by

(293) By(a,n) = (P(a))(n) .

We say that n € g* ® wo is regular if the image of 1 in g* ® (wo/mwp) is

regular.

Lemma. If n € g* ® wo is regular and ¢(n) is the stabilizer of 7 in g ® O
then

(294) Byla,n) =0 for aec(n).

Proof. We will use that IP = 0. Let F € Ker(3¢ — 531(0)), ie, Fis
a (g ® K)-invariant polynomial function on g* ® wx whose restriction to
9" @ wo is zero (see 2.9.8). Suppose that F' is homogeneous of degree r. By
3.7.8 F is the symbol of some z € 3,. Since the image of F' in 331(0) is zero
the image of z in 34(O) belongs to the (r — 1)-th term of the filtration, so
according to 2.9.5 it comes from some 2’ € 3,_1. Replacing z by z — 2’ we
can assume that z € I N 3,.
Since I C U’ - (g ® O) we can write z as
o0
(295) z:Zuiai, a; €g® 0, uiEU,, a; -0 for i — oo.
i=1
It follows from the Poincaré — Birkhoff — Witt theorem that the decompo-
sition (295) can be chosen so that u; € U;_l for all 7. Rewrite the equality

zp =0 as

(296) Zuigo(ai) =0.
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Denote by u; the image of u; in U;_l/U;_Q. (295) and (296) imply that

(297) F=> ta,

(298) me(ai) =0

where a; € g ® O is considered as a linear function on g* ® wx and u; is the

restriction of u4; to g* ® wo. Denote by dF' the restriction of the differential

of F to g* ® wo. Since F vanishes on g* ® wo we have dF € Vac® &(g® O)

where ® is the completed tensor product. According to (297) dF = > u;®a;,
i

so we can rewrite (298) as
(299) p(dF) =0

where 4 is the composition of id @y : Vac? ®(g ® O) — Vac® @ Vac? and
the multiplication map Vac? ® Vac® — Vac®.

Now set
(300) F(n)=Resf(nv, ve wg(kr)

where f is a homogeneous invariant polynomial on g* of degree r. In this

case (299) can be rewritten as

(301) By (Ag(n)v,n) =0

where 3y is defined by (293) and Ay is the differential of f considered as a
polynomial map g* — g (so Af(n) € g® wg(T_l), A¢(n)v € g® O). Since
f is invariant Af(l) belongs to the stabilizer of [ € g* and if [ is regular
the elements A¢(l) for all invariant f generate the stabilizer. So the lemma

follows from (301) O

To prove the Proposition it remains to show that any 1-cocycle ¢ :
g ® O — Vac with open kernel such that the function (293) satisfies (294)

is a coboundary.
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Lemma. Let K be a connected affine algebraic group with Hom(K, G,,) =
0, W a K-module, and 1 a l-cocycle Lie K — W. Then v comes from a
unique 1-cocycle ¥ : K — W.

Proof. The uniqueness of ¥ is clear. The proof of existence is reduced to
the case where K is unipotent (represent K as a semidirect product of a
semisimple subgroup K and a unipotent normal subgroup; then notice
that the restriction of ¥ to Lie K is a coboundary and reduce to the case
where this restriction is zero). Let K denote the semidirect product of K
and W. A 1l-cocycle K — W is the same as a morphism K — K such
that the composition K — K - K equals id. A 1-cocycle Lie K — W
has a similar interpretation. So we can use the fact that the functor

Lie : {unipotent groups} — {nilpotent Lie algebras} is an equivalence. [

So our l-cocycle 1 : g ® O — Vac® comes from a l-cocycle ¥ :

G(0) — Vac® where G(O) is considered as a group scheme. Define
By : G(0) x (g" ®@wo) = C by By(g,1) = (¥(9))(n).

Lemma. If n € g* ® wo is regular and C(n) is the stabilizer of 7 in G(O)
then

(302) By(g,m) =0 for geC(n).

Proof. For fixed n the map g — By(g,7n) is a morphism of group schemes
f: C(n) = G,. According to (294) the differential of f equals 0. So f =0
(even if C'(n) is not connected Hom(mo(C(n)), G,) = 0 because mo(C'(n)) is
finite; but in fact if G is the adjoint group, which can be assumed without

loss of generality, then C(n) is connected). O
The fact that ¥ is a cocycle means that

(303) By (g192,m) = By(g1,m) + B (g2, 97 'n91) -

We have to prove that By is a coboundary, i.e.,

(304) Bu(g,m) = f(g~"'ng) — f(n)
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for some polynomial function f : g* @ wo — C. Denote by gy, the set of
regular elements of g* and by (g* ® wo)reg the set of regular elements of
g" ®@wo (i.e., the preimage of gy, in g* ®wp). Since codim(g* \ gye,) > 1 it
is enough to construct f as a regular function on (g* ® wo)reg-

Let C' have the same meaning as in 2.2.1. The morphism g, — C
is smooth and surjective, G acts transitively on its fibers, and Kostant
constructed in [Ko63] a subscheme Kos C gy, such that Kos — C is an
isomorphism. If g* is identified with g using an invariant scalar product on
g then Kos =i ((99))+V where ¢ and V have the same meaning as in 3.1.9.
Define Kosp C g* ® wo by Kosp :=i((99))-dt +V ® wo.

The equation (304) has a unique solution f that vanishes on Kosp. The

restriction of f to (g" ® wo)reg is defined by

(305) f(g7'ng) = Bu(g,n) for neKos, geG(O).

Here f is well-defined since (as follows from (302) and (303)) one has

By(g19,m) = Bu(g,n) for n € (8" ® wo)reg , g1 € C(n). Now (303) implies
that the function f defined by (305) satisfies (304) O

Remark. At the end of the proof we used Kostant’s global section of the
fibration (g* ®wo )reg — Hitchg(O) (see 2.4.1 for the definition of Hitchgy(O)).
Instead one could use local sections and the equality H!(Hitchy(O), O) = 0,

which is obvious because Hitchg(O) is affine.

6.2.5. Proposition 6.2.4 seems to be related with [F91] (see, e.g., the
Propositions in the lower parts of pages 97 and 98 of [F91]). Maybe a
modification of the methods of [F91] would yield Proposition 6.2.4 and much

more.
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7. Appendix: D-module theory on algebraic stacks
and Hecke patterns

7.1. Introduction.

7.1.1. The principal goal of this section is to present a general Hecke format
which is used in the proof of our main Theorem. Its (untwisted) finite-
dimensional version looks as follows. Let G be an algebraic group, K C G
an algebraic subgroup, g the Lie algebra of G, and Y a smooth variety with
G-action. Denote by H := D(K \ G/K) the D-module derived category of
the stack K\ G/K. One has the similar derived category D(K \Y') and the
derived category D(g, K) of the category M(g, K) of (g, K)-modules. Then

we have the following “Hecke pattern”:

(a) H is a monoidal triangulated category,
(b) D(K \Y) is an ‘H-Module,

(¢) D(g, K) is an H-Module,

(d) the standard functors

)
)
)
)

LA: D(g,K) — D(K\Y), RI':D(K\Y)— D(g,K)

are Morphisms of H-Modules.

Here LA, RI' are derived versions of the functors A, I' from 1.2.4.
The tensor product on H and H-Actions from (b) and (c) are appropriate
“convolution” functors ®. For example, consider the case K = {1}. Denote
by 04 the D-module of d-functions at ¢ € G. One has 0y, ® g, = 0, g,-
For a D-module M on Y 4d,® M is the g-translation of M, and for a g-
module V' §,®V is V equipped with the g-action turned by Ad,. The
D-module structure on M identifies canonically 6, ® M for infinitely close
g’s; similarly, the g-action on V' identifies such d, ® V'’s. This allows to define

the convolution functors for an arbitrary D-module on G.

7.1.2. The accurate construction of Hecke functors requires some D-module

formalism for stacks. For example, one needs a definition of the D-module
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derived category D()) of a smooth stack ) (it might not coincide with the
derived category of the category of D-modules on Y!). There seems to be
no reference available (except in the specific case when ) is an orbit stack,
i.e., the quotient of a smooth variety by an affine group action, that was
treated in [BL], [Gi87] in a way not too convenient for the Hecke functor
applications), so we have to supply some general nonsense to keep afloat.
We start in 7.2, following Kapranov [Kap91l] and Saito [Sa89], with a
canonical equivalence between the derived category of D-modules and that
of Q-modules (here €2 is the DG algebra of differential forms) which identifies
a D-module with its de Rham complex. When you deal with stacks, €2-
modules are easier to handle: the reason is that €2 is a sheaf of rings on the
smooth topology while D is not. In the important special case of a stack
for which the diagonal morphism is affine this super”) format is especially
convenient. Here one may define (see 7.3) the D-module derived category
directly using “global” Q-complexes. In 7.5, after a general homological
algebra digression of 7.4, we give a ”local” definition of the D-module derived
category that works for arbitrary smooth stacks. In 7.6 parts (a), (b) of the
Hecke pattern are explained; we also show that for an orbit stack its D-
module derived category is equivalent to the equivariant derived category
from [BL], [Gi87]. In 7.7 we describe a similar super format for Harish-
Chandra modules; as a bonus we get in 7.7.12 a simple proof of the principal
result of [BL]. The Harish-Chandra parts (c), (d) of the Hecke pattern are
treated in 7.8. A version with extra symmetries and parameters needed in
the main body of the article is presented in 7.9. Before passing to an infinite-
dimensional setting we discuss in 7.10 a crystalline approach to D-modules
which is especially convenient when you deal with singular spaces (we owe
this section to discussions with J.Bernstein back in 1980). Sections 7.11 and

7.12 contain some basic material about ind-schemes, Mittag-Lefller modules,

*)A mathematician’s abbreviation of Mary Poppins’ coinage “supercalifragelistic-

expialidocious”.
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and D-modules on formally smooth ind-schemes. Section 7.13 is a review
of BRST reduction. The infinite-dimensional rendering of parts (c), (d) of
the Hecke pattern is in 7.14. Finally in 7.15 we show that positively twisted
D-modules on affine flag varieties are essentially the same as representations
of affine Kac-Moody Lie algebras of less than critical level. In the particular
case of D-modules smooth along the Schubert stratification, similar result
was found by Kashiwara and Tanisaki [KT95] (the authors of [KT95] do
not use the language of D-modules on ind-schemes). We also identify the
corresponding de Rham and BRST cohomology groups.

Our exposition of D-module theory is quite incomplete; basically we treat
the subjects that are used in the main body of the paper. The exceptions
are sections 7.4, 7.5 (the stack Bung fits into the formalism of 7.3), 7.10
(the singular spaces that we encounter are strata on affine Grassmannians,
so one may use 7.11), and 7.15 (included for the mere fun of the reader).

Recall that MY(X) (resp. M"(X)) denotes the category of left (resp.
right) D-modules on a smooth variety X; we often identify these categories
and denote them by M(X). If F' is a complex then we denote by F" the
corresponding graded object (with the differential forgotten).

7.2. D- and Q-modules.

7.2.1. Let X be a smooth algebraic variety . Denote by Qx the DG
algebra of differential forms on X. Then (X, Qx) is a DG ringed space, so we
have the category of Q2 x-complexes (:= DG x-modules). An Qx-complex
F = (F’,d) is quasi-coherent if F* are quasi-coherent Oy-modules; quasi-

coherent () x-complexes will usually be called Q-complezes on X. Denote

*)or7 more generally, a smooth quasi-compact algebraic space over C such that the
diagonal morphism X — X x X is affine. The constructions and statements of this section
(but 7.2.10) are local, so they make sense for any smooth algebraic space. The condition
on X is needed to ensure that the derived categories we define satisfy an appropriate
local-to-global (descent) property. We discuss this in the more general setting of stacks in

7.5.
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the DG category of Q-complexes on X by C(X,Q). This is a tensor DG

category.

Remark. For an Qx-complex F the differential d : F* — F'*tl is a
differential operator of order < 1 with symbol equal to the product map
QL @ F© — F'T1 We see that the Q% -module structure on F’ can be
reconstructed from the Ox-module structure and d. In fact, forgetting the
Q)Z(l—action identifies C'(X, Q) with the category of complexes (F",d) where

F" are quasi-coherent O x-modules, d are differential operators of order < 1.

7.2.2. Let C(X,D) := C(M"(X)) be the DG category of complexes of right
D-modules on X (right D-complezes, or just D-complexes for short), and
K (X, D) the corresponding homotopy category. We have a pair of adjoint
DG functors

(306) D: C(X,Q) — C(X,D), Q: C(X,D) — C(X,Q)

defined as follows. Denote by DRx the de Rham complex of Dy considered
as a left D-module, so DRy = QY (gi Dx. This is an 2-complex equipped
with the right action of Dx. Now for an Q2-complex F' and a right D-complex
M one has

(307) DF =F @ DRx, QM := Homp, (DRx,M).
X

The adjunction property is clear.

7.2.3. Remarks. (i) One has DF" = F" (% Dx = Diff(O,F"); the
differential dpp : DF" — DF 't sends a differential operator a : Ox — F-
to the composition d-a. The Q-complex QM, (QM)' = ‘M“ ® AOx is
the de Rham complex of M. S

(ii) The category M*(X) of left D-modules on X is a tensor category

in the usual way (tensor product over Ox), so the category of left D-

compleves C(M*(X)) is a tensor DG category. The DG functor Q :
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C(MY(X)) = C(X,9Q) which assigns to a left D-complex N its de Rham
complex, (N)" = QY (% N, is a tensor functor.

(iii) The DG categories C(X,) and C(X,D) are Modules over the
tensor DG category C(M*(X)). The functors D and Q are Morphisms
of C(M*(X))-Modules.

7.2.4. Lemma. For any D-complex M the canonical morphism DQM — M

is a quasi-isomorphism.
Proof. Set

Vi= @ M'®AOx2D3 C (DAM).
a—b=i
b4c=j
Then V, is a increasing filtration of DQM by O-subcomplexes such that
Vo= M and V;/V;_; are acyclic for i > 1 (since V;/V;_1 is the tensor product
of M and the i-th Koszul complex for Ox). g

7.2.5. For an Q-complex F' set HyF' = H DF. Thus Hp is a cohomology
functor on K (X, Q) with values in the abelian category M"(X). A morphism
of Q-complexes ¢ : F1 — F5 is called D-quasi-isomorphism if the morphism
of D-complexes D¢ : DFy — DF; is a quasi-isomorphism, i.e., HyFy —
HpF, is an isomorphism. We have the following simple properties (use
7.2.4 to prove (ii), (iii)):

(i) If ¢ is a D-quasi-isomorphism, N is a left D-module flat as an O-module
then ¢ ® idy : F1 ® N — F, ® N is a D-quasi-isomorphism.

(ii) The canonical morphism arp : F' — QDF is a D-quasi-isomorphism.

(iii) © sends quasi-isomorphisms to D-quasi-isomorphisms.

The following lemma will not be used in the sequel; the reader may skip
it. We say that a morphism of 2-complexes ¢ : F1 — F5 is a naive quasi-
isomorphism if it is a quasi-isomorphism of complexes of sheaves of vector

spaces.
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7.2.6. Lemma. (i) Any D-quasi-isomorphism is a naive quasi-isomorphism.
(ii) A morphism ¢ as above is a D-quasi-isomorphism if and only if for any
bounded below complex A of locally free 2-modules the morphisme¢ ® id 4 :
N ® A— F,® A is a naive quasi-isomorphism.
(iii) Assume either that Q='F; = 0 (i.e., the differential is O-linear), or
that F; are bounded and O-coherent. Then any naive quasi-isomorphism ¢

is a D-quasi-isomorphism. For arbitrary €2-complexes this may be not true.

Proof. (i) For any Q-complex F' the canonical morphism ap : FF — QDF is a
naive quasi-isomorphism. Since {2 sends quasi-isomorphisms of D-complexes
to naive quasi-isomorphisms we see that 2(D¢) is a naive quasi-isomorphism.
Now our statement follows from the fact that ap,¢ = Q((Do)agp, .

(ii) To prove the "if” statement just take A = DRx. Conversely, assume
that ¢ is a D-quasi-isomorphism. There is a bounded below increasing
filtration A; on A such that UA; = A and each gr;A is a locally free -
module with generators in degree i (set 4; := Qx-A<;). So ¢®id, is a naive
quasi-isomorphism if all ¢ ® idg,, 4 are naive quasi-isomorphisms. Thus we
may assume that A is a locally free 2-module with generators in fixed
degree, say 0, i.e., A = QN where N is a left D-module locally free as an
O-module. Then ¢ ® idg = ¢ @ idy, and we are done by (i) from 7.2.5.

(iii) The O-linear case is obvious (since in this situation DF = F gi Dx).
The O-coherent case follows from the Sublemma below applied to D¢ (notice
that because of property (ii) from 7.2.5 the fiber of DF at = coincides with
R, (X, F)).

Sublemma. Let ¢ : My — M> be a morphism of finite complexes of
coherent D-modules on X. Assume that for any x € X (C) the corresponding
morphism of fibers”) My, — Mo, is a quasi-isomorphism. Then 1) is a quasi-

isomorphism.

*)Certainly here we consider the O-moduli fibers in the usual derived category sense.
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Proof of Sublemma. Set C' = Cone(1)); denote by Y the support of H"(C').
Assume that 1 is not a quasi-isomorphism, i.e., Y is not empty. Restricting
X if necessary we may assume that Y is a smooth subvariety of X and the
coherent Dy-modules P’ := i}, H (C) = H'i}(C) are free as Oy-modules.
Since for z € Y one has H'(C,) = P,™ where n is codimension of Y in X
we see that P° = 0 which is a contradiction.

To get an example of a naive quasi-isomorphism which is not a D-quasi-
isomorphism it suffice to find a non-zero D-module M such that QM is an
acyclic complex of sheaves. Take M to be a constant sheaf of Dx-modules
equal to the field of fractions of the ring of differential operators (at the
generic point of X). O

7.2.7. Since Hp is a cohomology functor, D-quasi-isomorphisms form a
localizing family in the homotopy category of C(X,Q). Therefore the
corresponding localization D(X, Q) is a triangulated category (see [Ve]);
we call it D-derived category of Q-complexes. The functors D, (2 give rise

to mutually inverse equivalences of triangulated categories
(308) D: D(X,Q) — D(X,D), Q: D(X,D) — D(X,Q).

Here D(X,D) = DM"(X). We often denote these triangulated categories
thus identified by D(X). One may consider bounded derived categories as
well.

Remark. For a bounded from below complex of injective D-modules M
the corresponding Q2-complex QM is injective. Thus the homotopy category
KT (X,Q) has many injective objects.

7.2.8. Let f : Y — Z be a morphism of smooth varieties. It yields the
morphism of DG ringed spaces fq : (Y,Qy) — (Z,Q7z). Thus we have the
corresponding DG functors f;, : C(Z,Q) — C(Y,Q), f. = fo. : C(Y,Q) —
C(Z,9). Let us consider first the pull-back functor.
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We have the usual pull-back functor for left D-modules fT: M%(Z) —

MY, fI(N) = Oy f_@o f7IN. One has QfT(N) = f,(2N). One

may replace left D-modules by right ones”) and consider the corresponding
functor fT: M"(Z) — M"(Y); then fo,(QM) = QfTM[—dimY/Z].

If f is smooth then for any F € C(Z,) one has HpfoF =
fTHb_dimY/ 7F. So fo, preserves D-quasi-isomorphisms and we have the
functor fg, : D(Z,Q) — D(Y,Q). The adjunction morphism D f;,(Q2M) —

fIM[—dim U/X] is a quasi-isomorphism.

7.2.9. Lemma. Q-complexes are local objects with respect to the smooth
topology, i.e., the pull-back functors make C(U, ), U € X, a sheaf of DG
categories on the smooth topology of X. The notion of D-quasi-isomorphism

is local on Xgp,. O

7.2.10. Let us return to situation 7.2.8 and consider the DG functor
f:CY,Q) = C(Z,9Q). The right derived functor Rf. : D(Y,Q) — D(Z,Q)
is correctly defined. Indeed, let U. be a (finite) affine covering (either étale
or Zariski) of Y. For F € C(Y,Q) let F — C(F) be the corresponding Cech
resolution of F. Then") f.C(F)= Rf.F.

We denote the corresponding functor D(Y) — D(Z) by f«. It coincides
with the usual D-module push-forward functor. Indeed, for a D-complex
M on'Y one has Df.QM = f.(QM ® fIDz) = f. (D(QM)gz; fIDz). Since
fiDyz is a flat Oy-module and D(QM) is a resolution of M we see that
D(QM)gz; fip, = Mé fIDy. Thus f,M = Rf.(Mé fIDz), q.e.d.

We leave it to the reader to check that Rf. is compatible with
composition of f’s, i.e., that the canonical morphism R(fg). — Rf. Rg.
is an isomorphism™), and that this identification (f9)« = frg« coincides with

the standard identification from D-module theory.

*)using the standard equivalence M*(Z) = M(Z), N — N @ wz.
“this follows, e.g., from Remark after 7.3.9.

“see 7.3.10(ii) for a proof of this statement in a more general situation.
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7.2.11. For a D-complex M on Y denote by Mp € D(Y,0) same M
considered as a complex of @'-modules. One has a canonical integration

morphism
(309) if: RE(Mo) = (fM)o

in D(Y,0) defined as follows. It suffice to define the morphism i
f-(Mo) — D(f.QM). Now iy is the composition

f-(Mo) = [D(f.(Mo))lo — [D(f-QM)]o

where the arrows come from the canonical morphisms N — (DN)e (for
N = f.(Mp)) and Mo — QM. In other words, iy comes by applying Rf.
to the obvious morphism My — (Mg% f'D2)o.

We leave it to the reader to check that iy is compatible with composition

of f’s.

7.3. D-module theory on smooth stacks I. We establish the basic D-
module formalism for a smooth stack that satisfies condition (310) below. In
7.3.12 we modify the definitions so that one may drop the quasi-compactness

assumption. The arbitrary smooth stacks will be treated in 7.5.

7.3.1. Let Y be a smooth quasi-compact algebraic stack. Assume that it

satisfies the following condition”):
(310) The diagonal morphism ) — ) x ) is affine.

Equivalently, this means that there exist a smooth affine surjective
morphism U — ) such that U is an affine scheme. In other words, ) is
a quotient of a smooth algebraic variety X modulo the action of a smooth

groupoid Q") such that the structure morphism Q — X x X is affine.

*)This condition is needed to ensure that the category D(Y) we define has right local-
to-global properties, see 7.5.3. The constructions 7.3.1-7.3.3 make sense for any smooth
algebraic stack.

Q= X x X.
Yy
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Note that Q(U), U € Vs, form a sheaf of DG algebras Qy on Vs,. An Q-
complezx on Y is a DG 2y-module which is quasi-coherent as an Oy-module.

We denote the DG category of Q-complexes on ) by C(), ).

Remark. The categories C(U, ), U € Vg, form a sheaf of DG categories
C(Vsm, Q) on Vs, (see 7.2.9), and an Q-complex on Y is the same as a
Cartesian section of C(YVsm,2). Equivalently, an Q-complex on ) is the

same as a (Q-equivariant 2-complex on X.

7.3.2. Recall that the categories of D-modules M(U), U € Yqy, form a
sheaf of abelian categories on Vs, and the category M()) of D-modules
on ) is the category of its Cartesian sections. By 7.2.8 there is a canonical
cohomology functor Hy, : C(Y,Q) = M(Y), Hp(F)y = H;dimU/y(FU).
A morphism of Q-complexes is called a D-quasi-isomorphism if it induces
an isomorphism of Hp’s. Localizing the homotopy category of €)-complexes
by D-quasi-isomorphisms we get a triangulated category D()) = D(Y, Q).
One has the corresponding bounded derived categories as well.

There is a fully faithful embedding M(Y) < D()) which assigns to a
D-module M on Y its de Rham complex QM, (QM)y := QMy[—dim U/ Y.
One has H%QM = M and H{QM = 0 for a # 0. It is easy to see that
(2 identifies M(Y) with the full subcategory of D()) that consists of those
Q-complexes F' that H§(F') = 0 for a # 0.

7.3.3. Example. Denote by Dy the (2-complex on ) defined by QDyy :=
QpyldimY]. Note that H(2Dy) = 0 for a > 0. If YV is good then our
Q-complex belongs to the essential image of M()); the corresponding D-
module Dy = HY(QDy) coincides with the left D-module Dy from 1.1.3.
More generally, for any O-module P on ) we have the Q-complex Q(Dy ® P)
with Q(Dy ® P)y = QU/yé@;PU[dimy]. If Y is good and P is locally
free then our Q-complex sits in M(Y) and equals to the left D-module
Dy ® P =Dy 58; P.
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Denote by D(Y)2° ¢ D(Y) the full subcategory of Q-complexes F such
that HAF = 0 for a < 0; define D(Y)=C in the similar way.

7.3.4. Proposition. This is a t-structure on D(Y) with core M(Y) and
cohomology functor Hp.

This proposition follows immediately from Lemma 7.5.3 below. A
different proof in the particular case where ) is an orbit stack may be found

in 7.6.11.

7.3.5. Remark. Consider the functor Q : C(M(Y)) — C(¥,Q). For
M € C(M(Y)) one has H' M = Hp(Q2M), so § yields the t-exact functor
Q: D(M(Y)) — D(Y) which extends the “identity” equivalence between
the cores. This functor is an equivalence of categories if )V is a Deligne-

Mumford stack™, but not in general.

7.3.6. Let f: Y — Z be a morphism of smooth stacks that satisfy (310).
It yields a morphism of DG ringed topologies (Vsm, Qy) — (Zsm, Qz) hence

a pair of adjoint DG functors
(311) fa: C(Z,Q) —-CV,Q), f:CY,Q) —C(Z,Q)

and the corresponding adjoint triangulated functors between the homotopy
categories (since ) is quasi-compact f. preserves quasi-coherency).

If f is smooth then f;, preservres D-quasi-isomorphisms, so it defines
a t-exact functor f° : D(Z) — D(Y). It is obviously compatible with
composition of f’s.

Let f be an arbitrary morphism. We define the push-forward functor
f«: DT(Y) = D*(Z) as the right derived functor Rf.. We will show that
f« is correctly defined in 7.3.10 below. One needs for this a sufficient supply
of "flabby” objects.

*)which means that Y admits an etale covering by a variety. In this situation the functor
D : C(,Q) - C(M(Y)) makes obvious sense (which yields the inverse equivalence
D(M(Y)) — D(Y) as in 7.2.7.
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7.3.7. Definition. We say that an O-module F on ) is loose if for any flat
O-module P on Y one has H*(), P® F) = 0 for a > 0. An O- or Q2-complex

F is loose if each F' is loose.

7.3.8. Lemma. (i) For any Q-complex F’ on ) there exists a D-quasi-
isomorphism F’ — F such that F' is loose. If F’ is bounded from below
then we may choose F' bounded from below.

(i) Assume that f (see 7.3.6) is smooth and affine. Then f,, f. send loose
Q-complexes to loose ones.

(iii) If Fy, Fy are loose Q-complexes on stacks Vi,V then Fi; X Fy is a

loose 2-complex on V; X V.

Proof. (i) Since ) is quasi-compact, there exists a hypercovering U. of ) such
that U, are affine schemes. Since the diagonal morphism for ) is affine, the
projections 7, : U, — Y are affine. Take for F the Cech complex of F’ for
this hypercovering, so F* = Wa.(F[Z“).

(ii) Clear. =

(iii) We may assume that F; are loose Oy,-modules. Let P be a flat O-
module on Y x Vs. Since F} is loose, one has R*ps.(P®piFy) =0 for a > 0
and pe.(P ® piF1) is a flat O-module on Y (here p; : V1 X Vo — ), are the
projections). Thus H*(Y; x Vo, PR(F1XFy)) = H%(Ya, (p2. (PRpiF1))QF»)

which vanishes for a > 0 since F5 is loose. O

Let us return to the situation at the end of 7.3.6.

7.3.9. Lemma. If F is a loose 2-complex on ) bounded from below then

f.F = Rf.F.

Proof. Tt suffices to check that if our F' is in addition D-acyclic (i.e., satisfies
condition HyF = 0) then f.F is also D-acyclic (use 7.3.8(i)).
a. We may assume that Z is a smooth affine scheme Z. Indeed, the

statement we want to check is local with respect to Z. Replace Z by an
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affine Z € Z,,,, Y by YV x Z, and F by its pull-back to ) x Z. The new data
satisfy all the conditionsz of the lemma. )

b. We may assume that ) is a smooth affine scheme Y. Indeed, take U. as
in (i), and denote by A the Cech complex with terms A" = @ (fm,)- (F[ZJ;“)
This is an {2-complex on Z. Since F' is loose the obvious mo(;lz)(l)qism fF— A
is a D-quasi-isomorphism (use (310)). Note that A carries an obvious
filtration with successive quotients (fr,).(Fy,)[—a]. If we know that these
are D-acyclic, then A is D-acyclic (use the fact that F' is bounded from
below), hence f.F is D-acyclic.

c. Leti:Y — Y x Z be the graph embedding for f. Then G := i.F
is D-acyclic. Since f.F' = p.G (here p is the projection Y x Z — Z) what
we need to show is that p.G is D-acyclic. Let T be the relative de Rham
complex for DG along the fibers of p. We are in a direct product situation
so p.T is a D-complex on Z. There is an obvious morphism of D-complexes
Dp.G — p.T which is a quasi-isomorphism. Since p.T is acyclic (T' carries
a filtration with successive quotients DG ® A©®y, and DG is acyclic) we are

done. O

Remark. If f is an affine morphism then for any F € C(Y,Q) one has
f-F = Rf.F. Indeed, the statement is local with respect to 3, so we may
assume that 3 is an affine scheme. Then Y is an affine scheme, hence any

complex on ) is loose; now use 7.3.9.

7.3.10. Corollary. (i) The functor f. := Rf. : DT (Y) — DT(Z) is
correctly defined.

(ii) f« is compatible with composition of f’s, i.e., the canonical morphism
(f1f2)« = fixfox is an isomorphism.

Proof. (i) Use 7.3.8(i) and 7.3.9.

(ii) f. sends loose Q2-complexes to loose ones. O

7.3.11. Remarks. (i) The above lemmas are also true in the setting of O-

complexes.
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(ii) Assume that the functor f. on the category of O-modules on ) has
finite cohomology dimension (e.g., this happens when f is representable).
Then f, := Rf. is well-defined for the derived categories of {2-complexes
with arbitrary boundary conditions. Indeed, 7.3.9 (together with its proof)
remains valid for unbounded loose {2-complexes.

(iii) If our stacks are smooth varieties then the above functor f, is the
standard push-forward functor of D-module theory (see 7.2.10). In this
situation lemma 7.3.9 (and its proof) remains valid if we assume only that
the cohomology H%(U, F?), a > 0, vanish for any Zariski open U of Y such

that U — Y is an affine morphism.

7.3.12. Let now )Y be any smooth stack such that the diagonal morphism
Y — Y x ) is affine (i.e., we drop the quasi-compactness assumption). Then
the category of 2-complexes on ) may be too small to define the right D-
module derived category. One extends the above formalism as follows.

To simplify the notations let us assume that ) admits a countable covering
by quasi-compact opens. In other words ) is a union of an increasing
sequence Y1 C Yo C ... of open quasi-comact substacks. An Q-complex
on Y. is a collection F' = (Fj;,a;) where F; are Q-complexes on ); and
a; : Fiy1ly, — F; are morphisms of Q-complexes which are D-quasi-
isomorphisms. Such Q-complexes form a DG category C().,(2), so we have
the corresponding homotopy category K ()., Q). It carries the cohomology
functor Hp with values in the abelian category M())) of D-modules on Y,
Hp(F)|y, = Hp(F;).

We define D()., Q) as the localization of K ()., Q) with respect to D-quasi-
isomorphisms. The triangulated categories D()., ) for different ).’s are
canonically identified. Indeed, let yj’. be another sequence of open substacks
of ) as above. Choose an increasing function j = j(i) such that ); C y]’.(i).
Let us assign to an Q-complex F’ on )/ the Q-complex F on Y., F; = F]’ ) |y,

This functor commutes with Hp. The corresponding functor between the
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D-derived categories does not depend (in the obvious sense) on the auxiliary
choice of j(7), and it is an equivalence of categories.

We see that the category D().,Q) depends only on ), so we denote
it by D(Y,Q) or simply D()). Our triangulated category carries the
cohomology functor Hp : D()) — M(Y) and there is a canonical fully
faithful embedding © : M(Y) — D(Y) (see 7.3.2). Proposition 7.3.4 remains
true; the proof follows from 7.5.4.

Let f : Y — Z be a morphism of smooth stacks that satisfy our
assumption. If f is smooth then one defines the t-exact pull-back functor
f: D(2) — D(Y) in the obvious manner. If f is an arbitrary quasi-compact
morphism then one has a canonical push-forward functor f. : DY)t —
D(Z)*. We define it after a short digression about loose {2-complexes.

By definition, F' € C'().,) is loose if such are all F; € C();,(2). Lemma
7.3.8(i),(iil) remains true in our setting. This means that one may define
the D-derived category using only loose complexes. To prove 7.3.8(i) choose
coverings 7; : V; — J; such that V; is an affine scheme. Denote by U; the
disjoint union of V}’s, 1 < j <4, and by U;. the corresponding hypercovering
of V;, Ui, is the a-multiple fibered product of U; over );. Now take any
F' € C().,Q). Let F; be the Cech complex of F! for the hypercovering
U;. (see the proof of 7.3.8(i)). Then F; form an Q-complex F' on ). in the
obvious manner. This F' is loose, and the obvious morphism F/ — F is a
D-quasi-isomorphism, q.e.d.

Now let us define f,. Let Z; be a sequence of open quasi-compact
substacks of Z as above. Then )); := f~1Z; is the corresponding sequence
for V. Let F be a bounded from below loose 2-complex on ).. Then
(f-F); = f.(F) form an Q-complex f.F on Z. (use 7.3.9). The functor
f- preserves D-quasi-isomorphisms (by 7.3.9). Our f, is the corresponding
functor between the D-derived categories. Corollary 7.3.10(ii) together with

its proof remains true.
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Assume that in addition all the functors f;. : M(Y;, O) = M(Z;, O) have
finite cohomological dimension (e.g., this happens when f is representable).
Then the functor f, is correctly defined on the whole D()). Indeed, let F
be any loose 2-complex on ).. Then (f.F); := f.(F;) form an {-complex
f-F on Z. (use 7.3.11(ii)). The functor f. preserves D-quasi-isomorphisms,
and we define f, : D()) — D(Z) as the corresponding functor between the

D-derived categories.

7.3.13. Remark. Let A be a commutative algebra. Let M(), A) be the
abelian category of D-modules on ) equipped with an action of A. One
defines a t-category D(Y,A) with core M(Y,A) as in 7.3.12 using -
complexes with A-action. The standard functors render to the A-linear
setting without problems. More generally, let Ay be a commutative D-
algebra on ) (:= a commutative algebra in the tensor category M*())).
We have the abelian category M(Y, Ay) of Ay-modules and its derived
version D(Y, Ay) defined as in 7.3.12 using Q-complexes with Ay-action.

7.4. Descent for derived categories. We explain a general homotopy
inverse limit construction for derived categories. We need it to be able to

formulate a ”local” definition of the D-module derived categories.

7.4.1. Denote by (A) the category of non-empty finite totally ordered sets
A, = [0,n] and increasing injections. Let M. be a family of abelian
categories cofibered over (A) such that for any morphism « : A, — A,
the corresponding functor a. : M,, = M,, is exact.

Denote by M.t the category of cocartesian sections of M., so an object
of Mot is a collection M = {M,,a*}, M, € M,, o = o, : o.M, = M,
are isomorphisms such that (af)* = a*«a.(5*) (here 5 : A; — A,). This
is an abelian category. Note that M is compatible with duality: one has

(Mtot)o - (Mo)tot-
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Our aim is to define a t-category Diot(M.) with core Mo which satisfies
the following key property:
For any M, N € My there is a canonical spectral
(312) sequence EF'? converging to EXtZEZ(M.)(N’ M) with
EPT = Extgvlp(Np, M,).

The construction of Dyy(M.) is compatible with duality.

7.4.2. Consider the category sec; = sec; (M.) whose objects are collections
M = (M,, o*) where M, € M,, o = o}, : o.M, = My, are morphisms
such that (a3)" = a*a.(8*), idy, = idag,. This is an abelian category
which contains My as a full subcategory closed under extensions. Define
sec_ = sec_(M.) by duality: sec_(M.) := (secy(M?))°, so an object of
sec_ is a collection N = (N, o), Ny € My, ay = o : N,y — a.N,.
Consider the DG categories C'sect of complexes in secy and the

corresponding homotopy categories K secy. There are adjoint DG functors
(313) cy : Csec. — C'secy c_: Csecy — C'sec_

defined as follows. Take M € Csecy. Then for any m > 0 we have a
“cohomology type” coefficient system Mm on the simplex A,, with values
in CM,,. Namely, Mm assigns to a face a: A, — A,, the complex o.M,
and if o/ : A} <= A,, is a face of a, i.e., & = af3, then the corresponding
connecting morphism o/ M; — «a.M,, is a.(*). Now (c_M),, is the total
cochain complex C'(Am,Mm) (so c—(M),, = b oM™, ag
are the obvious projections. One defines ¢y by dalzlzfl?t_;f.A "
To see that c4 are adjoint consider for N, M as above the complex of
abelian groups Hom(N, M) with terms
Hom(N,M)" = [ [ Hom(Ng*", Mg+

a,n

and the differential wich sends f = (fq.n) € Hom(N, M)" to df,

(df)an = dfan — (*1)i+nfa+1,nd + Z (*1)ja;aj'(fa+l,nfl)aj*'

j:07"7n



HITCHIN’S INTEGRABLE SYSTEM 253

Here o : Ap—1 — A, is the 4t face embedding. Now the adjunction prop-

erty follows from the obvious identification of complexes of homomorphisms
(314) Hom(cy N,M)= Hom(N, M) Hom(N,c_M)

7.4.3. Remark. Fix some m > 0. Fori =0,..,m let v; : c_ (M), — M, be
the composition of the projector ¢ (M), — o;.- My and o : ;. Mo — Mp;
here o; : Ag — A,, is the it" vertex. Now all the morphisms v;’s are

mutually homotopic (with canonical homotopies and ”higher homotopies”).

7.4.4. Lemma. The functors c4 preserve quasi-isomorphisms. The adjunc-
tion morphisms cyc- M — M, N — c_ci N are quasi-isomorphisms. [
We see that cy define mutually inverse equivalences between the derived
categories Dsect. Let us denote these categories thus identified by D sec.
So D sec carries two t-structures with cores secy and cohomology functors

Hy : Dsec — sect.

7.4.5. Let Cior+ C C'secy be the full subcategory of complexes M such that
HM € My C secy for any i. In other words M € C'secy belongs to Ciot 4
if all the morphisms o}, are quasi-isomorphisms. Define Cio;— C C'sec_ in
the similar way. Let Kior+ C K sect, Diot+ C Dsect be the corresponding
homotopy and derived categories; these are triangulated categories.

The derived categories D(M,,) form a cofibered category over (A).
Denote by Dfoatke the category of its cocartesian sections (this is not a
triangulated category!). The cohomology functors for M. define a functor
H : DI 5 M. One has an obvious functor e, : Dyt 4+ — D{%* which
assigns to M the data (M, k) considered as an object of D{Oike. There is

a similar functor e_ : Diot — th(ft’“.

7.4.6. Lemma. For any M € Dyt 4 one has c. M € Dyo —, and there is a
unique isomorphism e_(c_ M) = ey (M) such that its 0* component is idy, .

One also has the dual statement with + and - interchanged.

Proof. Use 7.4.3. U
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7.4.7. We see that the functors c4 identify the triangulated categories
Diot+. In other words, the subcategories Diot4+ C D sec coincide; this is
the category Dyot = Diot(M.) that was promised in 7.4.1. The functors e
are canonically identified, so we have the functor € : Dyt — D12 Note
that H+ = He, so we have a canonical cohomology functor H : Diot — M.
This is a cohomology functor for a non-degenerate t-structure on Dyo with
core Myot. Note that the embedding Dyt — D sec is t-exact with respect

to either of £ t-structures on D sec; it identifies the core Miy with the

intersection of cores sec; and sec_.

7.4.8. Let us derive the spectral sequence (312) from 7.4.1. More generally,
consider objects N € D~ sec. C Dsec, M € D" secy C Dsec. Let us
represent them by complexes N € K~ sec., M € KT'secy. Consider
the complex Hom(N,M) (see 7.4.2). It carries an obvious decreasing
filtration F* with grf = Hom(N,, M,)[—n]. Note that Hom(N,M) is a
bounded below complex and filtration F" induces on each term Hom (N, M)
a finite filtration. We consider Hom(N, M) as an object of the filtered
derived category DF of such complexes. Let RHom(N,-) be the right
derived functor of the functor K*secy — DF, M — Hom(N, M). This
functor is correctly defined, and the obvious morphism grix RHom(N, M) —
RHom(Ny,, M,)[—n] is a quasi-isomorphism for any n. This follows from
the fact that for any quasi-isomorphism f : M, — I in M, there
exists a quasi-isomorphism g : M — J in KT sec; and a morphism
h : I — J, such that g, = hf. Consider the spectral sequence EF? of
the filtered complex RHom(N, M). It converges to H RHom(N, M), and
EP? = HIRHomp, (Ny, My).

7.4.9. Remark. Assume that the categories M, have many injective
objects. Then the category K, . has many injective objects (i.e., the
functor Kb — Dy admits a right adjoint functor). Indeed, if I € K5

is a complex such that eacb I? is an injective object of M,, then c_I is
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an injective object of K, |

and any object in K;gt_ is quasi-isomorphic to
such I. Dually, if M,, have many projective objects then K, has many

projective objects.

7.4.10. This subsection will not be used in the sequel; the reader may skip
it. One may define D sec, hence Dy, in a slightly different way which is
convenient in some applications ). We define the category hot = hot, (M.)
as follows. Its objects are families A = (4,,), 4, € M,,. A morphism
f A — B is a collection (f,) where for an arrow a : A, — A,
the corresponding f, is a morphism «.A,, — B,,. The composition of

morphisms is (fg)a = > fgB-(gy). This is an additive category. Set
a=py
hot_(M.) = (hot1(M?)°. We have the corresponding DG categories of

complexes Chot .

One has a DG functor t; : Csec;y — Choty which sends M € C'secy
to a complex t4M € Choty with components (t4+M)% = M%™ and
the differential d = di, pr such that diq,,, = (=1)"dj,™ + Mg™ —
Mem+1and for the " boundary map o; : A, <+ A,,.1 one has
do, = (=1)'a} : ap Mg™™ — M3, all other components of d are zero.
For I € Hom(My, M) one has ty(l)ias, = lm, the other components are
zZero.

Remark. The functor ¢4 is faithful. One may consider objects of C'hot
as ”generalized complexes” in sec; with extra higher homotopies.

One also has a DG functor s_ : Choty — C'sec_ defined as follows. For
A € Choty the complex s_A has components (s_A)% = > BAL.
The compatibility morphism o : (s—A)f — a.(s_A)%, for Bc.vA:n—A)?nm% A
has component ~.Aj — «a.B.Af equal to idy, a¢ if k =n, v = af and zero
otherwise. A component 7. A} — a.3. A3 of the differential d,_4 : (s—A)% —
(s A)%F! is equal to v.(das) if B = ~d and zero otherwise.

Remark. The DG functor s_ is fully faithful.

*)This construction goes back to the works of Toledo and Tong.
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We define DG functors t_— : C'sec. — Chot_ and sy : Chot— — C'secy
by duality. Note that the composition s t_ : Csec_. — C'secy coincides
with the functor c; from 7.4.2; similarly, s_t;y = c_. The functors
t_s_ : Choty — Chot_ and tys; : Chot— — Choty are adjoint (just
as the functors c4, see 7.4.2).

We say that a morphism f : A — B in the homotopy category Khoty
of Choty is a quasi-isomorphism if all the morphisms f, := fiq, @ Am —
B,, are quasi-isomorphisms. Quasi-isomorphisms form a localizing family.
Denote the corresponding localized triangulated categories by Dhot.

The functors s4,t4+ preserve quasi-isomorphisms, so they define functors
between the derived categories. The adjunction morphisms for compositions
of these functors are quasi-isomorphisms. So our derived categories
Dsecy, Dhot4 are canonicaly identified.

Remarks. (i) A complex A € Dhoty belongs to Dy if and only if for
any o @ Ay — Appq the a-component dgq @ oAy — Ay is a quasi-
isomorphism of complexes (the differential on A, is daiq, , , same for Ay, 11).

(ii) If the categories M,, have many injective objects then KT hot, has
many injective objects. Dually, if M,, have many projective objects then

K~ hot_ has many projective objects (cf. 7.4.9).

7.4.11. Some of the above constructions make sense in the following slightly
more general setting. Consider any family of DG categories C. cofibered over
(A). One has the DG categories Csecy = secy(C.) (defined exactly as the
categories sect (M.) in 7.4.2), and the corresponding homotopy categories.
One defines the adjoint functors c+ between the £ categories as in 7.4.2.
Assume in addition that we have M as in 7.4.1 and a family of cohomology
functors H : C. — M. compatible with the fibered category structures.
We get the corresponding cohomology functors Hy : Csecy — sect.
Localising our homotopy categories by H-quasi-isomorphisms we get the
derived categories Dsect. As in Lemma 7.4.4 the functors ci identify the

categories Dsecy, so we may denote them simply Dsec. One defines the
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categories Ciot, €tc., as in 7.4.5. Lemma 7.4.6 remains true, so we have
the full triangulated subcategory Diot C D sec and the cohomology functor
H: Dtot — Mtot-

7.5. D-module theory on smooth stacks II.

7.5.1. Let )V be an arbitrary smooth algebraic stack. Let U. be a
hypercovering of ) such that each U, is a disjoint union of (smooth) quasi-
compact separated algebraic spaces (e.g., affine schemes). We call such
U. an admissible hypercovering. Consider U. as a (A)°-algebraic space.
The categories M(U.) form a (A)-family of abelian categories as in 7.4.1;
the corresponding category Mo is M()). According to 7.4.7 we get the
corresponding t-category Diot = Diot(U., D) with core M()).

We may also consider DG categories C'(U., ) together with the coho-
mology functors Hp. : C(U.,Q?) - M(U.), HppF,, = HpF},[dim U, /)] for
F, € C(Uy,Q), and apply 7.4.11. We get a triangulated category Dot (U., §2)
together with a cohomology functor Hp : Diot(U.,Q2) — M(D).

The categories Diot(U., D) and Dio(U.,€2) are canonically identified.
Namely, one has a functor Q. : C(U., D) — C(U.,Q), Q.(M,) =
QM,[—dimU,/Y]. This functor is compatible with DG and fibered
categories structures, and with the cohomology functors (i.e., H = Hp.{2.).

Therefore it yields an exact functor
(315) Q: Dtot(U.,D) — Dtot(U.,Q)

This functor is an equivalence of categories. Indeed, though the functor D
between C'(U.,2) and C(U.,D) is not compatible with the fibered category
structures, it provides the functor D : Csec_(U.,Q) — Csec_(U.,D),
(DF),, = DF,[dim U, /Y] (use 7.2.8 to define a*’s). This D is left adjoint
to the corresponding €2 functor, and is compatible with the cohomology
functors. The D-) adjunction morphisms are quasi-isomorphisms (see 7.2.4,

7.2.5), so D yields the functor inverse to (315).
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We denote the categories Diot(U., D) and Diot(U.,Q2) thus identified
simply by Dyt (U.).

7.5.2. Propositon. There exists a canonical identification of t-categories
Dyt (U.) for different admissible coverings of ).

For a proof see 7.5.5 below. We denote these categories thus identified by
D(Y); this is a t-category with core M(}).

Before proving 7.5.2 let us show that if ) satisfies condition (310) then,
indeed, we get the same category D()) as in 7.3.2. By the way, this implies
7.3.4.

Choose a hypercovering U. of Y such that U, are affine schemes. There

is an obvious exact functor (restriction to U.)
(316) T _D(y, Q) — Dtot(U') Q)
7.5.3. Lemma. The functor r is an equivalence of categories.

Proof. Let us construct the inverse functor. For F' € Ko+ (Q2) define the

Q-complex 7. F on Y as the total complex of Cech bicomplex with terms
1. F% = m(F?), so (n.F)* = @ F%; here m, are projections U, — V.
Thus we have the exact functo?r?rfn: Kiot +(Q) — K(Y,Q). This functor
preserves D-quasi-isomorphisms (since, by (310), the projections m, are
affine), so it defines a functor Dy (U., Q) — D(), ).

We leave it to the reader to check that this functor is inverse to r (hint:
for I as above the adjunction quasi-isomorphism 7,7 F' — F' comes from a

canonical morphism 7om. F — c_F in C'sec_(U.,Q)).
U

7.5.4. Remark. The above lemma renders to the setting of 7.3.12 as follows.
Let YV be any smooth stack such that the diagonal morphism ) — Y x Y
is affine. Then the categories D()) as defined in 7.3.12 and 7.5.1 are
canonically equivalent. Indeed, let ); be a sequence of open substacks of

Y as in 7.3.12, and V; — )Y be a covering such that V; are affine schemes.
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Then the V;’s form a covering of J. Let U. be the corresponding Cech
hypercovering. Therefore U, is disjoint union of components U, labeled
by sequences o = (aq,az,...), a; > 0, Ya; = a + 1, where U, is fibered
product over ) of a; copies of Vi, ag copies of Va,... For F' € C().,Q) set
Fy,, := F; v, where i, is the minimal ¢ such that «a; is non-zero (note that
Ua € Ysm. These Fy, form an Q2-complex F' on U. in the obvious manner
which lies in Ciot(U., Q). The functor C().,Q2) — Ciot(U.,2) commutes

with the functor Hp so it defines a triangulated functor
(317) . D(y,Q) — Dtot(U.,Q)

We leave it to the reader to check that this functor is an equivalence of
categories, and that the corresponding identification of D()’)’s in the sense

of 7.3.12 and 7.5.2 does not depend on the auxiliary data of ). and V..

7.5.5. Proof of 7.5.2. We need to identify canonically the t-categories
Dot (U.) for different U.’s. Let U! be another admissible hypercovering.
First we define a t-exact functor ® = @y : Dyt (U.) — Diot(U!) in terms of
some auxiliary data V. Then we show that ® actually does not depend V,
and it is an equivalence of categories.

Our V' is a (A)° x (A)° -algebraic space V.. over ) together with smooth
morphisms 7 : Vi — Up, @ @ Vipn — U/, We assume that =, 7’ are
compatible with (A) projections in the obvious manner, 7/, : V., — U},
are hypercoverings, and 7/,

F € Kot +(U., Q) we have Q-complexes Fy,, € Kiot +(Vop, ) - the pull-back
of F to V.,,. Set @y, F := 7/ Fy,, (see the proof of 7.5.3 for the notation).

: Vmn — U], are affine morphisms. For

This is an Q-complex on U). The Q-complexes Py, form an Q-complex
Oy F € Kiot+(U!/,Q) in the obvious way such that HpF = Hp®yF.
Therefore we have a t-exact functor @y : Dy (U., Q) — Dyt (U!, ) which
induces the identity functor between the cores M(})).

Assume that we have V; and V5 as above. To identify the functors

®y, choose another V' as above, together with embeddings Vi, Vo C V
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compatible with all the projections which identify (V1)mn, (V2)mn with a
union of connected components of V;,,,,. The embeddings induce projections
Oy F — @y, PyF — Py, F which are obviously quasi-isomorphisms.
Therefore we have identified the functors ®y; between the derived categories.
We leave it to the reader to check that this identification does not depend
on the auxiliary data of V.

Thus we have a canonical functor ® = @y : Diot(U., Q) — Diot (U, Q).
If U is the third hypercovering then there is a canonical isomorphism of
functors @y = @yyr®@rr; we leave its definition to the reader, as well as
verification of the usual compatibilities. Since @y is the identity functor

we see that ®’s identify simultaneously all the categories Diot(U.). 0

7.5.6. Let f : YV — Z be a quasi-compact morphism of smooth stacks.
Let us define the push-forward functor f, : D(Y)™ — D(Z)*. To do this
consider any admissible hypercoverings U. of J and W. of Z . We get
the (A)° x (A)°-algebraic space U. >2<7W . One may find a (A)° x (A)°-
algebraic space V.. together with morphism ¢ = (¢1,¢2) : V.. — U. ;W
such that the projections Vi, — U, are smooth, V,,, — W, are affine,
and V., — y;wn are hypercoverings. Now for F € K (U.,Q) let
Fy, € K;H(V.R,Q) be its pull-back to V.,,. Define the Q -complex f.F,
on W, as the total complex of the Cech bicomplex with terms ¢o.Fyp,.
These Q-complexes form an object f.F of K (W.,Q). The functor
I KL +(U,Q) — K5 (W.,Q) preserves D-quasi-isomorphisms hence it
yields a functor f, : D(Y)" — D(Z)*. We leave it to the reader to check
that the construction of f, does not depend on the auxiliary choices of
U,W,V, and is compatible with composition of f’s.

A smooth morphism of smooth stacks f : Y — Z yields a t-exact functor
1= fy: D(2) — D(Y). Namely, choose admissible hypercoverings U. of
Y, W. of Z and a morphism f. : U. — W. compatible with f. The functor
fla: Kot +(W.,Q) = Kot +(U., Q) preserves D-quasi-isomorphisms, so it

defines a functor f;, between the derived categories. We leave it to the reader
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to check that this definition does not depend on the auxiliary choices, that
our pull-back functor is compatible with composition of f’s, and that in case

when f is quasi-compact the functor f, is left adjoint to fi.
7.5.7.

7.5.8. Remarks. (i) One may also try to define D()) using appropriate
non-quasi-coherent {2-complexes in a way similar to the definition of derived
category of O-modules from [LMB93]6.3. Probably such a definition yields
the same category DT ()).

(ii) The "local” construction of derived categories is also convenient in the
setting of O-modules. For example, it helps to define the cotangent complex
of an algebraic stack as a true object of the derived category (and not just
the projective limit of its truncations as in [LMB93]9.2), and also to deal
with Grothendieck-Serre duality.

(iii) Replacing D-modules by perverse sheaves we get a convenient
definition of the derived category of constructible sheaves on any algebraic

stack locally of finite type.
7.6. Equivariant setting.

7.6.1. Let us explain parts 7.1.1 (a), (b) of the (finite dimensional) Hecke
pattern. So let G' be an algebraic group and K C G an algebraic subgroup.
Assume for simplicity that K is affine; then the stacks below satisfy condition
(310) of 7.3.1. Set”) H¢ := C(K\G/K,Q), H := D(K\G/K). We call these
categories pre Hecke and Hecke category respectively. They carry canonical
monoidal structures defined as follows.

Consider the morphisms of stacks

(318) (K\ G/K) x (K\G/K)iK\Géc/KﬂK\G/K

*)Here the superscript ”c¢” means that we deal with the true DG category of complexes,

not the derived category.
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Here G x G is the quotient of G x G modulo the K-action k(g1,¢92) =
(g1k7 1, ki]g), p is the obvious projection, and m is the product map. For Fi,
Iy € HE set Fy (>CBF2 = m.po(F1 W Fy). The convolution tensor product @c<)
satisfies the obvious associativity constraint, so we have a monoidal structure
on H¢. We define the convolution tensor product ® : H x H — H as
the right derived functor of ®. One has Fi ® Fy = m.py(Fy K Fy); if Q-
complexes Fy, Fy are loose (see 7.3.7) then F} ® Fo = F éFQ. Thus the
associativity constraint for ® follows from the one of @CB, so H is a monoidal
triangulated category. H¢ and ‘H have a unit object F: one has Fg = 1x.Qk
(here i : K — G is the embedding).

Let Y be a smooth variety with G-action. Consider the stack B := K\ Y.
The Hecke Action on D(B) arises from the diagram

(319) (K\ G/K) x BE-K\ (G x V)8,

Namely, for FF € H¢, T € C(B,Q) set F(i)T = my.pyq(FRT). As
above @ca satisfies the obvious associativity constraint, so C'(B,€2) is a unital
H¢-Module. Define ® : HxD(B) — D(B) as the right derived functor of
(>CB. One has F®T = my.pyo(F XT), and if F,T are loose (see 7.3.7) then
F&T = F®T. Thus D(B) is a H-Module.

7.6.2. Remarks. (i) In the above definitions we were able to consider the
unbounded derived categories since the projections m, my are representable
(see7.3.11(ii)).

(ii)) If f: Z — Y is a morphism of smooth varieties with G-action then
fe: D(K\Z) — D(K \Y) is a Morphism of #-Modules.

7.6.3. Let Y be a smooth variety equipped with an action of an affine
algebraic group K. Consider the stack B := K \ Y. In the rest of 7.6 we
are going to describe D(B) in terms of appropriate equivariant complexes on
Y. We will also introduce certain derived category D(K \\ Y') intermediate
between D(K \'Y') and D(Y') that will be of use in 7.7.
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Set Kg = (K,Qk), Ky = (K,Q) (so K, is Ko with its de Rham
differential skipped). These are group objects in the category of DG ringed
spaced and graded ringed spaces respectively. Denote by €, £, £, the Lie
algebras of K, Kq, K, respectively. As a plain complex, £o is equal to
the cone of idg so {%?2 =t= Eél. Since K is a subgroup of Kq and K¢, we
have the corresponding Harish-Chandra pairs (£q, K), (£, K). Note that
Kq modules are the same as DG (£, K)-modules, and K,-modules are the
same as graded (£, K')-modules.

The K-action on Y yields the action of Ko on Yo = (Y,) hence
the action of K¢, on Y, = (Y,Q"). For a graded Qy-module Fy, a K-
action on FYy is the same as a (€, K)-action. Explicitly, this is a K-
action on Fy, together with a K-equivariant morphism ¢ ® Fy — F{/_l,
£® f — ig(f) (we assume that K acts on € in the adjoint way) such that
ic(vf) =< & v > f+vig(f), zg =0 for any £ € £ and v € Q..

7.6.4. Let Fy be an Q-complex on Y. A K-action on Fy is a K-action
on the graded Oy-module Fy- such that for any k& € K the translation
k*Fy, = Fy, is a morphism of Q-complexes (i.e., it commutes with the
differential). A Kgq-action on Fy is an action of Ko on Fy considered
as a DG module on Y. In other words, this is a K(-action on the graded
{}y-module Fy- such that K acts on Fy as on an {)-complex and £ acts
on Fy as a DG Lie algebra. The latter condition means that for any & € ¢
one has di¢ + i¢d = Lie¢ (here Lie is the €-action on Fy that comes from
the K-action). An Q-complex equipped with a K-action is called a weakly
K -equivariant Q-complex, and that with Kq-action is called Kq-equivariant
Q)-complex.

It is clear that for any Q2-complex F' on the stack B := K\Y the Q-complex

Fy carries automatically a Kg-action.

7.6.5. Lemma. The functor C(K \Y, ) — (Kq-equivariant Q2-complexes

on Y) is an equivalence of DG categories. 0
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7.6.6. Remark. Assume we are in situation 7.6.1. Let m : K\ G x G/K —
K \ G/K be the product map. Set Fi®F; = m.(Fig\g B Fog/i); this is
an -complex on K \ G/K. The K-action along the fibers of the projection
GxG — G;é G yields a Kg-action on Fi®F, (with respect to the trivial

K-action on K \ G/K). Its invariants coincide with Fj éFg. Similarly,
consider the map my : (K \ G)xY — B ; set F&T := my.(Fg\g X T).
The obvious K-action on (K \ G) x Y yields a Kq-action on this {2-complex

Cc
whose Invariants coinside with FF ®T'.

7.6.7. We denote the category of weakly K-equivariant 2-complexes on Y
by C(K \\ Y, Q) and the corresponding homotopy and D-derived categories
by K(K \\ Y,Q), DK \\ Y,Q) (a morphism of weakly equivariant -
complexes is called a D-quasi-isomorphism if it is a D-quasi-isomorphism

of plain 2-complexes).

7.6.8. Remarks. (i) The forgetful functor C(B,Q) — C(K \ Y,Q) admits
left and right adjoint functors ¢!, c" : C(K \\Y,Q) — C(B,9), d(Fy) =
U(ta) @ Fy,c"(Fy) = Homy ) (U(tn), Fy). These functors preserve quasi-
isomorl{)(}?isms, so they define adjoint functors between the derived categories.

(i) The forgetful functor C(K "\ Y,Q) — C(Y, Q) admits a right adjoint
functor Ind : C(Y,Q) — C(K\Y,Q), Ind(Ty) = p«m*(Ty) where
m, p : K x Y=3Y are the action and projection maps. These functors
preserve quasi-isomorphisms so they yield the adjoint functors between the
derived categories. The composition ¢" Ind is the push-forward functor for
the projection ¥ — B.

(iii) Remark 7.6.6 (ii) remains valid for weakly equivariant Q2-complexes.

(iv) Let f : Z — Y be a morphism of smooth varieties equipped with
K-actions. The construction of the direct image functor from 7.3.6 passes
to the weakly equivariant setting without changes, so we have the functor

fe=Rf.: D(K\ Z,Q) = D(K \ Y,Q). The functors f, commute with the
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functors from (i), (ii) above. The same holds for the pull-back functors f,
from 7.2.8, 7.3.6.

(v) Here is a weakly equivariant version of 7.6.1. Assume that ¥ from 7.6.1
carries in addition an action of an affine algebraic group G’ that commutes
with the G-action (we will write it as a right action). Consider the category
C(K\Y /G, Q) = CB,/G Q) of Q-complexes on Y equipped with
commuting Kq- and G-actions. Then the corresponding derived category
D(B,/ G',9) is an H-Module. The H-action is defined in the same way as

in 7.6.1. Remark 7.6.6 remains valid.

7.6.9. Let us describe the D-module counterpart of the above equivariant
categories (see [BL] for details). For a D-module M on Y a weak K-
action on M is a K-action on M as on an Oy-module such that for any
k € K the translation k*M = M is a morphism of D-mosules. A D-module
equipped with a weak K-action is called a weakly K -equivariant D-module;
the category of those is denoted by M(K \\ Y) (as usual we write M?
or M" to specify left and right D-modules). The notations C(K \\ Y, D),
K(K \Y,D), D(K \Y,D) = D(K \\ Y) are clear (cf. 7.2).

The functors D and 2 from 7.2.2 send weakly equivariant complexes to

weakly equivariant ones, thus we have the adjoint DG functors

(320) D: C(K\Y,Q) = C(K\Y,D),Q: C(K\Y,D) = C(K " Y,Q)
and the mutually inverse equivalences of triangulated categories

(321) D(K \Y,D)=D(K \ Y,Q).

As usual we denote these categories thus identified by D(K \\ Y).

7.6.10. Remark. For a weakly K-equivariant D-module M the £-action on
Y lifts to the O-module M in two ways: either as the infinitesimal action
defined by the K-action on M or via the -action on Y ¢ : £ - Oy and
the D-module structure on M. Denote these actions by §,m ~ Liegm,

ogm respectively. Set Eim = Lie¢ m — ogm. Then ¢ € Endp M and
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g: ¢t — Endp M is a t-action on M. Note that f§ is trivial if and only if M
is a K-equivariant D-module, i.e., M € M(B).

7.6.11. A K-equivariant D-complexr on Y is a complex N of weakly K-
equivariant D-modules together with morphisms tEQN" — N =1, é@n — e,
such that for any £ € € our has zg =0, di¢ +ied = €%, By abuse of notation
we denote the DG category of such complexes by C(B, D). Note that any K-
equivariant D-module is a K-equivariant D-complex in the obvious way, and
for any K-equivariant D-complex its cohomology sheaves are K-equivariant
D-modules. So we have the cohomology functor H : C(B,D) — M(B).
Localizing the homotopy category of C'(B,D) by H-quasi-isomorphisms we
get a triangulated category D(B, D). It is easy to see that it is a t-category
with core M(B).

For any F € C(B,f) the D-complex DF equipped with operators
i?F = zg ® idp, is K-equivariant. For any N € C(B,D) the Q-complex
QN equipped with the operators i?N which act on N' @ A 7Oy as n®@ 1 —
ien @ T+ (—1)'n @ 0(£) AT is a Kg-equivariant Q-complex. Thus we have
the adjoint functors D, 2

(322) C(B,Q)==C(B,D)
and the mutually inverse equivalences of triangulated categories
(323) D(B,Q)=D(B,D).

The latter equivalence identifies the above t-structure on D(B,D) with
that on D(B, ) defined in 7.3.2. This provides another proof of 7.3.4 in the
particular case when our stack is a quotient of a smooth variety by a group

action.

7.7. Harish-Chandra modules and their derived category.
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7.7.1. Let G be an affine algebraic group, K C G an algebraic subgroup,
so we have the Harish-Chandra pair (g, K). Consider the category M (K \
G,/ G)=M((K\G), @) of D-modules on G equipped with commuting K-
and weak G-actions (where K and G act on G by left and right translations
respectively). For M € M(K \ G,/ G) set y(M) = y"(M) := T'(G, Mg)®;
here we consider Mg as a right D-module on G. This is a (g, K)-module:
g acts on y(M) by vector fields invariant by right G-translations (according
to D-module structure on M), and K acts by left K-translations.

7.7.2. Lemma. The functor v : M(K \ G,/G) — M(g,K) is an

equivalence of categories.
Proof. Left to the reader (or see [Kas]). O

7.7.3. Remarks. (i) Set /(M) := T(G, ML)® where M}, is the left D-
module realization of M. This is a (g, K)-module by the same reason as
above; one has the obvious identification 7/ (M) = " (M) @ det g.

(ii) There is a canonical isomorphism of vector spaces y'(M) leG,l =
M }(\GJ which assigns to a G-invariant section its value at 1 € G. The
(g, K)-module structure on Mé{\G,l may be described as follows. The K-
action comes from the (weak) action of right K-translations on K \ G (note
that K is the stabilizer of 1 € K\ G), and the g-action comes from f-action
of g that corresponds to the weak G-action (see 7.6.10).

(iii) Let P be a K-module, and P the corresponding G-equivariant vector
bundle on K \ G with fiber Py = P. We have DP = P ® Di\¢ €

MK\ G), G), and y(DP) = U(g) U%)(P ® det £%).

7.7.4. The above lemma provides, as was promised in 7.1.1(c), a canonical
‘H-Action on the derived category D(g, K) of (g, K)-modules. Indeed, by
7.6.8(v) (and 7.6.9) we know that D(K \ G,/ G) is an H-Module. And 7.7.2
identifies D(g, K) with this category.

We give a different description of this Action in 7.8.2 below. Its
equivalence with the present definition is established in 7.8.9, 7.8.10(i).
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The rest of the Section (7.7.5-7.7.11) is a digression about D-Q) equiva-
lences in the Harish-Chandra setting; as a bonus we get in 7.7.12 a simple
proof of Bernstein-Lunts theorem [BL]1.3. The reader may skip it and go
directly to 7.8.

7.7.5. Here is a version of 7.7.2 for {2-complexes.

Let €25 be the Chevalley DG-algebra of cochains of g, so 2, = A'g™. It
carries a canonical “adjoint” action of Kq (see 7.6.3 for notations). Namely,
K acts on  in coadjoint way, and § € £ = 351 acts as the derivation i¢ of
Q, which sends v € g* = Qg to (v, ).

A Qg 1)-complez is a DG (g, Ko)-module, i.e., it is a complex equipped
with €4- and Kg-actions which are compatible with respect to the Kq-
action on {y. For an €y x-complex T" we denote the action of v € g* = Qé,
Eet= %1 on T" by a,, i¢. Denote the DG category of {4 i)-complexes
by CQy k) and its homotopy category by K4 ).

For F € C(K\ G,/ G, Q) set y(F) := I'(G,Fg)“. This is an Qg.5)-
complex. Indeed, €}; acts on it via the usual identification with DG
algebra of differential forms on G that are invariant with respect to right

G-translations, and Kq acts on y(F) since it acts on Fg (see 7.6.4, 7.6.5).

7.7.6. Lemma. The functor v : C(K \ G,/G,Q) — CQ k) is an

equivalences of DG categories.
Proof. Left to the reader. O

7.7.7. Weidentified (g, K)- and Q(q x)-complexes with weakly G-equivariant
complexes on K \ G. Let us write down the standard functors D and
in Harish-Chandra’s setting. It is convenient to introduce a DG Harish-
Chandra pair (¢ x g, K) (the structure embedding LieK < tq X g is the
diagonal map).

Let DRy be the Chevalley complex of cochains of g with coefficients in
Ug (considered as a left Ug-module), so DRf3 = A'g* ® Ug. Now DRy is an

()g-complex, and an (£ x g, K)-complex; those actions are compatible (here
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(Eq x g, K) acts on {2y via the projection (tq x g, K) — (tq, K) , see 7.7.5).
Namely, for v € Qq, € = (e,¢6,) EExg=1t) x g, £ €t =¢,", k€ K, and
a=a®uv € DRy one has va = va® v, ea = Adg,(a) @ v+ a® (gu — ve,),
fa =ig(a) ®v, ka = Adg(a) ® Adg(v).

For a complex of (g, K')-modules ((g, K )-complex for short) V', set QV :=
Homgy(D Ry, V'); this is an Q4 x)-complex in the obvious way. For an Qg g)-
complex T' set DT =Dy )T :=T ®@ DRg= (T;ZX; DRy)g,,; this a (g, K)-

ngQ
complex. Thus we have the adjoint DG functors

(324) D=Dyr): CQUx) — Cla,K), Q:C(g,K)— CQqyr)-

Remark. For T as above let T C T be the kernel of all operators e, { €L
This is a K- and A’(g/t)*-submodule of 7" (here A'(g/€)" C A'g" = Q),

and the obvious morphisms

(325) QO ® T —T, T @Ug— DT
: U

are isomorphisms.

7.7.8. Let us return to the geometric situation. One has the obvious
identification I'(G, DRg)“ = DRy (see 7.2.2 for notation; G acts on itself
by right translations). For M € C((K \ G),/ G,D) there is a canonical
isomorphism v(QM) = Q(yM) of Q4 k)-complexes defined as composition
I'(G, Homp,(DRg, Mg))¢ = Homp,(DRg, Mg)¢ = Homyy(DRy,yM).
For F € C(K \ G, G,9Q) there is a similar canonical isomorphism
~vDF = DyF whose definition is left to the reader.

7.7.9. For an Q4 g)-complex T set HT = HDT € M(g,K). Then
Hy @ KQqg k) — M(g, K) is a cohomological functor. Define a g-quasi-
isomorphism as a morphism in K ) that induces isomorphism between
Hg’s. The g-quasi-isomorphisms form a localizing family; define D€ k) as

the corresponding localization of K€, ). The functors D, 2 yield mutually
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inverse equivalences of derived categories
(326) DQy k)5 D(g, K)

where D(g,K) := DM(g,K). The equivalences v yield equivalences of

derived categories
(327)  D(K\G,/G,Q)=DQ,k), DI(K\G),/ G D)=D(gK).

7.7.10. Remarks. (i) Any g-quasi-isomorphism is a quasi-isomorphism; the
converse might be not true.

(ii) Any Q4 gy-complex T may be considered as an €y = (4 ;)-complex
(forget the Kq-action), so we have the corresponding complex of g-modules
DyT := T ®q, DRy. The obvious projection DgT" — Dy )T is a quasi-
isomorphism. This implies that a morphism of €4 x)-complexes is a g-quasi-

isomorphism if and only if it is a g-quasi-isomorphism of 23-complexes.

7.7.11. The format of 7.7.7, 7.7.9 admits the folowing version. Recall that
DRy is a (tq x g, K)-complex. Thus the above DT is a (£q x g, K)-complex,
and for a (8 x g, K)-complex V' the complex QV := Homy(DRy, V) is a

Q(g,i)-complex. The functors
(328) Dg : CQ(gyK)—>C(EQ X g,K), Q: C(EQ X g,K)—>CQ(g7K)

are adjoint, as well as the corresponding functors between the homotopy
categories. Passing to derived categories they become (use 7.7.10(ii))

mutually inverse equivalences
(329) DQ g xy¥=D(tq x g, K).

The projection (tq x g, K) — (g, K) yields a fully faithful embedding
C(g, K)—C(tq x g, K) hence the exact functor

The following theorem is due to Bernstein and Lunts [BL] 1.3"):

“)The authors of [BL] consider only bounded derived categories.
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7.7.12. Theorem. The functor (330) is equivalence of categories.

Proof. The functor 2 from (328) restricted to C(g, K) coincides with Q
from (324). Now 7.7.12 follows from (326) and (329). The inverse functor
D(tq x g, K) — D(g, K) sends V to Dy )2V O

7.8. The Hecke Action and localization functor.

7.8.1. We are going to describe a canonical Hecke Action on the derived
category of Harish-Chandra modules. We consider a twisted situation, i.e.,
representations of a central extension of g. Here is the list of characters.

Let G’ be a central extension of G by G,, equipped with a splitting
K — G'. Therefore the preimage K’ C G’ of K is identified with K x G,,.
Set g’ := LieG’, ¢ := Lie K’ = £ x C. We have a Harish-Chandra pair
(¢/, K') and the companion DG pair (¢q x ¢’, K’) (here the first component
of the structure embedding ¢ — £ x g’ is the projection ¢ — €).

Let M(g, K)" be the category of (g/, K')-modules on which G,, ¢ K’
acts by the standard character; we call its objects (g, K)-modules or,
simply, Harish-Chandra modules. This is an abelian category. Similarly,
let C(tq x g, K)' be the category of those (¢q x g/, K’)-complexes on which
Gy, acts by the standard character; its objects are called (Eq X g, K)'-
complexes or, simply, Harish-Chandra complexes. This is a DG category
which carries an obvious cohomology functor with values in M(g, K)'.
Denote the corresponding derived category by D(g, K)'; this is a t-category
with core M(g, K)'.

Remark. By a twisted version of the Bernstein-Lunts theorem D(g, K)’
is equivalent to the derived category of M(g, K)’ ). We will not use this
fact in the sequel since the Hecke Action is naturally defined in terms of

(tq X g, K)'-complexes.

*)The twisted Bernstein-Lunts follows from the straight one (see 7.7.12) applied to the
Harish-Chandra pair (g’, K').
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7.8.2. Now let us define a canonical H-Action on D(g, K)'. First we define
an Action of the pre Hecke monoidal DG category H¢ := C(K \ G/K,{2) on
C(tq x g, K)'; the Hecke Action comes after passing to derived categories.

Denote by Lg the line bundle over G that corresponds to the Gy,-torsor
G’ — G. The left and right translation actions of G on itself lift canonically
to G’-actions on L. So a section of Lg is the same as a function ¢ on G’
such that for ¢ € G,,, ¢’ € G’ one has ¢(cg’) = ¢ '¢(g'). Therefore the
right translation action of G,, C G’ on sections of Lg is multiplication by
the character inverse to the standard one.

Take a Harish-Chandra complex V € C(tq x g, K)". Set Vg := Lo ® V.
Then Vg is a complex of left D-modules on G. Indeed, the tensor product
of the infinitesimal right translation action of g’ on L and the g’-action on
V is a g-action on Vg. The left D-module structure on Vg is such that the
left invariant vector fields act on Vg via the above g-action. The D-complex
V¢ is weakly equivariant with respect to left G’-translations: they act as
tensor product of the corresponding action on L and the trivial action on
V. Therefore, by 7.6.10, it carries a canonical g’-action f.

Remark. For 0 € ¢’ consider a function 6% : G — ¢/, 6%(g) := Ad,y(0).
Then for v € V, 1 € Lg one has §°(l ® v) =1 ® 0%(v).

Take F' € H¢. Then Fg ® Vg is an Q-complex on G (see 7.2.3(ii)). It is
Kq-equivariant with respect to the right K-translations. Namely, K acts
as tensor product of the corresponding actions on F', L, and the structure
action on V; the operators i¢ act as the sum of the corresponding operators
for the right translation action on F' and the structure ones for V. Denote
by (F ® V)q K the corresponding Q2-complex on G/K. The action of g’ on
Fo ® Vg that comes from the action j on Vg commutes with this Kq-action,
so it defines g’-action on (F'® V)q k. We also denote it as f.

Remark. If V is a complex of (g, K)-modules then Vg is a complex of

left Dg-modules strongly equivariant with respect to right K-translations.
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Let Vg i be the corresponding complex of left D-modules on G /K. One
has (F ® V)G/K = FG/K ® VG/K
Set F®V :=T'(G, Fg ® Vg) and

(331) F&®V =T(G/K,(F @ V)g k) = (F&V)Xe,

These are (o x g, K)'-complexes. Indeed, g’ acts according to fj action, K
acts by tensor product of the left translation actions for F' and V, and the
operators i¢ are the corresponding operators for F. We leave it to the reader
to check the Harish-Chandra compatibilities.

Now ® defines an H¢-Module structure on C(tq x g, K)'. Indeed, the
associativity constraint (Fj éFg)éV = F é(FQéV) follows from the

obvious identification
DG, (R ®F) @ Le) =[0G, F, ® L) @ T(G, F ® Lg)]<@

where K¢, acts by tensor product of the right and left translation actions
(see 7.6.5). We define the Hecke Action ® : H x D(g,K)" — D(g,K)" as
the right derived functor of (i) If F' is loose then F®V = F(i)V so the
associativity constraint for ® follows from that of (53

Remark. As folows from the previous Remark, for M € M(K \ G/K) C
H,V € M(g,K) one has

(332) HM®V = Hpp(G/K, M & Vgi).

7.8.3. Remark. Assume that our twist is trivial, so G’ = G x G,,. One has
obvious equivalences M(g, K)' = M(g,K) and D(g,K) = D(g,K)" (see
7.7.11). So we defined a Hecke Action on D(g, K). We will see in 7.8.9 that
this Action indeed coincides with the one from 7.7.4.

Let us return to the general situation. Let U’ be the twisted enveloping
algebra of g; denote by 3 its subalgebra of Ad G-invariant elements. The
commutative algebra 3 acts on any Harish-Chandra complex in the obvious

manner, so C(to x g, K)', hence D(g, K), is a 3-category.
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7.8.4. Lemma. The Hecke Actions on C(tq x g, K)', D(g, K)' are 3-linear.
Proof. Use the first Remark in 7.8.2. O

7.8.5. Ezample. (to be used in 5). Let Vad := U'/U’-¢ be the twisted
vacuum module. Let us compute F'® Vac explicitely. We use notation
of 7.8.2.  So, according to the second Remark in 7.8.2, we have the
left D-module Vg /i on G /K, weakly equivariant with respect to left G-
translations, such that Vg = L ®Vac'. The embedding C C Vac yields an
embedding L/ C Vg k- 1t is easy to see that the corresponding morphism
of left D/ g-modules Dg /k OSK La/k — Vg k 1s an isomorphism of weakly
G-equivariant D-modules.

Remark. The g'-action on Dg /K @ Lg K that corresponds to f is given by
formula o/ (Y ®1) = PR/ (1) —1p-a®l where o’ € g’, a is the corresponding left
translation vector field on G/ K, and /(1) is the infinitesimal left translation
ofl € Lg/k-

So for F' € H® one has (FF ® V)g/k = Fg/k ® Dg/x ® Lok =
D(Fg/kx) ® Lk Therefore

Oa/kx

(333) F®Vad =T(G/K,D(Fg/x) @ Layk).

Here the (o x g, K)'-action on I'(G/K,D(Fg/k) ® Lg/k) is defined as
follows. The g'-action comes from the g'-action on D(Fg k) ®@ La/k
described in the Remark above, the K-action is the action by left
translations, and the operators i¢ come from the corresponding operators
on Fg/k-

Passing to the derived functors (which amounts to considering loose F' in

the above formula) we get
(334) F®Vad = RU(G/K, D(Fgx) ® Lax).
In particular, for M € M(K \ G/K) one has
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Here the g’-action on the r.h.s. comes from the g’-action on Mgk ® Layi

given by formula o/(m®1) =m ® o'(l) —ma 1.

7.8.6. Let us explain part (d) of the ”Hecke pattern” from 7.1.1. Let us first
define the localization functor A. We use the notation of 7.8.1. Let Y be a
smooth variety on which G acts, £ = Ly a line bundle on Y. Assume that
L carries a G'-action which lifts the G-action on Y in a way that G,, C G’
acts by the character opposite to the standard one. The line bundle wy ® £
carries the similar action.

We define a DG functor
(336) Aq =Aqr:Ctqg x g, K) — C(K\Y,Q)

as follows. Note that (g’, K), hence (tq x ¢’, K'), acts on wy ® L (since G’
does). For a Harish-Chandra complex V' consider the complex of O-modules
wy ® L V. The tensor product of (¢q x g, K')-actions on wy ® £ and V'
yields a (o x g, K)-action on wy ® L@ V. Set

Aq(V) :== Homg(DRg,wy ® L ® V)[— dim K]

(see 7.7.7 for notation). In other words Aq(V) is the shifted Chevalley
chain complex of g with coefficients in wy ® £ ® V. This is an (2-complex
on Y. Since DRy and wy ® L ® V are (tq x g, K)-complexes our Aq (V) is
Kq-equivariant, i.e., Aq(V) € C(K\Y,Q).

Note that Aq(V) carries a canonical increasing finite filtration with
successive quotients equal to A'g@wy ® L&V [i—dim K]. Therefore Aq sends
quasi-isomorphisms to D-quasi-isomorphisms. So it yields a triangulated

functor
(337) LA =LA, : D(g,K)’ — D(K\Y)

The above remark also shows that LA is a right t-exact functor. The

corresponding right exact functor between the cores Ay : M(g,K) —
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MUK \Y) sends a (g, K)-module V to a K-equivariant left Dy-module
(Dy @ L) <(®)V. More generally, H LA, (V) = H_;(3,Dy ® L& V).
Ul(g’

7.8.7. Remarks. (i) The above construcion used only the action of (g, K')
on (Y, L) (we do not need the whole G’-action).

(ii) One may show that LA, is a left derived functor of A, (see Remark
in 7.8.1).

(iii) Assume that (g/, K’) is the trivial extension of (g, K), so (g, K)-
modules are the same as (g, K)-modules, and £ is Oy with the obvious
action of (g/, K’'). Then A(V) = Dy ® V, ie., Az coincides with the
functor A from 1.2.4. v

7.8.8. Proposition. The functor LA, : D(g, K)' — D(K\Y) is a Morphism
of H-Modules.

Proof. Tt suffices to show that the functor Aq, : C(tgxg, K)' — C(K\Y, Q)
is a Morphism of H¢-Modules.

Take F, V as in 7.8.2. We have to define a canonical identifica-
tion of Q-complexes « : AQ(F(:BV) ﬁF@CBAQ(V) compatible with the as-
sociativity constraints. We will establish a canonical isomorphism « :
Aq(F®V) = F®Aq(V) compatible with the Kqg-actions (see 7.6.6, 7.8.2 for
notation). One gets o by passing to Kq-invariants.

Let m,p: G xY — Y be the action and projection maps, i : G X Y —
G x Y the symmetry i(g,z) = (g,gx); one has pi = m. The G’-action on
Ly provides an i-isomorphism of line bundles i OcR Ly = Lo R Ly

Below for a g-complex P we denote by C(P) the Chevalley complex of Lie
algebra chains with coefficients in P shifted by dim K. So C(P) = C" ® P’
where C® := AYMK—ag  Consider the Q-complexes Fg X Aq(V) = Fg X
Clwy @ Ly @ V) and C((Fg @ Vg) R (wy @ Ly)) =C(Fe® (Le V)X
(wy ®Ly)); here the g-action on (Fg®Vg) K (wy ® Ly ) is the tensor product
of the g’-action § and the standard g’-action on wy ® Ly (see 7.8.2).
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There is a canonical i-isomorphism of 2-complexes
o Fg X Ag(V)RC((Fa ®Va) X (wy ® Ly))

defined as follows. For f € Fg, A € C', | € wy ® Ly, v € V one has
F(fOARIQV) =a(\)® fRi(l) @v; here a()) € Ogyxy ® C is a function
a(N)(g,y) = Adg(X). We leave it to the reader to check that o commutes
with the differentials (use Remark in 7.8.2).

Now one has the obvious identifications m.(Fg X Aq(V)) = F®Aq(V)
and p.C((Fg ® V)R (wy @ Ly)) = Aq(F&V). Thus & defines the desired

canonical isomorphism a. We leave it to the reader to check its compatibility

with the Kq-actions and associativity constraints. O

7.8.9. Consider the case when Y = G with the left translation G-action,
and £ = Ly is the line bundle dual to L (see 7.8.2) equipped with the
obvious G’-action by left translations. The right G’-translations act on our
data. Therefore the Q-complexes Aq(V) are weakly G'-equivariant with
respect to the right translation action of G’.

Let C(K\ G,/ G,Q) c C(K\ G, G, Q) be the subcategory of those
weakly G’-equivariant Q-complexes T' that G,, C G’ acts on T by the
standard character. Let D(K \ G,/ G)’ be the corresponding D-derived
category. The complexes Aqg(V) lie in this subcategory, so we have a
triangulated functor LA : D(g,K) — D(K \ G,/ G). This categories
are H-Modules (for the latter one see 7.6.8(v), 7.6.9). By 7.8.8, LA is a
Morphism of H-modules. A variant of 7.7.6 and 7.7.11 shows that LA is an

equivalence of t-categories.

7.8.10. Remarks. 1) If G’ is the trivial extension of G then D(g, K)' =
D(g, K) and LA coincides with the equivalence defined by the functor v~*
from 7.7.2. This shows that the Hecke Actions from 7.7.4 and in 7.8.3 do
coincide.

(ii) Assume that our extension is arbitrary. Then the pull-back functor

r: D(K\G/K)— D(K'\ G'/K’) is a Morphism of monoidal categories,
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and the fully faithful embedding D(g, K)" < D(g’, K’) is r-Morphism of
Hecke Modules. So the twisted picture is essentially equivalent to untwisted
one for (g’, K'). However in applications it is convenient to keep the twist

(alias level, alias central charge) separately.

7.8.11. Let us explain the I' part of the "Hecke pattern” (d) from 7.1.1.
This subject is not needed for the main part of this paper, so the reader
may skip the rest of the section. We treat a twisted version, so we are
in situation 7.8.6. For T' € C(K \ Y,Q) the D-complex DTy on Y is K-
equivariant (see 7.6.11). Let us consider DTy as an O-complex equipped
with a (8 x g, K)-action. Set I'z(T) := (Y, DTy ® (wy ® Ly)*). This is a
Harish-Chandra complex (recall that (g’, K) acts on wy ® Ly ), so we have

a DG functor I'z : C(K \Y,Q) = C(kq x g, K)'. Let
RT;: D(K\Y)— D(g,K)'

be its right derived functor. If T' is loose then I'z(T') = RT'£(T'), so RT' is
correctly defined.

Note that RI'; is a left t-exact functor; let 'y : M(K\Y) = M(g, K)’
be the corresponding left exact functor. One has I'z(M) =T(Y, M ® (wy ®
Ly)*). If we are in situation 7.8.7(iii) then this functor coincides, after the
standard identification of right and left D-modules, with the functor I" from
1.2.4.

7.8.12. Lemma. The functor RI'; is a Morphism of H-Modules.

Proof. 1t suffices to show that I is a Morphism of H°-Modules, i.e., to define
for F' € H¢, T as above a canonical isomorphism (3 : I'z(F éT) ~F GC@FL(T)
compatible with the associativity constraints. Let us write down a canonical
isomorphism 3 : T'z(F&®T) = F&L',(T) compatible with the Ko-actions; one
gets B by passing to Kq-invariants.

The G'-action on L yields an isomorphism m} ((wy ® Ly)*) = Lo K

(wy ® Ly)*, and the G-action on Dy (as on a left Oy-module yields an
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isomorphism m},(Dy) = Og X Dy. These isomorphisms identify I'z(F®T)’
with I'(G x Y, (F' ® L)X (DTy @ (wy ® Ly )*)). This vector space coincides
with T'(G, F" ® L&) @ T'(Y, DTy ® (wy ® Ly)*) which is (F&['(T))". Our
B is composition of these identifications. We leave it to the reader to check
that this is an isomorphism of Harish-Chandra complexes compatible with

the Kq-actions. O

7.9. Extra symmetries and parameters.

7.9.1. In the main body of this paper (namely, in 5.4) we use an equivariant
version of the Hecke pattern from 7.1.1. Namely, we are given an extra
Harish-Chandra pair (I, P) that acts on (G, K), and we are looking for an
(I, P)-equivariant version of 7.1.1(a)-(d). Let us explain very briefly the
setting; for all the details see the rest of this section. The Hecke category H
is a derived version of the category of weakly (I, P)-equivariant D-modules
on K\G/K. This is a monoidal triangulated category (which is the analog of
7.1.1(a) in the present setting). H acts on the appropriate derived category
Dpc of (I x g, P x K)-modules; this is the Harish-Chandra counterpart
similar to 7.1.1(c). The geometric counterpart looks as follows. Let X be
a ”parameter” space equipped with an ([, P)-structure X" (see 2.6.4). We
consider a family Y/ of smooth varieties with G-action parametrized by X"
We assume that the ([, P)-action on X" is lifted to Y in a way compatible
with the G-action. Then #H acts on the D-module derived category D(B) of
the X-stack B = (P x K)\ Y” (which is the version of 7.1.1(b)). We have
an appropriate localization functor LA : Dgec — D(B) which commutes
with the Hecke Actions (this is 7.1.1(d)). For an algebra A with an (I, P)-
action one has an A-linear version of the above constructions: one looks at
Harish-Chandra modules with A-action and D-modules with Ax-action (see
2.6.6 for the definition of Ax). The corresponding triangulated categories
are denoted by Ha, Dyc 4, and D(B, Ax).
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The constructions are essentially straightforward modifications of con-
structions from the previous sections; we write them down for the sake of
direct reference in 5.4.

Remark. The equivariant Hecke pattern does not reduce to the plain
one with G replaced by the group ind-scheme that corresponds to the
Harish-Chandra pair ([ x g, P X G). Indeed, our H is much larger then
the corresponding ”plain” Hecke category: the latter is formed by strongly
P-equivariant D-modules on K \ G/K. In particular, H contains as a tensor
subcategory the tensor category of (I, P)-modules. The above structure of

fibration Y/X is needed to make the whole H act on D(B).

7.9.2. So we consider a Harish-Chandra pair ([, P) that acts on (G, K).
Here P could be any affine group scheme (it need not be of finite type), but
we assume that Lie P has finite codimension in . Consider the DG category
H¢ of Q-complexes F on K \ G/K equipped with an ([, P)-action on F' that
lifts the (I, P)-action on G/K. Such F is the same as an ([, P) x (Kq x Kq)-
equivariant Q-complex on G. We call H¢ the ([, P)-equivariant pre Hecke
category. The morphisms in the homotopy category of H¢ which are D-
quasi-isomorphisms of plain -complexes form a localizing family. The
(I, P)-equivariant Hecke category H is the corresponding localization. So
H is a t-category with core equal to the category of D-modules on G/K
equipped with a weak (I x €, P x K)-action (here K acts on G/K by left
translations) such that the action of K is actually a strong one.

Now H¢ is a DG monoidal category, and H is a monoidal triangulated
category. Indeed, all the definitions from 7.6.1 work in the present situation.

Remark. Take a Harish-Chandra module V' € M(I, P). Assign to it the
corresponding skyscraper sheaf at the distinguished point of G/ K considered
as an 2-complex sitting in degree zero and equipped with the trivial Kq-
action. This is an object of H¢. The functors M([, P) — H¢ H are fully
faithful monoidal functors. Note that M(I, P) belongs in a canonical way

to the center of the (pre)Hecke monoidal category, i.e., for any V' as above,
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F € H there is a canonical isomorphism V&® F =R FF®V compatible with
tensor products of F’s and V’s. Indeed, both objects coincide with V ® F'.

7.9.3. To define the Hecke Action on D-modules we need to fix some
preliminaries.

Let X be a smooth variety, Y be a Dx-scheme. A Dx, x-complex on'Y is
a DG €y, x-module equipped with a Dy-structure (:= flat connection along
the leaves of the structure connection on Y/X). Precisely, the Dx-structure
on Y defines on Qy,x(Dx) := Dx 58)){ Qy/x the structure of an associative
DG algebra. Now a Dx {2/ x-complex on Y is a left DG Qyx(Dx)-module
which is quasi-coherent as an Oy-module.

The DG category C(Y,Dx$,x) of Dx, x-complexes on Y is a tensor
category (the tensor product is taken over (2y,x). The pull-back functor
C(MY (X)) — C(Y,DxQ/x), M — Qy/X(%Qy/X, is a tensor functor. In
particular C'(Y,DxQ/x) is an M (X)-Module (one has M ® F = M(% F).

Note that for a Dx {2, x-complex F' on Y we have an absolute {2-complex
QxF defined as de Rham complex along X with coefficient in F Y. So
if Y is a smooth variety then we have a notion of D-quasi-isomorphism
of Dx{)/x-complexes. The corresponding localization of the homotopy
category of C(Y,Dx)/x) is denoted D(Y,Dx, x). The functor Qx :
D(Y,DxQ/x) — D(Y,Q) is an equivalence of triangulated categories.

7.9.4. Now let X be a smooth variety equipped with a ([, P)-structure X"
(see 2.6.4). Let Y” be a scheme equipped with an action of (I, P) x G
and a smooth morphism p" : Y — X’ compatible with the actions (so
G acts along the fibers and p" commutes with the actions of ([, P)). Set
Y := P\ Y/. This is a smooth variety equipped with a smooth projection
p: Y — X. The (I, P)-action on Y" defines a structure of Dx-scheme
on Y. The G-action on Y yields a horisontal G x-action on Y (the group
Dx-scheme Gx was defined in 2.6.6).

*)As in 7.2 the functor 2x admits left adjoint functor Dx.
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Consider the stack B := Kx\Y = (Px K)\Y" fibered over X so we have
the corresponding category of left D-modules M‘(B) and the t-category
D(B) of Q-complexes on B. This t-category has a different realization in
terms of Dx(2,x-complexes that we are going to describe.

Consider the DG group Dx-schemes Gox = (Gx,Qq,/x), Kax. One
defines a Kqx-action on a DXQ/X—complex on Y asin 7.6.4. Now we have
the DG category C(Kx \Y,Dx{)/x) of Kox-equivariant Dx (), x-complexes
on Y. Localizing its homotopy category by D-quasi-isomorphisms we get
the triangulated category D(Kx \ Y,Dx€/x). The de Rham functor 2x
identifies it with D(B).

Now we can define the Hecke Action on D(B). First let us construct the
Action ® of H on C(Kx \Y,DxQ/x). Indeed, for F' € H° we have a
Dx / x-complex Fx on Gx which is Kqx-equivariant with respect to the
left and right translations. So for ' € C(Kx\Y,DxQ,x) we have a Dx Q) x-
complex F'XIT on the Dx-scheme Gx X Y (the fiber product of Gx and Y
over X). It is Kqx-equivariant with respect to all the K x-actions on Gx xY.
So FIX T descents to Gx x Y. We define F&T e C(Kx \Y,DxQ/x) as
the push-forward of the a{)(cfve complex by the action map Gx X Y — Y.
The Hecke Action ® : H x D(B) — D(B) is the right derivecf )f(unctor of
(53; as usually you may compute it using loose Dx (2, x-complexes.

Remark. For W € M(I,P) C H® and T as above one has WeT =
W®T =Wyx ®@T (the Dx-module Wx was defined in 2.6.6).

7.9.5. Let us define the Harish-Chandra categories. Let G’ be as in 7.8.1
and assume that we are given a lifting of the (I, P)-action on G to that on G’
which preserves K C G’ and fixes G,,, C G'. So we have the Harish-Chandra
pair (I, P) x (¢/,K’). Let Cgc be the category of ([, P) x (kg x g, K)'-
complexes, i.e., (kg X g, K)-complexes equipped with a compatible (I, P)-
action (see 7.8.1 for notation). Let Dpc be the corresponding derived

category. This is a t-category with core Mpyc = M(I x g, P X K)'. Below
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we call the objects of Cyc and Dy simply Harish-Chandra compleres and
those of M yc Harish-Chandra modules.

The pre Hecke category H¢ acts on Cgc. Indeed, the constructions of
7.8.2 make perfect sense in our situation (([, P) acts on F ®V by transport
of structure). The H-Action ® on Dy is the right derived functor of Ci)
The results of 7.8.4-7.8.5 render to the present setting without changes.

Remark. For W € M(I,P) C H® and a Harich-Chandra complex V/
one has a canonical isomorphism of Harish-Chandra complexes WéV =

WeV=WaV.

7.9.6. Let us pass to the localization functor. The construction of 7.8.6
renders to our setting as follows. We start with Y as in 7.9.4. Assume
that it carries a line bundle Ly~ and the (I, P) x G-action on Y is lifted
to an action of (I, P) x G’ on Ly~ such that G,, C G’ acts by the character
opposite to the standard one. Let Ly be the descent of Ly~ to Y defined
by the action of P. This line bundle carries a canonical Dx-structure that
comes from the [action on Ly . It also carries a horisontal action of G'y.

We have a DG functor
(338) AQ:AQL: CHC—>C(K)(\Y,D)(Q/X),

Aq(V) = Homgy (DRyy,wy x X Ly x V)[—dim K] (cf. (336)). As in 7.8.6
this functor sends quasi-isomorphisms to D-quasi-isomorphisms, so it yields

a triangulated functor
(339) LA = LAﬁ : DHC — D(B)

which is right t-exact. The corresponding right exact functor between the
cores Az : Mo — M (B) sends V to the K x-equivariant left Dy-module
(Dy,;x ® Ly) @ Vx.
Ulg’y)
The functors Aq, LA commute with the Hecke Action. Indeed, the

proof of 7.8.8 renders to our setting word-by-word. In particular for any

W e M(L,P),V € Dgc one has LA(W @ V) = Wx ® LA(V).
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7.9.7. A-linear version. Assume that in addition we are given a commuta-
tive algebra A equipped with an (I, P)-action. One attaches it to the above
pattern as follows.

(i) Denote by H¢ the DG category of objects F' € H® equipped with an
action of A such that the actions of A and (I, P) are compatible and F is
A-flat. Let H 4 be the corresponding D-derived category. One defines the
convolution product as in 7.9.2 (the tensor product is taken over A) so H%
and H 4 are monoidal categories. Let M(I, P)Ql be the tensor category of
flat A-modules equipped with an action of ([, P). As in the Remark in 7.9.2
one has canonical fully faithful monoidal functors M(l, P)f;l — HG, Ha
which send M(, P)fll to the center of Hecke categories.

(ii) Assume we are in situation 7.9.4. Consider the category M‘(B, Ax)
of left D-modules on B equipped with Ax-action (the Dx-algebra Ax was
defined in 2.6.6). Let C(B, Ax ® Q) be the DG category of {2-complexes
on B equipped with an Ax-action and D(B, Ax) be the localization of the
corresponding homotopy category with respect to D-quasi-isomorphisms.
This is a t-category with core M%(B,Ax). As in 7.9.4 one may also
define this t-category in terms of Dx{,x-complexes. Namely, let C'(Kx \
Y, AxDx)x) be the DG category of objects of C(Kx\Y, DxQ,x) equipped
with an Ax-action (commuting with the Kqy-action). Localizing it by D-
quasi-isomorphisms we get the triangulated category D(Kx\Y, AxDxQ/x).
The de Rham functor Qx identifies it with D(B, Ax).

The Hecke Action in the A-linear setting is defined exactly as in 7.9.4.
The statement of the Remark in 7.9.4 remains true (you take the tensor
product over Ax).

(iii) Assume we are in situation 7.9.5. One defines C'y¢ 4 as the category
of Harish-Chandra complexes equipped with a compatible A-action (so the
actions of A and (¢q X g, K)' commute). Let Dgc 4 be the corresponding
derived category. This is a t-category with core M g 4 equal to the category

of (I x g, P x K)-modules equipped with a compatible A-action. All the
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constructions and results about the Hecke Action remain valid without
changes. In the Remark in 7.9.5 you take W € M(I, P)Ij;l; the tensor product
W ® V is taken over A. The A-linear setting for the localization functors
requires no changes.

Remark. There are obvious functors (tensoring by A) which send the
plain categories as above to those with A attached. These functors are
compatible with all the structures we considered. The forgetting of the
A-action functors D(B,Ax) — D(B), Dgca — Dpgc are Morphisms of

‘H-Modules. They commute with the localization functors.

7.9.8. Variant. Assume that in addition to A we are given a morphism
of commutative algebras e : 3 — A compatible with the ([, P)-actions.
Here 3 := U(g) 4% (so if G is connected then 3 is the center of U(g)’).
Then 3 acts on any object of Mpyca or Cyeo 4 in two ways. Denote by
MS%c 4, Cho 4 the categories of those objects on which the two actions of
3 coincide; let D% be the corresponding derived category. The Action of
HSG on Cpc a is 3-linear (see 7.8.4) so it preserves Cfe 4. Thus we have
an Action of Hy on D%~ 4. The obvious functor Df» 4 — Dpca is a
Morphism of H 4-Modules.

Remark. If e is surjective then M%; 4 is the full subcategory of Mpyc

that consists of Harish-Chandra modules killed by Kere. Same for Cfq 4.

7.10. D-crystals. Below we sketch a crystalline approach to D-module
theory. As opposed to the conventional formalism it makes no distinction
between smooth and non-smooth schemes.

In this section ”scheme” means ”C-scheme locally of finite type”. Same
for algebraic spaces and stacks. The formal schemes or algebraic spaces are

assumed to be locally of ind-finite type”.

7.10.1. Let f : Y — X be a quasi-finite morphism of schemes. Then
Grothendieck’s functor Rf' : DY(X,0) — DY(Y,0) is left t-exact. Set

*).= any closed subscheme is of finite type.
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fli=HORf' : M(X,0) = M(Y,0); this is a left exact functor. Therefore
the categories M(X,O) together with functors f' form a fibered category
over the category of schemes and quasi-finite morphisms.

Here is an explicit description of f'. According to Zariski’s Main Theorem
any quasi-finite morphism is composition of a finite morphism and an open
embedding; let us describe f' in these two cases. If f is an open embedding
(or, more generally, if f is étale) then f' = f*. If f is finite then f'is the
functor right adjoint to the functor f. : M(Y,0) — M(X, O). Explicitely,
f+Oy is a finite Ox-algebra, and the functor f, identifies M(Y, Q) with
the category of f,Oy-modules which are quasi-coherent as O x-modules.
Now for an O@-module M on X the corresponding f,Oy-module f,f'M is
Homo (f«Oy, M). In particular, if f is a closed embedding then f'M c M
is the submodule of sections supported (scheme-theoretically) on Y.

The above picture extends to the setting of formal schemes (or algebraic
spaces) as follows. For a formal scheme X we denote by M(X,0) the
category of discrete quasi-coherent (’)X—modules*). For example, if X is
the formal completion of a scheme V along its closed subscheme X then
M(X ,O) coinsides with the category of O-modules on V' supported set-
theoretically on X. If X is affine then for any M € M(X,©) one has
M = UMy where X’ runs the (directed) set of closed subschemes of
X and My € M(X',0) is the submodule of sections supported scheme-
theoretically on X’. The pull-back functors f' extend in a unique manner )
to the setting of quasi-finite morphisms of formal algebraic spaces. Indeed,
if f:Y — X is such a morphism then to define f': M(X,0) = M(Y,0)
we may assume that X, Y are affine; now f'M = U f|!y,MX/ where Y’ is a
closed subscheme of Y and f(Y’) € X’. We leave it to the reader to describe
f! explicitely if f is ind-finite”.

*)This category is abelian. For a more general setting see 7.11.4.
*)We assume that they are compatible with composition of f’s.

)= Yied — Xieq is finite.
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7.10.2. For a scheme or an algebraic space X denote by X, the category
of diagrams X <j—S<i>§ where j is a quasi-finite morphism and ¢ a closed
embedding of affine schemes such that the corresponding ideal 7 C Oy is
nilpotent. We usually write this object of X, as (.S, S’) or simply S. A
morphism (S,5) — (5,5) in X, is a morphism of schemes ¢ : S — 5’
such that ¢(S) C S" and ¢|s : S — S’ is a morphism of X-schemes.

Note that for any ¢ as above the morphism ¢ : S — S is quasi-finite.
Therefore the categories M(S , O) together with the pull-back functors &'
form a fibered category /\/l!(Xcr7 O) over X, .

Sometimes it is convenient to consider a larger category X which consists
of similar diagrams as above but we permit S to be a formal scheme (soZ

is a pronilpotent ideal, i.e., S;ed = Sred). As above we have the fibered

category M'(Xa., O) over Xg.

7.10.3. Definition. A D-crystal on X is a Cartesian section of M' (X, O).
D-crystals on X form a C-category Mp(X).

Explicitely, a D-crystal M is a rule that assigns to any (S,5) € X, an
O-module Mg = Mg & on S and to a morphism ¢ : (S,5) — (5,5) an
identification vy : Mg = oM & compatible with composition of ¢’s.

In particular, if ¢ is a closed embedding defined by an ideal Z C Og, then
Mg is the submodule of Mg, that consists of sections killed by Z.

In definition 7.10.3 one may replace X, by Xs-: we get the same category
of D-crystals. Indeed, for (S,5) € X, one has Mz = UM(S,S') where §'

runs the set of all subschemes S ¢ S’ C S.

7.10.4. Variants. Let Xc(i), ..,Xc(,i})) be the full subcategories of X that
consist of objects (.5, S) which satisfy, respectively, one of the following
conditions (in (ii)-(iv) we assume that X is a scheme):

(i) § — X is étale.

(ii) S — X is an open embedding.

(iii) (assuming that X is affine) SR X.
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(iv) S — X is a locally closed embedding.

Denote by Mg) (X), ..,ngj) (X) the categories of Cartesian sections of
M (X, O) over the corresponding subcategories X(Eff ). One has the obvious
restriction functors Mp(X) — Mg) (X). We leave it to the reader to check
that these functors are equivalences of categories*).

) is (the underlying category of ) Grothendieck’s

Remark. The category Xc(ﬁl
crystalline site of X, so D-crystals are the same as crystals for the fibered
category M!(Xc(f;i), O) in Grothendieck’s terminology. We consider X, as
the basic set-up since it directly generalizes to the setting of ind-schemes

(see 7.11.6).

7.10.5. Let f : Y — X be a quasi-finite morphism. It yields a faithful
functor Y., — X, which sends Y(LS — S to Y(ﬁS — S. We get
the corresponding “restriction” functor f' : Mp(X) — Mp(Y). Tt is
compatible with composition of f’s.

In particular, categories Mp(U), where U is étale over X, form a fibered

category over the small étale site X¢ which we denote by Mp(Xg).

7.10.6. Lemma. D-crystals are local objects for the étale topology, i.e.,
Mp(Xeg) is a sheaf of categories. O

7.10.7. Below we give a convenient “concrete” description of D-crystals.
Assume we have a closed embedding X < V where V is a formally
smooth”) formal algebraic space such that X;oq = Vied ). Such thing always
exists if X is affine: one may embed X into a smooth scheme W and take
for V' the formal completion of W along X.
For n > 1 let V<"> denotes the formal completion of V" along the

diagonal V' C V" (or, equivalently, along X C V™). The projections p1,ps :

)1t suffices to notice that 7.10.6, 7.10.7, 7.10.8 together with the proofs remain literally
valid if we replace Mp(X) by M%”(X).
*)see 7.11.1.

*)i.e., the ideal of X in Oy is pronilpotent.
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V<> 5V, pio,pas,pi13 : V2> — V<2 are ind-finite, so we have the
functors p; : M(V,0) — M(V<2> 0), pij M(V<2> 0) = M(V<3>0).
Since V is formally smooth these functors are exact.

Denote by Mpy (X) the category of pairs (My, 7) where My € M(V,0)

and 7 : p!IMV = p!QMV is an isomorphism such that

(340) p!23(7)P!12 (1) = P!13(7')-

7.10.8. Proposition. The categories Mp(X) and Mpy (X) are canonically

equivalent.

Proof. We deal with local objects, so we may assume that X is affine. For
M € Mp(X) we have My = Mx ) € M(V,0). Since p;My = My <z>
we have 7 that obviously satisfies (340). Conversely, assume we have
(My,7) € Mpy(X); let us define the corresponding D-crystal M. For
(S,8) € X choose j/ : S — V that extends the structure morphism
j S — X (such j' exists since V is formally smooth). Consider the
Og-module j'My. If 5+ § — V is another extension of j then there
is a canonical isomorphism v : §'My =" My. Namely, (5/,7") maps
S to V<2 hence j'My = (§,5")'p} My; now use the similar description
of j"'My and set vjn = (j',5")'(t). By (340) these identifications are
transitive, so j/!MV does not depend on the choice of j/. This is M(S,S‘)'

The definition of structure isomorphisms « for M is clear. O

7.10.9. Corollary. (i) For any X the category Mp(X) is abelian.
(ii) For S € X,, the functor Mp(X) — M(S,0), M My is left exact.
(iii) For a quasi-finite j : Y — X the functor j' : Mp(X) — Mp(Y) is

left exact. If j is étale then j' is exact.

Proof. The statement (i) is true if X is affine. Indeed, choose X — V as
in 7.10.7. The category Mpy (X) is abelian since the functors pi-, péj are

exact, so we are done by 7.10.8.
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If j : U — X is an étale morphism of affine schemes then the functor
§': Mp(X) = Mp(U) is exact. Indeed, let U < Vi be the U-localization
of X < V (so Vi is étale over V); then j' coincides with the étale localization
functor Mpy (X) — Mpy, (U) which is obviously exact.

Now (i) follows from 7.10.6. The rest is left to the reader. O

7.10.10. Lemma. For an étale morphism p : U — X the functor p' admits
a right adjoint functor p, : Mp(U) - Mp(X). If p is an open embedding
then p'p, is identity functor.

Proof. Here is an explicit construction of p,. For (S, 5’) € X set Sy =
S}>§ U; let ps : Sy — S be the étale morphism whose pull-back to S < $
is the projection Sy — S. So (SU,S'U) € U, and we have the functor
Xer = Uers (S,8) = (Su, Sur).

Now for N € Mp(U) set (p«N)g := (Ps)-Ng,. The identifications

come from the base change isomorphism ¢'pgr. = ﬁg.gzb!U. U

Now let i : Y < X be a closed embedding and j : U := X \ Y — X the
complementary open embedding. Denote by Mp(X)y the full subcategory
of Mp(X) that consists of those D-crystals M that j'M = 0.

7.10.11. Lemma. (i) The functor i' admits a left adjoint functor i, :
MD(Y) — MD(X)
(ii) ix sends Mp(Y) to Mp(X)y and

iv: Mp(Y) = Mp(X)y, i : Mp(X)y — Mp(Y)

are mutually inverse equivalences of categories.
(iii) Let p : Z — X be a quasi-finite morphism; set Yz := Y x X, so we
z
haveiy : Yy, — Z and py : Yz — Y. Then one has a canonical identification

of functors p'i, = iy.py : Mp(Y) — Mp(Z).

Proof. Here is an explicit construction of i,. Take a D-crystal N on Y.

For (S, 5’) € X, set Sy = SxY, so Sy is a closed subscheme of S,
X
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hence of S. The projection Sy — Y is quasi-finite, so N yields a D-
crystal on Sy. We define (i, )(S,S) as the corresponding O-module on
S (see 7.10.3). The structure isomorphisms Qg for 2. N come from the
corresponding isomorphisms for NV in the obvious manner.

The adjunction property of i., as well as properties (ii), (iii), are clear. [

7.10.12. Proposition. If X is smooth then Mp(X) is canonically equivalent
to the category M(X) of D-modules on X.

Proof. We use description 7.10.7 of Mp(X) for V = X. So a D-crystal M
amounts to a pair (My,7) where Mx € M(X,0) and 7 : p} Mx = phMx is
an isomorphism of O-modules on X <?> which satisfies (340). Let us show
that such 7 is the same as a right D-module structure on Mx.

Consider Dx as an object of M(X<?>.0) (via the Ox-bimodule
structure). There is a canonical isomorphism Dy = p’l(QX which identifies
0 € Dx with the section (f ® ¢ — f0(g9)) € Homo,(Ox<2>,0x) =
p!IOX. Therefore we have Mx ® DXQMX(;G;p!IOX 3p!1MX. Hence, by

Ox
adjunction,

(341) Hom(p} Mx, phMyx) = Hom(pe.pi Mx, Mx) = Hom(Mx ®Dx, Mx).

Here we consider Mx ® Dx as an Ox-module via the right O-module
structure on Dx. So 7 : pllMX — p!2MX is the same as a morphism
Mx ® Dx — Mx. One checks that the conditions on 7 just mean that
this arrow is a right unital action of Dx on Mx. See the next Remark for

a comment and some details. O

7.10.13. Remark. Let us discuss certain points of 7.10.12 in a more general
setting. Since Oy<2> is a completion of Ox ® Ox one may consider objects
of M(X<%> 0) as certain sheaves of (’)X—b(icmodules called Diff-bimodules
on X7). If A, B are Diff-bimodules then such is A ® B (so M(X<2> 0)
is a monoidal category). Notice that A gi) B is Oai:tually an object of

X

“In [BB93] the term “differential bimodule” was used; we refer there for the details.
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M(X<3> ) in the obvious way. By adjunction, for any C' € M(X<?>,0)
a morphism of Diff-bimodules A 58) B — C is the same as a morphism
A(;@ B — pi3C in M(X<3>,0). r;hus for a Diff-algebra”) A its product
am(funts to a morphism m : Aé@ A = pigAin M(X<3>,0) (we leave it
to the reader to write associatiéty property in these terms). Similarly,
for a (right) A-module Mx we may write the A-action as a morphism
a: My 58) A — phMx in M(X<?>,0); the action (associativity) property
just Says)fchat the two morphisms Mx ® A ® A — pyM in M(X<3>,0)
obtained from m and a coincide. Assou);ne On)z)w that A = Dx or, more
generally, A is a tdo. Then m : A 5@ A — p!13A is an isomorphism”). If
Mx is a (possibly, non-unital) A—mod);le then a : Mx gi))( A — phMy is an

isomorphism if and only if our module is unital.

7.10.14. We leave it to the reader to identify (in the smooth setting) the
functors f', px, i, from, respectively, 7.10.5, 7.10.10, and 7.10.11(i), with the
standard D-module functors.

Combining 7.10.12 and 7.10.11(ii) we see that if X is any algebraic space
then D-crystals on X are the same as D-modules on X in the sense of

[Sa91]").

7.10.15. The rest of the section is a sketch of crystalline setting for tdo
and twisted D-modules. First we discuss crystalline O*-gerbes. In case of a
smooth scheme such gerbe amounts to an étale localized version of the notion
“tdo up to a twist by a line bundle”. Then we define for a crystalline O*-

gerbe C the corresponding abelian category of twisted D-crystals M¢(X).

7.10.16. As before, X is any algebraic space. The category X, carries

a structure of site (étale crystalline topology): a covering is a family of

>k)i.e., an algebra in the monoidal category of Diff-bimodules.

>k)Probaubly this property characterizes tdo’s.

*)Saito prefers to deal with analytic setting, but his definitions have obvious algebraic

version (and the above definitions have obvious analytic version).
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morphisms {(S;,5;) — (S,5)} such that {S; — S} is an étale covering of
S. Tt carries a sheaf of rings O, where O..(S,5) = O(S). So we have the

corresponding sheaf O, of invertible elements.

7.10.17. Definition. A crystalline O*-gerbe on X is an O -gerbe on X, ).

Explicitely, this means the following. Consider the sheaf of Picard
groupoids Pice on X where Pice, (.S, S )= Pic(S ) (= the Picard groupoid
of line bundles on S) Now a crystalline O*-gerbe on X is a Pic.--Torsor
C over X, (i.e., C is a fibered category over X, equipped with an Action
of Pice, which makes each fiber C(S) = C(S, S) a Pic(S)-Torsor) such that
locally on X, our C(S, S ) is non-empty.

Crystalline O*-gerbes form a Picard 2-groupoid G..(X). The group of
equivalence classes of gerbes is H%(X,, O%.). For a pair of gerbes C, C’
Morphisms ¢ : C — C' form a Pic(X,,)-Torsor. Here Pic(X,,) is the Picard

groupoid of OF, -torsors on Xe ).

7.10.18. Remarks. (i) Let X¢ . be the small étale crystalline site of X (as
a category it equals Xg) from 7.10.4, the topology is induced from X,;).
A crystalline O*-gerbe on X yields by restriction an Of,.-gerbe on Xg; .
We leave it to the reader to check that we get an equivalence of the Picard
2-groupoids of gerbes*).

(i) Our G.-(X) is the Picard 2-groupoid associated to the complex
T<oRT'(X¢r, OF.) = 7<oRI'(X¢ter, OF.). To compute RI' look at the
canonical ideal Z., C O, defined by (O /Z.)(S, S) = O(S). There is
a canonical morphism of ringed topologies i : X¢ — Xeter, i 1(S, S) =9,

and Z., fits into short exact sequence 0 — Z., — O — 1.Ox — 0. Passing

>k)i.e., a gerbe over X., with band O, in terminology of [De-Mi].

*)If X is smooth then such torsor is the same as a line bundle with flat connection on

X.

*)We consider X¢r as the basic setting since it directly generalizes to the case of ind-

schemes, see 7.11.6).
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to sheaves of invertible elements we get the short exact sequence

(342) 0—Ze "B Of —i.0% — 0
where exp is the exponential map (since each Z.,.(S, S ) is a nilpotent ideal our
exp is correctly defined). Since RI'(X¢ter,i.0%) = RI'(X¢, O). one may
use (343) to compute RI'(X,., O%.). For example, since H*(Xr,Zer) = 0
the group H%(X,,, Of,) is the group O*(X)con of locally constant invertible
functions on X.

(iii) Assume that X is smooth. Set Q)Z(l = (0 — Q% — 0%..). According
to Grothendieck, one has RI'(X,,,O.) = RI'(X,Qx) and RI' (X, Zor) =
RT(X,, Cone(Op — i.0x)[—1]) = RT(X, Q%'). Thus (342) yields the long

cohomology sequence

0 — O (X)eon — OF(X) X2 0l (X) — HY(X.,0F) —

— Pic(X)SH?(X,0%") — H?(Xer, OF,) — Br(X) — 0.

Here H'(X,., O%,) is the group of isomorphism classes of line bundles with
flat connection on X. One has 0 at the right since H?(X¢, O*) = Br(X) is
a torsion group and H 3(XCT,ICT) is a C-vector space.

(iv) If X is a scheme then one may consider a weaker topology Xzar cr
(as a category it equals X9 from 7.10.4). We get the corresponding
Picard 2-groupoid Gzarcr(X) of OF.-gerbes on Xz o By étale descent
the pull-back functor Gzurer(X) — Ger(X) is a fully faithful Morphism
of Picard 2-groupoids, i.e., Gzarr(X) is the 2-groupoid of Zariski locally
trivial crystalline O*-gerbes. It is easy to see’) that C € G.-(X) belongs to
GZarer(X) if (and only if) the O*-gerbe i'C on X is Zariski locally trivial.
For example, if X is smooth then H?(X 74, 0*) = 0,50 Ger(X) /G zar er(X) =
Br(X).

“ef. 7.10.22.
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7.10.19. Below we give a convenient “concrete” description of (appropri-
ately rigidified) crystalline O*-gerbes.

Assume we have X < V asin 7.10.7. For C € G.,(X) and an infinitesimal
neighbourhood X’ C V of X we have the Pic(X')-Torsor C(X’). Set
C(V) = l(i£1C(X’) (:= the groupoid of Cartesian sections of C over the
directed set of X"’s); this is a Pic(V)-Torsor.

Consider pairs (C,Ey) where C € G (X) and & € C(V). Such objects
form a Picard groupoid GY.(X). Namely, a morphism (C,&v) — (C', &) is
a pair (F,v) where F is a Morphism C — C’ and v : F(§y) = E|,"). We are
going to describe GV (X).

We use notation from 7.10.7. Let R be a line bundle on V<?> and
B : piaR @ pi3R = pisR an isomorphism of line bundles on V<3~ such that
the following diagram of isomorphisms of line bundles on V<4> commutes

(associativity condition):

Ri2 ® Roz3 ® R3a — Ri13 @ Raa

(343) l l

Ri2 ® Rog — R

Here R;; is the pull-back of R by projection p;; : V<% — V<2> and the
arrows come from 3.

Such pairs (R, 3) form a Picard groupoid G(V) (with respect to tensor
product).

7.10.20. Proposition. The Picard groupoids GY.(X) and G(V') are canoni-

cally equivalent.

Proof. For (C,Ev) € GY.(X) set R := Hom(piEv,p5Ey) € Pic(V) and define
B as the composition isomorphism; it is clear that (R,5) € G(V). So we
have the Morphism of Picard groupoids G¥.(X) — G(V).

*)Notice that such pairs have no symmetries, so QCVT(X) is a plain groupoid (while

Ger(X) is a 2-groupoid).
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The inverse Morphism assigns to (R, 3) the pair (C,Ey) glued from trivial
gerbes by means of (R, 3). Namely, one defines (C, Ey ) as follows. Since V' is
formally smooth the structure morphism j : S — X extends to j’ : SV,
Now C(S) is a Pic(S)-Torsor together with the following extra structure:

(i) For any j' as above we are given an object of C(S’) denoted by j*Ey.

(i) If 5" : S — V is another extension of j then we have an identification
of line bundles ;15 : Hom(j*Ev,§ *Ev) = (5", j')*R.

We demand that (ii) identifies composition of Hom’s with the isomor-
phism defined by S. It is easy to see that such C (S ) exists and unique (up

to a unique equivalence). The fibers C(.5) glue together to form a crystalline

O*-gerbe in the obvious way. We have &y € C(V') by construction. O

7.10.21. Remark. Let &, be another object of C(V) and (R/,5’) € G(V)
the pair that corresponds to (C,&{,). Set L := Hom(Ev, &) € Pic(V).
Then R' = Adz R := (p5L) @ R ® (p;£)®~! and B = Ad. B.

Now let C be any crystalline O*-gerbe on X, and assume that we have
X — V as above. To use 7.10.20 for description of C one has to assure that

C(V) is non-empty.

7.10.22. Lemma. Assume that X is affine and V' is a union of countably

many subschemes. Then C(V) is non-empty if ) C(X, X) is non-empty.

Proof. Let X’ C V be an infinitesimal neighbourhood of X. Then any
Ex € C(X, X) admits an extension Ex» € C(X, X'), and all such extensions
are isomorphic. Now we have a sequence X ¢ X ¢ X2 of infinitesimal
neighbourhoods of X such that V = hng (") One defines by induction
a sequence Exm € C(X, X ™) together with identifications &y (nt1)|xm) =
Exm. This is & € C(V). O

*)and, certainly, only if
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7.10.23. Remarks. (i) Consider the O*-gerbe i'C on Xg (so i'C(U) =
C(U,U)). Then C(X,X) # 0 if and only if ¢'C is a trivial gerbe, i.e., its
class in H(Xy, ©O*) = Br(X) vanishes”).

(ii) For any algebraic space X and C € G.(X) one may use 7.10.20 to
describe C locally on Xg;. Namely, there exists an étale covering U; of X
such that U; are affine and C(U;, U;) # (). Embed U; into a smooth scheme
and take for V; the corresponding formal completion. Now, by 7.10.22, we
may use 7.10.20, 7.10.21 to describe Cy,.

7.10.24. Definition. For C € G (X) a C-twisted D-crystal on X is a
Cartesian functor M : C — M'(X,., ©) such that for any £ € C(S) and
f € O*(S) one has M(fe) = fridag(ey.-

The C-twisted D-crystals form a C-category M¢(X). It depends on C in
a functorial way (to a Morphism C — C’ there corresponds an equivalence
of categories M¢(X)= M (X), etc.).

The categories M¢(U) = Mc, (U), U € Xg, form a sheaf of categories
M (Xg) over Xg in the obvious way.

Let C'" be the trivialized gerbe, so C¥(S) = Pic(S). The Criv-
twisted D-crystals are the same as plain D-crystals. Namely, one identifies
M € Mciriv(X) with the D-crystal Mg := M(Og).

Remark. In the above definition we may replace X, by Xgi¢er. If X is a
scheme and C € Gz4p o (X) then we may replace X, by Xzgrer. One gets
the same category Me(X).

7.10.25. Here is a twisted version of 7.10.7, 7.10.8. Assume we are in
situation 7.10.19, so we have (C,&y) € GY.(X) and the corresponding
(R,B) € G(V) (see 7.10.20). The category Mc(X) may be described
as follows. Let Mg(X) = Mgg(X) be the category of pairs (My,7)
where My € M(V,0) and 7 : (piMy) ® R=p,My is an isomorphism

*)This class is the image of the class of C by the map H* (X, O%) — H*(Xer,i-0%) =
Br(X).
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in M(V<?> O) such that”)

(344) Pa3(T)Pia(7) = pi3(7).

7.10.26. Lemma. The categories Mc(X) and Mg (X) are canonically

equivalent.

Proof. For M € Mc(X) set My = M(&y) := JM(Ex, x)), and define
T as composition of the isomorphisms (pllMV) ®R = M(piév) @ R =
M((pi&yv)®R) = M(piEv) = phyMy . The rest is an immediate modification
of the proof of 7.10.8. O

7.10.27. Lemma. For any X and C € G.(X) the category Mc(X) is

abelian.

Proof. An obvious modification of the proof of 7.10.9. Use 7.10.23(ii),
7.10.22, 7.10.26. U

7.10.28. From now on we assume that X is a smooth algebraic space. We
want to compare the above picture with the usual setting of tdo and twisted
D-modules. First let us relate crystalline O*-gerbes and tdo").

Look at 7.10.19 for V = X. Consider the Picard groupoid GJ.(X) :=
GY(X) of pairs (C,Ex) where C is a crystalline O*-gerbe on X and £y €
C(X).

Here is a convenient interpretation of G.(X). Consider Z.-gerbes on X
(i.e., Zo,-gerbes on X,,). Since H°(X.,, Z.) = 0 these gerbes form a (shifted)
Picard groupoid GZ.,(X). The exponential morphism Z.,. — O}, yields the
functor exp : GZe(X) — Ger(X). Since Zix x) = 0, for any Z.,-gerbe B the
groupoid By is trivial, so the groupoid (exp B)x has a distinguished object
Epx (defined up to a canonical isomorphism). Thus we defined a Morphism

of Picard groupoids
(345) €xp : gIcr(X) — gg“(X)7

“)We use B to identify the modules where the 1.h.s. and r.h.s. of the equality lie.
“see, e.g., [BB93] 2.1 for basic facts about tdo.
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B — (expB,E&px). This is an equivalence of Picard groupoids (as follows
from (342)).

Ezample. The “boundary map” for (342) yields the morphism of Picard
groupoids ¢ : Pic(X) — GZ.(X) (the crystalline Chern class). In terms of
(345) it assigns to £ € Pic(X) the pair (C"™, L).

7.10.29. Proposition. G,.(X) is canonically equivalent to the Picard
groupoid TDO(X) of tdo’s on X.

Proof. Let us identify, according to 7.10.20 for V = X, our GJ.(X) with
G(X). Now for (R,8) € G(X) the corresponding tdo Dr = D g) is
defined as follows. We use notation from 7.10.13. Consider Dx as a

Diff-bimodule (an object of M(X<2>,0)). Set D := Dx ® R. The

x<2>
multiplication morphism mg : Dr ® Dr — p!13DR is the tensor product
o

of the corresponding morphism for DXX and . One checks easily that Dr
is a tdo and G(X) — TDO(X), (R,5) — Dgr is a Morphism of Picard
groupoids.

The inverse Morphism assigns to a tdo A on X the object (R,pf)

where R := Homo (Dx,A) and f is defined by comparison of the

x<2>
multiplication morphisms m for Dx and A. We leave the details for the

reader. O

7.10.30. Remark. Here is another (equivalent) way to spell out the above
equivalence. By (345) G.(X) is equivalent to GZ.ys(X), i.e., to the Picard
groupoid associated with complex 7<1(RI'(Xerys, Ix,,,.)[1]). According to
[BB93] 2.1.6, 2.1.4, TDO(X) is the Picard groupoid associated with the
complex 7<1(RI(X, Q)Z(l)[l]) Now the above complexes are canonically

quasi-isomorphic (see 7.10.18(iii)).

7.10.31. Here is a twisted version of 7.10.12. For (C,€x) € G..(X) consider
the corresponding (R,5) € G(X) and the tdo Dr. Take M € M¢(X).
According to 7.10.26 we may consider M as pair (Mx,7) € Mg(X).



300 A. BEILINSON AND V. DRINFELD

Since”) p!lMX =Mx ® Dx and Dr =Dx & R we may rewrite 7 as an
OX Ox<2>
isomorphism

(346) Myx ® Dg=pyMyx
Ox

in M(X<?> 0). By adjunction, one may consider (346) as a morphism of

O x-modules
(347) My ® Dr — Mx.
Denote by M" (X, Dg) the category of right Dr-modules on X.

7.10.32. Proposition. The morphism (347) is a right unital action of Dg
on Myx. The functor M¢(X) — M"(X,Dr), M — Mx, is an equivalence

of categories.

Proof. Left to the reader (see 7.10.12, 7.10.13). O

7.11. D-modules on ind-schemes. In this section we discuss D-module
theory on formally smooth ind-schemes. Notice that the D-crystal picture
(see 7.10) makes immediate sense in the ind-scheme setting, and it is the
conventional approach (differential operators, etc.) that takes some space

to be written down.

7.11.1. An ind-scheme (in the strict sense) X is a “space” (i.e., a set
valued functor on the category of commutative C-algebras A — X(A) =
X (Spec A)) which may be represented as li_n>1Xa where {X,} is a directed
family of quasi-compact schemes such that all the maps i,5 : Xo — Xg,
a < 8, are closed embeddings. If X can be represented as above so that the

set of indices « is countable then X is said to be an No—ind—scheme.*) IfP

*)See the proofs of 7.10.12 and 7.10.29.

*)Not all natural examples of ind-schemes are No-ind-schemes; e.g., for every infinite-
dimensional vector space V' the functor A — End4(V ® A) is an ind-scheme but not an

Np-ind-scheme.
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is a property of schemes stable under passage to closed subschemes then we
say that X satisfies the ind-P property if each X, satisfies P.

Set Xieq := Ti}nXa red; an ind-scheme X is said to be reduced if X,eq = X.

A formal scheme is an ind-scheme X such that X4 is a scheme (see
7.12.17 for a discussion of the relation between this definition of formal
scheme and the one from EGA). An Ng-formal scheme is a formal scheme
which is an Ny-ind-scheme. The completion of an ind-scheme Z along a
closed subscheme Y C Z is the direct limit of closed subschemes Y’ C Z
such that r’ed = Y,eq. In the case of formal schemes we write “affine” instead
of “ind-affine”. A formal scheme X is affine if and only if X,.q is affine.

Following Grothendieck ([Gr64], [Gr67]), we say that X is formally smooth
if for every A and every nilpotent ideal I C A the map X(A) — X(A/I)
is surjective. It is easy to see that for ind-schemes of ind-finite type formal
smoothness is a local property (cf. the proof of Proposition 17.1.6 from
[Gr67]).”) A morphism X — Y is said to be formally smooth if for any A,
I as above the map from X (A) to the fiber product of Y (A) and X (A/I)
over Y (A/I) is surjective.

Let X be an ind-scheme. A closed quasi-compact subscheme Y C X
is called reasonable if for any closed subscheme Z C X such that Y C Z
the ideal of Y in Oy is finitely generated. We say that X is reasonable if
X is a union of its reasonable subschemes, i.e., it may be represented as
h_r}nXa where all X, are reasonable. A closed subspace of a reasonable ind-

scheme is a reasonable ind-scheme; a product of two reasonable ind-schemes

is reasonable.

*)We do not know whether this is true for ind-schemes that are not of ind-finite type.
For schemes the answer is “yes”. This follows from Remark 9.5.8 in [Gr68a] and the
following surprising result ([RG], p.82, 3.1.4): the property of being a projective module
is local for the Zariski topology and even for the fpqc topology (without any finiteness

assumptions!).
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Remark. Replacing the word “schemes” in the above definition by
“algebraic spaces” we get the notion of an ind-algebraic space. All the

discussion passes automatically to the setting of ind-algebraic spaces.

7.11.2. Ezamples. (i) An ind-affine ind-scheme X is the same as a pro-
algebra, i.e., a pro-object R of the category of commutative algebras that
can be represented as l(iLnRa so that the maps Rg — R,, 8 > «, are
surjective. We write X = Spf R := li_n>1Spec R,. A complete topological
commutative algebra R whose topology is defined by open ideals I, C R
can be considered as a pro-algebra (set R, := R/I,). Not all pro-algebras
are of this type because if the set of indices « is uncountable then the map
from the set-theoretical projective limit of the R, to R,, is not necessarily
surjective*). Of course, an ind-affine Ny-ind-scheme is the same as a complete
topological algebra whose topology is defined by a countable or finite system
of open ideals of R.

(ii) Let V be a Tate vector space (see 4.2.13). Then V (or, more
precisely, the functor A — V®A) is a reasonable ind-affine ind-scheme.
Indeed, every c-lattice in V' is an affine scheme. One has V' = Spf R where
R= EiLnSym(U;), U, runs over the set of c-lattices in V.

If X is a reasonable ind-scheme then for z € X(C) the tangent space 6,
of X at x is a Tate vector space: the topology of O, is defined by tangent
spaces at = of reasonable subschemes of X that contain x. So if H is a
reasonable group ind-scheme then its Lie algebra Lie H is a Lie algebra in
the category of Tate vector spaces.

(iii) For V' as above denote by Gr(V) the “space” of c-lattices in V.
More precisely, Gr(V) is the functor that assigns to a commutative algebra
A the set of c-lattices in V®A (in the sense of 4.2.14). Clearly Gr(V)
is an ind-proper formally smooth ind-scheme (indeed, it is a union of the

Grassmannians of Uy /U;’s for all pairs of c-lattices Uy C Uy C V).

*
Jeven if the maps Rz — Ra, B > «, are surjective (as we assume).



HITCHIN’S INTEGRABLE SYSTEM 303

(iv) Let K be a local field, O C K the corresponding local ring (so K ~
C((t)), O =~ C[[t]]). For any “space” Y we have “spaces” Y (0O) C Y (K)
defined as Y(0)(A) := Y(ARO), Y(K)(A) = Y(ARK) (here ARO = A[[t]],
A®K = A((t))). Assume that Y is an affine scheme. Then Y (O) is also an
affine scheme, and Y (K) is an ind-affine Rp-ind-scheme. If Y is of finite type
then Y (K) is reasonable. If Y is smooth then Y (O) and Y (K) are formally
smooth.

Let G be an affine algebraic group, g its Lie algebra. Consider the group
ind-scheme G(K). One has Lie(G(K)) = g(K) = g ® K, Lie(G(O)) =
8(0)=g®O0.

(v) Let G be a reasonable group ind-scheme such that Gyeq is an affine
group scheme. The functor G — (Lie G, G,eq) is an equivalence between the
category of GG’s as above and the category of Harish-Chandra pairs. For an
ind-scheme X an action of G on X is the same as a (Lie G, Gyeq)-action on

X. Similarly, a G-module is the same as a (Lie G, Geq)-module, etc.

7.11.3. There are two different ways to define O-modules in the setting
of ind-schemes; the corresponding objects are called OP-modules and O'-
modules. We start with the more immediate (though less important) notion
of OP-module”) which makes sense for any "space” X (see 7.11.1).

An OP-module P on X is a rule that assigns to a commutative algebra A
and a point ¢ € X(A) an A-module Py, and to any morphism of algebras
f + A — B an identification of B-modules fp : B® Py= Py in a way
compatible with composition of f’s. If X = li_rr}Xa isfan ind-scheme then
such P is the same as a collection of (quasi-coherent) O-modules Px, on
X, together with identifications iZBPXa = Px_, for o < [ that satisfy the
obvious transitivity property. We say that P is flat if each P, (or each Px,)
is flat. Ome defines invertible OP-modules on X (alias line bundles) in the

similar way.

“)Here ”p” stands for ”projective limit”.
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We denote the category of OP-modules on X by MP(X,). This is a
tensor C-category. The unit object in MP(X, Q) is the "sheaf” of functions
Ox. Note that MP(X, Q) need not be an abelian category. The category
MPTL(X, O) of flat OP-modules is an exact category (in Quillen’s sense).

For any P,P' € MP(X,0) the vector space Hom(P, P’) carries the
obvious topology; the composition of morphisms is continuous. In particular
I'(X, P) := Hom(Ox, P) is a topological vector space which is a module over
the topological ring I'(X, Ox).

Remarks. (i) The above definitions makes sense if we replace O-modules
by any category fibered over the category of affine schemes. For example, one
can consider left D-modules (alias O-modules with integrable connection);
the corresponding objects over ind-schemes called (left) DP-modules.

(ii) If X is an ind-affine Nyp-ind-scheme, X = Spf R = liLnSpec R/I, (see
7.11.2(i)), then an OP-module on X is the same as a complete and separated
topological R-module P such that the closures of I,P C P form a basis of

the topology.

7.11.4. Now let us pass to O'-modules. Here we must assume that our
X is a reasonable ind-scheme. An O'-module M on X is a rule that
assigns to a reasonable subscheme Y C X a quasi-coherent Oy-module My,
together with morphisms My — My for Y C Y’ which identify My
with ilyy,M vy := Homo,,, (Oy, M(y+)) and satisfy the obvious transitivity
condition”). If we write X = h_r}nXa where X, ’s are reasonable then it suffices
to consider only X,’s instead of all reasonable subschemes. @'-modules on
X form an abelian category M(X, Q). Note that for any closed subscheme
Y C X, the category M(Y, O) is a full subcategory of M (X, O) closed under
subquotients, and that for any ©'-module M one has M = lig1M( Xa)-

The category M(X, O) is a Module over the tensor category MP(X, O).
Namely, for M € M(X,0), P € MP(X, ) their tensor product M ® P €

* . .1 .
)We need to consider reasonable subschemes to assure that i' preserves quasi-

coherency.
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M(X,0) is imMx,,) O%a Px,,. The functor ® : M(X,0) x MPIY(X O) —
M(X, O) is biexact.

For an O'-module M we define the space of its global sections I'(X, M)
as hglF(Xa, Mx,))- The functor I'(X, ) is left exact.

Remarks. (i) The categories M(Y,O) together with the functors iy
form a fibered category over the category (ordered set) of reasonable
subschemes of X, and M (X, ) is the category of its Cartesian sections.

(ii) If X = Spf R and the pro-algebra R is a topological algebra (see
7.11.2) then an O'-module on X is the same as a discrete R-module (where
”discrete” means that the R-action is continuous with respect to the discrete
topology on M).

(iii) If P is flat then (M ® P)(x,) = M(x,) ® Px,-

7.11.5. Assume that we have a group ind-scheme (or any group ”space”)
K that acts on X. Then for any commutative algebra A the group K(A)
acts on Spec A x X. For M € M(X,0O) an action of K on M is defined
by K(A)-actions on Ogpeca X M € M(Spec A x X,O) such that for any
morphism A — A’ the corresponding actions are compatible. We denote
the category of K-equivariant O'-modules on X by M (K \\ X,0). We leave

it to the reader to define K-equivariant OP-modules.

7.11.6. All the basic definitions and results of 7.10 (the definitions of
topology X.., D-crystals, crystalline O*-torsors, twisted D-crystals, basic
functoriality) make obvious sense for any ind-scheme X of ind-finite type.
So, from the D-crystalline point of view, D-module theory generalizes
automatically to the setting of ind-schemes.

What we will discuss in the rest of this section is the conventional
approach to D-modules (rings of differential operators, etc.) which works
when our ind-scheme is formally smooth. The results 7.10.12, 7.10.29,
7.10.32 comparing the D-crystalline and D-module setting remain literally

true for formally smooth ind-schemes.
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Below we will no more mention D-crystals. In the main body of this
book we employ conventional D-modules (the ind-schemes we meet are affine
Grassmannians, they are formally smooth). Notice, however, that D-crystal
approach is needed to make obvious the following fact (we use it for Y equal
to a Schubert cell): Let i : Y — X be a closed embedding of a scheme
Y of finite type into formally smooth X as above. Then the category of
D-modules on X supported (set-theoretically) on Y depends only on Y
(and not on ¢ and X). Indeed, this category identifies canonically with the
category of D-crystals on X.

7.11.7. Let us explain what are differential operators in the setting of ind-
schemes. Assume that our X is an ind-scheme of ind-finite type. For an

O'-module M on X set
(348) Der(Ox, M) := h_r)nDer(Oy,M(y)) = li_r}nHom(Qy, Myy).

Here Y is a closed subscheme of X. We consider Der(OQyx, M) as an O'-

module on X. Similarly, set

We consider the sheaf of differential operators Diff(Oy, M(y) as a ”differ-
ential Oy-bimodule” in the sense of [BB93], i.e., an O-module on Y x Y
supported set-theoretically on the diagonal. So D(M) is an O'-module on
X x X supported set-theoretically on the diagonal. We may consider it
as an O'-module on X with respect to either of the two @x-module struc-
tures. Note that D(M) carries a canonical increasing filtration D.(M ) where
D;(M) is the submodule of sections supported on the i infinitesimal neigh-
bourhood of the diagonal; equivalently, D;(M) = li_n>1Diffi((9y, Myy) is the
submodule of differential operators of order < i. One has Dy(M) = M,
UD:(M) = D(M), and the two O'-module structures on gr; D(M) coincide.
There is an obvious embedding Der(Ox, M) C Dy (M).
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Assume now that X is formally smooth. In the next proposition we
consider D(M) as an O'-module on X with respect to the left O-module

structure.

7.11.8. Proposition. (i) The functors Der(Ox,-), D, D; are exact and
commute with direct limits. So there are flat OP-modules ©x, Dx and

a filtration of Dx by flat submodules D;x such that
Der((’)X,M) =M R® 0Oy, D(M) =M ® Dx, DZ(M) =M®®D;x.

(ii) There is a canonical identification gr. Dx = Sym’ ©x.
Remark. In7.12.12 we will show that the OP-modules O x, Dx, and D;x are
Mittag-Leffler modules in the sense of Raynaud-Gruson (see 7.12.1, 7.12.2,
7.12.9). If X is an Np-ind-scheme the restrictions of these OP-modules to

subschemes of X are locally free (see 7.12.13 for a more precise statement).

Proof. (i) Our functors are obviously left exact and commute with direct
limits. The right exactness of Der(Ox, -) follows from formal smoothness of
X (use the standard interpretation of derivations Ox — M as morphisms
Spec(Sym’ M/ Sym=% M) — X). So we have our Oy € MP/(X, 0).

(ii) We define a canonical isomorphism”)
(350) o.: gr.D(M)= M ® Sym’ Ox.

This clearly implies the proposition.

Notice that for any n > 0 the obvious morphism M ® %" —
lim Hom (Q", M y) is an isomorphism (use the fact that Qy are coherent).
—

Therefore (350) is equivalent to identifications
(351) on :gr, D(M) ﬁli_r>nH0m(Sym” Qy, M(y)).

“n the general case (when the base field may have non-zero characteristic) one has to
replace Sym’ by I'" where for any flat A-module P we define I'"(P) as Sp-invariants in
P®™_ Notice that (since P is inductive limit of projective modules) I'"(P) is flat and for

any A-module M one has (M ® P®™)5" = M ® I'™(P).
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Our o, is the inductive limit of the maps
ony : 8r, Diff(Oy, M(y)) — Hom(Sym” Qy, M(y))

defined as follows. One has Diff,,(Oy, M(y)) = Homop, (Oy sy /I Myy)
where Z C Oy xy is the ideal of the diagonal (and we consider the source as
an Oy-module via one of the projection maps). Now Z/Z? = Qy hence
7" /7" is a quotient of Sym” )y, and our o,y comes from the map
Sym" Qy — I"/T"! C Oy ywy /T

It remains to show that o, is an isomorphism; we may assume that n > 1.
It is clear that o,y are injective, hence such is o,,. To see that o, is surjective
look at the scheme Z := Spec(Sym’ Qy/Sym=""1Qy). The embedding of
its subscheme Spec(Sym’ 0y /Sym=?Qy) = Spec(Oyxy/I?) C Y xY C
Y x X extends, by formal smoothness of X, to a morphismi: Z - Y x X
over Y. It is easy to see that 7 is a closed embedding. There is a closed
subscheme Y’ C X such that Y C Y/ and Z C Y xY’. Thus Z is a
subscheme of the n'” infinitesimal neighbourhood of the diagonal in Y’ x Y.
Therefore we get embeddings Hom(Sym" Qy, M(y)) C Home, (Oz, M(yy) C
Diff,,(Oy, M(y/)). The composition of them with o,y coincides with the
embedding Hom(Sym" Qy, M(y) C Hom(Sym" Qy, M(y+)). This implies

surjectivity of . O

7.11.9. To explain what are D-modules on ind-schemes it is convenient to
use the language of differential bimodules.

Let X be any reasonable ind-scheme. A Diff-bimodule D on X (cf.
[BB93]) is a rule that assigns to any reasonable subscheme Y € X an O'-
module Dy on Y x X supported set-theoretically on the diagonal Y C Y x X;
for Y C Y’ one has identifications Dy ® Oy = Dy which are transitive in
the obvious sense.

The category M%(X,0) of Diff-bimodules is a monoidal C-category.
Namely, for D,D’ € M®¥(X,O) their tensor product D ® D’ is defined
by (D ® D)y = h_I)H(DY)(YXy/) (’J® Dy,,. Our Ox is the unit object in

Yl
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ME(X, O) (see Remark (i) below). The category M(X,0) is a right
M (X, O)-Module: for an O'-module M one has M ® D = li_r)nM(y) ® Dy
where we consider M(y) ® Dy as an O'-module on X with respect to the
right O'-module structure on Dy-.

Remarks. (i) An OP-module on X is the same as a differential Ox-
bimodule supported scheme-theoretically on the diagonal. So we have a
fully faithful embedding of monoidal categories MP(X,0) ¢ M¥ (X, 0). It
is compatible with the Actions on M(X,O) from 7.11.4, 7.11.9.

(ii) The forgetful” functor M¥(X,0) — MP(X,0) is faithful, so one
may consider Diff-bimodules as OP-modules on X equipped with certain
extra structure. We say that a Diff-bimodule is flat if it is flat as an OP-
module. The category of flat Diff-bimodules is an exact category (cf. 7.11.3).

A Diff-algebra on X is a unital associative algebra D in the monoidal
category M%(X,0). A D'-module on X is a (necessarily right) D-module
M in M(X,0). Often we call such M simply a D-module. We denote the
category of D-modules by M(X, D); this is an abelian category.

Remarks. (i) The forgetful functor M(X, D) — M(X,O) admits a left
adjoint functor, namely M — M ® D.

(i) The category MP(X,0) is a left M¥ (X, O)-module in the obvious
way. So one may consider DP-modules := left D-modules in MP(X, O).

For D € M%(X,0) set I'(X, D) := limP'(Y x X, Dy); this is a topological
vector space. One has an obvious continuous map I'(X, D) ® I'(X, D’) —
I'X,D ® D). For M € M(X,0) there is a similar map I'(X, M) ®
I'X,D) - I'(X,M ® D). Therefore for a Diff-algebra D our I'(X, D) is
a topological ring and for any D-module M the vector space I'(X, M) is a
discrete I'( X, D)-module.

Assume that we have a group ind-scheme (or any group ”space”) K that

acts on X. One defines a weak™) action of K on a Diff-algebra D as follows.

*)forgetting the right O-module structure

*)For strong actions see [BB93].
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For any commutative algebra A we have the action of the group K(A) on
Spec A x X. Now a weak action of K on D is a rule that assigns to A a
lifting of this action to the Diff-algebra Ogspec4 B D on Spec A x X. For
any morphism A — A’ the correspondings actions must be compatible in
the obvious way. If M is a D-module then a weak action of K on M is
an action of K on M as on O'-module (see 7.11.4) such that the D-action
morphism M ® D — M is compatible with the K-actions. We denote the
category of weakly K-equivariant D-modules by M (K \\ X, D).

7.11.10. Here is a more concrete ”sheaf-theoretic” way to look at differen-
tial bimodules and algebras on a reasonable Ny-ind-scheme X SIWe explain
it in two steps.

(i) Assume that X,.q is a scheme, so X is a formal scheme”). Then
the underlying topological space of X is well-defined, and Ox is a sheaf
of topological algebras. Any Diff-bimodule D yields a sheaf of topological
Ox-bimodules l{iinD x,, which we denote also by D by abuse of notation. It
satisfies the following properties:

- The basis of the topology on D is formed by closures of Z-D, where
7 C Ox is an open ideal; the topology is complete and separated.

- The quotients D/Z-D are O'-modules on X x X supported set-
theoretically at the diagonal.

It is clear that M% (X, ) is equivalent to the category of such sheaves
of topological @x-bimodules. Notice that D @ D’ = D ® D'. Therefore
a Diff-algebra on X is the same as a sheaf D of topologi((:oa)l( algebras on X
equipped with a continuous morphism of sheaves of algebras € : Ox — D

such that the Ox-bimodule structure on D satisfies the above conditions.

“)The No assumption enables us to work with topological algebras instead of pro-

algebras; see 7.11.2(i).
*)See 7.12.22 and 7.12.23 for a description of formally smooth affine Ro-formal schemes

of ind-finite type.
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A D-module on X is the same as a sheaf of discrete right D-modules which
is quasi-coherent as an Ox-module (i.e., it is an ©'-module on X).

(ii) Let X be any reasonable Ny-ind-scheme. For a reasonable subscheme
Y C X denote by Y the completion of X along Y. This is a formal scheme
as in (i) above. For a Diff-bimodule D on X let Dya be the (OP-module)
pull-back of D to Y. This is a Diff-bimodule on Y, so it may be viewed as
a sheaf of Oyx-bimodules as in (i) above. If Y’ C X is another reasonable
subscheme that contains Y then we have a continuous morphism of sheaves
of Oysx-bimodules Dy, — Dy~ which identifies Dy with the completion
of Dy, with respect to the topology generated by closures of Z-Dy, where
T C Oy, is an open ideal such that Spec(O/T)req = Yied- These morphisms
satisfy the obvious transitivity property. It is clear that Diff-bimodules on
X are the same as such data.

Therefore a Diff-algebra D on X may be viewed as the following data:

- a collection of sheaves of topological algebras Dy equipped with
morphisms eya : Oyn — Dy defined for any reasonable subscheme Y C X
that satisfy the conditions of (i) above.

- for Y C Y’ we have a continuous morphism ryy~ : Dys, — Dy which
identifies Dy~ with the completion of Dy, as above. We demand the
compatibilities ryy €y /n = €yn, Tyyr = ryy:ryryn.

We leave it to the reader to describe D-modules in this language.

Remark. For a Diff-algebra D the topological algebra I'(X, D) is the
projective limit of topological algebras I'(Y, Dy ).

7.11.11. The key example. Assume that our X is a formally smooth ind-
scheme of ind-finite type. Consider the OP-module Dx as defined in
7.11.8(i). So for a subscheme Y C X the Oy-module (Dx)y is D(Oy) :=
Ti}nDiff(Oy/,Oy) with its left Oy-module structure. Our Dx carries
an obvious structure of Diff-bimodule. The composition of differential
operators makes Dx a Diff-algebra on X. According to 7.11.8 our Dx

carries a canonical ring filtration D;x such that gr. Dx = Sym Ox. The
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topological algebra I'( X, Dx) is called the ring of global differential operators
on X. We denote the category of Dx-modules by M (X, D) or simply M(X).

If a group "space” K acts on X then Dx carries a canonical weak K-
action (defined by transport of structure). Thus we have the category
M(K \\ X,Dx) = M(K \\ X) of weakly K-equivariant D-modules.

A twisted version. In the main body of the paper we also need to
consider the rings of twisted differential operators (alias tdo), families of such
rings and modules over them. The corresponding definitions are immediate
modifications of the usual ones in the finite-dimensional setting (see e.g.
[BB93]). Below we describe explicitely particular examples of tdo we need.

Let X be as above, £ a line bundle on X (see 7.11.3).

a. The Diff-algebra D, of differential operators acting on L is defined
exactly as Dx replacing in (349) D(M) by Dp(M) = Diff (L, M ® L) :=
lii>nDiff(£y,M(y) ® Ly); proposition 7.11.8 (as well as its proof) remains
true without any changes. Equivalently, Dy = L ® Dx ® L1,

b. We define a Diff-algebra D n on X as follows. Let m : X~ — X be
the G,-torsor over X that corresponds to £ (so X~ = L\(zero section)).
Consider the Diff-algebra D~ := 1, Dx~ on X (so for a subscheme Y C X
one has (D™)y := m((Dx~)r-1y)). The weak G,,-action on Dx~ yields a
weak Gp,-action on D~ (with respect to the trivial G,,-action on X). Our
D,n is the subalgebra of G,,-invariants in D™.

Denote by h the global section of D,» that corresponds to the action of
—t% € LieG,,. Then D, is the centralizer of h in D~. Notice that for any
subscheme Y C X a trivialization of Ly (which exists locally on Y') yields
an identification Dnyn = Dyr&CIh).

Remarks. (i) Consider the OP-module 7, (Ox~) = &L®™. Tt carries the
action of D,n which preserves the grading. The action of D,n on L®"
identifies D,n/(h — n)Dpn with Dyen.
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(ii) Let M~ be a weakly Gy,-equivariant D-module on X~.  Set
M := (7 ,M~)®m; this is a Dpr-module. The functor M(G,, \\ X~) —
M(X,Dsn), M~ — M, is an equivalence of categories.

7.11.12. Let us explain the D-{) complexes interplay in the setting of ind-
schemes. First let us define Q2-complexes. Here we assume that X is any
reasonable ind-scheme.

For any reasonable subschemes Y C Y’ one has a surjective morphism of
commutative DG algebras Qy+ — Qy. An Q'-complez F on X (or simply
an {)-complex) is a rule that assigns to a reasonable subscheme ¥ C X a
DG Qy-module Fly) together with morphisms of Qy-modules Fy1 — Fly/
for Y C Y’ which identify Fy) with ity Flys := Homg,, (Qy, Fiy.]) and
satisfy the obvious transitivity condition. We assume that F[Z'Y] is quasi-
coherent as an Oy-module. As in 7.11.4 it suffice to consider only X,’s
instead of all reasonable Y’s. As in Remark in 7.2.1 such an F' is the same
as a complex of @'-modules whose differential is a differential operator of
order < 1. We denote by C(X,Q) the DG category of Q'-complexes.

If f: Y — X is a representable quasi-compact morphism of ind-schemes
(so Y = li_r>nYa where Y, := f1(X,)) then one has a pull-back functor
fo: C(X,Q) = CY,Q), fo(F) :=1imQy, ® F,. If fis surjective and

- f10x,
formally smooth then f, satisfies the descent property.

Assume that a group "space” K acts on X. One defines a K-action on
an Q-complex F' on X as a rule that assigns to any g € K(A) a lifting
of the action of g on Spec A x X to Ogpeca ® F € C(Spec A x X,2); the
obvious compatibilities should hold. We denote the corresponding category
by C(K \ X,Q).

Remarks. (i) Assume that K is a group ind-scheme, so we have the Lie
algebra Lie K. The definition of Kq-action on F' in terms of operators i¢
from 7.6.4 renders immediately to the present setting. The category of Kq-
equivariant {2-complexes is denoted by C(K \ X, Q).
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(ii) If our K is an affine group scheme then a Kg-equivariant (2-complex
is the same as an (2-complex F' equipped with an isomorphism mqF' = p I

of Q-complexes on K x X that satisfy the usual condition (see 7.6.5).

7.11.13. Assume that X is a formally smooth ind-scheme of ind-finite
type. Denote by C(X, D) the DG category of complexes of D-modules (D-
complexes for short) on X. We have the DG functor

(352) D: C(X,0) = C(X,D)

which sends an -complex F to the D-complex DF with components
(DF)" := D(F™) = F™ ® Dx (see 7.11.8) and the differential defined by
formula d(a) := dp o a (here a € D(F™) = Diff(Ox, F™)). This functor

admits a right adjoint functor
(353) Q: C(X,D) - C(X,Q)

which may be described explicitely as follows. For a subscheme Y C X we
have the D-complex DRy := D(Qy). It is also a left DG Qy-module. Now
for a D-complex M one has QM = lii>nHom(DRy, M) =|JHom(DRy, M).

Lemma 7.2.4 remains true as well as its proof. As in 7.2.5 we have the
cohomology functor Hy, : C(X,Q) - M(X), Hp(F) = H (DF'), and the
corresponding notion of D-quasi-isomorphism. The adjunction morphisms

for D, Q) are quasi-isomorphism and D—quasi—isomorphism*).

7.11.14. We say that an O'-complex or O'-module has quasi-compact
support if it vanishes on the complement to some closed subscheme. Same
definition applies to D- and (2-complexes. We mark the corresponding
categories by lower ”¢” index. The functors D and () preserve the
corresponding full DG subcategories C.(X,) C C(X,Q), C.(X,D) C

C(X,D).

“)The fact that de Rham complexes of D-modules are not bounded from below does

not spoil the picture.
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In order to ensure that our derived categories are the right ones (i.e.,
that they have nice functorial properties) we assume in addition that the
diagonal morphism X — X x X is affine (cf. 7.3.1). For example, it suffices
to assume that X is separated.

Denote by D(X, Q) the homotopy category of C.(X, Q) localized with
respect to quasi-isomorphisms; this is a t-category with core M.(X,O).
We define D(X, D) (assuming that X is formally smooth of ind-finite type)
in the similar way; this is a t-category with core M (X). Let D(X, Q) be
localization of the homotopy category of C.(X, 2) by D-quasi-isomorphisms.
The functors D and {2 yield canonical identification of D(X, D) and D(X, ),
so, as usual, we denote these categories thus identified simply D(X )*).

We say that an O@'-module F with quasi-compact support is loose if for
any closed subscheme Y C X such that F is supported on Y and a flat
OP-module P on Y one has H*(X,P® F) = 0 for a > 0. An O D- or
Q-complex F is loose if each O'-module F* is loose. One has the following

lemma parallel to 7.3.8:

7.11.15. Lemma. i) For any F' € C.(X,Q) there exists a D-quasi-
isomorphism F’ — F such that F is loose and the supports of F, F’ coincide.
(ii) If f: X — X' is a formally smooth affine morphism of ind-schemes

then the functors
fo: Co(X', Q) = Ce(X, ), f.: Ce(X,Q) = C(X', Q)

send loose complexes to loose ones.

“)To get a t-category with core M(X) one may consider complexes which are unions
of subcomplexes with quasi-compact support; however to ensure the good functorial
properties of this category one has to assume that X satisfies certain extra condition
(e.g., that there exists a formally smooth surjective morphism ¥ — X such that Y is ind-
affine). The category formed by all complexes has unpleasant homological and functorial
properties. Notice that the usual remedy - to consider only Q2-complexes bounded from
below - does not work here (the de Rham complexes of D-modules do not satisfy this

condition).
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(iii) If Fy, Fy are loose complexes on X7, Xo then F} X Fy is a loose (-

complex on X7 x Xo.
Proof. Modify the proof of 7.3.8 in the obvious way. U

We see that one can define the derived category D(X) using loose

complexes.

7.11.16. Any morphism f: X — Y of ind-schemes yields the push-forward
functor f. : C(X,Q) — C(Y,) which preserves the subcategories C..
We leave it to the reader to check that f. preserves D-quasi-isomorphisms
between loose complexes with quasi-compact support (cf. 7.3.9, 7.3.11(ii)).
Thus the right derived functor Rf. = f, : D(X) — D(Y) is well-defined:
one has f,I' = f.F if F is a loose complex with quasi-compact support.
Since f. sends loose complexes to loose ones we see that f, is compatible
with composition of f’s.

For M € D(X,D) denote by Mo € D(X,0) same M considered as a

complex of @'-modules. One has a canonical integration morphism

iy Rf-(Mo) = (f«M)o
in D(Y, Q) defined as in 7.2.11. It is compatible with composition of f’s.

7.11.17. Let us define the Hecke monoidal category H as in 7.6.1. We
start with an ind-affine group ind-scheme G and its affine group subscheme
K C G. We assume that G/K (the quotient of sheaves with respect to fpqc
topology) is a ind-scheme of ind-finite type; it is automatically formally
smooth and its diagonal morphism is affine. Clearly G is a reasonable ind-
scheme, and K is its reasonable subscheme. Consider the DG category H¢
of (K x K)g-equivariant €'-complexes on G with quasi-compact support
(see Remark (i) in 7.11.12). By descent such a complex is the same as a
Kg-equivariant admissible Q'-complex either on G/K or on K \ G. The
corresponding notions of D-quasi-isomorphism are equivalent. Our H is the

corresponding D-derived category.
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The constructions of 7.6.1 make perfect sense in our setting. Thus H€¢ is

a DG monoidal category, and H is a triangulated monoidal category.

7.11.18. Assume that we have a scheme Y equipped with a G-action such
that there exists an increasing family Uy C U; C ... of open quasi-compact
subschemes of Y = (JU; with property that for some reasonable group
subscheme K; C G the action of K; on U; is free and K; \ U; is a smooth
scheme (in particular, of finite type). Then the stack B = K \ Y is smooth
(it has a covering by schemes (K; N K) \ U;). The diagonal morphism for B
is affine, so we may use the definition of D(B) from 7.3.12.

To define the #H-Action on D(B) you proceed as in 7.6.1 with the
following modifications that arise due to possible non-quasi-compactness
of Y and G. We may assume that the above U;’s are K-invariant; set
B; = K\ U; C B. Take loose Q-complexes F' = UF,, € C,(K \ G/K,Q) (so
the supports S, of F, are quasi-compact) and 7' € C(B.,Q2). Let j(n,i) be
an increasing (with respect to both n and i) sequence such that S, !.U; C
Uj(n,i- Consider the Q-complexes (F,, ®T); := my,-py.q(Fn X Tji)|s;
and (F, ®T); := my,-py.q(Fn ¥ Tjmi1,4))B, on B;. There are the obvious
morphisms (F, ®T); = (Fp1 ®T);, (F, ®T); — (F, ®T);; the latter is a
quasi-isomorphism. Set (F ®T); := Cone(®(F, ®T); — &(F, ®T);) where
the arrow is the (componentwise) difference of the above morphisms. These
(F®T); form in the obvious manner an object F®T € C(B,). We leave
it to the reader to check that F®T as an object of D(B) does not depend
on the choice of the auxiliary data (of U; and j(n,i)), and that ® is an
H-Action on D(B).

7.12. Ind-schemes and Mittag-Leffler modules. Raynaud and Gruson
[RG] introduced a remarkable notion of Mittag-Leffler module. In this
section we show that the notion of flat Mittag-Leffler module is, in some
sense, a linearized version of the notion of formally smooth ind-scheme of

ind-finite type (see 7.12.12, 7.12.14, 7.12.15). Using the fact that countably
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generated flat Mittag-Leffler modules are projective we describe formally
smooth affine Ry-formal schemes of ind-finite type (see 7.12.22, 7.12.23).
The reader can skip this section because its results are not used in the rest
of this work (we include them only to clarify the notion of formally smooth
ind-scheme).
In 7.11 we assumed that “ind-scheme” means “ind-scheme over C” (this

did not really matter). In this section we prefer to drop this assumption.

7.12.1. Let A be a ring”). Denote by C the category of A-modules of finite
presentation. According to [RG], p.69 an A-module M is said to be a Mittag-
Leffler module if every morphism f : F — M, F' € C, can be decomposed as
F5G — M, G € C, so that for every decomposition of f as FE;G’ — M,
G’ € C, there is a morphism ¢ : G’ — G such that u = pu'.

7.12.2. Suppose that M = liLnMi, 1 € I, where I is a directed ordered set
and M; € C. According to loc.cit, M is a Mittag-Leffler module if and only
if for every i € I there exists j > ¢ such that for every k > ¢ the morphism
uij » M; — M; can be decomposed as @;;pu;, for some @5, @ Ff, — Fj. A
similar statement holds if I is a filtered category; if I is the category of all
morphisms from objects of C to M and F; € C is the source of the morphism

7 then the above statement is tautological.

7.12.3. The above property of inductive systems (M;), M; € C, makes sense
if C is replaced by any category C’. If C’ is dual to the category of sets, i.e., if
we have a projective system of sets (E;, u;; : E; — E;) one gets the Mittag-
Leffler condition from EGA Oy 13.1.2: for every i € I there exists j > i
such that w;;(E;) = up(Ey) for all k& > j.

This condition is satisfied if and only if the projective system (E;, u;;)

is equivalent to a projective system (Ea,ﬂaﬁ) where the maps uqg are

“)We assume that A is commutative but in 7.12.1-7.12.8 this is not essential (one only

has to insert in the obvious way the words “left” and “right” before the word “module”).
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surjective. To prove the “only if” statement it suffices to set F; := ui;j (Ej)

for j big enough.

7.12.4. Suppose that M = limM;, M; € C. According to [RG] M is
—

a Mittag-Leffler module if and only if for any contravariant functor &

from C to the category of sets the projective system (®(M;)) satisfies the

(15

Mittag-Leffler condition (to prove the “if” statement consider the functor
®(N) = Hom(N, [] M;) or ®(N) = | |Hom(N, M;) ).

Assume that M is flat. Set M :zHom(Mi,A). According to [RG] M is
a Mittag-Leffler module if and only if the projective system (M) satisfies
the Mittag-Leffler condition. This is clear if the modules M; are projective.

The general case follows by Lazard’s lemma (there is an inductive system

equivalent to (M;) consisting of finitely generated projective modules).

7.12.5. Consider the following two classes of functors from the category of

A-modules to the category of abelian groups:

1) For an A-module M one has the functor
(354) L L®sM;

2) For a projective system of A-modules N; (where i belong to a

directed ordered set) one has the functor

(355) L+ lim Hom(N;, L)
i

7.12.6. Proposition. (i) The functor (354) is isomorphic to a functor of the
form (355) if and only if M is flat.

(ii) The functor (354) is isomorphic to the functor (355) corresponding to
a projective system (NN;) with surjective transition maps N; — N, i < j, if
and only if M is a flat Mittag-Leffler module.

(iii) The functor (355) corresponding to a projective system (N;) with

surjective transition maps N; — Nj;, @ < j, is isomorphic to a functor of the
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form (354) if and only if the functor (355) is exact and the modules N; are

finitely generated.

Proof. If (354) and (355) are isomorphic then (354) is left exact, so M is
flat. If M is flat then by Lazard’s lemma M = h_rr)lPZ where the modules P;
are projective and finitely generated, so the functor (355) corresponding to
N; = P} is isomorphic to (354).

We have proved (i). To deduce (ii) from (i) notice that for P, as above
the projective system (P;") is equivalent to a projective system (INV;) with
surjective transition maps N; — N; if and only if (P;") satisfies the Mittag-
Leffler condition (see 7.12.3).

To prove (iii) notice that functors of the form (354) are those additive
functors which are right exact and commute with infinite direct sums (then
they commute with inductive limits). A functor of the form (355) is right
exact if and only if it is exact. If the modules N; are finitely generated then
(355) commutes with infinite direct sums. If the transition maps N; — N;

are surjective and (355) commutes with inductive limits then the modules

N; are finitely generated. ([l

7.12.7. According to 7.12.6 a flat Mittag-Leffler module is “the same as”
an equivalence class of projective systems (NN;) of finitely generated modules
with surjective transition maps N; — N;, i < j, such that the functor (355)
is exact. More precisely, M = lingom(Ni, A) (then the functors (354) and

7

(355) are isomorphic).

7.12.8. Theorem. (Raynaud—Gruson). (What about D.Lazard? according
to [RG], p.73 the idea goes back to Theorems 3.1 and 3.2 from chapter I of
D.Lazard’s thesis in Bull.Soc.Math.France, vol.97 (1969), 81-128; see also
D.Lazard’s work in Bull.Soc.Math.France, vol.95 (1967), 95-108)

The following conditions are equivalent:

(i) M is a flat Mittag-Leffler module;
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(ii) every finite or countable subset of M is contained in a countably
generated projective submodule P C M such that M/P is flat;
(iii) every finite subset of M is contained in a projective submodule

P C M such that M/P is flat.

In particular, a projective module is Mittag-Leffler and a countably

generated*) flat Mittag-Lefller module is projective.

The implication (iii)=-(i) is easy. (It suffices to show that if F' and F” are
modules of finite presentation and ¢ : F' — F’, ¢ : F/ — M are morphisms
such that 1p(F) C P then there exists ¢ : ' — M such that (F') C P
and 1 = 1hyp; use the fact that Hom(L, M) — Hom(L, M/P) is surjective
for every L of finite presentation, in particular for L = Coker ).

The implication (i)=-(ii) is proved in [RG], p.73-74. The key argument
is as follows. Suppose we have a sequence P, — P, — ... where Py, P, ...
are finitely generated projective modules and the projective system (P})
satisfies the Mittag-Leffler property. To prove that P := h_H)lPi is projective

one has to show that for every exact sequence 0 — N’ — N — N” — 0 the

map Hom (P, N) — Hom(P, N”) is surjective. For each i the sequence
0PN - PN —P'oN"—0

is exact and the problem is to show that the projective limit of these
sequences is exact. According to EGA Oy 13.2.2 this follows from the
Mittag-Leffler property of the projective system (P ® N').

Remark. If the set of indices i were uncountable we would not be able™ to

apply EGA OIII 13.2.2.

*)The countable generatedness assumption is essential; see 7.12.24.

“)The argument from EGA Oy 13.2.2 is based on the following fact: if a projective
system of non-empty sets (Y;)ic; parametrized by a countable set I satisfies the Mittag-
Leffler condition then its projective limit is non-empty. This is wrong in the uncountable
case. For instance, consider an uncountable set S, for every finite ' C A denote by Yr

the set of injections F' — N; the maps Yz — Yg, F' D F, are surjective but lim Yz = 0.
—
F
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Here is another proof of the projectivity of P (in fact, another version
of the same proof). Denote by f; the map P; — P;;1. The Mittag-Leffler
property means that after replacing the sequence {P;} by its subsequence
there exist g; : Pi11 — P; such that g;11 fi+1fi = fi. Set P := € P;. Denote
by f:P — P and g: P — P the operators induced by the f; ;nd gi;- Then

gf? = f. We have the exact sequence
1-f
0—=>P—P—=P—=0

Since P is projective it suffices to show that this sequence splits, i.e., there
is an h : P — P such that h(1 — f) = 1. Indeed, set h =1 — (1 —g)"lgf

*

and use the equality gf2 = f.”)

7.12.9. Proposition. Let B be an A-algebra. If M is a Mittag-Leffler A-
module then B ® 4 M is a Mittag-Leffler B-module. If B is faithfully flat

over A then the converse is true.

This is proved in [RG]. The proof is easy: represent M as an inductive
limit of modules of finite presentation and use 7.12.2.
So the notion of a Mittag-Leffler O-module on a scheme is clear as well

as the notion of Mittag-Leffler OP-module on an ind-scheme.

7.12.10. Proposition. A flat Mittag-Leffler O-module F of countable type
on a noetherian scheme S is locally free. If S is affine and connected, and
F is of infinite type then F is free.

This is an immediate consequence of 7.12.8 and the following result.

7.12.11. Theorem. If R is noetherian and Spec R is connected then every

nonfinitely generated projective R-module is free.

This theorem was proved by Bass (see Corollary 4.5 from [Ba63]).

*)D.Arinkin noticed that it is clear a priori that if f and g are elements of a (non-
commutative) ring R such that gf> = f and 1 — g has a left inverse then 1 — f has a left
inverse. Indeed, denote by 1 the image of 1 in R/R(1 — f). Then f1 =1, gf*1 = g1, so
gl =1 and therefore 1 = 0.
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7.12.12. Proposition. Let X be a formally smooth ind-scheme of ind-finite
type over a field. Then the OP-modules O©x, Dx, D;x (see 7.11.8) are flat
Mittag-Leffler modules.

Proof. Let us prove that the restriction of Dx to a closed subscheme Y C X
is a flat Mittag-Leffler Oy-module (the same argument works for © x and
D;x). We can assume that Y is affine (otherwise replace X by X \ F for a
suitable closed F' C Y'). According to 7.12.6 it suffices to prove that

(i) The functor L — L ® Dx defined on the category of Oy-modules is
exact,

(ii) it has the form (355) where the Oy-modules N; are coherent.

By definition, L ® Dx is the sheaf D(L) defined by (349). So (ii) is clear.
We have proved (i) in 7.11.8. O

7.12.13. Proposition. Let X be a formally smooth Ng-ind-scheme of ind-
finite type over a field, ¥ C X a locally closed subscheme. Then the
restriction of ©x to Y is locally free. If Y is affine and connected, and

the restriction of O x to Y is of infinite type then it is free.
This follows from 7.12.12 and 7.12.10.

7.12.14. Proposition. Let A be a ring, M an A-module. Define an
“A-space” Fy; (i-e., a functor from the category of A-algebras to that of
sets) by Fiyf(R) = M ® R. Then F) is an ind-scheme if and only if M is a
flat Mittag-Lefller module. In this case F); is formally smooth over A and

of ind-finite type over A.

Proof. If M is a flat Mittag-Leffler module then by 7.12.6(ii) Fj; is an ind-
scheme and by 7.12.6(iii) it is of ind-finite type over A. Formal smoothness
follows from the definition. Now suppose that Fj; is an ind-scheme.
Represent I as li_n}Si where the S; are closed subshemes of F); containing

the zero section 0 € Fjs(A). Denote by N; the restriction of the cotangent
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sheaf of S; to 0 : Spec A < S;. Then the functor (355) is isomorphic to
(354), so by 7.12.6(ii) M is a flat Mittag-Leffler module. O

Remark. If M is an arbitrary flat A-module then M is an inductive
limit of a directed family of finitely generated projective A-modules M;,
so Iy = h_r}nFMi is an ind-scheme in the broad sense (the morphisms
Fyp; — Fyy; are not necessarily closed embeddings). It is easy to see that if

Fs is an ind-scheme in the broad sense then M is flat.

7.12.15. Proposition. Let (N;);er be a projective system of finitely gener-
ated A-modules parametrized by a directed set I such that all the transi-
tion maps N; — N;, j > i, are surjective. Set A(N;) := SpecSym(XV;),
S = thA(NZ) The ind-scheme S is formally smooth over A if and only if

%

S is isomorphic to the ind-scheme Fj; from 7.12.14 corresponding to a flat

Mittag-Leffler module M.

Proof. S is formally smooth if and only if the functor (355) is exact (apply
the definition of formal smoothness to A-algebras of the form A®J, A-J C J,
J? =0). Now use 7.12.6(iii). O

7.12.16. Proposition. Let M be a flat Mittag-Leffler module, F); the ind-

scheme from 7.12.14. The following conditions are equivalent:

(i) the pro-algebra corresponding to Fjs (see 7.11.2(i) ) is a topological
algebra;

(ii) M is a strictly Mittag-Leffler module in the sense of [RG].
According to [RG], p.74 a module M is strictly Mittag-Leffler if for every
f:F —= M, F €C(C, there exists u : F — G, G € C, such that f = gu and
u = hf for some g : G — M, h : M — G (recall that C is the category of
modules of finite presentation). If M = li_n>1Mi, M; € C, and u;; : M; — M;,
u; : M; — M are the canonical maps then M is strictly Mittag-LefHler if
and only if for every i there exists j > ¢ such that u;; = ¢;ju; for some

wij + M — M;. Clearly a projective module is stritly Mittag-Leffler and
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a strictly Mittag-Lefller module is Mittag-Lefller. The converse statements

are not true in general (see 7.12.24).

Proof. Represent M as limP; where the modules P; are finitely generated
H
and projective. Set N; := Im(P; — P) where j is big enough. Consider
the following conditions:
(a) the maps ¢; : {iLnSym(NT) — Sym(NN;) are surjective;

T

(b) Im ¢; D N; for every i;

(c) the map 1(i£1Nr — N; is surjective for every i;
T

(d) for every i there exists j > ¢ such that the images of Hom(M, A) and
Hom(P;j, A) in Hom(P;, A) are equal.

Clearly (i)« (a)<(b)e(c)<(d). For i < j consider the maps u;; : P, —
P; and u; : P, = M. To show that (d)«(ii) it suffices to prove that the
images of Hom(M, A) and Hom(P;, A) in Hom(F;, A) are equal if and only
if u;; = pu; for some ¢ : M — P;. To prove the “only if” statement notice
that the images of Hom(M, P;) and Hom(P;, P;) in Hom(P;, Pj) are equal
and therefore the image of id € Hom(P;, P;) in Hom(F;, P;) is the image of
some ¢ € Hom(M, P;). O

7.12.17. Before passing to the structure of formally smooth affine Ngo-
ind-schemes let us discuss the relation between the definition of formal
scheme from 7.11.1 and Grothendieck’s definition (see EGA I). They are
not equivalent even in the affine case. A formal affine scheme in our sense
is an ind-scheme X that can be represented as liLnSpec R, where (R,) is a
projective system of rings such that the maps uqg : Rg — Ra, B > «, are
surjective and the elements of Ker u,g are nilpotent. Grothendieck requires

the possibility to represent X as lim Spec R, so that the maps
—

(356) lim Ry — Rq
8
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are surjective”) and the ideals Ker uqp are nilpotent. A reasonable
No-formal scheme in our sense is a formal scheme in the sense of
EGA 1. A quasi-compact formal scheme in Grothendieck’s sense having a
fundamental system of “defining ideals (English?)” (“Idéaux de définition”;
see EGA 1 10.5.1) is a formal scheme in our sense; in particular, this is true
for noetherian formal schemes in the sense of EGA 1.

Since we are mostly interested in affine Ng-formal schemes of ind-finite
type over a field the difference between our definition and that of EGA T is

not essential.

7.12.18. Proposition. Let X be a formally smooth Ng-ind-scheme of ind-
finite type over A, S C X a closed subscheme such that S — Spec A is
an isomorphism. Suppose that X;oq = Speq (in particular, X is a formal
scheme). Let M denote the A-module of global sections of the restriction
of the relative tangent sheaf ©x /4 to S. Then M is a countably generated
projective module and (X,.S) is isomorphic to the completion Far of the

ind-scheme Fs (see 7.12.14) along the zero section.

Remark. ~ The OP-module ©x,/4 on a formally smooth ind-scheme X of
ind-finite type over A is defined just as in the case A = C (see 7.11.8,
7.11.7).

Proof. Just as in 7.12.12 one shows that M is a flat Mittag-Leffler module.
The Ry assumption implies that M is countably generated. By 7.12.8 M is
projective.

Represent X as h_r)an, n € N, where the X,, are closed subschemes of
X containing S such that X,, C X,,y1. Let X (1) be the first infinitesimal

neighbourhood of S in X, i.e., X is the union of the first infinitesimal

*)This is stronger than surjectivity of uag; e.g., if M is a flat Mittag-Leffler A-module
that is not strictly Mittag-Leffler then the arguments from 7.12.6 show that the completion

of Fir along the zero section cannot be represented as lim Spec R, so that the maps (356)
—

are surjective.
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neighbourhoods of S in X,, n € N. Clearly X() = FJS) :=the first
infinitesimal neighbourhood of 0 € F;. The embedding X 1) - ﬁM can be
extended to a morphism ¢ : X — F v (to construct ¢ define ¢, : X,, — F M
so that ¢, |x,_, = ¢n—1 and the restriction of ¢,, to XnﬂX(l) is the canonical
embedding X,,NX O F JS); this is possible because F v is formally smooth
over A). Quite similarly one extends the embedding F' ]S) = XM < X to
a morphism ¢ : F v — X. Since ¢ and 1 induce isomorphisms between
F JS) and X we see that ¢ and ¢ are ind-closed embeddings and 1) is an

isomorphism. So ¢ and 1 are isomorphisms. O

7.12.19. Ezample. We will construct a pair (X, .S) satisfying the conditions
of 7.12.18 except the Ry assumption such that (X, .S) is not A-isomorphic to
a formal scheme of the form F -

Suppose we have a nontrivial extension of flat Mittag-Leffler modules
(357) 0— N —-N—L-—0.

Such extensions do exist for “most” rings A; see 7.12.24(b, a”, d). After
tensoring (357) by A[t] we get the extension 0 — N'[t] — N[t] — L[t] — 0.
Multiplying this extension by t we get 0 — N'[t] = Q — L[t] — 0. The ind-
scheme F{ is formally smooth over A[t] and therefore over A. Let S C Fg be
the image of the composition of the zero sections Spec A — Spec A[t] — Fg.
Denote by X the completion of Fy along S.

Before proving the desired property of (X,S) let us describe X more
explicitly. For an A-algebra R an R-point of Fg is a pair consisting of an
A-morphism A[t] — R and an element of @ ®4p R. In other words, an
R-point of Fy is defined by a triple (n,l,t),n€ N®aR,l € L& R, t € R,
such that

(358) m(n) =tl

where 7 is the projection N ®4 R — L ®4 R.
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So Fq is a closed ind-subscheme of Fiy x F, X A defined by the equation
(358). Therefore X C Fiy x Fj, x Al is defined by the same equation (358)
(here Al is the completion of Al at 0 € Al).

Now suppose that (X, .S) is A-isomorphic to Fy. Then M is the module
of global sections of the restriction of © x4 to S. Linearizing (358) we see

that

(359) M=NaoLeACN&L® A
The composition

(360) Fu =5 X <5 Fy x F, x Al

is defined by a “Taylor series” Y 2 ¢, where ¢, is a homogeneous
polynomial map M — N @ L @& A of degree n; clearly ¢ is the embedding
(359). Set f = pry ops where pry is the projection N @& L& A — N. Since
M = N'® L @ A the module of quadratic maps M — N contains as a
direct summand the module of bilinear maps L x A — N, i.e., Hom(L, N).
The image of f in Hom(L, N) defines a splitting of (357) (use the fact that
the morphism (360) factors through the ind-subscheme X C Fy x Fy, x Al
defined by the equation (358)). So we get a contradiction.

7.12.20. Proposition. Let X be a formally smooth ind-scheme over a ring
A. Suppose that one of the following two assumptions holds:

(i) X is ind-affine;

(ii) A is noetherian and X is of ind-finite type over A.
Then X is the union of a directed family of ind-closed Ny-ind-schemes

formally smooth over A.

Proof. It suffices to show that for every increasing sequence of closed
subschemes Y,, C X there is an ind-closed Ryp-ind-scheme Y C X formally
smooth over A such that Y D Y, for all n.

Suppose that X is ind-affine. Then each Y, is affine. Represent Y,, as

a closed subscheme of a formally smooth scheme V,, over A (e.g., represent
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the coordinate ring of Y,, as a quotient of a polynomial algebra over A).
Let Y, C V,, be the first infinitesimal neighbourhood of Y;, in V;,. Since
X is formally smooth the morphism Y,, < X extends to a morphism
Y. — Z, C X for some closed subscheme Z, C X. Set Yr@ = Z1U...UZ,.
Now apply the above construction to (Y752)) and get a new sequence (Y,§3)),
etc. The union of all Y,gk) is formally smooth over A.

If X is ind-quasicompact but not ind-affine an obvious modification of the
above construction yields an ind-closed Ngp-ind-scheme Y C X containing all
the Y, such that for any affine scheme S over A and any closed subscheme
Sy C S defined by an Ideal Z C Og with Z? = 0 every A-morphism Sy — Y
extends locally to a morphism S — Y. If assumption (ii) holds then this

implies the existence of a global extension. ([

7.12.21. We are going to describe formally smooth affine Xg-formal schemes
of ind-finite type over a field C' (according to 7.12.20 the general case can,
in some sense, be reduced to the Xy case). First of all we have the following

examples.

(0) Set Ry = Clz1, ..y Zm)[[Tmtns - - - s Tman]]. Then Spf R, is a
formally smooth affine Ng-formal scheme over C.

(i) Let I C Ry be an ideal, A := R,,,,/I. Denote by Z the sheaf of
ideals on Spf Ry, corresponding to I. Of course, Spf A is an affine
Np-formal scheme of ind-finite type over C. It is formally smooth if
and only if for every u € Spf A the stalk of Z at u is generated by

some f1,..., fr € I such that the Jacobi matrix (gﬁ (u)) has rank r.
J

(ii) Suppose that A is as in (i) and Spf A is formally smooth. Then
Spf Al[y1,y2,...]] is a formally smooth affine Np-formal scheme of
ind-finite type over C.

In 7.12.22 and 7.12.23 we will show that every connected formally smooth
affine Ng-formal scheme of ind-finite type over a field is isomorphic to a

formal scheme from Example (i) or (ii).
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7.12.22. Proposition. Let X be a formally smooth affine formal scheme of
ind-finite type over a field C such that ©x is coherent (i.e., the restriction
of Ox to every closed subscheme of X is finitely generated). Then X is

isomorphic to a formal scheme from Example 7.12.21(i).

Proof. Represent X as lim Spec A; so that for ¢ < j the morphism A; — A;
—

is surjective with nilpotent kernel. The algebras A; are of finite type.

We can assume that the set of indices ¢ has a smallest element 0. Put

Ii = Ker(Ai — AQ)

Lemmea. For every kK € N there exists ¢; such that the morphisms

Ai/IF — A; /IF are bijective for all i > .

Assuming the lemma set Ay = Ai/If for i big enough, Iy :=
Ker(A(k) — A()) Clearly A(l) = Ao, A(k) = A(k+1)/1(kk+1)7 I(k) =
I(kﬂ)/lgfkﬂ). One has X = SpfA, A := @A(k). Choose generators

T1,...,ZTm of the algebra Ay = A and generators Zpi1,...,Tmin
of the Ag-module [5y. Lift Z1,...,Zmin t0 ZT1,. ., Tnin € A Set
Ry = Clz1, ... zm][[@m+1,- -+ Tmn)]. There is a unique continuous

homomorphism f : R,,, — A such that x; — z;. Clearly f is surjective.
Moreover, f induces surjections a* — Ker(A — A(k)), where a C Ry, is
the ideal generated by Tm+1, ..., Tmin. S0 f is an open map. Therefore f
induces a topological isomorphism between A and a quotient of R,,,. The
proposition follows.

It remains to prove the lemma. There exists ig such that for every i > iy
the morphism Spec A;, — Spec A; induces isomorphisms between tangent
spaces (indeed, since the restriction of © x to Spec Ay is finitely generated the
functor (355) corresponding to the Ap-modules N; := ;® 4, Ay is isomorphic
to the functor L — Hom(Q), L) for some Ag-module @, so there exists iy such
that N; = N;, for i > ip). We can assume that ig = 0. Set Y; := Spec Ai/Ii’“
(in particular, Yy = Spec Ag). The morphisms Yy — Y; induce isomorphisms

between tangent spaces.
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Represent Ag as Clzy,...,x,]/J and set Yy := SpecClz1,...,zn]/J".
Since X is formally smooth the morphism Yy < X extends to a morphism
}70 — X. Its image is contained in Y;, for some ¢;. Let us show that
for 4 > i; the embedding v : Y;, — Y, is an isomorphism. We have the
morphism f : }70 — Y;,. On the other hand, the morphism Yy, — 370
extends to g : Y, — 370. The composition vfg : Y; — Y; induces the
identity on Yy. So vfg is finite and induces isomorphisms between tangent
spaces. Therefore vfg is a closed embedding. Since Y; is noetherian a
closed embedding Y; — Y; is an isomorphism. So vfg is an isomorphism

and therefore v is an isomorphism. O

7.12.23. Proposition. Let X be a connected formally smooth affine Ng-
formal scheme of ind-finite type over a field C such that ©x is not coherent
(i.e., the restriction of O x to X,eq is of infinite type). Then X is isomorphic

to a formal scheme from Example 7.12.21(ii).

Proof. We will construct a formally smooth morphism
X = SptClly1, 92, .- ]|

whose fiber over 0 € Spf C[[y1,y2,...]] is a formal scheme from 7.12.21(i).
Represent X as hngpec A,, n € N, so that for every n the morphism
Apt+1 — A, is surjective with nilpotent kernel. The algebras A, are of finite
type. By 7.12.13 the restriction of ©x to Spec A, is free; it has countable
rank. This means that for every n the projective system (4, ®4,Ap), i > n,

is equivalent to the projective system
3 2
o= AL = AL — Ay

(here the map A¥+1 — AE is the projection to the first k coordinates). So

after replacing the sequence (A,,) by its subsequence one gets the diagram

o Qay = Fy = Qa, = F1 — Qu,
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where the F), are finitely generated free A,-modules and the A,-modules
Gpn = Ker(Frq1 ®4,., Ay — F,) are also free. For each n choose a
base en1,...,enk, € Gpn. Lift ep; to €y € Ker(Qa,,, ®4,., An — Fy) C
Ker(Q4,,, ®4,., An — Q4,) and represent €,; as dfyi, fni € Ker(Api2 —

As). Finally lift fo; to fai € A = lim A, and organize the fui, n € N,

m
1 < ky, into a sequence @1, s, ... . This sequence converges to 0, so one has
a continuous morphism C{[y1,y2, ...]] = A such that y; — ¢;. It induces a
morphism
(361) f: X =Y :=SpfClly1,y2, - . .||

It follows from the construction that the differential
(362) df :9x — Oy

is surjective and its kernel is coherent (indeed, it is clear that these properties
hold for the restriction of (362) to Spec Ay C X, so they hold for the

restriction to Spec A,, n € N).

Lemma. A morphism f: X — Y of formally smooth ind-schemes of ind-
finite type is formally smooth if and only if its differential (362) is surjective.
In this case © x/y is the kernel of (362).

Assuming the lemma we see that (361) is formally smooth and ©x/y is
coherent. So the fiber X of (361) over 0 € Y satisfies the conditions of
Proposition 7.12.22. Therefore X is isomorphic to a formal scheme from
Example 7.12.21(i). Let us show that X is isomorphic to X := Xo x Y.
Indeed, since X is formally smooth over Y the embedding Xy < X extends
to a Y-morphism « : X — X. Since X is formally smooth over Y the
embedding Xg — X extends to a Y -morphism g : X — X. Both o and 15}
are ind-closed embeddings (if a morphism v : Y — Z of schemes of finite type
induces an isomorphism Y;eq — Zyeq and each geometric fiber of v is reduced

then v is a closed embedding). The Y-morphism fa : Xg x Y — Xo x Y
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induces the identity over 0 € Y, so B« is an isomorphism. Therefore oo and
(B are isomorphisms, so we have proved the proposition.

The proof of the lemma is standard. The statement concerning ©x /y
follows from the definitions. To prove the first statement take an affine
scheme S with an Ideal Z C Og such that Z2 = 0 and let Sy C S be
the subscheme corresponding to Z. For a morphism v : Sy — X denote
by Ex(S,Z,¢) (resp. Ey(S,Z,1)) the set of extensions of 1 (resp. of
fv) to a morphism S — X (resp. S — Y). Formal smoothness of f
means that f, : Ex(S,Z,v) — Ey(S,Z,%) is surjective for all S, Z, ¢ as
above. Since X and Y are formally smooth Ex(S,Z,v) and Ey(S,Z,v)
are non-empty. According to 16.5.14 from [Gr67] they are torsors (i.e., non-
empty affine spaces) over Vx(S,Z, ) := Hom(¢*Qx,Z) = I'(Sp,v*Ox @ 7)
and Vy(S,Z,¢) = T'(Sp,v*f*Oy ® Z). The map f, is affine and the
corresponding linear map I'(Sp, p*Ox ®Z) — I'(Sp, ¥* f*Oy ® ) is induced
by (362). So the first statement of the lemma is clear. O

7.12.24. Ezamples of Mittag-Leffler modules.

(a) According to [RG], p.77, 2.4.1 for every noetherian A and projective
A-module P the A-module P* := Homyu(P, A) is strictly Mittag-
Leffler and flat. To prove that P* is strictly Mittag-Leffler one can
argue as follows: for any f : F — P* with F of finite type the image
of f*: P — F* is generated by some ly,...,l, € F*; the [; define
u: F — A" such that f = gu and v = hf for some g : A" — P*,
h:P*— A™.

In particular, if A is noetherian then for every set I the A-module
Al is strictly Mittag-Leffler and flat.

(a') Tt is well known that if A is a Dedekind ring and not a field then
A’ is not projective for infinite I. Indeed, we can assume that I
is countable. Fix a non-zero prime ideal p C A and consider the

submodule M of elements a = (a;) € A! such that a; — 0 in the
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p-adic topology. If Al were projective the localization M, would
be free. Since M/pM has countable dimension M, would have
countable rank. But M contains a submodule isomorphic to Af,
so (AT), would have countable rank. This is impossible because the
dimension of (A7),/p - (A), = (A/p)! is uncountable.

Suppose that A is finitely generated over Z or over a field”). If A is
not Artinian and I is infinite then A’ is not projective: use (a’) and
the existence of a Dedekind ring B finite over A.

If L is a non-projective flat Mittag-Leffler module then there exists a
non-split exact sequence 0 — N’ — N — L — 0 where NV and N’ are
flat Mittag-Leffler modules. Indeed, if N is a projective module and
N — L is an epimorphism then it does not split and Ker(N — L) is
Mittag-Leffler ([RG], p.71, 2.1.6).

It is noticed in [RG] that if

O%AQM’%M%O

is a non-split exact sequence of A-modules and M is flat and Mittag-
Leffler then M’ is Mittag-Leffler but not strictly Mittag-Leffler.
Indeed, if M’ were strictly Mittag-Leffler then there would exist a
module G of finite presentation and a morphism v : A — G such
that f = gu and v = hf for some g : G — M', h : M’ — G. Since
M is a direct limit of finitely generated projective modules one can
assume that Im g C Im f. Then gh would define a splitting of (363),
i.e., one gets a contradiction.

Here is another argument. The fiber of Fjy over 0 € Fyy is a
closed subscheme of F; canonically isomorphic to Spec A x Al; if
(363) is non-split then the projection Spec A x A! — Al cannot be
extended to a function Fy; — Al so by 7.12.16 M’ is not strictly
Mittag-Lefller.

*)We do not know whether it suffices to assume A noetherian.
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(d) Let A be a Dedekind ring which is neither a field nor a complete
local ring. Then according to [RG], p.76 there is a non-split exact
sequence (363) such that M is a flat strictly Mittag-Leffler A-module.
Here is a construction. Let K denote the field of fractions of A.
Fix a non-zero prime ideal p C A and consider the completions
Xp, I?p; then A\p %+ A, IA(p # K. Denote by M the module of
sequences (a,) such that a, € p™ and (ay) converges in I?p; we
have the morphism lim : M — I?p. Notice that M is a strictly
Mittag-Leffler module”). Indeed, according to (a) above [[02;p~™
is strictly Mittag-Leffler and ([[72, p~™)/M is flat, so M is strictly
Mittag-Leffler. We claim that Ext(M, A) # 0, i.e., the morphism
¢ : Hom(M, K) — Hom(M, K/A) is not surjective. More precisely,
let I : M — K/A be the composition of lim : M — [?p and the
morphisms I?p — [/(\—p/;{\p — K/A. We will show that [ ¢ Im ¢.

Suppose that [ comes from [ : M — K. The restriction of [
to p~™ C M defines ¢, € Hom(p~", A) = p". Then | = I’ where
Z~’:M—>Kp maps (a,) € M to

o0

(364) ;Cnan + lim ay,.
Indeed, U —1isa morphism M /My — gp where Mj is the set of
(an) € M such that a, = 0 for n big enough; on the other hand,
Hom(M /My, A,) = 0 because M/Mj is p-divisible (i.e., pM + My =
M). Since " = [ the expression (364) belongs to K C IA(p for every
sequence (a,) € M. This is impossible (consider separately the case
where the number of nonzero ¢,,’s is finite and the case where it is

infinite).

“)The fact that M is a Mittag-Leffler module is clear: A is a Dedekind ring, M is
flat, and for every finite-dimensional subspace V C M ® K the module V N M is finitely

generated
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Remark. In (d) we had to exclude the case where A is a complete local

ring. The true reason for this is explained by the following results:

1) according to [J] if A is a complete local noetherian ring, M is a flat A-
module, and N is a finitely generated A-module then Ext(M, N) = 0;
2) according to [RG] (p.76, Remark 4 from 2.3.3) if A is a projective
limit of Artinian rings (is this the meaning of the words “linearly
compact” from [RG]?) then every (flat?) Mittag-Leffler A-module
is strictly Mittag-Leffler. (In [RG] there is no flatness assumption,
but is their argument correct without this assumption? e.g., why

the F; from RG] are linearly compact?)

7.13. BRST basics. The BRST construction is a refined version of
Hamiltonian reduction; it is especially relevant in the infinite-dimensional
setting. In the main body of this article we invoke BRST twice: first to
define the Feigin-Frenkel isomorphism and then to construct the localization
functor LA used in the proof of the Hecke property. In this section we give
a brief account of the general BRST construction; the functor LA is studied
in the next section.

The usual mathematical references for BRST are [F84], [FGZ86], [KS],
and [Ak]. We tried to write down an exposition free from redundand
structures (such as Z-grading, normal ordering, etc.).

We start with the finite-dimensional setting. Then, after a digression

about the Tate central extension, we explain the infinite-dimensional version.

7.13.1. Let F' be a finite-dimensional vector space. Denote by Cl° = Cl
the Clifford algebra of F' & F* equipped with the grading such that F' has
degree -1 and F™* has degree 1. We consider Cl" as an algebra in the tensor
category of graded vector spaces’). Set Cl; := AS'F-AF* c CI'. Then
Cly = A'F* C Cl} C ... is a ring filtration on Cl'. The classical Clifford

algebra CI' = Cly = grCl" is commutative (as a graded algebra), so it is

*
)with the “super” commutativity constraint.
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a Poisson algebra in the usual way. Set Cl; := gr; CI'. The commutative
graded algebra Cl" is freely generated by F = lel and F* = Cl}. The
Poisson bracket {, } vanishes on F' and F*, and for f € F, f* € F* one has
(£ =10

The subspace Cl? is a Lie subalgebra of Cl; it normalizes F' and F* and
the corresponding adjoint action identifies it with Endr and Endg+. Let
Ele = End¥® be Endp considered as a Lie algebra. Then E” = Endl}; = CIY
is a central extension of E™¢ by C.

Remarks. (i) The action of Cl on AF*=Cl/Cl-F identifies it with
the algebra of differential operators on the “odd” vector space F°%. The
filtration on Cl is the usual filtration by degree of the differential operator,
so Cl is the Poisson algebra of functions on the cotangent bundle to F°%,

(ii) (valid only in the finite-dimensional setting) The extension End’, splits
(in a non-unique way). Indeed, we have splittings §',s” : E“® — E” which
identify EM€ with, respectively, F*-F and F-F*. Any other splitting equals
sy = As' 4+ (1 — \)s” for certain A € C. For example sy, is the “unitary”
splitting which may also be defined as follows. Notice that Cl carries a
canonical anti-automorphism (as a graded algebra) which is identity on F

and F*. Tt preserves C1Y, and the “unitary” splitting is the -1 eigenspace.

7.13.2. Here is the “classical” version of the BRST construction. Let n be a
finite-dimensional Lie algebra, R a Poisson algebra, [° : n — R a morphism
of Lie algebras™. Set Cl := Cl,,. The adjoint action of n yields a morphism
of Lie algebras a® : n — ClY. Set A" := Cl' ® R; this is a Poisson graded
algebra. It also carries an additional grading .A'(Z.) := Cl; ®R compatible with
the product (but not with the Poisson bracket). We have the morphism of
Lie algebras Lie : n — A% n — Lie, := a®(n) ® 1 + 1 ® I°(n). Below for

n € n we denote by 5, the corresponding element of Cl;° e ./4(71% One has

) o1 e
{Ezenl,zm} = U1 nal”

* .
)4 for “classical”.
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The following key lemma, as well as its “quantum” version 7.13.7, is due

essentially to Akman [AK].

7.13.3. Lemma. There is a unique element Q° = Q% € A' such that for any
n € none has {Q°¢, ¢} = Lie,. In fact, Q° € A%gl)' One has {Q°, Q°} = 0.

Proof. Let us consider A as a An-module where n € n = Aln acts as
Adie = {i5,,-}. The subspace of elements killed by all Ad;:’s (i.e., the
centralizer of n C Aa) equals An ® R. This is a subspace of A=Y, so the
unicity of Q¢ is clear. Our An-module is free, so the existence of Q¢ follows
from the fact that the map ni,n2 = {Liey,, i, } is skew-symmetric. Our
Q° belongs to A%gl) since Lie, € A(()gl)' Finally, since {Q¢ Q°} € A2
to check that it vanishes it suffices to show that Adi Ade, ({Q°,Q°}) =0
for any n,n’ € n. Indeed, Adi; Adic,({Q°,Q°}) = 2Adis ({Lien, Q°}) =
2{i P Q°} + 2{Lie,, Liey} = 0. O

c
[n,n/

Remark. Denote by ny, the Lie graded algebra whose non-zero components

L, n% =n, n%; = C = C-Q, the Lie bracket on n% coincides with

are ne,
that of n, the adjoint action of n% on n{?l is the adjoint action of n, and the
operator Adg : ngl — n% is idn. So ng equipped with the differential Adg
is a Lie DG algebra*). Then 7.13.3 says that there is a canonical morphism
of Lie graded algebras Lie : ny, — A" whose components are, respectively,

n 5, n— Liey, Q — Q°.

7.13.4. Set d := Adge = {Q¢,-}. This is a derivation of A" of degree 1 and
square 0. Thus A is a Poisson DG algebra; it is called the BRST reduction
of R. The morphism Lie : no — A is a morphism of Lie DG algebras.
One says that the BRST reduction is regular if H*A = 0 for i # 0.
It is easy to see that Q¢ = Q1 + Q¢ where Q)1 € A%l) =n®A’n* @R and
Qo € 'A%o) = n*®R are, respectively, the image of %ac € Hom(n,ClY) = n*®
ClY ¢ A'®.AY by the product map, and I € Hom(n, R) = “4%1)' Decomposing

*)Notice that no/nd is the Lie DG algebra ng from 7.6.3.
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the differential by the bigrading we see that A is the total complex of the
: : S E : /. 7 i+l g . ) i+1
bicomplex with bidifferentials d’ : .A(].) — A(j) ,d’ A(j) — .A(]._l).
The BRST differential preserves the filtration A <;). In particular Ay =
C(n,R) is a DG subalgebra of A, hence one has a canonical morphism of

graded algebras
(365) H(mR)— H A

Notice that (.A&f,), d") is the Koszul complex P := A~'n ® R for
I°: n— R. So A is the Chevalley complex C"(n, P) of Lie algebra cochains
of n with coefficients in P. The obvious projection P — R/RI(n) yields
an isomorphism of DG algebras A/Z= C(n,R/RI°(n)) where Z C A is the
DG ideal generated by elements i, n € n. Passing to cohomology we get a

canonical morphism of graded algebras
(366) H'A— H (n,R/RI°(n)).
We say that [¢ is regular if H;(P) =0 for i # 0.
7.13.5. Lemma. If [¢ is regular then (366) is an isomorphism.

Proof. Regularity means that the projection P — R/RI¢(n) is a quasi-

isomorphism. Hence A — C"(n, R/RI°(n)) is also a quasi-isomorphism. [

Thus H'A vanish for negative i and HYA=[R/RI¢(n)]" which is the usual

Hamiltonian reduction of R with respect to the Hamiltonian action [€.

7.13.6. Now let us pass to the “quantum” version of BRST. Let n be a

finite-dimensional Lie algebra. Set Cl' := Cl,. Denote by n’ the central

.
extension of n by C defined as the pull-back of End?1 by the adjoint action
morphism n — End, (see the end of 7.13.1 for the notation). In other
words, n” is a central extension of n by C equipped with a Lie algebra map
a: n’ — Cl° such that a(1,) = 17 and the action of n on Cl induced by

the adjoint action on n @ n* coincides with the adjoint action by a.

“)Here 1,5 is the generator of C C 1.
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Let R be an associative algebra, [ : n” — R a morphism of Lie algebras
such that I(1,,) = —1. Set A" := Cl ®R; this is an associative graded
algebra. We have the morphism of Lie algebras Lie := a +1 : n — A°,
n +— Lie, := a(n’) 4+ 1(n°) where n’ is any lifting of n to n’. Below for
n € n we denote by %, the corresponding element of lel C AL One has

[Lienlain2] = i[nl,TLQ]'

7.13.7. Lemma. There is a unique element Q = Q4 € A' such that for any
n € n one has [Q,i,] = Lie,. In fact, Q € Cl{ ®R. One has Q? = 0.

Proof. Coincides with that of the “classical” version 7.13.3. O

Set d := AdQ*); this is a derivation of A of degree 1 and square 0. Thus A
is an associative DG algebra called the BRST reduction of R. As in Remark
after 7.13.3 and 7.13.4 we have a canonical morphism of Lie DG algebras
Lie : no — A with components n +— i,, n +— Lie,, Q +— Q4.

One says that the BRST reduction is regular if H'A = 0 for i # 0.

Denote by C'(n, R) the Chevalley DG algebra of Lie algebra cochains of n
with coefficients in R (with respect to the action Ad;). As a graded algebra
it equals A'n* ® R, so it is a subalgebra of A".

7.13.8. Lemma. The embedding C(n,R) C A is compatible with the

differentials.

Proof. It suuffices to show that on R,n* C A our differential equals,
respectively, the dual to n-action map R — n* ® R and the dual to
bracket map n* — A?n*. As in the proof of unicity of @ it suffices to
check that [i,, [Q,7]] = [l(n),r] and [in,, [in,, [@, n*]]] = n*([n1, ne]) for any

n,ni,ng € n,n* € n*,r € R; this is an immediate computation. O

Remark. We see that d preserves the ring filtration Cl. ® R. On
CL®R/CL_1®R=A"n* @ An®@ R = C"*(n,A'n ® R) it coincides with
the Chevalley differential.

“of course, we take Ad in the “super” sense, so for v € A°% one has dv = Qv + vQ.
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The embedding of DG algebras C'(n, R) C A yields the morphism of
graded algebras

(367) H (n,R) — H' A.
In particular, since the center 3 of R lies in R", we get the morphism
(368) 5 — HA.

7.13.9. Remark. (valid only in the finite-dimensional setting) Let I be the
left DG ideal of A generated by elements i,, n € n. The quotient complex
A/I may be computed as follows. Let n < n’ be the splitting defined by
the splitting s’ from Remark (ii) in 7.13.1. Then I is generated as a plain
ideal by elements i,, and I(n), n € n. Restricting the projection A — A/I to
C(n, R), we get the isomorphism of complexes A/I = C(n, R/RI(n)) which

yields a morphism
(369) H A — H'(n,R/Rl(n)).

7.13.10. Remark. Let C" be an irreducible graded Cl'-module (such C" is
unique up to isomorphism and shift of the grading). If M = (M",dy;) is an
R-complex (:= complex of R-modules) then M @ C':= (M" ® C",d), where
d = dy ®ide +Q-, is an A-complex (i.e., a DG A-module). The functor

-® C': (R-complexes) — (A-complexes) is an equivalence of categories.

7.13.11. Let us compare the “quantum” and “classical” settings. Assume
that we are in situation 7.13.6. Let Ry C R; C ... be an increasing ring
filtration on R such that UR; = R and R := gr R is commutative. Then R
is a Poisson algebra in the usual way. We endow A with the filtration A.
equal to the tensor product of filtrations Cl. and R.. Then A := gr A equals
Cl® R as a Poisson graded algebra. Set A; := gr; A.

Assume that l(nb) C Ry; let I¢ be the corresponding morphism n — Rj.
Then (R,[¢) are data to define the “classical” BRST construction from
7.13.2. By 7.13.3 we have the corresponding “classical” BRST element Q°.
It is easy to see that Q € A; and Q¢ equals to the image of @ in Aj;.



342 A. BEILINSON AND V. DRINFELD

Therefore the filtration A. is stable with respect to the differential, and gr A
coincides with the corresponding “classical” A as a Poisson DG algebra.

Hence we have the spectral sequence converging to H A with the first term

EPT = HPHIA

7.13.12. Lemma. (i) Assume that [¢ is regular. Then H'A = 0 for i < 0
and gr HYA C [R/RI¢(n)]™.

(ii) If, in addition, H'(n, R/RI¢(n)) = 0 for i > 0 then H*A =0 for i # 0
and gr HYA=[R/RI¢(n)]".

Proof. Look at the spectral sequence and 7.13.5. O

7.13.13. One may compute the algebra HYA explicitely in the following
situation. Assume we are in situation 7.13.11 and [ : n” — R, is injective.
Denote by b’ the normalizer of [(n’) in R;. So b’ is a Lie algebra which

> and we have the embedding of Lie algebras [’ : & — R; which

contains n
extends [. Set b := b'/C, so b’ is a central extension of b by C. The
adjoint action of b yields a morphism of Lie algebras b — End,; denote by
b” the pull-back of the central extension End’ (see 7.13.1). Then 1’ is a Lie
subalgebra of b°, and we have the morphism of Lie algebras a® : b° — Cl(l)
which extends a.

Let b? be the Baer sum of extensions b’ and b°. By construction we have
a canonical splitting s : n — b%. Tt is invariant with respect to the adjoint
action of b, so s(n) is an ideal in b%. Set h® := b%/s(n); this is a central
extension of h := b/n by C.

Set Lie® := a* ® 1 +1®1° : b — AJ. This is a morphism of Lie
algebras which equals ide on C C bY. Its image commutes with @Q (since
all our constructions were natural), i.e., it belongs to Kerd. One has
Lie®os = Lie = doi : n — A° so Lie® yields a canonical morphism
Lie" : ' — HYA. Let U be the twisted enveloping algebra of b that

corresponds to h%. Our Lie” yields a canonical morphism of associative
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algebras
(370) h:U%% — HA.

This morphism has the obvious “classical” version h¢ : Symbh — HOA.
Its composition with the projection H°A — [R/I¢(n)R]" (see (366)) is
the obvious morphism Symb — [R/I¢(n)R]" whose restriction to b is the

composition of [* with the projection Ry — R1/Ry.

7.13.14. Lemma. Assume that [¢ is regular and the morphism Symb —

[R/I¢(n)R]" is an isomorphism. Then (370) is an isomorphism.
Proof. Use 7.13.12(i). O

7.13.15. Ezamples. (cf. [Ko78]) (i) We use notation of 7.13.13. Let g be
a (finite-dimensional) semi-simple Lie algebra, b C g a Borel subalgebra,
n = [b,b]. Set R := Ug and let R. be the standard filtration on R, so
R = Symg. The extension n’ trivializes canonically since the adjoint action
of n is nilpotent. Let [ : n — g C R be the obvious embedding. Then b’ is
equal to b ®C, so this extension is trivialized. Let us trivialize the extension
b° by means of the splitting s from Remark (i) from 7.13.1. Therefore we
split the extension b?, hence Ul = Sym b.

The conditions of 7.13.14 are valid. Indeed, [¢ is clearly regular, and
the obvious embedding ¢ : Sym b < [Sym(g/n)|" is an isomorphism since n
acts simply transitively along the generic fiber of the projection (g/n)* — b*.
Therefore h : Symb = HYA.

Let us show that the canonical morphism (368) 3 — H°A = Sym}
is the usual Harish-Chandra morphism. The obvious embedding i
Sym b =[R/RI(n)]* is an isomorphism, and, by definition, the Harish-
Chandra morphism is composition of the embedding 3 < R" and the inverse
to this isomorphism. Consider the map p : H°A — [R/RI(n)]" from (369).

As follows from the definition of p one has ph = ¢ which implies our assertion.
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(i) Let now ¢ : n — C be a non-degenerate character of n (we use notation

of 7.13.15 (i)). Set Ry := R[t], l; := 1+t : n — Ry.

7.13.16. Let us pass to the infinite-dimensional setting. We need to fix some
Clifford algebra notation. Let F' be a Tate vector space, so we have the ind-
scheme Gr(F) (see 7.11.2(iii)). The ind-scheme Gr(F') x Gr(F') carries a
canonical line bundle A of “relative determinants”. This is a graded line

bundle equipped with canonical isomorphisms

(371) )\(P,P”) - A(P,P/) ® A(P/,P”)

and identifications \(p pry = det(P/P’) for P’ C P that satisfy the obvious
compatibilities; here we assume that det(P/P’) sits in degree — dim(P/P’).

Consider the Tate vector space F' & F* equipped with the standard
symmetric form and the Clifford algebra Cl = Clp := CI(F & F*). Let
C be an irreducible discrete Cl-module”. Since C' is unique up to tensoring
by a one-dimensional vector space*), the corresponding projective space P
is canonically defined (this is an ind-scheme). For any c-lattice P C FRA
denote by /\g the set of elements of C'® A annihilated by Clifford operators
from P and P+ C F*®A. The A-submodule A& C O ® A is a “line” (i.e., a
direct summand of rank 1), so A” is a line subbundle of C @Oq(r)- It defines

a canonical embedding Gr(F') < P. There is a canonical identification
(372) Ay =25 ® (A5)*

compatible with (371): if P’ C P the isomorphism Appy ® )\I(’;, ~ S is
induced by the obvious map \(p pry = det(P/P') — Clg /Clp-P'.
The algebra Cl carries a canonical grading such that F c C171, F* ¢ ClI'.

Let C" be a grading on C' compatible with the grading on Clp; it is unique

“)Here “discrete” means that annihilator of any element of C' is an open subspace of
FaoF.
*)C is isomorphic to the fermionic Fock space lim A(F/U) ® det(P/U)* (cf. (182)),
—uU

where P is a c-lattice in F' and U belongs to the set of all c-sublattices of P.
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up to a shift. Then A® is a homogenuous line, and (372) is an isomorphism

of graded line bundles.

7.13.17. Denote by CI' = Cly the completion of Cl' (as a graded algebra)
with respect to the topology generated by left ideals C1-U where U C F®F*
is an open subspace. Thus C is a discrete Cl-module. The action of Cl yields
an isomorphism of topological graded algebras Cl = End C.

The graded algebra Cl" has a canonical filtration Cl, = A'F* C Clj C ...
(see 7.13.1). We define the filtration CI, on Cl as the closure of Cl;. As
in 7.13.1 the classical Clifford algebra CI := grCl is a Poisson graded
topological algebra. It carries an additional grading @Z = gr; CI; one has
Cl; = @U,V A(F/U) ® A*T(F*/V) where U,V are, respectively, c-lattices
in F, F*.

Denote by E = Ep the associative algebra of endomorphisms of F. Let
EY¢ be E considered as a Lie algebra. Notice that a(f is a Lie subalgebra of
Cl which normalizes El‘l. The adjoint action of E‘f on a;l = F identifies
a‘f with EMe™), Set E’ := ﬁ(l); this is a Lie subalgebra of Cl which is a
central extension of a‘f = Bl by C.

We see that E” acts on C' in a way compatible with the Clifford action;
this action preserves the grading on C.

The next few sections 7.13.18 - 7.13.22 provide a convenient description of
E’ and some of its subalgebras. The reader may skip them and pass directly

to 7.13.23.

7.13.18. Here is an explicit description of the central extension E° of Ee
due essentially to Tate [T].

Let E4 C E be the (two-sided) ideal of bounded operators (:= operators
with bounded image), E_ C E that of discrete operators (:= operators
with open kernel). One has E, + F_ = Ej; set Ey,. := E4 N E_. For any
A € Ey, its trace trA is well-defined (if U' C U C F are c-lattices such that

*)Use the above explicit description of a?.
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A(F) Cc U, A(U") =0 then we have A~ : U/U" — U/U’ and trA := trA~).
The functional ¢r : Fy. — C is invariant with respect to the adjoint action
of E: it also vanishes on [E,, E_| C Ey,.

Our extension E” is equipped with canonical splittings s, : Fy — E”,
s_ : E_ — E°. Namely, for A € E, its lifting s, (A) is characterised
by the property that s;(A) kills any element in C' annihilated by all
Clifford operators from Im A C g. Similarly, s_(A) is the unique lifting
of A € E_ that kills any element in C annihilated by all Clifford operators
from (Ker A)* C F*. The sections s+ commute with the adjoint action of
E, and for A € Ey, one has s_(A) —s,(A) =trA € C C E’. It is easy to see
that the data (Eb, s+ ) with these properties are uniquely defined. Indeed,

consider the exact sequence of E-bimodules

(=) (1)

(373) 0— B, —YE, 0 B "VE 0.

Now s = (s4,5_) identifies E* with the push-forward of the extension (373)
by tr : Ey — C. The adjoint action of E“€ on E° comes from the adjoint
action on the E-bimodule E; ¢ E_.

Remarks. (i) The vector space F' ® F* carries 4 natural topologies with
bases of open subspaces formed, respectively, by U Q@ V, U ® F*, F® V,
and U ® F* + F®V, where U C F, V C F* are open subspaces. The
corresponding completions are equal, respectively, to Ey., B4, F_, and F.
The trace functional is the continuous extension of the canonical pairing
F®F*— C.

(ii) Set (E_/E},)’ := E_/ Kertr; this is a central extension of (E_ /Ey,.)l®
by C. Note that E_/E;. = E/E,, so we have the projection 7_ : EM¢ —
(E_/Ey)Me. Tt lifts canonically to a morphism of extensions 7” : E’ —
(E_/E;, )’ with kernel sy (E,). In other words, E’ is the pull-back of
(E_/E)* by m_. Same for + interchanged.

(iii) Let F' be a finite filtration of F' by closed subspaces; denote by

B C EF the subalgebra of endomorphisms that preserve the filtration. We
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have the induced central extension B® of BY¥€. On the other hand, we have
the obvious projections gr’ : B — Egip; let B be the pull-back of the
extension E” pof Elie - Denote by B the Baer sum of the extensions B,
gr gr

Then there is a canonical (and unique) isomorphism of extensions B” = B’.

Indeed, B” coincides with the extension defined by the exact subsequence
0—-BNE, —(BNE;y)®(BNE_)—-B—0

of (373) (notice that for e € BN E},. one has tr(e) = Xtr(grie)). In particular

we see that B® splits canonically over the Lie subalgebra Ker gr.

7.13.19. Set K = C((¢t)), O := C[[t]]. Let F be a finite-dimensional K-
vector space equipped with the usual topology; this is a Tate C-vector space.
Let i : D — E be the agebra of K-differential operators acting on F', so
we have the induced central extension D° of the Lie algebra DY¢. Let us
rephrase (following [BS]2.4) the Tate description of D” in geometric terms.

Set F' := Homg (F,K), F° := F’%w;{. Clearly F° coincides with the
Tate dual F™* (use the pairing f°, f —< f° f >:= Res(f°, f)). Our F is
a left D-module, and F° carries a unique structure of right D-module such
that <, > is a D-invariant pairing; notice that D acts on F° by differential
operators, and this is the usual geometric ”adjoint” action. Let K&K be the
completion of K ® K with respect to the topology with basis (1"O) ® (t"O),
ie. K®K := C[[t1,t2]][t;"][t;"]. Let FRF° be the similar completion of
F ® F°; this is a finite-dimensional K&K-module. Denote by FRF°(coA)
the localization of F&F° by (t; —t2)~!, i.e., by the equation of the diagonal.

Consider the standard exact sequence
(374) 0 — FRF° — FRF°(c0A)—=D — 0

where the projection 7 sends a “kernel” k = k(ty,tp)dts € FRF°(c0A) to
the differential operator r(k) : FF — F, f(t) — Resy,=t(k(t,t2), f(t2))dta.
Note that FRF° is a D-bimodule in the obvious way. This biaction extends
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in a unique way to the D-biaction on FRF°(coA) compatible with the K-
bimodule structure. It is easy to see that (374) is an exact sequence of
D-bimodules. Let tr : F°®F — C be the morphism f ® f° —< f°, f >
(i.e., it is the residue of the restriction to the diagonal). It is invariant with
respect to the adjoint action of DMe. Denote by D" the push-forward of
(374) by tr. The adjoint action of on F&F°(coA) yields a DMe-module
structure on D*. For 15,15 € D” set [I},15] := 11 (1) where [ is the image of

I in DU,

7.13.20. Lemma. The bracket [,] is skew-symmetric, so it makes D" a
central extension of D™¢ by C. There is a unique isomorphism of central

extensions
D" =D

Proof. It suffices to establish an isomorphism of DY¢-module extensions
D" =D’ Tt comes from a canonical embedding i~ : (374) < (373)
of exact sequences of D-bimodules defined as follows. The morphism
D — FE is our standard embedding ¢, and i~ : FRF° = FRF*= Ey,
is the obvious isomorphism (see Remark (i) in 7.13.18). The map i~ =
(i7,i>) : FRF°(c0A) — B+ @ E_ sends the “kernel” k to the operators
i~ (k) equal to f — —Resy,—o(k(t,t2), f(t2))dts and iT (k) equal to f
(Resty—t + Rest,—0) (k(t,t2), f(t2))dty. Here f € F and (k(t,t2), f(t2))dts €
F((t2))dta. We leave it to the reader to check that the operators i (k)
belong to E4"). Since i~ identifies the trace functionals it yields the desired

isomorphism of D™e-modules D" = DP. ([l

Remark. Let D; C D be the subspace of differential operators of degree

< 4. The extension D? carries a natural topology induced by the embedding

“)This is clear for i~ (k). To check that i} (k) € E4 one may use Parshin’s residue
formula ([Pa76], §1, Proposition 7) applied to 2-forms (k(t1,t2), g(t1)f(t2))dt1 Adts where

g belongs to a sufficiently small c-lattice in F™*.
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D? C Clp. This is a Tate topology; the quotient topology on D; coincides

with its natural topology of a finite-dimensional K-vector space.

7.13.21. Ezample. Set £ := Endg F = Dy C D, so we have the central
extension £’ of M. Let £ C DM€ be the normaliser of &; it acts on £’ by
the adjoint action. We will describe the extension £ as an L-module”).

It is easy to see that L coincides with the Lie algebra of differential
operators of order < 1 whose symbol belongs to Derg -idg. In other words,
L consists of pairs (7,77) where 7 € Der K and 77 is an action of 7 on F,
i.e., £ is the Lie algebra of infinitesimal symmetries of (K, F').

As above, set £° := £ Qwg. We identify £° with the Tate vector space
dual £* using the pairingK<, >: E°xE = C, < a,b>:=Restrg(ab). The
adjoint action of £ on £° is (7, 77)(e®@v) = [, e]@v+e® Lie;v. Let wglﬂ
be a sheaf of half-forms on Spec K. It carries an L-action ((7,77) acts by
Lie;), so L acts on ®w§1/ ?. Consider the set Conn(F ®w§1/ 2) of connections

on F®w§1/2*). Since Endg F = EndK(F®w§1/2) our Conn(F®w§1/2) is

an £°-torsor; L acts on it in the obvious way.

7.13.22. Lemma. There is a unique £- and £°-invariant pairing

< >t Conn(F@wgl/z) x & = C

such that < V,1g, >=1 for any V € Conn(F ® w%ﬂ).

Remarks.(i) An element \ € £° acts on Conn(F ®w§1/ 2) and &£ according

to formulas V — V+ X and ® — ¢+ < X, e > (here ¢ := ¢ mod Cgo = &).
So &£°-invariance of <,> means that < V + X, e’ >=< V,e’ > — < \,e >.
(ii) Clearly <,> identifies £ with the £-module of continuous affine

functionals on Conn(F ® w}%l/ 2). This is the promised description of £°.

“)Since £ C £ we describe in particular the adjoint action of £ which amounts to the

Lie bracket on &°.

1t does not depend on the choice of wgl/Q.
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Proof. The unicity of <, > follows since Conn(F@w?}l/ 2) has no £-invariant

elements.

To define < V, ¢’ > let us choose connections V7 on F and V,, on wg
such that V=Vp + %Vw.

a. The connection Vg identifies the restrictions of ' ® K and K ® F
to the formal neighbourhood of the diagonal, i.e., it yields an isomorphism
of KQK-modules €(Vp) : FRK = KQF. Let (V) : FRF® — KQuwyg be
the composition of €(Vp) @idpe and the obvious morphism K&(F ® F°) —
K®uwy defined by the pairing F ® F° — wg. Localizing (V) by the
equation of the diagonal we get the morphism F&F°(00A) — KQuwg (coA).
Applying it to €” we get a 1-form £(Vp, €’) € K@wy (A) well-defined up to
the subspace of those forms ¢(t1,t2)dts € K®uwgk that Resg o(t,t)dt = 0.
Notice that for A € £° one has (Vg + A, ¢?) = e(Vp, e”) — trg(Me) (here
tr(Ae) € wg = K@wi /(t1 — to) K®wi ).

b. Let v € wg®K(A) be a form with residue 1 at the diagonal

(i.e., v equals tfliltg modulo wx®K). Let (V) be a similar form such
that ¥(V,)®% = ~vy"). Notice that (V) is well-defined modulo
(t1 — to)wg®K. For | € wg one has ¢(V, +1) = ¢(V,) — I (here we
consider [ as an element in wr®K/(t; — to)wg®K).

c. Consider the 2 form &(Vp,e”) Av. Set
< V,e” >:= Resg ResA(sv(eb) A V)

Then < V,e” > is well-defined (i.e., it does not depend on the auxiliary
choices) and <, > is £°-invariant. Since all the constructions where natural

it is also L-invariant. O

Remarks. (i) Let e, be an F-basis of F, e/, the dual basis of F’, and

V the connection such that e’a-(dt)*l/ 2 are horisontal sections. Denote by

dto

s Then <V, (eaes)’ >= dap.

(ea-€l)d € £’ the image of e, ® e

*)here VS) is the covariant derivative along the first variable.
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(ii) The above lemma is a particular case of the local Riemann-Roch

formula; see, e.g., Appendix in [BS].

7.13.23. Now let n be a Lie algebra in the Tate setting, i.e., a Tate vector
space equipped with a continuous Lie bracket [ , ]. The following lemma
may help the reader to feel more comfortable.

Lemma. n admits a base of neighbourhoods of 0 that consists of Lie

subalgebras of n.

Proof. Take any c-lattice P C n. We want to find an open Lie algebra ¢ C P.

Note that
(375) np:={a€n: [o,P]C P}
is an open Lie subalgebra. Set £ := P Nnp. U

7.13.24. We use the notation of 7.13.17 for F' = n. So we have the Clifford
graded topological algebra Cl = ﬁ;ﬁ the corresponding classical Clifford
algebra CI = grCl (which is a Poisson graded topological algebra), the
central extension E° of the Lie algebra E® of endomorphisms of the Tate
vector space n and the embedding E° < C1". The adjoint action defines a
morphism n — EM¢: denote by n” the pull-back of the extension E° to n. So

n’ is a central extension of n by C. We equip n” with the weakest topology

b

. . . —0 .
such that the projection n” — n and the morphism n” — CI are continuous.

Then 1’ is a Tate space and the map n’ /C—nisa homeomorphism*).

7.13.25. Now we are ready to render the BRST construction to the infinite-
dimensional setting. Let us start with the ”classical” version. Let R be a
topological Poisson algebra. We assume that R is complete and separated

and topology.

*)Indeed, the extension n° has a canonical continuous splitting over any subalgebra of

the form (375) (its image consists of operators annihilating Ap).
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7.13.26. Denote by M(g)” the category of discrete g’-modules V such that
1€ C C g acts as —idy. For such V, the g’-actions on C" and V yield a g-
module structure on C" ® V. It is also a Clg-module in the obvious manner,
and the g -action is compatible with the Clifford action. For a € g we denote
its action on C" ®@ V by Lie,, and the Clifford operator C" @V — C" 1@V
by iq.

It is convenient to rewrite the operators acting on C" ®@ V' as follows (cf.
7.7.5). Let Qg be the DG algebra of continuous Lie algebra cochains of
g. The corresponding plane graded algebra ) is the completed exterior
algebra of g*. We identify it with the closed subalgebra of the completed
Clifford algebra Cl, generated by g* C Cl, so Qg acts on C" @V by Clifford
operators. Now let go be a DG Lie algebra defined as follows. The only
non-zero components are 9?1 = 951 = g, the differential gg_)l — g% is idg, the
bracket on g% is the bracket of g. Recall that go acts on Qg (namely, g%
acts in coadjoint way, and 951 acts by ”constant” derivations). The graded
Lie algebra gg, acts on C" ® V' via the operators Lie, and i,. So C° ® V is
a graded (£, g) -module.

7.13.27. Proposition. There is a unique linear map d: C'®V — C oV
such that for any a € g one has Lie, = diq + iad. One has d?> = 0, and
Cy(V) :=(C"®V,d) is a DG (£, go) -module.

Proof. Uniqueness. The difference of two such d’s is an operator that
commutes with any i,. It is easy to see that the algebra of all such operators
coincides with the closed subalgebra generated by gél and End V. Since it
has no operators of positive degree we are done.

A similar argument shows that the action of (€4, gn) is compatible with
the differentials and that d? = 0 (first you prove that [d, Lie,] = 0, then the
rest of properties).

Existence. We write d explicitely. Let e;, ¢ € I, be a topological basis of

g (see 4.2.13), e} the dual basis of g*. For a semi-infinite (with respect to g)
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subset A C I denote by Ay C C" the homogenuous line A¢ that corresponds
to the c-lattice generated by ey, a € A (see 7.13.16). In other words Ay
is the subspace of vectors killed by the Clifford operators e,, e; for a € A,
be I\ A. Our C" is the direct sum of A\g’s. Note that for a,b as above one
has e (Aa) = Aava> €6(Aa) = Aaup

Set V4 := Ay ® V; then C" ® V is direct sum of Vy4’s. For ¢ € I set
L. := Lie,_,i. := i.,; for semi-infinite A, A, we denote by L?’A/, icA’A, the
A, A’-components V4 — Va: of these operators.

Let A, B be semi-infinite subsets such that |A|—|B| = 1 (here |A|—|B| :=
|A\ (ANB)|—|B\(ANB)|). Choose any a = aa p € A\ (AN DB) (this set is
not empty). Denote by d4B the composition V4 — Vgy, — Vp where the
first arrow is Lf’Bua, the second one is the Clifford operator e}. It is easy
to see that the operator d : C" ® V — C"T! @ V with components d4% is
correctly defined (use the fact that for any v € V' and there is only finitely
many a € A such that L,(As ® v) is non-zero).

It remains to show that our d satisfies the condition of the Proposition,
i.e., that for any ¢ € I one has [d,i.] = L.. One checks this fact by a direct

computation; the key point is the skew-symmetry of [L,, ip] with respect to

a,b. We leave the details for the reader. ([l

7.13.28. If V is a complex in M(g)’ then we denote by Cy(V) the total
complex for the bicomplex C(V"). This is a discrete DG (€2, go)-module
(an (£2g, go)-complex for short). The functor Cy is an equivalence between
the DG category C(g)” of complexes in M(g)” (we call them g’-complexes)
and the DG category C(£)g, ga) of (Qq, ga)-complexes. The inverse functor
assigns to I € C(Qy, ga) the complex Homey, (C", F).

7.13.29. Let € C g be an open bounded Lie subalgebra. For a > 0 denote
by C, C C° the subspace of elements killed by product of any a + 1
Clifford operators from ¢+ C g*. Then 0 = C" | C Cy C C; C ..isan

increasing filtration on C° = UC,,. Any Clifford operator v € g* preserves
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our filtration; if v belongs to & then it sends C; to Cafll Any Clifford
operator from g sends C, to C’;ljrll; if it belongs to ¢ then it preserves the
filtration. Thus gr,C" is a module over the Clifford algebra Clg.¢ of the vector
space (g/t)®(g/¢)* B tHE* (equipped with the standard ”hyperbolic” form).

This is an irreducible Clg.;-module; and Cy is an irreducible module over
the subalgebra Cly C Clge. The homogenuous line \¢ = )\éc) (see 7.13.16)
sits in Cy, and gr.C" is a free module over the subalgebra A(g/¢)@At* C Clg
generated by this line. If \y C C° (we may assume this shifting the - filtration
if necessary) then gr,C? = A%(g/t) @ APFoE* @ A

Let ¥ C g° be the preimage of £. This is a central extension of ¢ by C
which splits canonically: the image of the splitting € — € consists of those
elements that kill \¢ (we consider the Lie algebra action of £ on C").

For V € C(g)° the subspaces C;, ® V are subcomplexes of Cy(V); denote
them by Cy(V),. We get a filtration on Cy(V') preserved by the Clifford
operators from g* and & the successive quotients gr, Cy(V') are (2, tq)-
complexes. For a £-complex P denote by Cy¢(P) the Chevalley complex of Lie
algebra cochains of € with coefficients in P; this is an (€, ¢o)-complex. The
identification gr, Cy(V) = AT¢* @ (V' ® A%(g/t) @ A¢) is an isomorphism

of (2, tq)-complexes
(376) gr, Cg(V) R Ce(V @ A%(g/t) © Ae)[a]

Here ¢ acts on A%(g/t) according to the adjoint action. The correspond-
ing spectral sequence converges to H Cy(V); its first term is EP? =

HPta gr_p CB(V) = Hq(E, Aip(g/{%) RV ® )‘E)'

7.13.30. Remark. Assume that we have a #-subcomplex T C V such that

V is induced from T, ie., V = U(g’) ® T. Then the composition of
U®)
embeddings C¢(T ® A\¢) C Cy(V)g C Cy(V) is a quasi-isomorphism.
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7.14. Localization functor in the infinite-dimensional setting. Now
we may explain the parts (c), (d) of the "Hecke pattern” from 7.1.1 in the

present infinite-dimensional setting.

7.14.1. Let G, K be as in 7.11.17 and G’ be a central extension of G by G,
equipped with a splitting K — G’ (cf. 7.8.1). Then g, g’ are Lie algebras
in Tate’s setting, and € = LieK is an open bounded Lie subalgebra of g, g’.
All the categories from 7.8.1 make obvious sense in the present setting.
One defines the Hecke Action on the category D(g, K)' as in 7.8.2. Now
the line bundle L& is an OP-module on G, and Vg is a complex of left
DP-modules (see 7.11.3). All the constructions of 7.8.2 pass to our situation
word-by-word, as well as 7.8.4-7.8.5 (in 7.8.4 we should take for U’, as usual,

the completed twisted enveloping algebra).

7.14.2. To define the localization functor LA we need some preliminaries.
Let Y be a scheme, F' a Tate vector space. A Clgp-module on Y is a Z-graded
O-module C" on Y equipped with a continuous action of the graded Clifford
algebra Cly (see 7.13.16). For any c-lattice P C F denote by Ap(C") the
graded O-submodule of C* that consists of local sections killed by Clifford
operators from P C F and P+ C F*. The functor Ap : C(Y) — { the
category of graded O-modules on Y} is an equivalence of categories*). For

two c-lattices P;, P> there is a canonical isomorphism
(377) AP (C) R Apy ) @ Ay (C)

that satisfies the obvious transitivity property (see 7.13.16). Same is true

for Y-families of c-lattices (see loc. cit.).

7.14.3. Now assume we are in situation 7.11.18. Then Y carries a canonical
Clg-module Cy- defined as follows. Let K C G be a reasonable group
subscheme, ¢ := Lie K. Denote by w(x\y) the pull-back of the canonical

“)The inverse functor is tensoring by an appropriate irreducible graded Clifford module

over C.
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bundle wr\y = det Qp\y by the projection Y — K\ Y (recall that K'\ Y is
a smooth stack). This is a graded line bundle that sits in degree dim K \ Y.
If K1, Ko C G are two reasonable group subschemes as above, then there is

a canonical isomorphism

(378) WKNY) = Atr,) @ W(K,\Y)

which satisfies the obvious transitivity property. Indeed, to define (378)
it suffices to consider the case Ko C K;. The pull-back to Y of the
relative tangent bundle for the smooth projection Ko \' Y — K; \ Y equals
(£1/%2) ® Oy, which yields (378). The transitivity property is clear.

Now our Cy € C(Y) is a Clifford module together with data of
isomorphisms A¢(Cy ) ® w(g\y) for any reasonable subgroup K C G that
are compatible with (377) and (378). Such Cy exists and unique (up to a
unique isomorphism).

The action of G on Y lifts canonically to a G-action on Cy. compatible
with adjoint action of G on the Clifford operators g ® g*. Indeed, G(C) acts
on all the objects our (- is cooked up with, so it acts on Cy.. To define the
action of A-points G(A) on Cy ® A one has to spell out the characteristic
property of the Clifford module Cy. ® A on Y x Spec A using A-families of
reasonable group subschemes of G. We leave it to the reader.

Remark. Take any y € Y. The fiber C,, of Cy at y is an irreducible graded
Cl;-module which may be described as follows. Consider the ”action” map
g — O,. Its kernel g, (the stabilizer of y) is a d-lattice in g. The cokernel T
is a finite-dimensional vector space. Let Cg;gy be the graded vector space of
gy-coinvariants in C; (with respect to the Clifford action of g,). Now there
is a canonical identification C'?%TT = det(7T™), and Cy is uniquely determined

by this normalization.

7.14.4. Let £ = Ly be a line bundle on Y equipped with a G’-action that
lifts the G-action on Y'; we assume that G, C G acts on L by the character
opposite to the standard.
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Take V € M(g)’, so V is a discrete g’-module on which C C g’ acts by the
standard character. Then the tensor product LRV is a g-module, as well as
Cy @ LRV (i.e., the g-action on Y lifts to a continuous g-action on these O-
modules). We denote the action of & € gon Cy, ® L&V by Lie,. Note that
Cy ® LRV is also a Clifford module, and the above g-action is compatible
with the Clifford operators. As usual we denote the Clifford action of o € g
by iq. So, as in 7.13.26, our Oy, ® L® V' is a graded (£, g)-module.

The following proposition is similar to 7.13.27, as well as its proof which

we leave to the reader.

7.14.5. Proposition. There is a unique morphism of sheaves
d: Cy LRV - CH' LoV

such that for any o € g one has Lie, = diy + i4d. This d is a differential
operator of first order, d> = 0, and Cz(V) = (Cy, ® L ® V,d) is a DG
(Qg, gn)-module.

Remark. One may deduce 7.14.5 directly from 7.13.27. Namely, pick any
K as in 7.14.3. Then C ® wE‘K\Y) is a "constant” Clifford module: it is
canonically isomorphic to C" ® Oy for some irreducible Clifford module
C". The g’-action on C" and the g-action on Cy vyield a g’-action on
wik\y) = Hom(Cy,C" ® Oy) which lifts the g-action on Y. Thus g’-acts
on wig\y) ® L®V, and d from 7.14.5 coincides with d from 7.13.27 for

C'® (W(K\y) QL® V)

7.14.6. So we defined an Q-complex C,(V) on Y. One extends this
definition to the case when V' is a complex in M(g)’ in the obvious manner.

Now assume we have K as in 7.14.1. For a Harish-Chandra complex
V e C(tq x g, K)' the Q-complex Cr (V) is Kg-equivariant. Indeed, K acts
on Cg(V) according to the K-actions on Cy, £, and V, and the operators
i¢, £ € €, are sums of the corresponding Clifford operators for C§, and the

operators for the Eﬁl—action on V.
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Set Aqr (V) :=Cr(V)[dim(K \ Y)]. We have defined a DG functor
(379) AQ:AQEZ C(EQXQ,K)IHC(K\Y,Q)

7.14.7. Remark. The Q-complex Aq(V) carries a canonical filtrartion
Aq(V). where Aq(V), consists of sections killed by product of any a + 1
Clifford operators from £+ C g* (see 7.13.29). By (376) one has a canonical

isomorphism of Kg-equivariant {2-complexes
(380) 9ralo(V) R Ci(winy) ® LRV ® A%(g/t))]d]

7.14.8. Lemma. (i) The functor Ag sends quasi-isomorphisms to D-quasi-

isomorphisms, so it yields a triangulated functor
(381) LA =LA;: D(g,K) — D(K\Y)

(ii) The functor LA is right t-exact, and the corresponding right exact
functor A = Az : M((g, K) — MYK\Y) is
(382) Ar(V)y=Dy®L) ® V=L"®Dys ® V

U(g) U(g')
Here Dy is the topological algebra of differential operators on Y (see 1.2.6),
Dy, := L ® Dy ® L* is the corresponding L-twisted algebra.

Proof. (i) Our statement is local, so, shrinking K if necessary, we may
assume that the K-action on Y is free. Let us consider Aq(V) as a filtered
Q-complex on K \ Y. For a K-module P denote by P~ the Y-twist of
P which is an O-module on K \ Y. The projection Cy — Cy/ Cé21 yields,

according to (380), a canonical isomorphism
(383) gralda(V)ky = wi\yy @ Ly @ V™ @ A%(g/€)~[a]

The r.h.s. is an O-complex, so a quasi-isomorphism between V’s defines a
(filtered) D-quasi-isomorphism of Aqg(V)’s.

(ii) As above we may assume that the K-action is free. For V- € M(g, K)’
we can rewrite (383) as an isomorphism AQ(V)‘}(\Y = wi\y ® Ly ®

V™~ ® A™%(g/t)~. This shows that Aq is right t-exact. One describes the
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differential in Aq(V)g\y as follows. The g-action on Y defines on (g/¢)~
the structure of Lie algebroid on K \ Y. The g-action on Ly ® V defines on
Ly @V™ the structure of a left (g/€)~-module, hence wi\y @ Lg\y @V is
a right (g/€)~-module. Now Aq(V)g\y is the Chevalley homology complex
of (g/€)~ with coefficients in wg\y ® Lg\y ® V™. The right D-module
HY(LA(V))on K\Y is (Wir\y @ Ly @V7) (g%N Dk \y; the corresponding
left D-module is Dy (Q%N(EK\Y ® V™). Lifting this isomorphism to Y’
we get (382). O

7.14.9. Ezample. Let us compute LA(Vac'). The embedding C — Vac
yields an embedding of Q-complexes on Y Cy(w(r\y) ® Ly) — Aac(Vac)o.

We leave it to the reader to check that the corresponding morphism
CE(W(K\y) & Ey) — AQ[:(VCLC/>

of Kg-equivariant 2-complexes is a D-quasi-isomorphism. Now the Lh.s. is
the Q-complex Q(Dg\y ® Ly on K \'Y (see 7.3.3). Therefore if K\ Y is
a good stack then

LA(Vad) = A(Vad) = Dy @ Li\y-

Remark. Since End Vac' is anti-isomorphic to the algebra D’( 0.K) from

1.2.5 (cf. also 1.2.2) we have a right action of DEg,K) on A(Vad) =
Di\y @ L\y, i.e., a homomorphism from DE&K) to the twisted differential
operator ring I'(K \ Y, D/K\Y)' This is the homomorphism A from 1.2.5 (cf.
also 1.2.3 and 1.2.4).

7.14.10. Proposition. The functor LA : D(g,K) — D(K \Y) is a
Morphism of H-Modules.

Proof. The constructions and arguments of 7.8.8 render to our infinite-

dimensional setting in the obvious manner. ([

The infinite-dimensional versions of 7.9 are straightforward.
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7.15. Affine flag spaces are D-affine. In this section we show that
representations of affine Lie algebras of less than critical level are related to
D-modules on affine flag spaces just as they do in the usual finite-dimensional

situation.

7.15.1. Below as usual K = C((¢)), O = C[[t]]. Let g be a simple (finite-
dimensional) Lie algebra”), G the corresponding simply connected simple
group. We have the group ind-scheme G(K) and its group subscheme
G(O) (see 7.11.2(iv)). The adjoint action of G(K') on the Tate vector space
Lie G(K) = g(K) yields the central extension G(K)’ of G(K) by G,, (see
?7?). Its Lie algebra is the central extension g(K)” of g(K) defined by cocycle
b, — Res(dg, 1) where (a,b) := Tr(ad, - ady) (see ??). Let G(O)’ ¢ G(K)”
be the preimage of G(O). The adjoint action of G(O) preserves the c-lattice
9(0) C g(K), so we have a canonical identification s : G(0)’ = G(0) x G, ).

Let N € B C G be a Borel subgroup and its radical, so H = B/N
is the Cartan group of G. Let NT, B* be the preimages of N, B by the
obvious projection G(O) — G, so BY/NT = H, G(O)/BT = G/B. Let
Bt € G(K)® be the preimage of Bt. There is a unique section N* — G(K);
set H® := BY/NT, h” = Lie H’. The section s yields an isomorphism
BT x G, = BT, hence isomorphisms H x G,, =~ H’, h x C= K.

Set X := G(K)/B* = G(K)"/B' (the quotient of sheaves with respect
to either flat or Zariski topology - the result is the same, as follows from
4.5.1). One calls X the affine flag space. This is a reduced connected ind-
projective formally smooth ind-scheme”). Set X' := G(K)’/N*: this is a
left H°-torsor over X (the action is h’-zt = zTh"=1). It carries the obvious

action of G(K)°. Denote the projection XT — X by p.

A generalization to the case when g is any reductive Lie algebra is immediate.
“Since G is simple the splitting G(O) — G(O)” is unique.
X is smoothly fibered over the affine Grassmannian G(K)/G(O), see 4.5.1.
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7.15.2. Let MT(X) be the category of weakly H’-equivariant D-modules
on Xt (see 7.11.11). This is an abelian category. For M € MT(X) set
My = (p.M)Hb € M(X,0). The functor MT(X) — M(X,0), M — My,
is exact and faithful.

Set DI := (p.DxT)Hb. This is a Diff-algebra on X. The map
(384) b’ — I(X, D) = 1(x!, D)

equal to minus the left action along the fibers of p takes values in the center
of Dt. In fact, DT is a Sym(h?)-family of tdo (see 7.11.11(b)).
Notice that DT acts (from the right) on any My as above in the obvious

manner, so we have a functor
(385) MI(X) = M(X,Dh).
One has (see Remark (ii) in 7.11.11):

7.15.3. Lemma. The functor (385) is an equivalence of categories.  [J

7.15.4. For x = (xo0,c¢) € h* = h* x C we denote by DX the corresponding
tdo from our family Df. Thus D0 = Dy. Set MX(X) := M(X,DX) C
M(X,D"). Consider the topological algebra T'DX = I'(X, DX) (see 7.11.9,
7.11.10). We have the functor

(386) T MX(X) = M (IDX)

where M"(I'DX) is the category of discrete right I'DX-modules and I'M :=
(X, M).

o

The action of g(K)” on X' yields a continuous morphism g(kK)
I'(X,D"). The corresponding morphism g(K)” — I'DX sends 1° € g(K)

to —c.

7.15.5. We say that y is anti-dominant if the Verma g(K)’-module M ()
is irreducible. As follows from [KK] 3.1 this amounts to the following three

conditions:

(i) One has ¢ # —1/2.
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(ii) For any positive coroot h, € h of g one has (xo + po)(ha) # 1,2, ..
(iii) For any h, as above and any integer n > 0 one has

c+1/2
(a, @)

Here py € h* is the half sum of the positive roots of g and (,) is the scalar

+(x0 + po) (ha) + 2n £1,2,.

product on h* that corresponds to (,) on b (see 7.15.1).

Remark. To deduce the above statement from [KK] 3.1 it suffices to notice
that the “real” positive coroots of g(K)* are hy and £hg + 2n(a, a)~11°
for he, n as above, and that the weight p from [KK] is given by the next
formula.

Set p := (po, 1/2) € h*. We say that x is regular if the stabilizer of x + p
in the affine Weyl group Wy is trivial ).

7.15.6. Theorem. Assume that y is anti-dominant and regular. Then (386)
is an equivalence of categories.

We prove 7.15.6 in 7.15.8-77 below.

7.15.7. Remarks. (i) Let M°(g(K)) be the category of discrete g(K)’-

modules on which 1° acts as multiplication by ¢. Let
(387) ' MX(X) = M (g(K))

be the composition of (386) and the obvious “restriction” functor M"(I'DX) —
ME(g(K)). According to 7.15.6 this functor is exact and faithful.

(ii) One may hope that g(K)” generates a dense subalgebra in I'DX™). In
other words, I'DX° is a completion of the enveloping algebra U¢ = U¢g(K)
of level ¢ by certain topology. Can one determine this topology explicitely?

Notice that in the finite-dimensional setting (see [BB81] or [Kas]) one

usually deduces the corresponding statement from its ”classical“ version

“JRemind that the action of Wag on h** comes from the adjoint action of G(K) on

a(K)".
*)This amounts to the property that for M € MX(X) any g(K)b—submodule of TM

comes from a DX-submodule of M.
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(using Kostant’s normality theorem). This ”classical “ statement (which says
that g(K) — I'(X,Ox) generates a dense subalgebra in nEEOF(X, o%") is
false for the affine flags (e.g., the map g(K) — I'(X, Ox) is not surjective).

As in [BB81] or [Kas] it is easy to see that 7.15.6 follows from the next

statement:

7.15.8. Theorem. (i) If x is anti-dominant then for any M € MX(X) one
has H" (X, M) = 0 for any r > 0").

(ii) If, in addition, x is regular and M # 0 then ' M # 0.

Remark. The proof of 7.15.8(i) is very similar to the proof of the
corresponding finite-dimensional statement (see [BB81] or [Kas]). It would
be nice to find a proof of 7.15.8(ii) similar to that in [BB81] (using translation

functors) for it could be of use for understanding 7.15.7(ii).

7.15.9. Let us begin the proof of 7.15.8(i). Let ¥ = (9, b) be a character
of H* and £ = LY the corresponding G(K)’-equivariant line bundle on X
(defined by XT). Assume that £ is ample. This amounts”) to the following

property of : for any positive coroot h, of g one has (O?f;) < o(ha) < 0.
Denote by V be the dual to the pro-finite dimensional vector space
I'(X,L). This is a G(K)’-module in the obvious way, hence an integrable
g(K)’-module”) of level —b. Consider the canonical section of V&L; this is
aG(K )b—equivariant morphism Ox — V&L of OP-modules. Tensoring it by

M we get a morphism of @'-modules
(388) it M-=>VLOIM

that commutes with the action of g(K)’.

) Here H™(X,M) :=limH"(Y, M(y)); we use notation of 7.11.4.
—
“)See Remark in 7.15.5.
*) According to a variant of Borel-Weil theorem (see, e.g., [?]) V is an irreducible g(K)’-

module.
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7.15.10. Below we will consider /-sheaves of vector spaces on X. Such
object F'is a rule that assigns to a closed subscheme Y C X a sheaf Fy on
the Zariski topology of Y together with identifications ilyy,F(y/) = F(y)*)
for Y C Y’ that satisfy the obvious transitivity property (cf. Remark (i)
in 7.11.4). Notice that !-sheaves form an abelian category. It contains the
categories of sheaves on Y'’s as full subcategories closed under subquotients
and extensions. Any O'-module M on X yields a !-sheaf li_n>1M(y) on X
(so the corresponding sheaf on Y is M(Y/\))*); we denote it by M by abuse
of notation. We will also consider !-sheaves of g(K)?-modules which are !-
sheaves of vector spaces equipped with g(K )b—action such that the action on
each Flyy is discrete in the obvious sense. Any O'-module equipped with

g(K)’-action may be considered as a l-sheaf of g(K)’-modules.

7.15.11. Proposition. Considered as a morphism of l-sheaves of g(K)’-

modules, (388) is a direct summand embedding.

7.15.12. Proof of 7.15.8(i). Takeany o € H" (X, M) = lii>nHT(X(y), Myy)-
It comes from certain closed subscheme Y C X and an O-coherent submod-
ule F' C M(yy. Choose an ample £ as above such that H"(Y,£L ® F) = 0.
Since () belongs to the image of H"(Y,V ® L ® F) it vanishes. We are
done by 7.15.11. g

7.15.13. Proof of 7.15.11. We are going to define an endomorphism A of
V ® L ® M such that

(389) KerA=M, VRL®M =Ker A& Im A.

This settles 7.15.11.

Let U := Ug(K)" be the usual completed enveloping algebra of g(K)’.
Consider the Sugawara clement £y € U defined by formula (85). For any
ft e g((t)) € U we have [€o, ft'] = (1” + 1/2)rft" (see (87)). For any

“)Here iyy+ F(y+) := the subsheaf of sections supported (set-theoretically) on Y.

*)See 7.11.4 for notation.
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N € M¢(g(K)) where e # —1/2 consider the operator Ay := (e41/2)~1€,
acting on N. If also e — b # —1/2 we set

(390) AV,N = AV@N — Ay Ridy —idy QAN € End(V@N).

This operator commutes with the action of g(K)’.
Let us apply this construction to the !-sheaf of g(K)’-modules N := L& M

(so e = b+ c and the condition on levels is satisfied). Set
(391) A= AV,L@M EEHd(V@ﬁ@M).
Let us show that A satisfies (389). O

7.15.14. Now let us turn to 7.15.8(ii). It is an immediate consequence of
the following proposition which shows, in particular, how to compute fibers
of M in terms of I'M. We start with notation.

Consider the stratification of X by N*t-orbits (Schubert cells). The cells
are labeled by elements of the affine Weyl group W,g. For w € W,g the
corresponding cell is iy, : Yy, < X; it has dimension [(w). The restriction
to Yy, of the H >_torsor X1 is trivial”). Since any invertible function on Y, is
constant, the trivialization is unique up to a constant shift. Therefore the
pull-back of the tdo DX to Y, is canonically trivialized.

Let M be any object of the derived category D(X, DX)*). For any w €
Wag we have (untwisted, as we just explained) D-complexes i\, M € D(Y,).

We want to compute Lie algebra (continuous) cohomology H(nt,T'M)
(notice that, because of 7.15.8(i), I' = RT). Since h* = bf/nt these are

h’-modules. We assume that y is regular.

7.15.15. Proposition. There is a canonical isomorphism

H'n*, TM) = @® H5 (Y, i, M).
wWeW g

*)A section is provided by any NT-orbit in X over V.

“Nts definition is similar to one given in 7.11.14 in the untwisted situation.
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such that h” acts on the w-summand as multiplication by w(x)*).

7.15.16. Proof of 7.15.8(ii). Since I' is exact we may assume that M is
compactly supported and finitely generated. Let Y C X be a smooth Zariski
open subset of the (reduced) support of M. Then My is a coherent D-
module on a smooth scheme Y. So, shrinking Y farther, we may assume
that My is a free Oy-module. Now for any z € Y one has H'i' M # 0.
Translating M we may assume that x = Y;. By 7.15.15 H (n™,TM) # 0,
hence 'M # 0. 0

7.15.17. Proof of 7.15.15. We may assume that M = i,,/N for certain
N € D(Yy). Indeed, any M € D(X,DX) carries a canonical filtration with

gr; M = @ i, M. Now the isomorphism 7.15.15 for M comes from
l(w)=i

the corresponding isomorphisms for zw*zL}M 's together with the spectral
decomposition for the action of h”. Here we use the assumption of regularity
of x; for the rest of the argument one needs only anti-dominance of .
Consider first the case M = §, so I'd is the Verma module from 7.15.5 (see
7.15.7(iii)). This Verma module is cofree NT-module of rank 1 (it is cofreely
generated by any functional v which does not kill the vacuum Vector)*). Thus
H' (nf,T6) = HO(n},T6)X = C-vac. Since also H'i'.6 = H%'0 = C-vac, we

get the desired isomorphism.

*)JRemind that the adjoint action of G(K) on g(K) yields the Wag-action on b’.

+

*)The kernel of v contains no non-trivial n*-submodule (otherwise, since n™ is nilpotent,

it would contain n*

-invariant vectors which contradicts 7.15.5(i)). So the morphism
defined by v from I'§ to the cofree NT-module is injective. Then it is an isomorphism by

dimensional reasons.
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8. To be inserted into 5.x

8.1.

8.1.1. Choose £ € Ztorsy(O). Recall that Az denotes the corresponding
local Pfaffian bundle on GR = G(K)/G(O) (see 4.6.2). We are going to
prove the following statement, which is weaker than 5.2.14 and will be used

in the proof of Theorem 5.2.14 itself.

8.1.2. Proposition. For any xy € Py('G) and i € Z the U'-module
H'(GR, IX)\ZI) is isomorphic to a direct sum of copies of Vac'.
At this stage we do not claim that the number of copies is finite.
Proposition 8.1.2 is an immediate consequence of Theorems 8.1.4 and
8.1.6 formulated below (the first theorem is geometric while the second one

is representation-theoretic).

8.1.3. For any D-module M on GR the renormalized universal enveloping
algebra U? acts on the sheaf MA;' (see ???). So the canonical morphism
Der O — U! from 5.6.9 yields an action of Der O on M )\Zl. According to
777 this action is induced by the action of Der O on the sheaf M (Der O
is mapped to the algebra of vector fields on GR, which acts on M) and
the action of Der O on . (see 4.6.7). The action of Der O on the sheaf I,
integrates to the action of Aut O. The action of Der O on Ay comes from
the action of Autz O on Az (see 4.6.7). Therefore the action of Der O on
IX)\ZI integrates to the action of Auty 0. So the action of Ly € Der O on
HY(GR,I,\;") is diagonalizable and its spectrum is contained in 1Z (in

fact, it is contained in Z or % + Z depending on the parity of Orb, ).

8.1.4. Theorem. The eigenvalues of Ly on H'(GR, I, \;') are > —d(x)/2
where d(x) = dim Orb,,.

The proof will be given in 9.1; we will also obtain the following description
of the eigenspace corresponding to —d(x)/2. Set F, := Orb, \ Orb,,
Uy := GR\F). The restriction of I, to U, is the direct image of the (right)
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D-module woyp, - It contains the sheaf-theoretic direct image of worp, , 0
HO(UX, IX)\ZI) ) HO(OrbX, WOrb,, ®)‘Z,1x) where A/, is the restriction of Az
to Orb,. Therefore (241) yields an embedding

(392) Oy = HO(Uy, L)

where 0., is the 1-dimensional representation of Aut% O constructed in

4.6.14. According to 4.6.15 Lg acts on 9., as multiplication by —d(x)/2.

8.1.5. Proposition. The image of (392) is contained in H°(GR, I, A:1).
It equals the eigenspace of Ly on H°(GR, IX)\ZI) corresponding to the
eigenvalue —d(x)/2.

The proof is contained in 9.1.

Remark. The natural map ¢ : HO(GR,L,A;') — HO(U,, L") is
injective because I, is irreducible and therefore the morphism f : I, —
RYj, j*I is injective, where j denotes the immersion U, — GR. In fact,
the semisimplicity theorem 5.3.3(i) implies that f is an isomorphism and
therefore ¢ is an isomorphism. So the first statement of Proposition 8.1.5 is

obvious modulo the highly nontrivial theorem by Lusztig used in the proof

of 5.3.3.

Proposition 8.1.2 is a consequence of Theorem 8.1.4 and the following

statement, which will be proved in 6.2.

8.1.6. Theorem. Let V be a discrete Uf-module such that

1) the representation of g ® O C U% in V is integrable (i.e., it comes
from a representation of G(O)),

2) the action of Ly € DerO C U% on V is diagonalizable and the
intersection of its spectrum with ¢ + Z is bounded from below for

every c € C.

Then V considered as a U -module is isomorphic to a direct sum of copies

of Vad (i.e., to Vad @W for some vector space W).
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Remark. Suppose that V is a discrete U%-module such that V is isomorphic
to Vad @W as a U -module. Write V more intrinsically as Vac ®;N,
3 = 3(0), N := Homg (Vad,V) = V820 According to 5.6.8 N is a
module over the Lie algebroid I/I2. The U%-module V' can be reconstructed
from the (I/I?)-module N as follows: V is the quotient of U @; N by the
closed Uf-submodule generated by © @ n — 1 ® an where n € N, u € Ulb ,
a € I/I?, and the images of u and a in U} /U] coincide (see 5.6.7).
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9. To be inserted into Section 6

9.1. Proof of Theorem 8.1.4 and Proposition 8.1.5. We keep the
notation of 5.2.13, 8.1.1, and 8.1.4. Theorem 8.1.4 and Proposition 8.1.5

can be easily deduced from the following statement.

9.1.1. Theorem. The eigenvalues of Lo on H'(Uy, LA;') are > —d(x)/2.
If i > 0 they are > —d(x)/2. If i = 0 the eigenvalue —d(x)/2 occurs with
multiplicity 1 and the corresponding eigenspace is the image of (392).

Let us start to prove the theorem. Denote by I;J the restriction of I, to
Uy, ie., Ig is the direct image of the right D-module wo,p, with respect
to the closed embedding Orb, < U,. Consider the O-module filtration
on If{ )\Zl whose k-th term is formed by sections supported on the k-th
infinitesimal neighbourhood of Orb,. The filtration is Aut$ O-invariant
and grj(Ig)\Zl) = Worb, ® A\z' ® Sym? N where Ny is the normal sheaf
of Orb, C U,. Using (241) we get an Aut) O-equivariant isomorphism
grj(Ig/\Zl) =0z, ® Sym’ N,.. By 4.6.15 Lo acts on 0., as multiplication
by —d(x)/2. So it remains to prove the following.

9.1.2. Proposition. i) The eigenvalues of Ly on H*(Orb,, Sym’ A\, ) are non-
negative.
ii) They are positive if ¢ > 0 or 7 > 0. There are no Ly-invariant regular

functions on Orb, except constants.

Remark. The eigenvalues of Lo on H z'(Orbx, Sym’ N,) are integer because

Ny is an Aut® O-equivariant sheaf.

Before proving the proposition we need some lemmas.

9.1.3. Let us introduce some notation. Recall that y is a dominant coweight
of G. Fix a Cartan subgroup H C G and a Borel subgroup B C G
containing H. We will understand “coweight” as “coweight of H” and
“dominant” as “dominant with respect to B”. Let tX € H(K) denote
the image of t € C((t))* = K* by x : G, — H. Recall that Orb, is
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the G(O)-orbit of [x], where [x] is the image of tX in GR = G(K)/G(O).
Denote by orb, the G-orbit of [x] and by P~ the stabilizer of [x] in G, i.e.,
Py = {g € G|t7XgtX € G(O)}. P_ is the parabolic subgroup of G such
that Lie P~ is the sum of Lie H and the root spaces corresponding to roots
a with (a,x) < 0 (in particular P~ contains the Borel subgroup B~ O H
opposite to B). So orb, = G /P, is a projective variety. Clearly the action

of Aut® O on orb, is trivial.

9.1.4. Endomorphisms of O form an affine semigroup scheme End® O (for a
C-algebra R an R-point of End® O is an R-morphism f : R[[t]] — R[[t]] such
that f(t) € tR[[t]] ). Aut®O is dense in End® O. Let 0 € End® O denote the
endomorphism of O = C[[t]] such that ¢ — 0.

9.1.5. Lemma. i) The action of Aut®O on Orb, extends to an action of
End’ O on Orb,.

ii) Let ¢ be the endomorphism of Orb, corresponding to 0 € End?O.
Then ? = ¢ and the scheme of fixed points of ¢ equals orb,.

ili) The morphism p : Orb, — orb, induced by ¢ is affine. Its fibers are

isomorphic to an affine space.

Proof. 1)Orb, = G(0O)/S where S is the stabilizer of [x] in G(O). The action
of Aut’® O on G(O) extends to an action of End’O. Since S is Aut® O-
invariant it is End® O-invariant.

ii) The morphism f : G(O) — G(O) corresponding to 0 € End® O is
the composition G(O) - G — G(O). So ¢(Orb,) C orby. Clearly the
restriction of ¢ to orb, equals id.

iii) G(O) = G - U where U := Ker(G(O) — G). One has f(S) C S,
so S =8g-Sy, S¢ : =SNG, Sy :=8SNU. pis the natural morphism
G(0)/S — G(O)/(Sqg -U) = G/Sg = orby. Since U is prounipotent
(S -U)/S = U/Sy is isomorphic to an affine space. O

9.1.6. Remark. It follows from 9.1.5(ii) that the scheme of fixed points of

Ly on Orb, equals orb,.
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9.1.7. Since p : Orb, — orb, is affine
H'(Orb,, Sym? Ny) = H'(orby, p. Sym? N, ).

p is Aut® O-equivariant, so Aut® O and therefore Ly acts on p, Sym/ Ny. To

prove Proposition 9.1.2 it suffices to show the following.

9.1.8. Lemma. The eigenvalues of Ly on p, Sym’ Ny are non-negative. If
j > 0 they are positive. If j = 0 the zero eigensheaf of Ly equals the

structure sheaf of orb,.

Proof. Denote by Oq,1, and Oy, the structure sheaves of Orb, and orb,. It
follows from 9.1.5(i) that the eigenvalues of Ly on p,Oo,p are non-negative.
9.1.5(ii) or 9.1.6 implies that the cokernel of Ly : p.Oor, — p«Oorb equals
Oorb-

The obvious morphism Oom, ® (g ® K/g ® O) — N, is surjective
and Aut® O-equivariant. It induces an Aut’ O-equivariant epimorphism
P«O0or, ® Sym? (g ® (K/O)) — p, Sym’ Ny. Since the eigenvalues of Lg

on K/O are positive we are done. O

9.1.9. So we have proved 9.1.2 and therefore 8.1.4, 8.1.5. Now we are
going to compute the canonical bundle of Orb, in terms of the morphism

p : Orby, — orb,. The answer (see 9.1.12, 9.1.13) will be used in 10.1.7.

9.1.10. Orb, is a homogeneous space of G(O), while orb,, is a homogeneous
space of G. Using the projection G(O) — G(O/tO) = G we get an action
of G(O) on orb,. The morphism p : Orb, — orb, is G(O)-equivariant.”)

9.1.11. Proposition. The functor p* induces an equivalence between the
groupoid of G-equivariant line bundles on orb, and the groupoid of G(O)-

equivariant line bundles on Orb,,.

*)Of course the embedding orb, < Orb, is not G(O)-equivariant. DO WE NEED
X b
THIS FOOTNOTE?
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Proof. One has Orb, = G(0)/S, orb, = G/Sg where S is the stabilizer
of [x] in G(O) and S¢ = SNG. In fact, Si is the image of S in G and
p:G(0)/S — G/S¢g is induced by the projection G(O) — G (see the proof
of 9.1.5(iii) ). We have to show that the morphism 7 : S — S induces
an isomorphism Hom(Sg,G,,) — Hom(S,G,,). This is clear because

Kerm C Ker(G(O) — @) is prounipotent. O

Remark. We formulated the proposition for equivariant bundles because
we will use it in this form. Of course the statement still holds if one drops
the word “equivariant” (indeed, p is a locally trivial fibration whose fibers
are isomorphic to an affine space). Besides, if G is simply connected then a
line bundle on orb,, has a unique G-equivariant structure (because by 9.1.3

orby = G/P_ and Py is parabolic).

9.1.12. The canonical sheaf wo,, is a G(O)-equivariant line bundle on
Orb,. By 9.1.11 it comes from a unique G-equivariant line bundle M, on
orby. Since orby = G/P, (see 9.1.3) isomorphism classes of G-equivariant
line bundles on orb, are parametrized by Hom(P",G;,). The embedding
H — P_ induces an embedding Hom(P_,Gp,) — Hom(H,Gy,). So M,

defines a weight of H, which can be considered as an element [, € h*.

9.1.13. Proposition. |, = Bx where x € Hom(G,,, H) is identified in the
usual way with an element of h and B : h — h* is the linear operator

corresponding to the scalar product (18).

Proof. The tangent space to Orb, at [x] equals
(393) (62 0)/((g@0)Nt* (g O)t™X).

The action of H on (393) comes from the adjoint action of H on g ® O.
So the weights of H occuring in (393) are positive roots, and for a positive

root « its multiplicity in (393) equals (x,«). Therefore the weight of b
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corresponding to the determinant of the vector space dual to (393) equals
1
- (xa)a=-5) (x.0) a=DByx

a>0 «

O

Note for the authors: the notation U := Ker(G(O) — G) is not quite
compatible with the notation U,. Is this OK 777
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10. To be inserted into Section 6, too

10.1. Delta-functions. Is the title of the section OK 777

10.1.1. According to 8.1.5 we have the canonical embedding d.,, <
T(GR,I,\;'). Tts image is contained in T'(GR,LA;')%(©. The Lie
algebroid I/I? acts on T'(GR, L, A\;1)%(©) (see 777 and 5.6.8). Using (81) we
identify I/I? with the Lie algenroid arg from 3.5.11, where Lg .= LietG
and G is understood in the sense of 5.3.22 (in particular, g has a
distinguished”) Borel subalgebra ©b and a distinguished Cartan subalgebra
Ly c Lb; we set “n := [Fb,Lb]). By 3.5.16 we have the Lie subalgebroids
ar, C ary C arg and a canonical isomorphism of ALy (O)-modules ar,/ar, =

Arg(0) ® Ip. In particular “h C ary/ac,.

10.1.2. Theorem. i) ar, annihilates 9., so ad makes sense for a € Ly,
0 €V, -

ii) ad = x(a)d for a € L', 6 € 0.
Remark. We identify x € Py (“G) with a linear functional on “h, so x(a)

makes sense.

Statement (i) is easy. Indeed, Der O acts on T'(GR, LL,A;)¢(©) (see 5.6.10)
and the action of ar; on I'(GR, LA:HCO) s compatible with the actions of
Der O on ary and I'(GR, LA:NCO) (use the Der O-equivariance of (81) and
the Remark at the end of 3.6.16).”) So statement (i) follows from Theorem
8.1.4, Proposition 8.1.5, and (77). In a similar way one proves using (78)

that adc, C 0z, for a € L'h, which is weaker than (ii). We will prove (ii)

) §3 (where we worked with G-opers rather than “G-opers) we assumed that a Borel
subgroup B C G is fixed (see 3.1.1), so we are pleased to have a distinguished b C 4.
But in fact this is not essential here: one could rewrite §3 without fixing B; in this case

we would have the Lie algebroids ap and a, without having concrete b,n C g.

“)In fact, a stronger statement is true: the action of DerO on I'(GR, [X/\Zl)c(o)
coincides with the one coming from the morphism DerO — ar, defined in 3.5.11 and

the action of ar, on T'(GR, LZH%) (this follows from 3.6.17).
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in 10.1.3 — 10.1.7. In this proof we fix") £ € Z torsy(O) and write X instead

of Az, 0, instead of 0., etc.
10.1.3. By 3.6.11 we can reformulate 10.1.2(ii) as follows:
(394) ad = —(d(a), Bx) -6 for a € I=°, § € 0,

where d : I<" — b is the map (83), x is considered as an element of b (see
the Remark from 10.1.2) and B : h — bh* corresponds to the scalar product
(18).

Remark. The “critical” scalar product (18) appears in the r.h.s. of (394)
because the definition of the L.h.s. involves the map (291), which depends

on the choice of the scalar product on g (see 5.6.11).

10.1.4. The method of the proof of (394) will be described in 10.1.5.
Let us explain the difficulty we have to overcome. The action of I/I?
on T(GR, [LA1)F(©) comes from the action of the renormalized universal
enveloping algebra U? on I'(GR, I,A71), which is defined by deforming the
critical level (see 777). So the naive idea would be to deform I, i.e., to
try to construct a family of \'-twisted D-modules M;'Z, h € C, such that
M = I,. But this turns out to be impossible (at least globally) because
N'-twisted D-modules on Orb, that are invertible O-modules exist only for
a discrete set of values of h. Therefore we have to modify the naive idea

(see 10.1.5 and 10.1.7).

10.1.5. We are going to use the notion of Dyr-module from 7.11.11 (so
h € C[h] is a parameter). In 10.1.7 we will construct a Dys-module M on

U, and an embedding
(395) oy, = DU, MA™Y)
such that

*)By the way, all objects of Z torsg(O) are isomorphic.
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(i) M is a flat C[h]-module”;
(ii) There is a D-module morphism My := M/hM — I)[{ = I |y, such

that the composition
0y = T(Uy, MATY) = T(Uy, MoA™") = T(Uy, A7)

equals (392);

(iii) The image of (395) is annihilated by g ® m where m is the maximal
ideal of O;

(iv) for ¢ € C := the center of Ug and § € d,, one has

(396) cop = ¢(c)on

where 05, € I'(Uy,, MA™!) is the image of § under (395), ¢ : C — CI[h] is the
character corresponding to the Verma module with highest weight —h B,
and B : h — b* is the scalar product (18).

Remarks. 1) MA~! is a D,nt1-module.

2) Of course, Dyn+1 := Dys ®cjs) C[h] where the morphism C[s] — C[h] is
defined by s+ h + 1. Quite simialrly one defines, e.g., Dy-» (this notation
will be used in 10.1.7).

10.1.6. Let us deduce (394) from (i) — (iv). By 5.6.7 — 5.6.8 the Lh.s. of
(394) equals a’6 where a® € U} and a € I=° have the same image in U} /U}.
To construct a” we can lift a to an element @ € A := the completed universal
enveloping algebra of 9/(_87( so that a belongs to the ideal of A topologically
generated by g ® O; then h~'a belongs to the algebra A% from 5.6.1 and we
can set @’ := the image of h~'a in U,

We will show that for a suitable choice™) of @
(397) a’8y = —(d(a), B) - &

*)S0 for each a € C we have the module M, := M/(h—a)M over Dya := Dyn/(h—a),
and M is, so to say, a flat family formed by M,, a € C.

*)ab(S does not depend on the choice of a while ab5o does (because d is annihilated by

g ® m, but not by g ® O).
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where d¢ is the image of dj, in I'(Uy, MoA~1) and d, B have the same meaning
as in (394). By 10.1.5(ii) the equality (397) implies (394).

I=0 as ¢ + o’ where

Let us describe our choice of a. We can write a €
c € C and d’ belongs to the left ideal of U topologically generated by g ®m
(in terms of 3.6.8 — 3.6.9 ¢ = w(a)). We choose a € A so that a — a and
@ — ¢ belongs to the left ideal of A topologically generated by g ® m. Then
(397) holds.

Indeed, MM ! is a Dyn+i1-module.  Therefore by 777 AP acts on
L(Uy, MA™Y) (can we write simply MA™! 72?) so that h:=1-1 € gfégjf C
A% acts as multiplication by A (is this expression OK ???). We can rewrite

(397) as
(398) h'a- 6, = —(d(a), Bx) -6, mod h.

By 10.1.5(iii) and 10.1.5(iv) we have ady, = cdp = ¢(c)dp. On the other hand,
¢(c) € C[h] is congruent to —(d(a), Bx)h modulo h? (see the definition of ¢
from 10.1.5 and the definition of d from 3.6.10). So we get (398).

10.1.7. Let us construct the Dyn-module M and the morphism (395)
satisfying 10.1.5(1) — 10.1.5(iv).

We have the G(O)-equivariant line bundle A = Az on GR. Denote by
Ay its restriction to Orb,. Let orb, and p : Orb, — orb, have the
same meaning as in 9.1.3 and 9.1.5. Recall that G(O) acts on orb, via
G(O/tO) = G and p is G(O)-equivariant. By 9.1.11 there is a unique G-
equivariant line bundle A, on orby such that A, = p*A,.

On orb, we have the sheaf of twisted differential operators DAZ . Set
N = pTDA;h where DA;;L is considered as a left DA;;L—module and p' is the
usual pullback functor. N is a left DA;h—module on Orb, equipped with a

canonical section 1 := pf(1) € I'(Orby, N). Clearly wom, ®o N is a right
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D/\Q—module*) on Orb,. The section I induces an O-module morphism
(399) WOrb, — Worb, ®o N .

We define M to be the direct image of wor,, ®o N under the closed
embedding Orb, < U,. The morphism (395) is defined to be the

composition
0y = I'(Orby, worb, ® AL ") = T'(Orby, (worb, ®0 N)ALT) = T'(Uy, MA™!)

where the first morphism is induced by (241) and the second one is induced
by (399).

The property 10.1.5(i) is clear. The property 10.1.5(ii) is also clear: the
morphism My — Ig comes from the D-module morphism Ny = pTDorbX —
Oorb, such that T+ 1 (is it OK to write T instead of 1 mod h, or 1, etc.
777). Notice that 10.1.5(iii) and 10.1.5(iv) are properties of the action of
g ® O on the image of (395). This image is contained in the g ® O-invariant

subspace (or C[h]-submodule 777?)
(400) I'(Orby, (worb, ®o N)AL') =T'(Orby, AT 'worm, ®o N).

So to prove 10.1.5(iii) and 10.1.5(iv) it suffices to work on Orb, . Using (241)
we identify (400) with

(401) 9, @ T(Orby, N) .

The isomorphism between (400) and (401) is g® O-equivariant (the action of
g ® O on 0y is trivial), because the isomorphism (241) is g ® O-equivariant.

So 10.1.5(iii) and 10.1.5(iv) are equivalent to the following properties of

>k)By the way, worb, ®o N is canonically isomorphic to the pullback of the right DAQ‘
module Worb, Q0 DAQ' Indeed, the image of Worb, Q0 DA;} under the usual functor

M — M Qo w_} transforming right D,n-modules into left D, _n-modules is freely
orby AX Ax

—1

orbx) and therefore is canonically isomorphic

generated by 1 € T'(orby, Worb, ®o0 DA’; Qo w

to DA;h .
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I € I'(Orby, N):

(402) (g@m)I=0,

(403) cl=p(c)I for ceC.

Recall that C :=the center of Ug, ¢ : C — CJh]| denotes the character
corresponding to the Verma module with highest weight —hBY, and B :
h — b* is the scalar product (18).

So it remains to prove (402) and (403). Recall that N := pTDA;h,
I := pf(1), and p : Orb, — orb, is G(O)-equivariant. Therefore (402)
is clear (because the action of g @ m on (orby, A, ) is trivial) and (403) is

equivalent to the commutativity of the diagram

C — Ug
(404) sol l
Clh] «— F(OTbX,DA;h)
Recall that )\, is the G-equivariant line bundle on orb, such that A\, =
p*A,. Since orby = G/P_ (see 9.1.3) the isomorphism class of ), is defined
by some | € Hom(P ", G;,) C Hom(H, Gp,) C h*. In fact,

(405) | = By.

Indeed, there is a G(O)-equivariant isomorphism Ay = worm, (see (241)), so
A, is G-isomorphic to the line bundle M, from 9.1.12 and (405) is equivalent
to Proposition 9.1.13. The commutativity of (404) follows from (405) (see

777). So we are done.
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