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0. Introduction

0.1. Let X be a connected smooth projective curve over C of genus

g > 1, G a semisimple group over C, g the Lie algebra of G. Denote by

BunG = BunG(X) the moduli stack of G-bundles on X. In [Hit87] Hitchin

defined a remarkable algebra zcl = zcl(X) of Poisson-commuting functions

on the cotangent stack of BunG(X).

0.2. In this note the following is shown:

(a) The Hitchin construction admits a natural quantization. Namely, we

define a commutative ring z = z(X) of twisted differential operators

on BunG such that the symbols of operators from z form exactly

the ring zcl of Hitchin’s Hamiltonians. Here “twisted” means that

we consider the differential operators acting on a square root of

the canonical bundle ωBunG . The twist is essential: one knows

that the only global untwisted differential operators on BunG are

multiplications by locally constant functions.

(b) The spectrum of z identifies canonically with the moduli of Lg-opers,

which is a (Lagrangian) subspace of the moduli of irreducible
(
LG
)
ad

-

local systems on X. Here LG is the Langlands dual of G, Lg its Lie

algebra,
(
LG
)
ad

the adjoint group; for a brief comment on opers see

0.3.

(c) For an Lg-oper F denote by NF the quotient of the sheaf of twisted

differential operators modulo the left ideal generated by the maximal

ideal mF ⊂ z. This is a non-zero holonomic twisted D-module on

BunG.

(d) One assigns to an LG-oper F a usual (non-twisted) D-module MF on

BunG. If G is simply connected MF is isomorphic to ω
−1/2
BunG

⊗NF (in

the simply connected case ω
1/2
BunG

is unique and on the other hand

NF makes sense because there is no difference between LG-opers

and Lg-opers). In general MF := λ−1
F ⊗NF̄ where F̄ is the Lg-oper
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corresponding to F and λF is a certain invertible sheaf on BunG

equipped with a structure of twisted D-module (see 5.1.1). The

isomorphism class of λF depends only on the connected component

of F in the moduli of LG-opers.

(e) Main theorem: MF is a Hecke eigensheaf with eigenvalue F (see

???for the precise statement). In other words MF corresponds to the

local system F in the Langlands sense.

0.3. The notion of oper (not the name) is fairly well known (e.g., the

corresponding local objects were studied in [DS85]). A G-oper on a smooth

curve Y is a G-local system (=G-bundle with connection) equipped with

some extra structure (see 3.1.3). If G = SLn (so we deal with local

systems of vector spaces),the oper structure is a complete flag of sub-bundles

that satisfies the Griffiths transversality condition and the appropriate non-

degeneracy condition at every point of Y . A PSL2-oper is the same as

a projective connection on Y , i.e., a Sturm-Liouville operator on Y (see

[Del70] ( )). By definition, a g-oper is an oper for the adjoint group Gad.

If Y is complete and its genus is positive then a local system may carry at

most one oper structure, so we may consider opers as special local systems.

0.4. The global constructions and statements from 0.2 have local counter-

parts which play a primary role. The local version of (a), (b) is a canonical

isomorphism between the spectrum of the center of the critically twisted

(completed) enveloping algebra of g((t)) and the moduli of Lg-opers on the

punctured disc SpecC((t)). This isomorphism was established by Feigin and

Frenkel [FF92] as a specialization of a remarkable symmetry between the W -

algebras for g and Lg. We do not know if this “doubly quantized” picture

can be globalized. The local version of 0.2(c), (d) essentially amounts to an-

other construction of the Feigin-Frenkel isomorphism based on the geometry
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of Bruhat-Tits affine Grassmannian. Here the key role belongs to a vanish-

ing theorem for the cohomology of certain critically twisted D-modules (a

parallel result for “less than critical” twist was proved in [KT95]).

0.5. This note contains only sketches of proofs of principal results. A

number of technical results is stated without the proofs. A detailed

exposition will be given in subsequent publications.

0.6. We would like to mention that E. Witten independently found the idea

of 0.2(a–d) and conjectured 0.2(e). As far as we know he did not publish

anything on this subject.

0.7. A weaker version of the results of this paper was announced in [BD96].

0.8. The authors are grateful to P. Deligne, V. Ginzburg, B. Feigin, and

E. Frenkel for stimulating discussions. We would also like to thank the

Institute for Advanced Study (Princeton) for its hospitality. Our sincere

gratitude is due to R. Becker, W. Snow, D. Phares, and S. Fryntova for

careful typing of the manuscript.
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1. Differential operators on a stack

1.1. First definitions. A general reference for stacks is [LMB93].

1.1.1. Let Y be a smooth equidimensional algebraic stack over C. Denote

by ΘY the tangent sheaf; this is a coherent sheaf on Y. The cotangent

stack T ∗Y = Spec Sym ΘY need not be smooth. Neither is it true in general

that dimT ∗Y = 2 dimY (consider, e.g., the classifying stack of an infinite

algebraic group or the quotient of sln modulo the adjoint action of SLn).

However one always has

(1) dimT ∗Y ≥ 2 dimY

We say that Y is good if

(2) dimT ∗Y = 2 dimY

Then T ∗Y is locally a complete intersection of pure dimension 2 dimY.

This is obvious if Y = K\S for some smooth variety S with an action

of an algebraic group K on it (in this case T ∗Y is obtained from T ∗S by

Hamiltonian reduction; see 1.2.1), and the general case is quite similar.

It is easy to show that (2) is equivalent to the following condition:

(3) codim{y ∈ Y|dimGy = n} ≥ n for all n > 0 .

Here Gy is the automorphism group of y (recall that a point of a stack may

have non-trivial symmetries). Y is said to be very good if

(4) codim{y ∈ Y|dimGy = n} > n for all n > 0 .

It is easy to see that Y is very good if and only if T ∗Y0 is dense in T ∗Y where

Y0 := {y ∈ Y| dimGy = 0} is the biggest Deligne-Mumford substack of Y.

In particular if Y is very good then T ∗Yi is irreducible for every connected

component Yi of Y.

Remark “Good” actually means “good for lazybones” (see the remark at

the end of 1.1.4).
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1.1.2. Denote by Ysm the smooth topology of Y (see [LMB93, Section 6]).

An object of Ysm is a smooth 1-morphism πS : S → Y, S is a scheme.

A morphism (S, πS) → (S′, πS′) is a pair (φ, α), φ : S → S′ is a smooth

morphism of schemes, α is a 2-morphism πS →∼πS′φ. We often abbreviate

(S, πS) to S.

For S ∈ Ysm we have the relative tangent sheaf ΘS/Y which is a locally

free OS-module. It fits into a canonical exact sequence

ΘS/Y → ΘS → π∗SΘY → 0 .

Therefore π∗S Sym ΘY = Sym ΘS/I
cl where Icl := (Sym ΘS)ΘS/Y . The

algebra Sym ΘS considered as a sheaf on the étale topology of S carries the

usual Poisson bracket {}. Let P̃ ⊂ Sym ΘS be the {}-normalizer of the ideal

Icl. Set (PY)S := P̃ /Icl, so (PY)S is the Hamiltonian reduction of Sym ΘS

by ΘS/Y . This is a sheaf of graded Poisson algebras on Sét. If S → S′ is a

morphism in Ysm then (PY)S equals to the sheaf-theoretic inverse image of

(PY)S′ . So when S varies (PY)S form a sheaf PY of Poisson algebras on Ysm
called the algebra of symbols of Y. The embedding of commutative algebras

PY ↪→ Sym ΘY induces an isomorphism between the spaces of global sections

(5) Γ (Y, PY)→∼Γ (Y,Sym ΘY) = Γ(T ∗Y,O)

1.1.3. For S ∈ Ysm consider the sheaf of differential operators DS . This is

a sheaf of associative algebras on Sét. Let D̃S ⊂ DS be the normalizer of

the left ideal I := DSΘS/Y ⊂ DS . Set (DY)S := D̃S/I. This algebra acts on

the DS-module (DY)S := DS/I from the right; this action identifies (DY)S

with the algebra opposite to EndDS ((DY)S).

For any morphism (φ, α) : S → S′ in Ysm we have the obvious

isomorphism of DS-modules φ∗ ((DY)S′)
→∼ (DY)S which identifies (DY)S

with the sheaf-theoretic inverse image of (DY)S′ . Therefore (DY)S form

an OY -module DY (actually, it is a D-module on Y in the sense of 1.1.5),

and (DY)S form a sheaf of associative algebras DY on Ysm called the sheaf
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of differential operators on Y. The embedding of sheaves DY ↪→ DY induces

an isomorphism between the spaces of global sections

(6) Γ (Y, DY)→∼Γ (Y,DY) .

1.1.4. The OY -module DY carries a natural filtration by degrees of the

differential operators. The induced filtration on DY is an algebra filtration

such that grDY is commutative; therefore grDY is a Poisson algebra in the

usual way.

We have the obvious surjective morphism of graded OY -modules

Sym ΘY → grDY . The condition (2) from 1.1.1 assures that this is an iso-

morphism. If this happens then the inverse isomorphism grDY →∼Sym ΘY

induces a canonical embedding of Poisson algebras

(7) σY : grDY ↪→ PY

called the symbol map.

Remark In the above exposition we made a shortcut using the technical

condition (2). The true objects we should consider in 1.1.2–1.1.4 are

complexes sitting in degrees ≤ 0 (now the symbol map is always defined);

the naive objects we defined are their zero cohomology. The condition (2)

implies the vanishing of the other cohomology, so we need not bother about

the derived categories (see 7.3.3 for the definition of the “true” DY for an

arbitrary smooth stack Y).

1.1.5. D-modules are local objects for the smooth topology, so the notion

of a D-module on a smooth stack is clear 1. Precisely, the categoriesM`(S)

of left D-modules on S, S ∈ Ysm, form a sheaf M` of abelian categories

on Ysm (the pull-back functors are usual pull-backs of D-modules; they are

exact since the morphisms in Ysm are smooth). The D-modules on Y are

Cartesian sections of M` over Ysm; they form an abelian category M`(Y).

In other words, a D-module on Y is a quasicoherent OY -module M together

1The definition of the derived category of D-modules is not so clear; see 7.3.
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with compatible DS-module structures on each OS-module MS , S ∈ Ysm.

The usual tensor product makes M`(Y) a tensor category. One defines

coherent, holonomic, etc. D-modules on Y in the obvious way. Note that a

D-module M on Y defines the sheaf of associative algebras EndM on Ysm,

EndM(S) = EndMS .

For example, in 1.1.3 we defined the D-module DY on Y; the algebra DY

is opposite to EndDY .

1.1.6. Let L be a line bundle on Y and λ ∈ C. Any S ∈ Ysm carries the

line bundle π∗SL. Therefore we have the category M`(S)Lλ of π∗S(L)⊗λ-

twisted left D-modules (see, e.g., [BB93]). These categories form a sheaf

M`
Lλ of abelian categories on Ysm. The category M`(Y)Lλ of L⊗λ-twisted

D-modules on Y is the category of Cartesian sections of M`
Lλ . There is a

canonical fully faithful embedding M`(Y)Lλ ↪→ M`(L·) which identifies a

L⊗λ-twisted D-module on Y with the λ-monodromic D-module on L·; here

L· is the Gm-torsor that corresponds to L (i.e., the space of L with zero

section removed). See Section 2 from [BB93].

We leave it to the reader to define the distinguished object DY,Lλ ∈

M`(Y)Lλ and the sheaf DY,Lλ of filtered associative algebras on Ysm. All

the facts from 1.1.3–1.1.5 render to the twisted situation without changes.

1.1.7. In Section 5 we will need the notion of D-module on an arbitrary

(not necessarily smooth) algebraic stack locally of finite type. In the case of

schemes this notion is well known (see, e.g., [Sa91]). It is local with respect

to the smooth topology, so the generalization for stacks is immediate.

1.2. Some well-known constructions.

1.2.1. Let K be an algebraic group acting on a smooth scheme S over

C. Consider the quotient stack Y = K \ S. Then S is a covering of Y

in Ysm, and D-modules, line bundles and twisted D-modules on Y are the

same as the corresponding K-equivariant objects on S. The K-action on

T ∗S is Hamiltonian and T ∗Y is obtained from T ∗S by the Hamiltonian
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reduction (i.e., T ∗Y = K \ µ−1(0) where µ : T ∗S → k∗ is the moment

map, k := Lie(K)). The Poisson structure on Γ(T ∗Y,OT ∗Y) is obtained by

identifying it with Γ (Y, PY) (see 1.1.2) which can be computed using the

covering S → Y:

(8) Γ(Y, PY) = Γ
(
S, P̃S/I

cl
S

)π0(K)
.

Here P̃ ⊂ Sym ΘS is the {}-normalizer of the ideal IclS := (Sym ΘS) k (and k

is mapped to ΘS ⊂ Sym ΘS). According to 1.1.3

(9) Γ(Y, DY) = Γ
(
S, D̃S/IS

)π0(K)

where D̃S ⊂ DS is the normalizer of IS := DS · k.

The following construction of symbols, differential operators, and D-

modules on Y is useful.

1.2.2. We start with a Harish-Chandra pair (g,K) (so g is a Lie algebra

equipped with an action of K, called adjoint action, and an embedding

of Lie algebras k ↪→ g compatible with the adjoint actions of K). Let

P̃(g,K) ⊂ Sym g be the {}-normalizer of Icl(g,K) := (Sym g)k and D̃(g,K) ⊂ Ug

be the normalizer of I(g,K) := (Ug)k. Set

P(g,K) := (Sym(g/k))K =
(
P̃(g,K)/I

cl
(g,k)

)π0(K)
(10)

D(g,K) := (Ug/(Ug)k)K =
(
D̃(g,K)/I(g,K)

)π0(K)
.(11)

Then P(g,K) is a Poisson algebra and D(g,K) is an associative algebra. The

standard filtration on Ug induces a filtration on D(g,K) such that grD(g,K)

is commutative. So grD(g,K) is a Poisson algebra. One has the obvious

embedding of Poisson algebras σ = σ(g,K) : grD(g,K) ↪→ P(g,K).

The local quantization condition for (g,K) says that

(12) σ(g,K) is an isomorphism.
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Remark Sometimes one checks this condition as follows. Consider the

obvious morphisms

(13) acl : ((Sym g)g)π0(K) → P(g,K), a : (CenterUg)π0(K) → D(g,K).

If acl is surjective, then (12) is valid (because gr CenterUg = (Sym g)g).

Actually, if acl is surjective, then a is also surjective and therefore D(g,K) is

commutative.

1.2.3. Assume now that we are in the situation of 1.2.1 and the K-

action on S is extended to a (g,K)-action (i.e., we have a Lie algebra

morphism g→ ΘS′ compatible with the K-action on S in the obvious sense).

Comparing (8) with (10) and (9) with (11), one sees that the morphisms

Sym g→ Sym ΘS and Ug→ DS induce canonical morphisms

(14) hcl : P(g,K) → Γ(Y, PY), h : D(g,K) → Γ(Y, DY)

of Poisson and, respectively, filtered associative algebras.

If Y is good in the sense of 1.1.1 then we have the symbol map σY :

grDY ↪→ PY , and the above morphisms are σ-compatible: hclσ(g,K) =

σY grh.

The global quantization condition for our data says that

(15) h is strictly compatible with filtrations.

In other words, this means that the symbols of differential operators from

h
(
D(g,K)

)
lie in hclσ(g,K) (grD(g,K)). If both local and global quantization

conditions meet then the algebra h
(
D(g,K)

)
of differential operators is a

quantization of the algebra hcl
(
P(g,K)

)
of symbols: the symbol map σY

induces an isomorphism grh
(
D(g,K)

)
→∼hcl

(
P(g,K)

)
.

Remark The local and global quantization conditions are in a sense

complementary: the local one tells that D(g,K) is as large as possible, while

the global one means that h
(
D(g,K)

)
is as small as possible.
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1.2.4. Denote by M(g,K) the category of Harish-Chandra modules. One

has the pair of adjoint functors (see, e.g., [BB93])

∆ :M(g,K)→M`(Y), Γ :M`(Y)→M(g,K).

Namely, for a D-module M on Y the Harish-Chandra module Γ(M) is the

space of sections Γ (S,MS) equipped with the obvious (g,K)-action (e.g.,

g acts via g → ΘS ⊂ DS) and for a (g,K)-module V the corresponding

K-equivariant D-module ∆(V )S is DS
⊗

Ug V .

For example, consider the “vacuum” Harish-Chandra module Vac :=

Ug/(Ug)k. For any V ∈ M(g,K) one has Hom(Vac, V ) = V K , so there

is a canonical bijection End(Vac) → VacK = D(g,K) (see (11)) which is

actually an anti-isomorphism of algebras. One has the obvious isomorphism

∆(Vac) = DY , and the map ∆ : End(Vac) → End (DY) = Γ(Y, DY)◦

coincides with the map h from (14).

1.2.5. The above constructions have twisted versions. Namely, assume

we have a central extension (g̃,K) of (g,K) by C, so C ⊂ g̃, g̃/C = g.

Denote by U ′g the quotient of U g̃ modulo the ideal generated by the

central element 1 − 1, 1 ∈ C ⊂ g̃. This is a filtered associative algebra;

one identifies grU ′g with Sym g (as Poisson algebras). We get the filtered

associative algebra D′(g,K) := (U ′g/ (U ′g) k)Kequipped with the embedding

σ : grD′(g,K) ↪→ P(g,K). The twisted local quantization condition says that σ

is an isomorphism. Notice that the remark at the end of 1.2.2 is not valid

in the twisted case because gr CenterU ′g may not be equal to (Sym g)g.

Let L be a line bundle on S. Assume that the (g,K)-action on S lifts to

a (g̃,K)-action on L such that 1 acts as multiplication by λ−1 for certain

λ ∈ C∗. Equivalently, we have a (g̃,K)-action on L· which extends the K-

action, is compatible with the g-action on S, and 1 acts as −λ−1t∂t ∈ ΘL· .

Set D′Y = DY,Lλ . One has the morphism of filtered associative algebras

h : D′(g,K) → Γ
(
Y, D′Y

)
such that σ grh = hclσ. The twisted global

quantization condition says that h is strictly compatible with filtrations.
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Denote by M(g,K)′ the full subcategory of (g̃,K) mod that consists of

those Harish-Chandra modules on which 1 acts as identity. One has the

adjoint functors ∆,Γ between M(g,K)′ and M`(Y)Lλ defined exactly as

their untwisted version. Again for Vac′ := U ′g/ (U ′g) k one has ∆ (Vac′) =

DY,Lλ ; the algebra End(Vac′) is opposite to D′(g,K), and ∆: End (Vac′) →

EndDY,Lλ = Γ(Y, D′Y) coincides with h.

1.2.6. An infinite-dimensional version. Let K be an affine group scheme

over C (so K is a projective limit of algebraic groups) which acts on a scheme

S. Assume the following condition:

(16)

There exists a Zariski open covering {Ui} of S such

that each Ui is K-invariant and for certain normal

group subscheme Ki⊂K with K/Ki of finite type Ui

is a principal Ki-bundle over a smooth scheme Ti (so

Ti = Ki\Ui).

Then the fpqc-quotient Y = K \ S is a smooth algebraic stack (it is

covered by open substacks (K/Ki) \ Ti).

Let us explain how to render 1.2.1–1.2.5 to our situation. Note that

k = LieK is a projective limit of finite dimensional Lie algebras, so it is a

complete topological Lie algebra. Consider the sheaf ΘS = DerOS and the

sheaf DS ⊂ EndC(OS) of Grothendieck’s differential operators. These are

the sheaves of complete topological Lie (respectively associative) algebras.

Namely, for an affine open U ⊂ S the bases of open subspaces in Γ(U,ΘS)

and Γ(U,DS) are formed by the annihilators of finitely generated subalgebras

of Γ(U,OU ). The topology on ΘS defines the topology on Sym ΘS ; denote

by SymΘS the completed algebra. This is a sheaf of topological Poisson

algebras. Let IclS ⊂ SymΘS be the closure of the ideal (SymΘS)k, and

P̃S ⊂ SymΘS be its { }-normalizer. Similarly, let IS ⊂ DS be the closure of

the ideal DS · k and D̃S be its normalizer. Then the formulas from (8), (9)

remain valid.
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In the definition of a Harish-Chandra pair (g,K) we assume that for any

Ad(K)-invariant open subspace a ⊂ k the action of K on g/a is algebraic.

Then g is a complete topological Lie algebra (the topology on g is such

that k ⊂ g is an open embedding). The algebras Sym g, Ug carry natural

topologies defined by the open ideals (Sym g)a, (Ug)a where a ⊂ g is an

open subalgebra. Denote by Symg, Ūg the corresponding completions. Let

Icl(g,K) ⊂ Sym g be the closure of the ideal (Symg)k and P̃(g,K) be its { }-

normalizer). Similarly, we have I(g,K) ⊂ D̃(g,K) ⊂ Ūg. Now we define P(g,K),

D(g,K) by the formulas (10), (11). The rest of 1.2.2–1.2.5 remains valid,

except the remark at the end of 1.2.2. It should be modified as follows.

1.2.7. The algebras Symg and Ūg carry the usual ring filtrations Symng =⊕
0≤i≤n Sym

i
g and Ūig; however in the infinite dimensional situation the

union of the terms of these filtrations does not coincide with the whole

algebras. One has the usual isomorphism σ̄g : gri Ūg→∼Sym
i
g. The same

facts are true for SymΘS and DS .

The morphisms acl, a from the end of 1.2.2 extend in the obvious way to

the morphisms

(17) ācl :
((

Symg
)g)π0(K) → P(g,K), ā :

(
Center Ūg

)π0(K) → D(g,K).

The local quantization condition (12) from 1.2.2 and the surjectivity of ā

follow from the surjectivity of āclσ̄g : gr
(
Center Ūg

)π0(K) → P(g,K). The

same is true in the twisted situation. Note that the equality gr Center Ūg =

(Sym g)g is not necessarily valid (even in the non-twisted case!).
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2. Quantization of Hitchin’s Hamiltonians

2.1. Geometry of BunG. We follow the notation of 0.1; in particular G

is semisimple and X is a smooth projective curve of genus g > 1.

2.1.1. One knows that BunG is a smooth algebraic stack of pure dimension

(g−1) dimG. The set of connected components of BunG can be canonically

identified (via the “first Chern class” map) with H2(X,πet
1 (G)) = π1(G).

Here πet
1 (G) is the fundamental group in Grothendieck’s sense and π1(G) is

the quotient of the group of coweights of G modulo the subgroup of coroots;

they differ by a Tate twist: πet
1 (G) = π1(G)(1).

For F ∈ BunG the fiber at F of the tangent sheaf Θ = ΘBunG is

H1 (X, gF ). Let us explain that for a G-module W we denote by WF the

F-twist of W , which is a vector bundle on X; we consider g as a G-module

via the adjoint action.

By definition, the canonical line bundle ω = ωBunG is the determinant of

the cotangent complex of BunG (see [LMB93]). The fiber of this complex

over F ∈ BunG is dual to RΓ(X, gF )[1] (see [LMB93]), so the fiber of ω over

F is detRΓ(X, gF ).2

2.1.2. Proposition. BunG is very good in the sense of 1.1.1.

A proof will be given in 2.10.5. Actually, we will use the fact that BunG

is good. According to 1.1 we have the sheaf of Poisson algebras P = PBunG

and the sheaves of twisted differential operators Dλ = DBunG,ωλ
. One knows

that for λ 6= 1/2 the only global sections of Dλ are locally constant functions.

In Sections 2 and 3 we will deal with D′ := D1/2; we refer to its sections as

simply twisted differential operators.

2.2. Hitchin’s construction I.

2The authors shouldn’t forget to check that [LMB93] really contains what is claimed

here!!
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2.2.1. Set C = Cg := Spec(Sym g)G; this is the affine scheme quotient of

g∗ with respect to the coadjoint action. C carries a canonical action of the

multiplicative group Gm that comes from the homotheties on g∗. A (non-

canonical) choice of homogeneous generators pi ∈ (Sym g)G of degrees di,

i ∈ I, identifies C with the coordinate space CI , an element λ ∈ Gm acts by

the diagonal matrix
(
λdi
)
.

2.2.2. Denote by CωX the ωX -twist of C with respect to the above Gm-

action (we consider the canonical bundle ωX as a Gm-torsor over X). This

is a bundle over X; the above pi identify CωX with
∏
I ω
⊗di
X . Set

Hitch(X) = Hitchg(X) := Γ(X,CωX ).

In other words, Hitch(X) = Mor
(
(Sym· g)G,Γ

(
X,ω⊗·X

))
(the morphisms of

graded algebras). We consider Hitch(X) as an algebraic variety equipped

with a Gm-action; it is non-canonically isomorphic to the vector space∏
I Γ
(
X,ω⊗diX

)
. There is a unique point 0 ∈ Hitch(X) which is fixed by the

action of Gm. Denote by zcl(X) = zclg (X) the ring of functions on Hitch(X);

this is a graded commutative algebra. More precisely, the grading on zcl(X)

corresponds to the Gm-action on zcl(X) opposite to that induced by the

Gm-action on C; so the grading on zcl(X) is positive.

2.2.3. By Serre duality and 2.1.1 the cotangent space T ∗FBunG at F ∈ BunG

coincides with Γ(X, g∗F ⊗ ωX). The G-invariant projection g∗ → C yields

the morphism g∗F ⊗ ωX → CωX and the map pF : T ∗FBunG → Hitch(X).

When F varies we get a morphism

p : T ∗BunG → Hitch(X)

or, equivalently, a morphism of graded commutative algebras

hclX : zcl(X)→ Γ (T ∗BunG,O) = Γ (BunG, P ) .

p is called Hitchin’s fibration.
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We denote by BunG
γ the connected component of BunG corresponding

to γ ∈ π1(G) (see 2.1.1) and by pγ the restriction of p to T ∗BunγG.

2.2.4. Theorem. ([Hit87], [Fal93], [Gi97]).

(i) The image of hclX consists of Poisson-commuting functions.

(ii) dim Hitch(X) = dim BunG = (g − 1) · dim g.

(iii) p is flat and its fibers have pure dimension dim BunG. For each

γ ∈ π1(X), pγ is surjective.

(iv) There exists a non-empty open U ⊂ Hitch(X) such that for any

γ ∈ π1(G) the morphism (pγ)−1(U) → U is proper and smooth,

and its fibers are connected. Actually, the fiber of pγ over u ∈ U

is isomorphic to the product of some abelian variety Au by the

classifying stack of the center Z ⊂ G.

(v) For each γ ∈ π1(X) the morphism zcl(X) → Γ(BunγG, P ) is an

isomorphism. �

Remarks

(i) Needless to say the main contribution to Theorem 2.2.4 is that of

Hitchin [Hit87].

(ii) Theorem 2.2.4 implies that p is a Lagrangian fibration or, if

you prefer, the Hamiltonians from hclX(zcl(X)) define a completely

integrable system on T ∗BunG. We are not afraid to use these words

in the context of stacks because the notion of Lagrangian fibration is

birational and since BunG is very good in the sense of 1.1.1 T ∗BunG

has an open dense Deligne-Mumford substack T ∗Bun0
G which is

symplectic in the obvious sense (here Bun0
G is the stack of G-bundles

with a finite automorphism group).

(iii) Hitchin gave in [Hit87] a complex-analytical proof of statement (i).

We will give an algebraic proof of (i) in 2.4.3.
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(iv) Hitchin’s proof of (ii) is easy: according to 2.2.2 dim Hitch(X) =∑
i dim Γ(X,ωX

⊗di), dim Γ(X,ωX
⊗di) = (g−1)(2di−1) since g > 1,

and finally (g − 1)
∑

i(2di − 1) = (g − 1) dim g = dim BunG.

(v) Statement (iv) for classical groups G was proved by Hitchin [Hit87].

In the general case it was proved by Faltings (Theorem III.2

from [Fal93]).

(vi) Statement (v) follows from (iii) and (iv).

(vii) Some comments on the proof of (iii) will be given in 2.10.

2.2.5. Our aim is to solve the following quantization problem: con-

struct a filtered commutative algebra z(X) equipped with an isomor-

phism σz(X) : gr z(X)→∼ zcl(X) and a morphism of filtered algebras hX :

z(X) → Γ(BunG, D
′) compatible with the symbol maps, i.e., such that

σBunG◦ grhX = hclX◦σz(X) (see 1.1.4 and 1.1.6 for the definition of σBunG).

Note that 2.2.4(v) implies then that for any γ ∈ π1(X) the map hγX : z(X)→

Γ
(
BunγG, D

′) is an isomorphism. Therefore if G is simply connected then

such a construction is unique, and it reduces to the claims that Γ(BunG, D
′)

is a commutative algebra, and any global function on T ∗BunG is a symbol

of a global twisted differential operator.

We do not know how to solve this problem directly by global considera-

tions. We will follow the quantization scheme from 1.2 starting from a local

version of Hitchin’s picture. Two constructions of the same solution to the

above quantization problem will be given. The first one (see 2.5.5) is easier

to formulate, the second one (see 2.7.4) has the advantage of being entirely

canonical. To prove that the first construction really gives a solution we

use the second one. It is the second construction that will provide an iden-

tification of Spec z(X) with a certain subspace of the stack of (LG)ad-local

systems on X (see 3.3.2).

2.3. Geometry of BunG II. Let us recall how BunG fits into the

framework of 1.2.6.
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2.3.1. Fix a point x ∈ X. Denote by Ox the completed local ring of x

and by Kx its field of fractions. Let mx ⊂ OX be the maximal ideal. Set

O
(n)
x := OX/mn

x (so Ox = lim
←−

O
(n)
x ). The group G(O

(n)
x ) is the group of C-

points of an affine algebraic group which we denote also as G
(
O

(n)
x

)
by abuse

of notation; G
(
O

(n)
x

)
is the quotient of G

(
O

(n+1)
x

)
. So G(Ox) = lim

←−
G
(
O

(n)
x

)
is an affine group scheme.

Denote by BunG,nx the stack of G-bundles on X trivialized over SpecO
(n)
x

(notice that the divisor nx is the same as the subscheme SpecO
(n)
x ⊂ X).

This is a G
(
O

(n)
x

)
-torsor over BunG. We denote a point of BunG,nx as(

F , α(n)
)
. We have the obvious affine projections BunG,(n+1)x → BunG,nx.

Set BunG,x := lim
←−

BunG,nx; this is a G(Ox)-torsor over BunG.

2.3.2. Proposition. BunG,x is a scheme. The G(Ox)-action on BunG,x

satisfies condition (16) from 1.2.6. �

2.3.3. It is well known that the G(Ox)-action on BunG,x extends canonically

to an action of the group ind-scheme G(Kx) (see 7.11.1 for the definition

of ind-scheme and 7.11.2 (iv) for the definition of the ind-scheme G(Kx) ).

Since LieG(Kx) = g⊗Kx we have, in particular, the action of the Harish-

Chandra pair (g⊗Kx, G(Ox)) on BunG,x.

Let us recall the definition of the G(Kx)-action. According to 7.11.2 (iv)

one has to define a G(R⊗̂Kx)-action on BunG,x(R) for any C-algebra R. To

this end we use the following theorem, which is essentially due to A.Beauville

and Y.Laszlo. Set X ′ := X \ {x}.

2.3.4. Theorem. A G-bundle F on X⊗R is the same as a triple (F1,F2, ϕ)

where F1 is a G-bundle on X ′ ⊗ R, F2 is a G-bundle on Spec(R⊗̂Ox), and

ϕ is an isomorphism between the pullbacks of F1 and F2 to Spec(R⊗̂Kx).

More precisely, the functor from the category (=groupoid) of G-bundles

F on X ⊗ R to the category of triples (F1,F2, ϕ) as above defined by

F1 := F|X′⊗R, F2 := the pullback of F to Spec(R⊗̂Ox), ϕ := id, is an

equivalence.
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According to the theorem an R-point of BunG,x is the same as a G-bundle

on X ′⊗R with a trivialization of its pullback to Spec(R⊗̂Kx). So G(R⊗̂Kx)

acts on BunG,x(R) by changing the trivialization. Thus we get the action of

G(Kx) on BunG,x .

The proof of Theorem 2.3.4 is based on the following theorem, which is a

particular case of the main result of [BLa95].

2.3.5. Theorem. (Beauville-Laszlo). The category of flat quasi-coherent

OX⊗R-modulesM is equivalent to the category of triples (M1,M2, ϕ) where

M1 is a flat quasi-coherent O-module on X ′⊗R,M2 is a flat quasi-coherent

O-module on Spec(R⊗̂Ox), and ϕ is an isomorphism between the pullbacks

of M1 and M2 to Spec(R⊗̂Kx) (the functor from the first category to the

second one is defined as in Theorem 2.3.4). M is locally free of finite rank

if and only if the corresponding M1 and M2 have this property.

Remark. If R is noetherian and the sheaves are coherent then there is a

much more general “glueing theorem” due to M.Artin (Theorem 2.6 from

[Ar]). But since subschemes of G(Kx) are usually of infinite type we use the

Beauville-Laszlo theorem, which holds without noetherian assumptions.

To deduce Theorem 2.3.4 from 2.3.5 it suffices to interpret a G-bundle

as a tensor functor {G-modules}→{vector bundles}. Or one can interpret

a G-bundle on X ⊗ R as a principle G-bundle, i.e., a flat affine morphism

π : F → X ⊗R with an action of G on F satisfying certain properties; then

one can rewrite these data in terms of the sheaf M := π∗OF and apply

Theorem 2.3.5.

2.3.6. Remark. Here is a direct description of the action of g ⊗ Kx on

BunG,x induced by the action of G(Kx) (we will not use it in the future

???). Take (F , ᾱ) ∈ BunG,x, ᾱ = lim
←−

α(n). The tangent space to BunG,nx

at
(
F , α(n)

)
is H1(X, gF (−nx)), so the fiber of ΘBunG,x at (F , ᾱ) equals

lim
←−

H1 (X, gF (−nx)) = H1
c (X \ {x}, gF ). We have the usual surjection

gF
⊗
OX Kx � H1

c (X \{x}, gF ). Use ᾱ to identify gF
⊗
OX Kx with g⊗Kx.
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When (F , ᾱ) varies one gets the map g⊗Kx → ΘBunG,x. Our g⊗Kx-action

is minus this map (???).

2.3.7. Remark. Let D ⊂ X ⊗ R be a closed subscheme finite over SpecR

which can be locally defined by one equation (i.e., D is an effective relative

Cartier divisor). Denote by D̃ the formal neighbourhood of D and let A

be the coordinate ring of D̃ (so D̃ is an affine formal scheme and SpecA is

a true scheme). Then Theorems 2.3.4 and 2.3.5 remain valid if X ′ ⊗ R is

replaced by (X ⊗ R) \D, R⊗̂Ox by A, and Spec(R⊗̂Kx) by (SpecA) \D.

This follows from the main theorem of [BLa95] if the normal bundle of D

is trivial: indeed, in this case one can construct an affine neighbourhood

U ⊃ D such that inside U the subscheme D is defined by a global equation

f = 0, f ∈ H0(U,OU ) (this is the situation considered in [BLa95]).3 For

the purposes of this work the case where the normal bundle of D is trivial

is enough. To treat the general case one needs a globalized version of the

main theorem of [BLa95] (see 2.12). Among other things, one has to extend

the morphism D̃ → X ⊗R to a morphism SpecA→ X ⊗R (clearly such an

extension is unique, but its existence has to be proved); see 2.12.

2.4. Hitchin’s construction II.

2.4.1. Set ωOx := lim← ωOx(n) where ωOx(n) is the module of differentials

of Ox
(n) = Ox/m

n
x. Denote by Hitch

(n)
x the scheme of sections of CωX

over SpecO
(n)
x . This is an affine scheme with Gm-action non-canonically

isomorphic to the vector space M/mn
xM , M :=

∏
ω⊗diOx

. Set

Hitchx = Hitchg(Ox) := lim
←−

Hitch(n)
x .

This is an affine scheme with Gm-action non-canonically isomorphic to

M =
∏
ω⊗diOx

. So Hitchx is the scheme of sections of CωX over SpecOx.

3To construct U and f notice that for n big enough there exists ϕn ∈ H0(X ⊗

R,OX⊗R(nD)) such that OX⊗R(nD)/OX⊗R((n − 1)D) is generated by ϕn; then put

U := (X ⊗ R) \ {the set of zeros of ϕnϕn+1}, f := ϕn/ϕn+1 (this construction works if

the map D → SpecR is surjective, which is a harmless assumption).
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Denote by zclx = zclg (Ox) the graded Poisson algebra P(g⊗Kx,G(Ox)) =

Sym(g ⊗ Kx/Ox)G(Ox) from 1.2.2. We will construct a canonical Gm-

equivariant isomorphism Spec zclx
∼−→ Hitchx (the Gm-action on zclx is

opposite to that induced by the grading; cf. the end of 2.2.2).

The residue pairing identifies (Kx/Ox)∗ with ωOx , so Spec Sym(g ⊗

Kx/Ox) = g∗ ⊗ ωOx . The projection g∗ → C yields a morphism of affine

schemes g∗⊗ωOx → Hitchx. It is G(Ox)-invariant, so it induces a morphism

Spec zclx → Hitchx. To show that this is an isomorphism we have to prove

that every G(Ox)-invariant regular function on g∗ ⊗ ωOx comes from a

unique regular function on Hitchx. Clearly one can replace g∗ ⊗ ωOx by

g∗ ⊗ Ox = Paths(g∗) and Hitchx by Paths(C) (for a scheme Y we denote

by Paths(Y ) the scheme of morphisms SpecOx → Y ). Regular elements

of g∗ form an open subset g∗reg such that codim(g∗\g∗reg) > 1. So one can

replace Paths(g∗) by Paths(g∗reg). Since the morphism g∗reg → C is smooth

and surjective, and the action of G on its fibers is transitive, we are done.

2.4.2. According to 1.2.2 zclx = P(g⊗Kx,G(Ox)) is a Poisson algebra. Actually

the Poisson bracket on zclx is zero because the morphism acl : (Sym(g ⊗

Kx))g⊗Kx −→ zclx from 1.2.7 is surjective (this follows, e.g., from the

description of zclx given in 2.4.1) and (Sym(g ⊗ Kx))g⊗Kx is the Poisson

center of Sym(g⊗Kx).

Remark (which may be skipped by the reader). Actually for any algebraic

group G the natural morphism acl : (Sym(g⊗Kx))G(Kx) → zclx = zclg (Ox) is

surjective and therefore the Poisson bracket on zclx is zero. The following

proof is the “classical limit” of Feigin-Frenkel’s arguments from [FF92],

p. 200–202. Identify Ox and Kx with O := C[[t]] and K := C[[t]]. Let

f be a G(O)-invariant regular function on g∗⊗O. We have to extend it to a

G(K)-invariant regular function f̃ on the ind-scheme g∗⊗K := lim
−→

g∗⊗t−nO

(actually g∗ can be replaced by any finite dimensional G-module). For
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ϕ ∈ g∗((t)) define hϕ ∈ C((ζ)) by

hϕ(ζ) = f

(
N∑
k=0

ϕ(k)(ζ)tk/k!

)
where N is big enough (hϕ is well-defined because there is an m such that f

comes from a function on g∗⊗ (O/tmO)). Write hϕ(ζ) as
∑

n hn(ϕ)ζn. The

functions hn : g∗ ⊗K → C are G(K)-invariant. Set f̃ := h0.

2.4.3. According to 2.3 and 1.2.6 we have the morphism

hclx : zclx → Γ(BunG, P ).

analogous to the morphism hcl from 1.2.3. To compare it with hclX consider

the closed embedding of affine schemes Hitch(X) ↪→ Hitchx which assigns

to a global section of CωX its restriction to the formal neighbourhood of x.

Let θclx : zclx � zcl(X) be the corresponding surjective morphism of graded

algebras. It is easy to see that

hclx = hclXθ
cl
x .

Since the Poisson bracket on zclx is zero (see 2.4.2) and hclx is a Poisson algebra

morphism the Poisson bracket on Imhclx = ImhclX is also zero. So we have

proved 2.2.4(i).

2.5. Quantization I.

2.5.1. Let g̃⊗Kx be the Kac-Moody central extension of g ⊗ Kx by C

defined by the cocycle (u, v) 7→ Resx c(du, v), u, v ∈ g⊗Kx, where

(18) c(a, b) := −1

2
Tr(ada · adb) , a, b ∈ g .

As a vector space g̃⊗Kx equals g⊗Kx⊕C ·1. We define the adjoint action4

of G(Kx) on g̃⊗Kx by assigning to g ∈ G(Kx) the following automorphism

4As soon as we have a central extension of G(Kx) with Lie algebra g̃⊗Kx the action

(19) becomes the true adjoint action (an automorphism of g̃⊗Kx that acts identically on

C · 1 and g⊗Kx is identical because Hom(g⊗Kx,C) = 0).
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of g̃⊗Kx:

(19) 1 7→ 1, u 7→ gug−1 + Resx c(u, g
−1dg) · 1 for u ∈ g⊗Kx

In particular we have the Harish-Chandra pair
(
g̃⊗Kx, G(Ox)

)
, which is a

central extension of (g⊗Kx, G(Ox)) by C. Set

zx = zg(Ox) := D′(g⊗Kx,G(Ox)) ,

where D′ has the same meaning as in 1.2.5.

2.5.2. Theorem. ([FF92]).

(i) The algebra zx is commutative.

(ii) The pair
(
g̃⊗Kx, G(Ox)

)
satisfies the twisted local quantization

condition (see 1.2.5). That is, the canonical morphism σzx : gr zx →

zclx is an isomorphism. �

Remark Statement (i) of the theorem is proved in [FF92] for any algebraic

group G and any central extension of g⊗Kx defined by a symmetric invariant

bilinear form on g. Moreover, it is proved in [FF92] that the π0(G(Kx))-

invariant part of the center of the completed twisted universal enveloping

algebra U
′
(g⊗Kx) maps onto zx. A version of Feigin–Frenkel’s proof of (i)

will be given in 2.9.3–2.9.5. We have already explained the “classical limit”

of their proof in the Remark at the end of 2.4.2.

2.5.3. The line bundle ωBunG defines a G(Ox)-equivariant bundle on

BunG,x. The (g⊗Kx, G(Ox))-action on BunG,x lifts canonically to a(
g̃⊗Kx, G(Ox)

)
-action on this line bundle, so that 1 acts as multiplication

by 2. Indeed, according to 2.1.1 ωBunG = f∗(detRΓ) where f : BunG →

BunSL(g) is induced by the adjoint representation G→ SL(g) and detRΓ is

the determinant line bundle on BunSL(g). On the other hand, it is well known

(see,e.g., [BLa94]) that the pullback of detRΓ to BunSLn,x is equipped with

the action of the Kac–Moody extension of sln(Kx) of level −1.
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Remark. In fact, the action of this extension integrates to an action of

a certain central extension of SLn(Kx) (see, e.g., [BLa94]). Therefore one

gets a canonical central extension

(20) 0→ Gm → Ĝ(Kx)→ G(Kx)→ 0

that acts on the pullback of ωBunG to BunG,x so that λ ∈ Gm acts as

multiplication by λ. The extension 0 → C → g̃⊗Kx → g⊗Kx → 0 is

one half of the Lie algebra extension corresponding to (20). In Chapter 4 we

will introduce a square root5 of ωBunG (the Pfaffian bundle) and a central

extension

(21) 0→ Gm → G̃(Kx)→ G(Kx)→ 0

(see 4.4.8), which is a square root of (20). These square roots are more

important for us than ωBunG and (20), so we will not give a precise definition

of Ĝ(Kx).

2.5.4. According to 2.5.3 and 1.2.5 we have a canonical morphism of filtered

algebras

hx : zx → Γ
(
BunG, D

′) .
In 2.7.5 we will prove the following theorem.

2.5.5. Theorem. Our data satisfy the twisted global quantization condition

(see 1.2.5). �

As explained in 1.2.3 since the local and global quantization conditions

are satisfied we obtain a solution z(x)(X) to the quantization problem from

2.2.5: set z(x)(X) = hx(zx) and equip z(x)(X) with the filtration induced

from that on Γ(BunG, D
′) (2.5.5 means that it is also induced from the

filtration on zx); then the symbol map identifies gr z(x)(X) with hclx (zclx ) and

according to 2.4.3 hclx (zclx ) = hclX(zclx (X)) ' zcl(X).

5This square root and the extension (21) depend on the choice of a square root of ωX .
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The proof of Theorem 2.5.5 is based on the second construction of the

solution to the quantization problem from 2.2.5; it also shows that z(x)(X)

does not depend on x.

Remark If G is simply connected then 2.5.5 follows immediately from

2.2.4(v).

2.6. DX-scheme generalities.

2.6.1. LetX be any smooth connected algebraic variety. ADX -scheme is an

X-scheme equipped with a flat connection along X. DX -schemes affine over

X are spectra of commutative DX -algebras (= quasicoherent OX -algebras

equipped with a flat connection). The fiber of an OX -algebra A at x ∈ X is

denoted by Ax; in particular this applies to DX -algebras. For a C-algebra C

denote by CX the corresponding “constant” DX -algebra (i.e., CX is C⊗OX
equipped with the obvious connection).

2.6.2. Proposition. Assume that X is complete.

(i) The functor C  CX admits a left adjoint functor: for a DX -algebra

A there is a C-algebra H∇(X,A) such that

(22) Hom(A, CX) = Hom(H∇(X,A), C)

for any C-algebra C.

(ii) The canonical projection θA : A → H∇(X,A)X is surjective. So

H∇(X,A)X is the maximal “constant” quotient DX -algebra of A. In

particular for any x ∈ X the morphism θAx : Ax → (H∇(X,A)X)x =

H∇(X,A) is surjective.

Remarks. (i) Here algebras are not supposed to be commutative,

associative, etc. We will need the proposition for commutative A.

(ii) Suppose that A is commutative (abbreviation for “commutative

associative unital”). Then H∇(X,A) is commutative according to statement

(ii) of the proposition. If C is also assumed commutative then (22) just

means that SpecH∇(X,A) is the scheme of horizontal sections of SpecA.



HITCHIN’S INTEGRABLE SYSTEM 27

From the geometrical point of view it is clear that such a scheme exists

and is affine: all the sections of SpecA form an affine scheme S (here we

use the completeness of X; otherwise S would be an ind-scheme, see the

next Remark) and horizontal sections form a closed subscheme of S. The

surjectivity of θAx and θA means that the morphisms SpecH∇(X,A) →

SpecAx and X × SpecH∇(X,A)→ SpecA are closed embeddings.

(iii) If X is arbitrary (not necessary complete) then H∇(X,A) defined

by (22) is representable by a projective limit of algebras with respect to a

directed family of surjections. So if A is commutative then the space of

horizontal sections of SpecA is an ind-affine ind-scheme6.

Proof. (a) Denote byM(X) the category of DX -modules and byMconst(X)

the full subcategory of constant DX -modules, i.e., DX -modules isomorphic

to V ⊗ OX for some vector space V (actually the functor V 7→ V ⊗ OX
is an equivalence between the category of vector spaces and Mconst(X)).

We claim that the embedding Mconst(X) → M(X) has a left adjoint

functor, i.e., for F ∈ M(X) there is an F∇ ∈ Mconst(X) such that

Hom(F , E) = Hom(F∇, E) for E ∈ Mconst(X). It is enough to construct

F∇ for coherent F . In this case F∇ := (HomDX (F ,OX))∗ ⊗ OX (here we

use that dim HomDX (F ,OX) <∞ because X is complete).

(b) Since OX is an irreducible DX -module a DX -submodule of a constant

DX -module is constant. So the natural morphism F → F∇ is surjective.

(c) IfA is aDX -algebra and I is the ideal ofA generated by Ker(A → A∇)

then A/I is a quotient of the constant DX -module A∇. So A/I is constant,

i.e., A/I = H∇(X,A) ⊗ OX for some vector space H∇(X,A). A/I is a

DX -algebra, so H∇(X,A) is an algebra. Clearly it satisfies (22). �

6This is also clear from the geometric viewpoint. Indeed, horizontal sections form a

closed subspace in the space SX of all sections. If X is affine SX is certainly an ind-scheme.

In the general case X can be covered by open affine subschemes U1, ..., Un; then SX is a

closed subspace of the product of SUi ’s.
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Remark. The geometrically oriented reader can consider the above

Remark (ii) as a proof of the proposition for commutative algebras. However

in 2.7.4 we will apply (22) in the situation where A is commutative while

C = Γ(BunG, D
′) is not obviously commutative. Then it is enough to notice

that the image of a morphism A → C ⊗ OX is of the form C ′ ⊗ OX (see

part (b) of the proof of the proposition) and C ′ is commutative since A is.

One can also apply (22) for C := the subalgebra of Γ(BunG, D
′) generated

by the images of the morphisms hx : zx → Γ(BunG, D
′) for all x ∈ X

(this C is “obviously” commutative; see 2.9.1). Actually one can show that

Γ(BunG, D
′) is commutative using 2.2.4(v) (it follows from 2.2.4(v) that for

any connected component BunγG ⊂ BunG and any x ∈ X the morphism

zx → Γ(BunγG, D
′) induced by hx is surjective).

2.6.3. In this subsection all algebras are assumed commutative. The

forgetful functor {DX -algebras} → {OX -algebras} has an obvious left

adjoint functor J (JA is the DX -algebra generated by the OX -algebra

A). We claim that SpecJA is nothing but the scheme of ∞-jets of

sections of SpecA. In particular this means that there is a canonical

one-to-one correspondence between C-points of Spec(JA)x and sections

SpecOx → SpecA (where Ox is the formal completion of the local ring

at x). More precisely, we have to construct a functorial bijection

(23) HomOX (JA,B)
∼−→ HomOX (A, B̂)

where B is a (quasicoherent) OX -algebra and B̂ is the completion of OX⊗CB

with respect to the ideal Ker(OX ⊗C B → B). Here B̂ is equipped with the

OX -algebra structure coming from the morphism OX → OX ⊗C B defined

by a 7→ a ⊗ 1. Let us temporarily drop the quasicoherence assumption in

the definition of DX -algebra. Then B̂ is a DX -algebra (the connection on

B̂ comes from the connection on OX ⊗C B such that sections of 1 ⊗ B are

horizontal). So HomOX (A, B̂) = HomDX (JA, B̂) and to construct (23) it is
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enough to construct a functorial bijection

(24) HomOX (R,B)←− HomDX (R, B̂)

for any DX -algebra R and OX -algebra B (i.e., to show that the functor B 7→

B̂ is right adjoint to the forgetful functor {DX -algebras} → {OX -algebras}).

The mapping (24) comes from the obvious morphism B̂ → B. The reader

can easily prove that (24) is bijective.

For a DX -algebra A and a C-algebra C we have

HomDX-alg(JA, C ⊗OX) = HomOX-alg(A, C ⊗OX)

This means that the canonical morphism SpecJA → SpecA identifies the

ind-scheme of horizontal sections of SpecJA with that of (all) sections of

SpecA. If X is complete then, by 2.6.2, these spaces are actually schemes.

Finally let us mention that the results of this subsection can be globalized

in the obvious way. The forgetful functor {DX -schemes} → {X-schemes}

has a right adjoint functor J : {X-schemes} → {DX -schemes}. For an X-

scheme Y , J Y is the scheme of∞-jets of sections of Y . For anOX -algebraA

we have J SpecA = SpecJA. The canonical morphism J Y → Y identifies

the space7 of horizontal sections of J Y with the space of (all) sections of Y .

If X is complete and Y is quasiprojective then our space is a scheme.

2.6.4. Let (l, P ) be a Harish-Chandra pair in the sense of 1.2.6 (so P can

be any affine group scheme; we do not assume that it is of finite type8).

Definition. An (l, P )-structure on X is a morphism π : X∧ → X together

with an action of (l, P ) on X∧ such that

(i) X∧ is a P -torsor over X.

(ii) The action of l on X∧ is formally free and transitive, i.e., it yields an

isomorphism l⊗̂OX∧ →∼ΘX∧ .

7In the most general situation “space” means “functor {C-algebras} → {Sets}”.

8As follows from the definition below LieP has finite codimension in l (equal to dimX).
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Remark. Let L be the group ind-scheme with LieL = l, Lred = P

(see 7.11.2(v)). Consider the homogenuous space P \ L = Spf O where

O = O(l,P ) = (U l/(U l)p)∗. Take x ∈ X and choose x∧ ∈ π−1(x). The map

L → X∧, l 7→ lx∧, yields a morphism αx∧ : Spf O → X, which identifies

Spf O with the formal neighbourhood of x. For l ∈ L, a ∈ Spf O one has

αlx∧(a) = αx∧(al). Note that if the action of P on O is faithful then x∧ is

uniquely defined by αx∧ .

2.6.5. Example. Set O = On := C[[t1, .., tn]]. The group of automorphisms

of the C-algebra O is naturally the group of C-points of an affine group

scheme Aut0O over C. Denote by AutO the group ind-scheme such that, for

any C-algebra R, (AutO)(R) is the automorphism group of the topological

R-algebra R⊗̂O = R[[t1, .., tn]]. So Aut0O is the group subscheme of

AutO; in fact, Aut0O = (AutO)red. One has Lie AutO = DerO,

Lie Aut0O = Der0O := mO·DerO. Therefore AutO is the group ind-scheme

that corresponds to the Harish-Chandra pair AutHC O := (DerO,Aut0O).

By abuse of notation we will write AutO instead of AutHC O.

As explained by Gelfand and Kazhdan (see [GK], [GKF], and [BR]) any

smooth variety X of dimension n carries a canonical9 AutO-structure. The

space X∧ = X∧can is the space of ”formal coordinate systems” on X. In

other words, a C-point of X∧ is a morphism SpecO → X with non-vanishing

differential and an R-point ofX∧ is an R-morphism α : Spec(R⊗̂O)→ X⊗R

whose differential does not vanish over any point of SpecR. The group ind-

scheme AutO acts on X∧ in the obvious way, and we have the projection

π : X∧ → X, α 7→ α(0). It is easy to see that X∧ (together with these

structures) is an AutO-structure on X.

We will use the canonical AutOn-structure in the case n = 1, i.e.,

when X is a curve, so O = C[[t]]. Here the group AutO looks as

follows. There is an epimorphism Aut0O → Aut(tO/t2O) = Gm, which

9In fact, an AutO-structure on X is unique up to unique isomorphism (this follows

from the Remark in 2.6.4).
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we call the standard character of Aut0O; its kernel is pro-unipotent.

For a C-algebra R an automorphism of R[[t]] is defined by t 7→
∑

i cit
i

where c1 ∈ R∗ and c0 is nilpotent. So AutO is the union of schemes

SpecC[c0, c1, c
−1
1 , c2, c3, . . .]/(c

k
0), k ∈ N. Aut0O is the group subscheme

of AutO defined by c0 = 0.

Some other examples of (l, P )-structures may be found in ??.

2.6.6. Let X be a variety equipped with an (l, P )-structure X∧ (we will

apply the constructions below in the situation where X is a curve, l = DerO,

P = Aut0O (or a certain covering of Aut0O), O := C[[t]]). Denote by

M(X,O) the category of O-modules on X, and by Ml(X) that of left D-

modules. For FX ∈ M(X,O) its pull-back FX∧ to X∧ is a P -equivariant

O-module on X∧. If FX is actually a left DX -module then FX∧ is in addition

l-equivariant (since, by 2.6.4(ii), an l-action on an OX∧-module is the same

as a flat connection). The functors M(X,O) → {P -equivariant O-modules

on X∧}, Ml(X) → {(l, P )-equivariant O-modules on X∧} are equivalences

of tensor categories.

One has the faithful exact tensor functors

(25) M(P ) −→M(X,O), M(l, P ) −→Ml(X)

which send a representation V to the OX - or DX -module VX such that VX∧

equals to V ⊗ OX∧ (the tensor product of P - or (l, P )-modules). In other

words, the OX -module VX is the twist of V by the P -torsor X∧. Therefore

any algebra A with P -action yields an OX -algebra AX ; if A actually carries

a (l, P )-action then AX is a DX -algebra. Similarly, any scheme H with P -

action (a P -scheme for short) yields an X-scheme HX . If H is actually a

(l, P )-scheme then HX is a DX -scheme. One has (SpecA)X = Spec(AX).

Remarks. (i) The functor M(l, P ) −→ Ml(X) coincides with the

localization functor ∆ for the (l, P )-action on X∧ (see 1.2.4).

(ii) The functors (25) admit right adjoints which assign to an OX - or

DX -module FX the vector space Γ(X∧, FX∧) equipped with the obvious P -
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or (l, P )-module structure. Same adjointness holds if you consider algebras

instead of modules.

(iii) Let C be a C-algebra; consider C as an (l, P )-algebra with trivial

AutO-action. Then CX is the “constant” DX -algebra from 2.6.1.

2.6.7. The forgetful functor {(l, P )-algebras} → {P -algebras} admits a left

adjoint (induction) functor J . For a P -algebra A one has a canonical

isomorphism

(26) (JA)X = J (AX).

Indeed, the natural OX -algebra morphism AX → (JA)X induces a DX -

algebra morphism J (AX) → (JA)X . To show that it is an isomorphism

use the adjointness properties of J and A 7→ AX (see 2.6.3 and Remark (ii)

of 2.6.6).

Here is a geometric version of the above statements. The forgetful functor

{(l, P )-schemes} → {P -schemes} admits a right adjoint functor10 J . For a

P -algebra A one has J (SpecA) = SpecJ (A). For any P -scheme H one has

(JH)X = J (HX).

2.7. Quantization II. From now on O := C[[t]], K := C((t)).

2.7.1. Consider first the “classical” picture. The schemes Hitchx, x ∈ X,

are fibers of the DX -scheme Hitch = JCωX affine over X; denote by zcl the

corresponding DX -algebra. By 2.6.3 the projection Hitch → CωX identifies

the scheme of horizontal sections of Hitch with Hitch(X). In other words

zcl(X) = H∇

(
X, zcl

)
,

and the projections θclx : zclx → zcl(X) from 2.4.3 are just the canonical

morphisms θzclx from Proposition 2.6.2(ii).

10For affine schemes this is just a reformulation of the above statement for P -algebras.

The general situation does not reduce immediately to the affine case (a P -scheme may

not admit a covering by P -invariant affine subschemes), but the affine case is enough for

our purposes.
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Consider C as an Aut0O-scheme via the standard character Aut0O →

Gm (see 2.6.5). The X-scheme CωX coincides with the X∧-twist of C.

Therefore the isomorphism (26) induces a canonical isomorphism

zcl = zclg (O)X

where zclg (O) is the AutO-algebra J (Sym g)G, and the Aut0O-action on

(Sym g)G comes from the Gm-action opposite to that induced by the grading

of (Sym g)G (cf. the end of 2.2.2).

2.7.2. Let us pass to the “quantum” situation. Set zg(O) := D′(g⊗K,G(O)).

This is a commutative algebra (see 2.5.2(i)). AutO acts on zg(O) since

zg(O) is the endomorphism algebra of the twisted vacuum module Vac′ (see

1.2.5) and AutO acts on Vac′. (The latter action is characterized by two

properties: it is compatible with the natural action of AutO on g̃⊗K and

the vacuum vector is invariant; the action of AutO on g̃⊗K is understood in

the topological sense, i.e., Aut(O⊗̂R) acts on g̃⊗K⊗̂R for any commutative

C-algebra R.) Consider the DX -algebra

z = zg := zg(O)X

corresponding to the commutative (AutO)-algebra zg(O) (see 2.6.5, 2.6.6).

Its fibers are the algebras zx from 2.5.1. A standard argument shows that

when x ∈ X varies the morphisms hx from 2.5.4 define a morphism of OX -

algebras h : z→ Γ(BunG, D
′)X .

2.7.3. Horizontality Theorem. h is horizontal, i.e., it is a morphism of DX -

algebras.

For a proof see 2.8.

2.7.4. Set

(27) z(X) = zg(X) := H∇(X, z) .
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According to 2.6.2(i) the DX -algebra morphism h induces a C-algebra

morphism

hX : z(X)→ Γ(BunG, D
′)

We are going to show that (z(X), hX) is a solution to the quantization

problem from 2.2.5. Before doing this we have to define the filtration on

z(X) and the isomorphism σz(X) : gr z(X)
∼−→ zcl(X).

The canonical filtration on zg(O) is AutO-invariant and the isomorphism

σz(O) : gr zg(O)→∼ zclg (O) (see 2.5.2(ii)) is compatible with AutO-actions.

Therefore z carries a horizontal filtration and we have the isomorphism of

DX -algebras

σz : gr z→∼ zcl

which reduces to the isomorphism σzx from 2.5.2(ii) at each fiber. The

image of this filtration by θz : z � H∇(X, z)X = z(X)X is a horizontal

filtration on z(X)X which is the same as a filtration on z(X). Consider the

surjective morphism of graded DX -algebras (gr θz)σ
−1
z : zcl � gr z(X)X . By

adjunction (see (22)) it defines the surjective morphism of graded C-algebras

j : zcl(X) = H∇
(
X, zcl

)
� gr z(X).

Note that hX is compatible with filtrations, and we have the commutative

diagram

(28)

zcl(X)
hclX
↪→ Γ(BunG, P )

j
�

↪→σBunG

gr z(X)
grhX−→ gr Γ(BunG, D

′)

Therefore j is an isomorphism and grhX (hence hX) is injective. Define

σz(X) : gr z(X)
∼−→ zcl(X) by σz(X) := j−1. The triple (z(X), hX , σz(X)) is a

solution to the quantization problem from 2.2.5.

2.7.5. Let us prove Theorem 2.5.5 and compare z(x)(X) from 2.5.5 with

z(X). Clearly hx = hX · θzx where θzx : zx → z(X) was defined in

Proposition 2.6.2(ii). θzx is surjective (see 2.6.2(ii)) and strictly compatible

with filtrations (see the definition of the filtration on z(X) in 2.7.4). hX
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is injective and strictly compatible with filtrations (see the end of 2.7.4).

So hx is strictly compatible with filtrations (which is precisely Theorem

2.5.5) and hX induces an isomorphism between the filtered algebras z(X)

and z(x)(X) := hx(zx).

2.8. Horizontality. In this subsection we introduce DX -structure on some

natural moduli schemes and prove the horizontality theorem 2.7.3 modulo

certain details explained in 4.4.14. The reader may skip this subsection for

the moment.

In 2.8.1–2.8.2 we sketch a proof of Theorem 2.7.3. The method of 2.8.2 is

slightly modified in 2.8.3. In 2.8.4–2.8.5 we explain some details and refer

to 4.4.14 for the rest of them. In 2.8.6 we consider very briefly the ramified

situation.

2.8.1. Let us construct the morphism h from Theorem 2.7.3.

Recall that the construction of hx from 2.5.3–2.5.4 involves the scheme

BunG,x, i.e., the moduli scheme ofG-bundles onX trivialized over the formal

neighbourhood of x. It also involves the action of the Harish-Chandra pair

(g⊗Kx, G(Ox)) on BunG,x and its lifting to the action of (g̃⊗Kx, G(Ox)) on

the line bundle π∗xωBunG where πx is the natural morphism BunG,x → BunG.

These actions come from the action of the group ind-scheme G(Kx) on

BunG,x and its lifting to the action of a certain central extension11 Ĝ(Kx)

on π∗xωBunG .

To construct h one has to organize the above objects depending on x

into families. One defines in the obvious way a scheme M over X whose

fiber over x equals BunG,x. One defines a group scheme J(G) over X and a

group ind-scheme Jmer(G) over X whose fibers over x are respectively G(Ox)

and G(Kx). J(G) is the scheme of jets of functions X → G and Jmer(G)

is the ind-scheme of “meromorphic jets”. Jmer(G) acts on M . Finally one

11This extension was mentioned (rather than defined) in the Remark from 2.5.3. This

is enough for the sketch we are giving.
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defines a central extension Ĵmer(G) and its action on π∗ωBunG where π is the

natural morphism M → BunG. These data being defined the construction

of h : z→ Γ(BunG, D
′)X is quite similar to that of hx (see 2.5.3–2.5.4).

2.8.2. The crucial observation is that there are canonical connections along

X on J(G), Jmer(G), Ĵmer(G), M and π∗ωBunG such that the action of

Jmer(G) on M and the action of Ĵmer(G) on π∗ωBunG are horizontal. This

implies the horizontality of h.

For an X-scheme Y we denote by J Y the scheme of jets of sections

X → Y . It is well known (and more or less explained in 2.6.3) that J Y

has a canonical connection along X (i.e., J Y is a DX -scheme in the sense

of 2.6.1). In particular this applies to J(G) = J (G×X). If F is a principal

G-bundle over X then the fiber of π : M → BunG over F equals JF , so it is

equipped with a connection along X. One can show that these connections

come from a connection along X on M .

To define the connection on M as well as the other connections it is

convenient to use Grothendieck’s approach [Gr68]. According to [Gr68] a

connection (=integrable connection = “stratification”) along X on an X-

scheme Z is a collection of bijections ϕαβ : Morα(S,Z)
∼−→ Morβ(S,Z) for

every scheme S and every pair of infinitely close “points” α, β : S → X

(here Morα(S,Z) is the preimage of α in Mor(S,Z) and “infinitely close”

means that the restrictions of α and β to Sred coincide); the bijections ϕαβ

are required to be functorial with respect to S and to satisfy the equation

ϕβγϕαβ = ϕαγ .

For instance, if Z is the jet scheme of a scheme Y over X then

Morα(S,Z) := MorX(S′α, Y ) where S′α is the formal neighbourhood of the

graph Γα ⊂ S ×X and the morphism S′α → X is induced by the projection

prX : S × X → X. It is easy to show that if α and β are infinitely close

then S′α = S′β, so we obtain a connection along X on Z. One can show that

it coincides with the connection defined in 2.6.3.
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The connections along X on Jmer(G), Ĵmer(G), and M are defined in the

similar way. The horizontality of the action of Jmer(G) on M and the action

of Ĵmer(G) on π∗ωBunG easily follows from the definitions.

2.8.3. The method described in 2.8.2 can be modified as follows. Recall

that O := C[[t]], K := C((t)); AutO and X∧ were defined in 2.6.5. Set

M∧ = M ×X X∧. So M∧ is the moduli space of quadruples (x, tx,F , γx)

where x ∈ X, tx is a formal parameter at x, F is a G-torsor on X, γx

is a section of F over the formal neighbourhood of x. The group ind-

scheme G(K) acts on the fiber of M∧ over any x̂ ∈ X∧ (indeed, this

fiber coincides with BunG,x where x is the image of x̂ in X, so G(Kx) acts

on the fiber; on the other hand the formal parameter at x corresponding

to x̂ defines an isomorphism Kx
∼−→ K). Actually G(K) acts on M∧

(see 2.8.4) and the central extension Ĝ(K) acts on π̂∗ωBunG where π̂ is

the natural morphism M∧ → BunG. This action induces a morphism

ĥ : zg(O) → Γ(X∧,OX∧) ⊗ Γ(BunG, D
′) (see 2.7.2 for the definition of

zg(O)).

On the other hand the action of AutO on X∧ from 2.6.5 lifts canonically

to its action on M∧ (see 2.8.4) and the sheaf π̂∗ωBunG . The actions

of AutO and Ĝ(K) on π̂∗ωBunG are compatible in the obvious sense.

Therefore ĥ is AutO-equivariant. So ĥ induces a horizontal morphism

h : z = zg(O)X → Γ(BunG, D
′)X .

2.8.4. To turn the sketch from 2.8.3 into a proof of Theorem 2.7.3 we

first of all give a precise definition of the action of the semidirect product

AutO n G(K) on M∧. Let R be a C-algebra. By definition, an R-

point of M∧ is a triple (α,F , γ) where α : SpecR⊗̂O → X ⊗ R is an

R-morphism whose differential does not vanish over any point of SpecR,

F is a G-torsor on X ⊗ R, and γ is a section of α∗F . Let Γα denote

the graph of the composition SpecR → SpecR⊗̂O α→X ⊗ R and α′ the

morphism SpecR⊗̂K → (X ⊗ R) \ Γα induced by α. According to
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Beauville and Laszlo12 (see 2.3.7 and 2.3.4) R-points of M∧ are in one-to-one

correspondence with triples (α,F ′, γ′) where α is as above, F ′ is a G-torsor

on (X ⊗R) \Γα, and γ′ is a section of α′∗F ′ (of course, F ′ is the restriction

of F , γ′ is the restriction of γ). This interpretation shows that G(R⊗̂K) and

Aut(R⊗̂O) act on M∧(R): the action of G(R⊗̂K) changes γ′ and the action

of Aut(R⊗̂O) changes α (if α is replaced by α◦ϕ, ϕ ∈ Aut SpecR⊗̂O, then

Γα changes as a subscheme of X ⊗ R but not as a subset, so (X ⊗ R) \ Γα

remains unchanged). Thus we obtain the action of AutO n G(K) on M∧

mentioned in 2.8.3.

2.8.5. According to 2.8.4 AutO acts on M∧ considered as a scheme over

BunG. So AutO acts on π̂∗ωBunG . In 2.5.3 we mentioned the canonical

action of Ĝ(Kx) on the pullback of ωBunG to BunG,x. So Ĝ(K) acts on the

restriction of π̂∗ωBunG to the fiber of M∧ over any x̂ ∈ X∧. As explained in

2.8.3, to finish the proof of 2.7.3 it suffices to show that

(i) the actions of Ĝ(K) corresponding to various x̂ ∈ X∧ come from an

(obviously unique) action of Ĝ(K) on π̂∗ωBunG ,

(ii) this action is compatible with that of AutO.

To prove (i) and (ii) it is necessary (and almost sufficient) to define the

central extension Ĝ(Kx) and its action on the pullback of ωBunG to BunG,x.

The interested reader can do it using, e.g., [BLa94].

Instead of proving (i) and (ii) we will prove in 4.4.14 a similar statement

for a square root of ωBunG (because we need the square roots of ωBunG to

formulate and prove Theorem 5.4.5, which is the main result of this work).

More precisely, for any square root L of ωX one defines a line bundle λ′L on

BunG, which is essentially a square root of ωBunG (see 4.4.1). One constructs

a central extension13 G̃(Kx)L acting on the pullback of λ′L to BunG,x (see

4.4.7 – 4.4.8). The morphism hx : zx → Γ(BunG, D
′) from 2.5.4 can be

12The normal bundle of Γα ⊂ X ⊗R is trivial, so according to 2.3.7 one can apply the

main theorem of [BLa95] rather than its globalized version.

13In fact, this extension is a square root of Ĝ(Kx).
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naturally defined using this action (see 4.4.12 – 4.4.13). Finally, in 4.4.14

we prove the analog of the above statements (i) and (ii) for λ′L, which implies

the horizontality theorem 2.7.3.

2.8.6. Let ∆ ⊂ X be a finite subscheme. Denote by BunG,∆ the stack of G-

bundles on X trivialized over ∆. Denote by D′ the sheaf DY,Lλ from 1.1.6 for

Y = BunG,∆, L = the pullback of ωBunG , λ = 1/2. Just as in the case ∆ = ∅

one defines a horizontal morphism h : zX\∆ → Γ(BunG,∆, D
′)⊗OX\∆ where

zX\∆ is the restriction of z to X\∆. h induces an injection Γ(N,ON ) →

Γ(BunG,∆, D
′) where N = N∆(G) is a closed subscheme of the ind-scheme

N ′∆(G) of horizontal sections of Spec zX\∆.

Problem. Describe N∆(G) explicitly.

We are going to indicate the geometric objects used in the solution of the

problem. Since we do not explain the details of the solution one can read the

rest of this subsection without knowing the answer to the problem, which

can be found in 3.8.2.

For n ∈ Z+ denote by M∆,n the stack of triples consisting of a point

x ∈ X, a G-bundle F on X, and a trivialization of F over ∆ + nx (here

we identify finite subshemes of X with effective divisors, so ∆ + nx makes

sense). M∆,n is an algebraic stack and M∆ := lim
←−
n

M∆,n is a scheme over X.

Remark. Let M∆,x be the fiber of M∆ over x ∈ X. If x ∈ X\∆ then

M∆,x is the moduli scheme of G-bundles trivialized over ∆ and the formal

neighbourhood of x. If x ∈ ∆ then M∆,x = M∆\{x},x.

Consider the “congruence subgroup” scheme G∆ defined as follows: G∆

is a scheme flat over X such that for any scheme S flat over X

MorX(S,G∆) = {f : S → G such that f |∆S
= 1}

where ∆S is the preimage of ∆ in S. G∆ is a group scheme over X. A

G-bundle on X trivialized over ∆ is the same as a G∆-bundle (this becomes
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clear if G-bundles and G∆-bundles are considered as torsors for the étale

topology). So BunG,∆ is the stack of G∆-bundles.

One can show that if D ⊂ X is a finite subscheme and ∆+D is understood

in the sense of divisors then for every scheme S flat over X

MorX(S,G∆+D) = {f ∈ MorX(S,G∆) such that f |DS = 1}

Therefore a G-bundle on X trivialized over ∆ + D is the same as a

G∆-bundle trivialized over D. So M∆ is the moduli scheme of triples

consisting of a point x ∈ X, a G∆-bundle on X, and its trivialization

over the formal neighbourhood of x. Now one can easily define a canonical

action of Jmer(G∆) on M∆ where Jmer(G∆) is the group ind-scheme of

“meromorphic jets” of sections X → G∆. Jmer(G∆) and M∆ are equipped

with connections along X and the above action is horizontal. And so on...

Remarks

(i) If ∆ 6= ∅ the method of 2.8.3 does not allow to avoid using group

ind-schemes over X.

(ii) There are pitfalls connected with infinite dimensional schemes and

ind-schemes like M∆ or Jmer(G∆). Here is an example. The

morphism G∆ → G := G∅ = G × X induces f : Jmer(G∆) →

Jmer(G). This f induces an isomorphism of the fibers over any

point x ∈ X (the fiber of Jmer(G∆) over x is G(Kx), it does not

depend on ∆). But if ∆ 6= ∅ then f is not an isomorphism, nor even

a monomorphism.

2.9. Commutativity of zg(O). The algebras zg(O) and zx = zg(Ox) were

defined in 2.5.1 and 2.7.2 (of course they are isomorphic). Feigin and Frenkel

proved in [FF92] that zg(O) is commutative. In this subsection we give two

proofs of the commutativity of zg(O): the global one (see 2.9.1–2.9.2) and

the local one (see 2.9.3–2.9.5). The latter is in fact a version of the original

proof from [FF92].
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The reader may skip this subsection for the moment. We will not use

2.9.1–2.9.2 in the rest of the paper.

2.9.1. Let us prove that

(29) [hx(zx), hy(zy)] = 0

(see 2.5.4 for the definition of hx : zx → Γ(BunG, D
′) ). Since zx is the

fiber at x of the OX -algebra z = zg(O)X and hx comes from the OX -algebra

morphism h : z → OX ⊗ Γ(BunG, D
′) it is enough to prove (29) for x 6= y.

Denote by BunG,x,y the moduli scheme of G-bundles on X trivialized over

the formal neighbourhoods of x and y. G(Kx)×G(Ky) acts on BunG,x,y. In

particular the Harish-Chandra pair ((g ⊗Kx) × (g ⊗Ky), G(Ox) × G(Oy))

acts on BunG,x,y. This action lifts canonically to an action of ((g̃⊗Kx) ×

(g̃⊗Ky), G(Ox) × G(Oy)) on the pullback of ωBunG to BunG,x,y such that

1x ∈ g⊗Kx and 1y ∈ g⊗Ky act as multiplication by 2 and G(Ox)×G(Oy)

acts in the obvious way. The action of G(Ox)×G(Oy) on BunG,x,y satisfies

condition (16) from 1.2.6 and the quotient stack equals BunG. So according

to 1.2.5 we have a canonical morphism hx,y : zx ⊗ zy → Γ(BunG, D
′). Its

restrictions to zx and zy are equal to hx and hy. So (29) is obvious.

2.9.2. Let us prove the commutativity of zg(O). Suppose that a ∈

[zg(O), zg(O)], a 6= 0. If x = y then (29) means that hx(zx) is commutative.

So for any X, x ∈ X, and f : O
∼−→ Ox one has hx(f∗(a)) = 0. Let

ā ∈ zclg (O) be the principal symbol of a. Then for any X, x, f as above

one has hclx (f∗(ā)) = 0 (see 2.4.3 for the definition and geometric description

of hclx : zclx → Γ(BunG, P ) = Γ(T ∗BunG,O). This means that ā considered

as a polynomial function on g∗ ⊗ ωO (see 2.4.1) has the following property:

for any X, x as above, any G-bundle F on X trivialized over the formal

neighbourhood of x, and any isomorphism Ox
∼−→ O the restriction of ā

to the image of the map H0(X, g∗F ⊗ ωX) → g∗ ⊗ ωOx
∼−→ g∗ ⊗ ωO is

zero. There is an n such that ā comes from a function on g∗ ⊗ (ωO/m
nωO)

where m is the maximal ideal of O. Choose X and x so that the mapping
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H0(X,ωX)→ ωOx/m
n
xωOx is surjective and let F be the trivial bundle. Then

the map H0(X, g∗F ⊗ ωX) → g∗ ⊗ (ωOx/m
n
xωOx) is surjective and therefore

ā = 0, i.e., a contradiction.

Remark. Let BunG,∆ be the stack of G-bundles on X trivialized over a

finite subscheme ∆ ⊂ X. To deduce from (29) the commutativity of zg(O)

one can use the natural homomorphism from zx, x 6∈ ∆, to the ring of twisted

differential operators on BunG,∆. Then instead of choosing (X,x) as in the

above proof one can fix (X,x) and take ∆ big enough.

2.9.3. Denote by Z the center of the completed twisted universal enveloping

algebra U
′
(g⊗K), K := C((t)) ⊃ C[[t]] = O. In [FF92] Feigin and Frenkel

deduce the commutativity of zg(O) from the surjectivity of the natural

homomorphism f : Z → zg(O). We will present a proof of the surjectivity

of f which can be considered as a geometric version of the one from [FF92]

and also as a “quantization” of the remark at the end of 2.4.2. The relation

with [FF92] and 2.4.2 will be explained in 2.9.7 and 2.9.8.

Remark. In the definition of the central extension of g ⊗ K (see 2.5.1)

and therefore in the definition of Z and zg(O) we used the “critical” bilinear

form c defined by (18). In the proof of the surjectivity of f one can assume

that c is any invariant symmetric bilinear form on g and g is any finite

dimensional Lie algebra. On the other hand it is known that if g is simple

and c is non-critical then the corresponding algebra zg(O) is trivial (see ???).

2.9.4. We need the interpretation of U
′
:= U

′
(g⊗K) from [BD94]. Denote

by U ′ the non-completed twisted universal enveloping algebra of g⊗K. For

n ≥ 0 let In be the left ideal of U ′ generated by g ⊗ mn ⊂ g ⊗ O ⊂ U ′.

By definition, U
′

:= lim
←−
n

U ′/In. Let U ′k be the standard filtration of U ′ and

U
′
k the closure of U ′k in U

′
, i.e., U

′
k := lim

←−
n

U ′k/In,k, In,k := In ∩ U ′k. The

main theorem of [BD94] identifies the dual space (U ′k/In,k)
∗ with a certain
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topological vector space Ωn,k. So

(30) U ′k/In,k = (Ωn,k)
∗ , U

′
k = (Ωk)

∗

where Ωk = lim
−→
n

Ωn,k and ∗ denotes the topological dual.

To define Ωn,k we need some notation. Denote by Or (resp. ωOr ) the

completed tensor product of r copies of O (resp. of ωO). Set ωKr =

ωOr
⊗

Or
Kr where Kr is the field of fractions of Or. We identify Or with

C[[t1, . . . , tr]] and write elements of ωKr as f(t1, . . . , tr) dt1 . . . dtr where f

belongs to the field of fractions of C[[t1, . . . , tr]].

Definition. Ωn,k is the set of (k+1)-tuples (w0, . . . , wk), wr ∈ (g∗)⊗r⊗ωKr ,

such that

1) wr is invariant with respect to the action of the symmetric group Sr

(Sr acts both on (g∗)⊗r and ωKr );

2) wr has poles of order ≤ n at the hyperplanes ti = 0, 1 ≤ i ≤ r, poles

of order ≤ 2 at the hyperplanes ti = tj , 1 ≤ i < j ≤ r, and no other

poles;

3) if wr = fr(t1, . . . , tr) dt1 . . . dtr, r ≥ 2, then

(31)

fr(t1 . . . , tr) =
fr−2(t1, . . . , tr−2)⊗ c

(tr−1 − tr)2

+
ϕ∗(fr−1(t1, . . . , tr−1))

tr−1 − tr
+ · · ·

Here c ∈ g∗ ⊗ g∗ is the bilinear form used in the definition of the central

extension of g ⊗ K, ϕ∗ : (g∗)⊗(r−1) → (g∗)⊗r is dual to the mapping

ϕ : g⊗r → g⊗(r−1) given by ϕ(a1 ⊗ . . . ⊗ ar) = a1 ⊗ . . . ⊗ ar−2 ⊗ [ar−1, ar]

and the dots in (31) denote an expression which does not have a pole at the

generic point of the hyperplane tr−1 = tr.

The topology on Ωn,k is induced by the embedding Ωn,k ↪→
∏

0≤r≤k
(g∗)⊗r⊗

ΩO
r given by (w0, . . . , wk) 7→ (η0, . . . , ηk), ηr =

∏
i
tni ·

∏
i<j

(ti − tj)2 · wr.
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Let us explain that in (31) we consider fr as a function with values in

(g∗)⊗r.

We will not need the explicit formula from [BD94] for the isomorphism

(30). Let us only mention that according to Proposition 5 from [BD94] the

adjoint action of g⊗K on U
′
k induces via (30) the following action of g⊗K

on Ωk : a ∈ g⊗K sends (w0, . . . , wk) ∈ Ωk to (0, w′′1 , . . . , w
′′
k) where

w′′r =
1

(r − 1) !
Sym w′r ,

w′r(t1, . . . , tr) := (id⊗ . . .⊗ id⊗ ada(tr))wr(t1, . . . , tr)

− wr−1(t1, . . . , tr−1)⊗ c · da(tr) .

Here Sym denotes the symmetrization operator (without the factor 1/r!),

ada(tr) : g∗ → g∗ is the operator corresponding to a(tr) in the coadjoint

representation, and c : g→ g∗ is the bilinear form of g.

Remark. Suppose that c = 0 and g is commutative. Then U ′k/In,k =⊕k
r=0 Symr(g ⊗ K/mn) and Ωn,k =

⊕k
r=0 Sym

r
(g∗ ⊗ m−nωO) where Sym

r

denotes the completed symmetric power. The isomorphism U ′k/In,k
∼−→

(Ωn,k)
∗ is the identification of Sym(g⊗K/mn) with the space of polynomial

functions on g∗ ⊗m−nωO used in 2.4.1 and 2.4.2.

2.9.5. According to 2.9.4 to prove the surjectivity of f : Z → zg(O) it

is enough to show that any (g ⊗ O)-invariant continuous linear functional

l : Ω0,k → C can be extended to a (g ⊗ K)-invariant continuous linear

functional Ωk → C. Consider the continuous linear operator

T : Ωk → C((ζ))⊗̂Ω0,k =
{ ∞∑
n=−∞

anζ
n|an ∈ Ω0,k , an → 0 for n→ −∞

}
defined by

(32) T (w0, . . . , wk) = (ŵ0, . . . , ŵk) , ŵr = wr(ζ + t1, . . . , ζ + tr)

where wr(ζ + t1, . . . , ζ + tr) is considered as an element of

∆−1C((ζ))[[t1, . . . , tn]] dt1 . . . dtn = C((ζ))⊗̂∆−1C[[t1, . . . , tn]] dt1 . . . dtn ,
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∆ :=
∏

1≤i<j≤r
(ti − tj)2 .

If l ∈ (Ω0,k)
∗ let l̄ : Ωk → C((ζ)) be the composition of T : Ωk →

C((ζ))⊗̂Ω0,k and id⊗l : C((ζ))⊗̂Ω0,k → C((ζ)). Write l̄ as
∑
i
liζ

i, li ∈ (Ωk)
∗.

If l is g ⊗ O-invariant then the functionals li are g ⊗K-invariant. Besides

l0|Ω0,k
= l.

Remark. Let G be an algebraic group such that LieG = g. Then G(K)

acts on our central extension of g⊗K (see (19)), so it acts on U
′
k; moreover,

G(O) acts on U ′k/In,k. Therefore G(K) acts on Ωk and G(O) acts on Ωn,k. In

the above situation if l is G(O)-invariant then the functionals li are G(K)-

invariant (see formula (24) from [BD94] for the action of G(K) on Ωk).

Notice that if G is connected G(K) is not necessarily connected, so G(K)-

invariance does not follow immediately from (g⊗K)-invariance.

2.9.6. Since l̄ is continuous li → 0 for i → −∞ (i.e., for every n we have

l−i(Ωn,k) = 0 if i is big enough). So the map l 7→ l̄ can be considered as a

map from U ′k/I0,k to Wk := {
∞∑

i=−∞
aiζ

i|ai ∈ U
′
k , ai → 0 for i→ −∞}. These

maps define an operator

(33) Φ : Vac′ →W :=
⋃
k

Wk

where Vac′ = U ′/I0 is the twisted vacuum module. As explained in 2.9.5, Φ

induces a map

(34) zg(O)→ Z⊗̂C((ζ)) := {
∞∑

i=−∞
aiζ

i|ai ∈ Z , ai → 0 for i→ −∞} .

One can prove that (34) is a ring homomorphism (see ???). It is easy to

see that the composition of (34) and the projection Z⊗̂C((ζ))→ zg(O)((ζ))

maps zg(O) to zg(O)[[ζ]] and the composition zg(O)→ zg(O)[[ζ]]
ζ=0−→zg(O) is

the identity.

Remark. Let G be a connected algebraic group such that LieG = g. Then

all elements of the image of (34) are G(K)-invariant (see the remark from

2.9.5).
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2.9.7. One can show that (33) coincides with the operator F : Vac′ → W

constructed by Feigin and Frenkel (see the proof of Lemma 1 from [FF92])

and therefore 2.9.5 is just a version of a part of [FF92].

The definition of F from [FF92] can be reformulated as follows. Set

W+
k := U

′
k((ζ)), W−k := {

∑
i
aiζ

i ∈ Wk|a−i = 0 for i big enough}. Define

W± ⊂W byW± =
⋃
k

W±k . W+ andW− have natural algebra structures and

W has a natural structure of (W+,W−)-bimodule (W is a left W+-module

and a right W−-module). Consider the linear maps ϕ± : g̃⊗K →W± such

that

ϕ+(1) = 1 , ϕ−(1) = 0

and for a ∈ g((t)) = g⊗K ⊂ g̃⊗K

ϕ+(a) = a(t− ζ) ∈ g((t))((ζ)) , ϕ−(a) = a(t− ζ) ∈ g((ζ))((t)) .

It is easy to show that ϕ± are Lie algebra homomorphisms. Consider the

g̃⊗K-module structure on W defined by a ◦ w := ϕ+(a)w − wϕ−(a), a ∈

g̃⊗K, w ∈ W . Then F : Vac′ → W is the g̃⊗K-module homomorphism

that maps the vacuum vector from Vac′ to 1 ∈W .

2.9.8. Let us explain the relation between (34) and its classical analog from

2.4.2.

U
′

is equipped with the standard filtration U
′
k (see 2.9.4). It induces

the filtration Zk := Z ∩ Uk. We identify grk U
′

:= U
′
k/U

′
k−1 with the

completion of Symk(g ⊗ K), i.e., the space of homogeneous polynomial

functions g∗ ⊗ ωK → C of degree k where ωK := ωO ⊗O K (a function f on

g∗ ⊗ ωK is said to be polynomial if for every n its restriction to g∗ ⊗ m−n

is polynomial, i.e., comes from a polynomial function on g∗ ⊗ (m−n/mN )

for some N depending on n). Denote by Zcl the algebra of g⊗K-invariant

polynomial functions on g∗ ⊗ ωK . Clearly the image of grZ in grU
′

is

contained in Zcl.
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The filtration of Z induces a filtration of Z⊗̂C((ζ)) and the map (34)

is compatible with the filtrations. We claim that the following diagram is

commutative:

(35)

grk zg(O) −→ grk Z⊗̂C((ζ))

σ
y y

zclg (O)
ν−→ Zcl⊗̂C((ζ))

Here the upper arrow is induced by (34), zclg (O) was defined in 2.4.1, σ is

the symbol map from 1.2.5, and ν is defined by

(36)

ν(f) := h(ζ) , (h(ζ))(ϕ) := f(ϕ(ζ + t))

f ∈ zclg (O) , ϕ ∈ g∗ ⊗ ωK , ϕ(ζ + t) ∈ g∗((ζ))[[t]]dt = (g∗ ⊗ ωO)⊗̂C((ζ)) .

Here zclg (O) is identified with the algebra of g ⊗ O-invariant polynomial

functions on g∗ ⊗ ωO (cf.2.4.1). The map ν was considered in the Remark

from 2.4.2.

The commutativity of (35) follows from the commutativity of the diagram

(37)

(U ′k/In,k)
∗ ∼−→ Ωn,k

σ∗
x x

(Symk(g⊗K/g⊗mn))∗
∼−→ ((m−nωO)⊗k)Sk

Here the upper arrow is dual to (30), σ : U ′k/In,k → Symk(g⊗K/g⊗mn) is

the symbol map, and the right vertical arrow is defined by w 7→ (0, . . . , 0, w).

The commutativity of (37) is an immediate consequence of the definition of

(30); see [BD94].

2.10. Geometry of T ∗BunG. This subsection should be considered as

an appendix; the reader may certainly skip it.

Set Nilp = Nilp(G) := p−1(0) where p : T ∗BunG → Hitch(X) is the

Hitchin fibration (see 2.2.3). Nilp was introduced in [La87] and [La88]

under the name of global nilpotent cone (if F is a G-bundle on X and

η ∈ T ∗FBunG = H0(X, g∗F ⊗ ωX) then (F , η) ∈ Nilp if and only if the image

of η in H0(X, gF ⊗ ωX) is nilpotent).
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In 2.10.1 we show that Proposition 2.2.4 (iii) easily follows from the

equality

(38) dim Nilp = dim BunG .

We also deduce from (38) that BunG is good in the sense of 1.1.1. The

equality (38) was proved by Faltings and Ginzburg; in the particular case

G = PSLn it had been proved by Laumon. In 2.10.2 we give some comments

on their proofs. In 2.10.3 we discuss the set of irreducible components of

Nilp. In 2.10.4 we show that Nilp is equidimensional even if the genus of X

equals 0 or 1 (if g > 1 this follows from 2.2.4 (iii)). In 2.10.5 we prove that

BunG is very good in the sense of 1.1.1.

We will identify g and g∗ using an invariant scalar product on g.

2.10.1. Assuming (38) we are going to prove 2.2.4 (iii) and show that

BunG is good in the sense of 1.1.1. Let U ⊂ T ∗BunG be the biggest

open substack such that dimU ≤ 2 dim BunG. (38) means that the fiber

of p : T ∗BunG → Hitch(X) over 0 has dimension dim BunG. Since

dim Hitch(X) = dim BunG this implies that U ⊃ p−1(0). U is invariant with

respect to the natural action of Gm on T ∗BunG. Therefore U = T ∗BunG.

So dimT ∗BunG ≤ 2 dim BunG. According to 1.1.1 this means that BunG

is good and T ∗BunG is a locally complete intersection of pure dimension

2 dim BunG.

For an open V ⊂ T ∗BunG the following properties are equivalent: 1) the

restriction of p to V is flat, 2) the fibers of this restriction have dimension

dim BunG. Let Vmax be the maximal V with these properties. Vmax is Gm-

invariant and according to (38) Vmax ⊃ p−1(0). So Vmax = T ∗BunG and we

have proved the first statement of 2.2.4 (iii). It implies that the image of

pγ is open. On the other hand it is Gm-invariant and contains 0. So pγ is

surjective. QED.
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Since Nilp contains the zero section of T ∗BunG (38) follows from the

inequality dim Nilp ≤ dim BunG, which was obtained in [La88], [Fal93],

[Gi97] as a corollary of the following theorem.

2.10.2. Theorem. ([La88], [Fal93], [Gi97]). Nilp is isotropic.

Remarks

(i) Let us explain that a subscheme N of a smooth symplectic variety

M is said to be isotropic if any smooth subvariety of N is isotropic.

One can show that N is isotropic if and only if the set of nonsingular

points of Nred is isotropic. N is said to be Lagrangian if it is

isotropic and dimxN =
1

2
dimxM for all x ∈ N . If Y is a smooth

algebraic stack then a substack N ⊂ T ∗Y is said to be isotropic

(resp. Lagrangian) if N ×Y S ⊂ (T ∗Y) ×Y S ⊂ T ∗S is isotropic

(resp. Lagrangian) for some presentation14

S → Y (then it is true for all presentations S → Y).

(ii) The proofs of Theorem 2.10.2 given in [Fal93] and [Gi97] do not

use the assumption g > 1 where g is the genus of X. If g > 1

then Faltings and Ginzburg show that Nilp is Lagrangian. Their

argument was explained in 2.10.1: (38) implies that Nilp has pure

dimension dim BunG. In 2.10.1 we used the equality dim Hitch(X) =

dim BunG, which holds only if g > 1. In fact Nilp is Lagrangian even

if g = 0, 1 (see 2.10.4).

(iii) Since Nilp ⊂ T ∗BunG is Lagrangian and Gm-invariant it is a union

of conormal bundles to certain reduced irreducible closed substacks

of BunG. For G = PSLn a description of some of these substacks

was obtained by Laumon (see §§3.8–3.9 from [La88]).

(iv) Ginzburg’s proof of Theorem 2.10.2 is based on the following

interpretation of Nilp in terms of π : BunB → BunG where B is a

Borel subgroup of G: if F ∈ BunG, η ∈ T ∗FBunG then (F , η) ∈ Nilp

14A presentation of Y is a smooth surjective morphism S → Y where S is a scheme.



50 A. BEILINSON AND V. DRINFELD

if and only if there is an E ∈ π−1(F) such that the image of η

in T ∗E BunB equals 0. This interpretation enables Ginzburg to prove

Theorem 2.10.2 using a simple and general argument from symplectic

geometry (see §§6.5 from [Gi97]). Falting’s proof of Theorem 2.10.2

is also very nice and short (see the first two paragraphs of the proof

of Theorem II.5 from [Fal93]).

(v) The proof of Theorem 2.10.2 for G = PSLn given in [La88] does

not work in the general case because it uses the following property

of g = sln: for every nilpotent A ∈ g there is a parabolic subgroup

P ⊂ G such that A belongs to the Lie algebra of the unipotent radical

U ⊂ P , the P -orbit of A is open in LieU , and the centralizer of A in

G is contained in P . This property holds for g = sln (e.g., one can

take for P the stabilizer of the flag 0 ⊂ KerA ⊂ KerA2 ⊂ . . .) but

not for an arbitrary semisimple g (e.g., it does not hold if g = sp4

and A ∈ sp4 is a nilpotent operator of rank 1).

2.10.3. In this subsection we “describe” the set of irreducible components

of Nilp.

Recall that Nilp is the stack of pairs (F , η) where F is a G-bundle

on X and η ∈ H0(X, gF ⊗ ωX) = H0(X, g∗F ⊗ ωX) is nilpotent. For a

nilpotent conjugacy class C ⊂ g we have the locally closed substack NilpC

parametrizing pairs (F , η) such that η(x) ∈ C for generic x ∈ X.

Fix some e ∈ C and include it into an sl2-triple {e, f, h}. Let gk be the

decreasing filtration of g such that [h, gk] ⊂ gk and adh acts on gk/gk+1 as

multiplication by k. gk depend on e but not on h and f . Set p = pe := g0.

p is a parabolic subalgebra of g. Let P ⊂ G be the corresponding subgroup.

We have the map C → G/P that associates to a ∈ C the parabolic

subalgebra pa. Its fiber {a ∈ C|pa = p} (i.e., the P -orbit of e ∈ C) equals

g2 ∩ C; this is an open subset of g2. An element of g2 is said to be generic

if it belongs to g2 ∩ C.
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Let (F , η) ∈ NilpC , U := {x ∈ X|η(x) ∈ C}. The image of η ∈ Γ(U,CF ⊗

ωX) in Γ(U, (G/P )F ) extends to a section of (G/P )F over X. So we obtain

a P -structure on F . In terms of this P -structure η ∈ H0(X, g2
F ⊗ ωX) and

η(x) is generic for x ∈ U .

Denote by YC the stack of pairs (F , η) where F is a P -bundle on X and

η ∈ H0(X, g2
F ⊗ ωX) is such that η(x) is generic for almost all x ∈ X. For

a P -bundle F let degF ∈ Hom(P,Gm)∗ be the functional that associates

to ϕ : P → Gm the degree of the push-forward of F by ϕ. YC is the

disjoint union of open substacks Y u
C , u ∈ Hom(P,Gm)∗, parametrizing

pairs (F , η) ∈ YC such that degF = u. It is easy to show that for each

u ∈ Hom(P,Gm)∗ the natural morphism Y u
C → NilpC is a locally closed

embedding and the substacks Y u
C ⊂ NilpC form a stratification of NilpC .

Lemma.

1) Y u
C is a smooth equidimensional stack. dimY u

C ≤ dim BunG .

2) Let Y ∗C be the union of connected components of YC of dimension

dim BunG. Then Y ∗C is the stack of pairs (F , η) ∈ YC such that

adη : (g−1/g0)F → (g1/g2)F ⊗ ωX is an isomorphism.

Remark. (38) follows from the lemma.

Proof. The deformation theory of (F , η) ∈ Y u
C is controled by the

hypercohomology of the complex C· where C0 = pF = g0
F , C1 = g2

F ⊗ ωX ,

Ci = 0 for i 6= 0, 1, and the differential d : C0 → C1 equals adη. Since

Coker d has finite support H2(X,C·) = 0. So YC is smooth and

dim(F ,η) YC = χ(g2
F ⊗ ωX)− χ(g0

F ) = −χ(gF/g
−1
F )− χ(g0

F )

= −χ(gF ) + χ(g−1
F /g0

F ) = dim BunG + χ(g−1
F /g0

F ) .

Clearly χ(g−1
F /g0

F ) depends only on u = degF . The morphism adη :

g−1
F /g0

F → (g1/g2)F ⊗ ωX is injective and its cokernel A has finite support.

So 2χ(g−1
F /g0

F ) = χ(g−1
F /g0

F ) − χ((g1/g2)F ⊗ ωX) = −χ(A) ≤ 0 and

χ(g−1
F /g0

F ) = 0 if and only if A = 0. �
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Since Nilp has pure dimension dim BunG the lemma implies that the

irreducible components of Nilp are parametrized by
⊔
C

π0(Y ∗C).

π0(Y ∗C) can be identified with π0 of a simpler stack MC defined as

follows. Set L = P/U where U is the unipotent radical of P . L acts on

V := g2/g3. Denote by Di the set of a ∈ V such that the determinant of

(ada)
i : g−i/g−i+1 → gi/gi+1 equals 0. Di ⊂ V is an L-invariant closed

subset of pure codimension 1. An element of g2 is generic if and only

if its image in V does not belong to D2. Therefore Di ⊂ D2 for all i.

Denote by MC the stack of pairs (F , η) where F is an L-bundle on X and

η ∈ H0(X,VF ⊗ ωX) is such that η(x) 6∈ D1 for all x ∈ X and η(x) 6∈ D2

for generic x ∈ X. It is easy to see that the natural morphism Y ∗C → MC

induces a bijection π0(Y ∗C)→ π0(MC).

So irreducible components of Nilp are parametrized by
⊔
C

π0(MC).

Hopefully π0(MC) can be described in terms of “standard” objects

associated to C and X . . .

Remark. If G = PSLn then NilpC has pure dimension dim BunG for every

nilpotent conjugacy class C ⊂ sln (see [La88]). This is not true, e.g., if

G = Sp4 and C is the set of nilpotent matrices from sp4 of rank 1. Indeed,

let (F , η) ∈ YC be such that η ∈ H0(X, g2
F⊗ωX) has only simple zeros. Then

it is easy to show that the morphism YC → NilpC is an open embedding

in a neighbourhood of (F , η). On the other hand it follows from the above

lemma that if η has a zero then the dimension of YC at (F , η) is less than

BunG.

2.10.4. Theorem. Nilp is Lagrangian.

In this theorem we do not assume that g > 1.

Proof. As explained in Remark (ii) from 2.10.2 we only have to show that

Nilp has pure dimension dim BunG for g ≤ 1.

1) Let g = 0. Then Nilp = T ∗BunG. A quasicompact open substack of

BunG can be represented as H\M where M is a smooth variety and H is an
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algebraic group acting on M . Then T ∗(H\M) = H\N where N ⊂ T ∗M is

the union of the conormal bundles of the orbits of H. Each conormal bundle

has pure dimension dimM and since g = 0 the number of H-orbits is finite.

Remark. Essentially the same argument shows that for any smooth

algebraic stack Y the dimension of T ∗Y at each point is ≥ dimY. If

g = 0 and Y = BunG then T ∗Y = Nilp and dimT ∗Y = dimY according to

Theorem 2.10.2. So we have again proved Theorem 2.10.4 for g = 0.

2) Let g = 1. It is convenient to assume G reductive but not necessarily

semisimple (this is not really essential because Theorem 2.10.4 for reductive

G easily follows from the semisimple case).

Before proceeding to the proof let us recall the notions of semistability

and Shatz stratification. Fix a Borel subgroup B ⊂ G and denote by H its

maximal abelian quotient. Let P ⊂ G be a parabolic subgroup containing

B, L the maximal reductive quotient of P , Z the center of L. Let Γ (resp.

∆) be the set of simple roots of G (resp. L). The embedding Z ↪→ L

induces an isomorphism Hom(Z,Gm) ⊗ Q ∼−→ Hom(L,Gm) ⊗ Q. Denote

by p the composition Hom(H,Gm) → Hom(Z,Gm) → Hom(L,Gm) ⊗ Q =

Hom(P,Gm) ⊗ Q. We say that l ∈ Hom(P,Gm)∗ is strictly dominant if

l(p(α)) > 0 for α ∈ Γ\∆.

For a P -bundle F let degF ∈ Hom(P,Gm)∗ be the functional that

associates to ϕ : P → Gm the degree of the push-forward of F by ϕ.

A G-bundle is said to be semistable if it does not come from a P -bundle

of strictly dominant degree for any P 6= G. Semistable G-bundles form

an open substack BunG
ss ⊂ BunG. Semistable G-bundles of fixed degree

d ∈ Hom(G,Gm) form an open substack BunG
ss,d ⊂ BunG

ss. If P ⊂ G

is a parabolic subgroup containing B and d ∈ Hom(P,Gm)∗ is strictly

dominant denote by ShatzdP the stack of P -bundles F of degree d such

that the corresponding L-bundle is semistable. It is known that the natural

morphism ShatzdP → BunG is a locally closed embedding and the substacks



54 A. BEILINSON AND V. DRINFELD

ShatzdP for all P , d form a stratification of BunG, which is called the Shatz

stratification.

Denote by NilpdP (G) (resp. Nilpss(G), Nilpss,d(G)) the fibered product of

Nilp = Nilp(G) and ShatzdP (resp. BunG
ss, BunG

ss,d) over BunG. To show

that Nilp(G) has pure dimension dim BunG = 0 it is enough to show that

NilpdP (G) has pure dimension 0 for each P and d. Let L be the maximal

reductive quotient of P , p := LieP , l := LieL. If F is a P -bundle of strictly

dominant degree such that the corresponding L-bundle F is semistable then

H0(X, gF ) = H0(X, pF ), so we have the natural map η 7→ η̄ from H0(X, gF )

to H0(X, lF ). Define π : NilpdP (G) → Nilpss,d(L) by (F , η) 7→ (F , η̄),

η ∈ H0(X, gF ⊗ ωX) = H0(X, gF ) (ωX is trivial because g = 1). Using

again that g = 1 one shows that π is smooth and its fibers are 0-dimensional

stacks. So it is enough to show that Nilpss(L) is of pure dimension 0.

A point of Nilpss(L) is a pair consisting of a semistable L-bundle F

and a nilpotent η ∈ H0(X, lF ). Since lF is a semistable vector bundle

adη : lF → lF has constant rank. So the conjugacy class of η(x) does not

depend on x ∈ X. For a nilpotent conjugacy class C ⊂ l denote by NilpssC (L)

the locally closed substack of Nilpss(L) parametrizing pairs (F , η) such that

η(x) ∈ C. It is enough to show that NilpssC (L) has pure dimension 0 for each

C. Let Z(A) ⊂ L be the centralizer of some A ∈ C, z(A) := LieZ(A). If

(F , η) ∈ NilpssC (L) then η ∈ Γ(X,CF ) = Γ(X, (G/Z(A))F ) defines a Z(A)-

structure on F . Thus we obtain an open embedding NilpssC (L) ↪→ BunZ(A).

Finally BunZ(A) has pure dimension 0 because for any Z(A)-bundle E one

has χ(z(A)E) = deg z(A)E = 0 (notice that since G/Z(A) = C has a G-

invariant symplectic structure the adjoint representation of Z(A) has trivial

determinant and therefore z(A)E is trivial). �

2.10.5. Proof of Proposition 2.1.2. We must prove that (4) holds for

Y = BunG, i.e., codim{F ∈ BunG|dimH0(X, gF ) = n} > n for all n > 0.



HITCHIN’S INTEGRABLE SYSTEM 55

This is equivalent to proving that

(39) dim(A(G)\A0(G)) < dim BunG

where A(G) is the stack of pairs (F , s), F ∈ BunG, s ∈ H0(X, gF ), and

A0(G) ⊂ A(G) is the closed substack defined by the equation s = 0.

Set C := Spec(Sym g∗)G. This is the affine scheme quotient of g with

respect to the adjoint action of G; in fact C = W\h where h is a fixed

Cartan subalgebra of g and W is the Weyl group. The morphism g → C

induces a map H0(X, gF ) → Mor(X,C) = C. So we have a canonical

morphism f : A(G) → C = W\h. For h ∈ h set Ah(G) = f−1(h̄)

where h̄ ∈ W\h is the image of h. Set Gh := {g ∈ G|ghg−1 = h},

gh := LieGh = {a ∈ g|[a, h] = 0}. Denote by zh the center of gh. Since

h ∈ zh and there is a finite number of subalgebras of g of the form zh (39)

follows from the inequality dim(Ah(G)\A0(G)) < dim BunG − dim zh. So it

is enough to prove that

(40) dimAh(G) < dim BunG − dim zh for h 6= 0

(41) dim(A0(G)\A0(G)) < dim BunG .

Denote by Zh the center of Gh. Let us show that (40) follows from the

inequality (41) with G replaced by Gh/Zh. Indeed, we have the natural

isomorphisms A0(Gh)
∼−→ Ah(Gh)

∼−→ Ah(G) and the obvious morphism

ϕ : A0(Gh) → A0(Gh/Zh). A non-empty fiber of ϕ is isomorphic to

BunZh , so dimAh(G) ≤ dim BunZh + dimA0(Gh/Zh). Since dim BunZh =

(g − 1) · dim zh and (41) implies that dimA0(Gh/Zh) = (g − 1) · dim(gh/zh)

we have dimAh(G) ≤ (g − 1) · dim gh = dim BunG − (g − 1) · dim(g/gh) ≤

dim BunG − dim(g/gh). Finally dim(g/gh) ≥ 2 · dim zh > dim zh if h 6= 0.

To prove (41) we will show that if Y ⊂ A0(G) is a locally closed reduced

irreducible substack then dimY ≤ dim BunG and dimY = dim BunG only if

Y ⊂ A0(G). For ξ ∈ H0(X,ωX) consider the morphism mξ : A0(G)→ Nilp

defined by (F , s) 7→ (F , sξ), F ∈ BunG, s ∈ H0(X, gF ). The morphisms
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mξ define m : A0(G) × H0(X,ωX) → Nilp. The image of m is contained

in some locally closed reduced irreducible substack Z ⊂ Nilp. If ξ 6= 0 then

mξ induces an embedding Y ↪→ Zξ where Zξ is the closed substack of Z

consisting of pairs (F , η) ∈ H0(X, gF ⊗ ωX) such that the restriction of η

to the subscheme Dξ := {x ∈ X|ξ(x) = 0} is zero. So dimY ≤ dimZξ ≤

dimZ ≤ dim Nilp = dim BunG. If dimY = dim BunG then Zξ = Z for all

nonzero ξ ∈ H0(X,ωX). This means that η = 0 for all (F , η) ∈ Z and

therefore s = 0 for all (F , s) ∈ Y , i.e., Y ⊂ A0(G). �

2.11. On the stack of local systems. Denote by LSG the stack of G-

local systems on X (a G-local system is a G-bundle with a connection).

Kapranov [Kap97] explained that LSG has a derived version RLSG, which

is a DG stack. Using the results of 2.10 we will show that if g > 1 and G

is semisimple then RLSG = LSG. We also describe the set of irreducible

components of LSG. This section may be skipped by the reader; its results

are not used in the rest of the work.

2.11.1. Fix x ∈ X. Denote by LSxG the stack of G-biundles F on X

equipped with a connection ∇ having a simple pole at x. Denote by

E the restriction to LSxG = LSxG × {x} of the universal G-bundle on

LSxG × X. The residue of ∇ at x is a section R ∈ Γ(LSxG, gE), and LSG
is the closed substack of LSxG defined by the equation R = 0. Consider

the open substack L̃S
x

G ⊂ LSxG parametrizing pairs (F ,∇) such that

∇ : H1(X, gF ) → H1(X, gF ⊗ ωX(x)) is surjective. It is easy to see that

L̃SxG is a smooth stack of pure dimension (2g − 1) · dimG and LSG ⊂ L̃S
x

G.

Consider gE as a stack over LSxG. The sections R, 0 ∈ Γ(LSxG, gE) define

two closed substacks of gE , and RLS is their intersection in the derived

sense while LSG is their usual intersection. So the following conditions are

equivalent:

1) RLSG = LSG;
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2) LSG is a locally complete intersection of pure dimension (2g − 2) ·

dimG;

3) dimLSG ≤ (2g − 2) · dimG.

The following proposition shows that these conditions are satisfied if g > 1

and G is semisimple.

2.11.2. Proposition. Suppose that g > 1 and G is reductive. Then LSG is

a locally complete intersection of pure dimension (2g − 2) · dimG+ l where

l is the dimension of the center of G.

Proof. Let R have the same meaning as in 2.11.1. Clearly R ∈

Γ(LSxG, [g, g]E), so it suffices to show that

(42) dimLSG ≤ (2g − 2) · dimG+ l.

Denote by Gad the quotient of G by its center. Consider the projection

p : LSG → BunGad
. If the fiber of p over a Gad-bundle F is not

empty then its dimension equals dimT ∗F BunGad
+l(2g − 1), so dimLSG ≤

dimT ∗BunGad
+l(2g−1). Finally dimT ∗BunGad

≤ dimGad·(2g−2) because

BunGad
is good in the sense of 1.1.1 (we proved this in 2.10.1). �

2.11.3. Let Bun′G ⊂ BunG denote the preimage of the connected component

of BunG/[G,G] containing the trivial bundle. The image of LSG → BunG is

contained in Bun′G.

2.11.4. Proposition. Suppose that g > 1 and G is reductive. Then the

preimage in LSG of every connected component of Bun′G is non-empty and

irreducible.

So irreducible components of LSG are parametrized by

Ker(π1(G)→ π1(G/[G,G])) = π1([G,G]).

Proof. Consider the open substack Bun0
Gad
⊂ BunGad

parametrizing Gad-

bundles F such that H0(X, (gad)F ) = 0 (this is the biggest Deligne-Mumford

substack of BunGad
). Denote by Bun0 ′

G the preimage of Bun0
Gad

in Bun′G.
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Let LS0
G denote the preimage of Bun0

Gad
in LSG. In 2.10.5 we proved that

BunGad
is very good in the sense of 1.1.1, so dim(T ∗BunGad

\T ∗Bun0
Gad

) <

dimT ∗BunGad
. The argument used in the proof of (42) shows that

dim(LSG \ LS0
G) < (2g − 2) · dimG + l. Using 2.11.2 one sees that LS0

G

is dense in LSG. So it suffices to prove that the preimage in LS0
G of every

connected component of Bun0 ′
G is non-empty and irreducible. This is clear

because the morphism LS0
G → Bun0 ′

G is a torsor15 over T ∗Bun0 ′
G . �

2.12. On the Beauville – Laszlo Theorem. This section is, in fact, an

appendix in which we explain a globalized version of the main theorem of

[BLa95]. This version is used in 2.3.7 but not in an essential way. So this

section can be skipped by the reader.

2.12.1. Theorem. Let p : S̃ → S be a morphism of schemes, D ⊂ S an

effective Cartier divisor. Suppose that D̃ := p−1(D) is a Cartier divisor in S̃

and the morphism D̃ → D is an isomorphism. Set U := S \D, Ũ := S̃ \ D̃.

Denote by C the category of quasi-coherent OS-modules that have no non-

zero local sections supported at D. Denote by C̃ the similar category for

(S̃, D̃). Denote by C ′ the category of triples (M1,M2, ϕ) where M1 is

a quasi-coherent OU -module, M2 ∈ C̃, ϕ is an isomorphism between the

pullbacks of M1 and M2 to Ũ .

1) p∗ maps C to C̃, so we have the functor F : C → C ′ that sends

M ∈ C to (M|U , p∗M, ϕ) where ϕ is the natural isomorphism

between the pullbacks of M|U and p∗M to Ũ .

2) F : C → C ′ is an equivalence.

3) M∈ C is locally of finite type (resp. flat, resp. locally free of finite

rank) if and only if M|U and f∗M have this property.

15The torsor structure depends on the choice of an invariant scalar product on g.
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This theorem is easily reduced to the case where S and S̃ are affine16

and D is globally defined by one equation (so S = SpecA, S̃ = Spec Ã,

D = SpecA/fA, f ∈ A is not a zero divisor). This case is treated just as

in [BLa95] (in [BLa95] it is supposed that Ã = Â :=the completion of A for

the f -adic topology, but the only properties of Â used in [BLa95] are the

injectivity of f : Â→ Â and the bijectivity of A/fA→ Â/fÂ).

2.12.2. Let D be a closed affine subscheme of a scheme S. Denote by Ŝ

the completion of S along D and by Ŝ′ the spectrum of the ring of regular

functions on Ŝ (so Ŝ is an affine formal scheme and Ŝ′ is the corresponding

true scheme). We have the morphisms π : Ŝ → S and i : Ŝ → Ŝ′.

2.12.3. Proposition. There is at most one morphism p : Ŝ′ → S such that

pi = π.

Proof. Suppose that π = p1i = p2i for some p1, p2 : Ŝ′ → S. Let Y ⊂ Ŝ′

be the preimage of the diagonal ∆ ⊂ S × S under (p1, p2) : Ŝ′ → S × S.

Then Y is a locally closed subscheme of Ŝ′ containing the n-th infinitesimal

neighbourhood of D ⊂ Ŝ′ for every n. So (Ȳ \ Y ) ∩ D = ∅ and therefore

Ȳ \ Y = ∅, i.e., Y is closed. A closed subscheme of Ŝ′ containing all

infinitesimal neighbourhoods of D equals Ŝ′. So Y = Ŝ′ and p1 = p2. �

2.12.4. Suppose we are in the situation of 2.12.2 and D ⊂ S is an effective

Cartier divisor. If there exists p : Ŝ′ → S such that pi = π then p−1(D) ⊂ Ŝ′

is a Cartier divisor and the morphism p−1(D) → D is an isomorphism. So

Theorem 2.12.1 is applicable.

16For any x ∈ S there is an affine neighbourhood U of x and an open affine Ũ ⊂ S̃

such that Ũ ⊂ p−1(U) and Ũ ∩ D̃ = p−1(U) ∩ D̃. Indeed, we can assume that S is affine

and x ∈ D. Let Ũ1 ⊂ S be an affine neighbourhood of the preimage of x in D̃. Then

p(Ũ1 ∩ D̃) is an affine neighbourhood of x in D, so it contains U ∩D for some open affine

U ⊂ S such that x ∈ U . Then Ũ := Ũ1 ×S U has the desired properties.
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2.12.5. Suppose we are in the situation of 2.12.2 and S is quasi-separated.

Then there exists p : Ŝ′ → S such that pi = π. The proof we know is rather

long. We first treat the noetherian case and then use the following fact

(Deligne, private communication): for any quasi-compact quasi-separated

scheme S there exists an affine morphism from S to some scheme of finite

type over Z.

In 2.3.7 we use the existence of p : Ŝ′ → S for S = X ⊗R where X is our

curve and R is a C-algebra. So the following result suffices.

2.12.6. Proposition. Suppose that in the situation of 2.12.2 S is a locally

closed subscheme of Pn ⊗ R for some ring R. Then there exists p : Ŝ′ → S

such that pi = π.

Proof. We use Jouanolou’s device. Let P∗ be the projective space dual to

P = Pn, Z ⊂ P× P∗ the incidence correspondence, U := (P× P∗) \Z. Since

the morphism U → P is a torsor over some vector bundle on P and Ŝ is an

affine formal scheme the morphism Ŝ → P lifts to a morphism Ŝ → U . Since

U is affine Mor(Ŝ, U) = Mor(Ŝ′, U), so we get a morphism Ŝ′ → U . The

composition Ŝ′ → U → P yields a morphism f : Ŝ′ → P ⊗ R. The locally

closed subscheme f−1(S) ⊂ Ŝ′ contains the n-th infinitesimal neighbourhood

of D ⊂ Ŝ′ for every n, so f−1(S) = Ŝ′ (cf. 2.12.3) and f induces a morphism

p : Ŝ′ → S ⊂ P⊗R. Clearly pi = π. �

Remark. One can also prove the proposition interpreting the morphism

Ŝ → Pn as a pair (M, ϕ) where M is an invertible sheaf on Ŝ and ϕ is an

epimorphism On+1 → M. Then one shows that (M, ϕ) extends to a pair

(M′, ϕ′) on Ŝ′. Of course, this proof is essentially equivalent to the one

based on Jouanolou’s device.
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3. Opers

3.1. Definition and first properties.

3.1.1. Let G be a connected reductive group over C with a fixed Borel

subgroup B = BG ⊂ G. Set N = [B,B], so H = B/N is the Cartan group.

Denote by n ⊂ b ⊂ g, h = b/n the corresponding Lie algebras. g carries a

canonical decreasing Lie algebra filtration gk such that g0 = b, g1 = n, and

for any k > 0 the weights of the action of h = gr0 g on grk g (resp. gr−kg) are

sums of k simple positive (resp. negative) roots. In particular gr−1 g = ⊕gα,

α is a simple negative root. Set Z = ZG = CenterG.

3.1.2. Let X be any smooth (not necessarily complete) curve, FB a B-

bundle on X. Denote by FG the induced G-torsor, so FB ⊂ FG. We have

the corresponding twisted Lie algebras bF := bFB and gF := gFB = gFG

equipped with the Lie algebra filtration gkF. Consider the sheaves of

connections Conn(FB), Conn(FG); these are bF ⊗ ωX - and gF ⊗ ωX -torsors.

We have the obvious embedding Conn(FB) ⊂ Conn(FG). It defines the

projection c : Conn(FG) → (g/b)F ⊗ ωX such that c−1(0) = Conn(FB) and

c(∇+ ν) = c(∇) + ν mod bF ⊗ ωX for any ∇ ∈ Conn(FG), ν ∈ gF ⊗ ωX .

3.1.3. Definition. A G-oper on X is a pair (FB,∇), ∇ ∈ Γ(X,Conn(FG))

such that

(1) c(∇) ∈ gr−1 gF ⊗ ωX ⊂ (g/b)F ⊗ ωX
(2) For any simple negative root α the α-component c(∇)α ∈ Γ(X, gαF ⊗

ωX) does not vanish at any point of X.

If g is a semisimple Lie algebra then a g-oper is a Gad-oper where Gad is the

adjoint group corresponding to g.

We will usually consider G-oper as a G-local system (FG,∇) equipped

with an extra oper structure (a B-flag FB ⊂ FG which satisfies conditions

(1) and (2) above).
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G-opers on X form a groupoid OpG(X). The groupoids OpG(X ′) for X ′

étale over X form a sheaf of groupoids OpG on Xét.

3.1.4. Proposition. Let (FB,∇) be a G-oper. Then Aut(FB,∇) = Z if X

is connected. �

In particular g-opers have no symmetries, i.e., Opg(X) is a set and Opg
is a sheaf of sets.

3.1.5. Proposition. Suppose that X is complete and connected of genus

g > 1. Let (FG,∇) be a G-local system on X that has an oper structure.

Then

(i) the oper structure on (FG,∇) is unique: the corresponding flag

FB ⊂ FG is the Harder-Narasimhan flag;

(ii) Aut(FG,∇) = Z;

(iii) (FG,∇) cannot be reduced to a non-trivial parabolic subgroup P⊂G.

�

Of course ii) follows from i) and 3.1.4.

3.1.6. Example. A GLn-oper can be considered as an OX -module E

equipped with a connection ∇ : E → E ⊗ ωX and a filtration E = En ⊃

En−1 ⊃ · · · ⊃ E0 = 0 such that

(i) The sheaves gri E , n ≥ i ≥ 1, are invertible

(ii) ∇(Ei) ⊂ Ei+1 ⊗ ωX and for n − 1 ≥ i ≥ 1 the morphism gri E →

gri+1 E ⊗ ωX induced by ∇ is an isomorphism.

One may construct GLn-opers as follows. Let A,B be invertible OX -

modules and ∂ : A → B a differential operator of order n whose symbol

σ(∂) ∈ Γ
(
X,B

⊗
A⊗(−1)

⊗
Θ⊗nX

)
has no zeros. Our ∂ is a section

of B
⊗
OX DX

⊗
OX A

⊗(−1) or, equivalently, an O-linear map B⊗(−1) →

DX ⊗ A⊗(−1). Let I ⊂ DX⊗A⊗(−1) be the DX -sub-module generated

by the image of this map. Let E := DX ⊗ A⊗(−1)/I; denote by Ei the

filtration on E induced by the usual filtration of DX by degree of an
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operator. Then E is a DX -module, i.e., an OX -module with a connection,

and the filtration Ei satisfies the conditions (i), (ii). Therefore (E , {Ei},∇)

is a GLn-oper. This construction defines an equivalence between the

groupoid of GLn-opers and that of the data ∂ : A → B as above.

The inverse functor Φ associates to (E , {Ei},∇) the following differential

operator : A −→ B,A := E⊗(−1)
1 ,B := ωX ⊗ (E/En−1)⊗(−1). Consider

E as a DX -module. Let D(k)
X ⊂ DX be the subsheaf of operators of

order ≤ k. Then the morphism D(n−1)
X ⊗OXE1 −→ E is an isomorphism

and therefore the composition D(n)
X ⊗OXE1 −→ E

∼−→ D(n−1)
X ⊗OXE1 defines

a splitting of the exact sequence 0 −→ D(n−1)
X ⊗OXE1 −→ D(n)

X ⊗OXE1 −→

ω
⊗(−n)
X ⊗E1 −→ 0, i.e., a morphism ω

⊗(−n)
X ⊗E1 −→ D(n)

X ⊗OXE1, which is the

same as a differential operator ∂ : A −→ B (notice that the isomorphisms

gri E
∼−→ gri+1 E ⊗ ωX induce an isomorphism E1

∼−→ (E/En−1) ⊗ ω⊗(n−1)
X ,

so ω
⊗(−n)
X ⊗ E1 = ω

⊗(−1)
X ⊗ (E/En−1) = B⊗(−1)).

Applying the above functor Φ to an SL2-oper one obtains a differential

operator ∂ : A −→ ωX ⊗ A⊗(−1). It is easy to show that one thus

obtains an equivalence between the groupoid of SL2-opers and that of pairs

(A, ∂) consisting of an invertible sheaf A and a Sturm-Liouville operator

∂ : A −→ ωX ⊗A⊗(−1), i.e., a self-adjoint differential operator ∂ of order 2

whose symbol σ(∂) has no zeros. Notice that σ(∂) induces an isomorphism

ω⊗2
X ⊗A

∼−→ ωX ⊗A⊗(−1), so A is automatically a square root of ω
⊗(−1)
X .

If (A, ∂) is a Sturm-Liouville operator and M is a line bundle equipped

with an isomorphism M⊗2 ∼−→ OX then M has a canonical connection

and therefore tensoring (A, ∂) byM one obtains a Sturm-Liouville operator

(Ã, ∂̃), Ã = A⊗M. We say that (A, ∂) and (Ã, ∂̃) are equivalent. It is easy

to see that the natural map OpSL2(X) −→ Opsl2(X) identifies Opsl2(X)

with the set of equivalence classes of Sturm-Liouville operators.

Opers for other classical groups may be described in similar terms (in the

local situation this was done in [DS85, section 8]).
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3.1.7. Identifying sl2-opers with equivalence classes of Sturm-Liouville

operators (see 3.1.6) one sees that Opsl2 is an ω⊗2
X -torsor: a section η of

ω⊗2
X maps a Sturm-Liouville operator ∂ : A −→ A ⊗ ω⊗2

X , A⊗(−2) = ωX ,

to ∂ − η. Let us describe this action of ω⊗2
X on Opsl2 without using Sturm-

Liouville operators.

Identify n ⊂ sl2 with (sl2/b)∗ using the bilinear form Tr(AB) on sl2. If

F = (FB,∇) is an sl2-oper then according to 3.1.3 the section c(∇) trivializes

the sheaf (sl2/b)FB ⊗ωX . So (sl2/b)FB = ω
⊗(−1)
X , nF = ωX , and we have the

embedding ω⊗2
X = nFB ⊗ ωX ↪→ (sl2)FB ⊗ ωX . Translating ∇ by a section

µ of ω⊗2
X ⊂ (sl2)FB ⊗ ωX we get a new oper denoted by F + µ. This ω⊗2

X -

action on Opsl2 coincides with the one introduced above, so it makes Opsl2
an ω⊗2

X -torsor.

Remark It is well known that this torsor is trivial (even if H1(X,ω⊗2
X ) 6=

0, i.e., g ≤ 1; Sturm-Liouville operators on P1 or on an elliptic curve do

exist). However for families of curves X this torsor may not be trivial.

3.1.8. In 3.1.9 we will use the following notation. Let B0 ⊂ PSL2

be the group of upper-triangular matrices. Set N0 := [B0, B0], b0 :=

LieB0, n0 := LieN0. Identify B0/N0 with Gm via the adjoint action

B0/N0 −→ Aut n0 = Gm. Using the matrices e :=
(

0 1
0 0

)
and f :=

(
0 0
1 0

)
we identify n0 and sl2/b0 with C. Then for an sl2-oper F = (FB0 ,∇)

the isomorphism (sl2/b0)FB0

∼−→ ω
⊗(−1)
X from 3.1.7 (or the isomorphism

nFB0

∼−→ ωX) induces an isomorphism between the push-forward of FB0 by

B0 −→ B0/N0 = Gm and the Gm-torsor ωX .

3.1.9. For any semisimple Lie algebra g we will give a rather explicit

description of Opg(X). In particular we will introduce a “canonical”

structure of affine space on Opg(X) (for g = sl2 it was introduced in 3.1.7).

Let G be the adjoint group corresponding to g and B its Borel subgroup.

We will use the notation from 3.1.8. Fix a principal embedding i : sl2 ↪→ g

such that i(b0) ⊂ b; one has the corresponding embeddings iG : PSL2 ↪→ G,
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iB : B0 ↪→ B. Set V = Vg := gN0 . Then n0 ⊂ V ⊂ n. One has the

adjoint action Ad of Gm = B0/N0 on V . Define a new Gm-action a on V

by a(t)v := tAd(t)v, v ∈ V , t ∈ Gm.

Consider the vector bundle VωX i.e., the ωX -twist of V with respect to

the Gm-action a (we consider ωX as a Gm-torsor on X). Twisting by ωX

the embedding C ∼−→ Ce = n0 ↪→ V we get an embedding ωX
⊗2 ↪→ VωX .

For any sl2-oper F0 = (FB0 ,∇0) its i-push-forward iF0 = (FB,∇) is a

g-oper. It follows from 3.1.8 that we have a canonical isomorphism VωX =

VFB0
⊗ωX and therefore a canonical embedding VωX ⊂ bF0⊗ωX = bFB⊗ωX .

Translating ∇ by a section ν of VωX we get a new g-oper denoted by iF0 +ν.

Let Op
g

be the VωX -torsor induced from the ωX
⊗2-torsor Opsl2 by the

embedding ωX
⊗2 ⊂ VωX . A section of Op

g
is a pair (F0, ν) as above, and

we assume that (F0 + µ, ν) = (F0, µ+ ν) for a section µ of ωX
⊗2. We have

a canonical map

(43) Op
g
−→ Opg

which sends (F0, ν) to iF0 + ν.

3.1.10. Proposition. The mapping (43) is bijective. �

Remarks

(i) Though the bijection (43) is canonical we are not sure that it gives

a reasonable description of Opg.

(ii) The space V = Vg from 3.1.9 depends on the choice of a principal

embedding i : sl2 ↪→ g (for such an i there is a unique Borel

subalgebra b ⊂ g containing i(b0)). But any two principal

embeddings sl2 ↪→ g are conjugate by a unique element of G = Gad.

So we can identify the V ’s corresponding to various i’s and obtain a

vector space (not a subspace of g!) canonically associated to g.

(iii) Let G be the adjoint group corresponding to g, B a Borel subgroup

of G. Proposition 3.1.10 implies that for any g-oper F = (FB,∇)

FB is isomorphic to a certain canonical B-bundle F0
B which does
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not depend on F. Actually F0
B is the push-forward of the

canonical (Aut0O)-bundle from 2.6.5 by a certain homomorphism

iBσπ : Aut0O −→ B. Here π is the projection Aut0O −→

Aut(O/m3) where m is the maximal ideal of O, σ is an isomorphism

Aut(O/m3)
∼−→ B0 where B0 is a Borel subgroup of PSL2, and

iB : B0 −→ B is induced by a principal embedding PSL2 −→ G (σ

and iB are unique up to a unique conjugation).

3.1.11. Assume that X is complete. Then G-opers form a smooth algebraic

stack which we again denote as OpG(X) by abuse of notation. If G is

semisimple this is a Deligne-Mumford stack (see 3.1.4); if G is adjoint then

OpG(X) = Opg(X) is a scheme isomorphic to the affine space Op
g
(X)

via (43).

Remarks

(i) If X is non-complete, then Opg(X) is an ind-scheme.

(ii) If X is complete, connected, and of genus g > 1, then dimOpg(X) =

(g−1)·dim g. Indeed, according to Proposition 3.1.10, dimOpg(X) =

dimOp
g
(X) = dim Γ(X,VωX ) and an easy computation due to

Hitchin (see Remark 4 from 2.2.4) shows that dim Γ(X,VωX ) =

(g − 1) · dim g if g > 1. Actually we will see in 3.1.13 that

Γ(X,VωX ) = HitchLg(X), so we can just use Hitchin’s formula

dim HitchLg(X) = (g − 1) · dim Lg = (g − 1) · dim g

mentioned in 2.2.4(ii).

(iii) Let X be as in Remark ii and G be the adjoint group corresponding

to g. One has the obvious morphism i : Opg(X) −→ LocSysG where

LocSysG is the stack of G-local systems on X. One can show that

G-local systems which cannot be reduced to a non-trivial parabolic

subgroup P ⊂ G and which have no non-trivial automorphisms

form an open substack U ⊂ LocSysG which is actually a smooth

variety; U has a canonical symplectic structure. According to 3.1.5
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i(Opg(X)) ⊂ U and i is a set-theoretical embedding. In fact i is

a closed embedding and i(Opg(X)) is a Lagrangian subvariety of

U . Besides, i(Opg(X)) = π−1(S) where π : LocSysG −→ BunG

corresponds to forgetting the connection and S ⊂ BunG is the

locally closed substack of G-bundles isomorphic to F0
G, the G-

bundle corresponding to the B-bundle F0
B introduced in Remark iii

from 3.1.10 (so S is the classifying stack of the unipotent group

AutF0
G).

3.1.12. Denote by Ag(X) the coordinate ring of Opg(X). We will construct

a canonical filtration on Ag(X) and a canonical isomorphism of graded

algebras

(44) σA(X) : grAg(X)
∼−→ zclLg(X)

where Lg denotes the Langlands dual of g and the r.h.s. of (44) was defined

in 2.2.2. We give two equivalent constructions. The one from 3.1.13 is

straightforward; it involves the isomorphism (43). The construction from

3.1.14 is more natural.

3.1.13. Using 3.1.8 we identify Ag(X) with the coordinate ring of Op
g
(X).

Denote by Aclg (X) the coordinate ring of the vector space Γ(X,VωX )

corresponding to the affine space Op
g
(X). Consider the Gm-action on

Aclg (X) opposite to that induced by the Gm-action a on V (see 3.1.7); the

corresponding grading on Aclg (X) is positive. It induces a canonical ring

filtration on Ag(X) and a canonical isomorphism grAg(X)
∼−→ Aclg (X).

So to define (44) it remains to construct a graded isomorphism Aclg (X)
∼−→

zclLg(X), which is equivalent to constructing a Gm-equivariant isomorphism

of schemes Γ(X,VωX )
∼−→ HitchLg(X). According to 2.2.2 HitchLg(X) :=

Γ(X,CωX ), C := CLg. So it suffices to construct a Gm-equivariant

isomorphism of schemes Vg
∼−→ CLg. (Vg is equipped with the action a

from 3.1.7.)
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According to 2.2.1 CLg = Spec(Sym Lg)
LG where G is a connected group

corresponding to g. We can identify (Sym Lg)
LG with (Sym g∗)G because

both graded algebras are canonically isomorphic to (Sym h∗)W where W is

the Weyl group. So CLg = C ′g where

(45) C ′g = Spec(Sym g∗)G ,

i.e., C ′g is the affine scheme quotient of g with respect to the adjoint action

of G. Finally according to Theorem 0.10 from Kostant’s work [Ko63] we

have the canonical isomorphism Vg
∼−→ C ′g that sends v ∈ Vg to the image

of v + i((
0 0

1 0
)) ∈ g in C ′g. It commutes with the Gm-actions.

3.1.14. Here is a more natural way to describe the canonical filtration on

Ag(X) and the isomorphism (44).

There is a standard way to identify filtered C-algebras with graded flat

C[~]-algebras (here deg ~ = 1). Namely, an algebra A with an increasing

filtration {Ai} corresponds to the graded C[~]-algebra A∼ = ⊕Ai, the

multiplication by ~ is the embedding Ai ↪→ Ai+1. Note that A = A∼/(~ −

1)A∼, grA = A∼/~A∼. Passing to spectra we see that SpecA∼ is a flat

affine scheme over the line A1 = SpecC[~], and the grading on A∼ is the

same as a Gm-action on SpecA∼ compatible with the action by homotheties

on A1. We are going to construct the scheme SpecAg(X)∼.

Let F be a G-torsor on X. Denote by EF the Lie algebroid of infinitesimal

symmetries of F; we have a canonical exact sequence

0→ gF → EF
π→ ΘX → 0.

Recall that for ~ ∈ C an ~-connection on F is an OX -linear map ∇~ :

ΘX → EF such that π∇~ = ~ idΘX (usual connections correspond to ~ = 1).

One defines a G − ~-oper as in 3.1.3 replacing the connection ∇ by an ~-

connection ∇~. The above results about G-opers render to G − ~-opers.

In particular g − ~-opers, i.e., ~-opers for the adjoint group form an affine
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scheme Opg,~(X). For λ ∈ C∗ we have the isomorphism of schemes

(46) Opg,~(X)
∼−→ Opg,λ~(X)

defined by (FB,∇~) 7→ (FB, λ∇~). When ~ varies Opg,~(X) become fibers

of an affine C[~]-scheme Opg(X)∼ = SpecAg(X)∼. Using an analog of

3.1.9–3.1.10 for g − ~-opers one shows that Ag(X)∼ is flat over C[h]. The

morphisms (46) define the action of Gm on Opg(X)∼, i.e., the grading of

Ag(X)∼. The corresponding filtration on Ag(X) = Ag(X)∼/(~− 1)Ag(X)∼

coincides with the filtration from 3.1.13.

To construct (44) is the same as to construct a Gm-equivariant isomor-

phism between Opg,0(X) = Spec grAg(X) and HitchLg(X) = Spec zclLg(X).

As explained in 3.1.11 HitchLg(X) = Γ(X,C ′ωX ) where C ′ = C ′g is defined

by (45). We have a canonical mapping of sheaves

(47) Opg,0 −→ C ′ωX

which sends (FB,∇0) to the image of ∇0 ∈ gF⊗ωX by the projection g −→

C ′. Theorem 0.10 and Proposition 19 from Kostant’s work [Ko63] imply

that (47) is a bijection. It induces the desired isomorphism Opg,0(X)
∼−→

Γ(X,C ′ωX ).

3.2. Local opers and Feigin-Frenkel isomorphism.

3.2.1. Let us replace X by the formal disc SpecO, O ' C[[t]]. The

constructions and results of 3.1 render easily to this situation. g-opers on

SpecO form a scheme Opg(O) isomorphic to the spectrum of the polynomial

ring in a countable number of variables. More precisely, the isomorphism

(43) identifies Opg(O) with an affine space corresponding to the vector space

H0(SpecO, VωO), V := Vg. G-opers on SpecO form an algebraic stack

OpG(O) isomorphic to Opg(O) × B(Z) where B(Z) is the classifying stack

of the center Z ⊂ G and g := Lie(G/Z) (the isomorphism is not quite

canonical; see (58) for a canonical description of OpG(O)).
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Just as in the global situation (see 3.1.12–3.1.14) the coordinate ring

Ag(O) of Opg(O) carries a canonical filtration and we have a canonical

isomorphism

(48) σA : grAg(O)→∼ zclLg(O)

(see (44)). Note that AutO acts on all the above objects in the obvious way.

So Ag(O) is a filtered AutO-algebra and σA is an isomorphism of graded

AutO-algebras.

3.2.2. Theorem. ([FF92]). There is a canonical isomorphism of filtered

AutO-algebras

(49) ϕO : Ag(O)→∼ zLg(O)

such that σz grϕO = σA, where σz : gr zLg(O)→ zclLg(O) is the symbol map.

�

Remarks

(i) This isomorphism is uniquely determined by some extra compatibil-

ities; see 3.6.7.

(ii) The original construction of Feigin and Frenkel is representation-

theoretic and utterly mysterious (for us). A different, geometric

construction is given in ???; the two constructions are compared in

???.

(iii) For g = sl2 there is a simple explicit description of (49), which is

essentially due to Sugawara; see ???.

3.3. Global version.

3.3.1. Let us return to the global situation, so our X is a complete curve.

We will construct a canonical isomorphism between the algebras Ag(X) and

zLg(X) (the latter is defined by formula (27) from 2.7.4).
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Take x ∈ X. The restriction of a global g-oper to SpecOx defines a

morphism of affine schemes

Opg(X) −→ Opg(Ox).

This is a closed embedding, so we have the surjective morphism of coordinate

rings

(50) θAx : Ag(Ox) −−−−→→ Ag(X) .

θAx is strictly compatible with the canonical filtrations (to see this use, e.g.,

the isomorphism (24)).

3.3.2. Theorem. There is a unique isomorphism of filtered algebras

(51) ϕX : Ag(X)→∼ zLg(X)

such that for any x ∈ X the diagram

θAx

Ag(Ox) −−−−→→ Ag(X)

ϕOx

yo
yo ϕX

θzx

zLg(Ox) −−−−→→ zLg(X)

commutes (here ϕOx is the isomorphism (49) for O = Ox). One

has σz(X) · grϕX = σA(X) where σA(X) is the isomorphism (44) and

σz(X) : gr z(X) −→ zcl(X) was defined at the end of 2.7.4.

Proof Since θAx and θzx are surjective and strictly compatible with

filtrations it is enough to show the existence of an isomorphism ϕX such

that the diagram commutes. According to 2.6.5 we have a DX -algebra

Ag := Ag(O)X with fibers Ag(Ox). Any global oper F ∈ Opg(X) defines

a section γF : X → SpecAg, γF(x) is the restriction of F to SpecOx. The

sections γF are horizontal and this way we get an isomorphism between

Opg(X) and the scheme of horizontal sections of SpecAg (the reader who
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thinks that this requires a proof can find it in 3.3.3). Passing to coordinate

rings we get a canonical isomorphism

(52) Ag(X)→∼H∇(X,Ag)

(see 2.6.2 for the definition of H∇). On the other hand (49) yields the

isomorphism of DX -algebras

ϕ : Ag
→∼ zLg,

hence the isomorphism

(53) H∇(X,Ag)→∼H∇(X, zLg) = zLg(X) .

Now ϕX is the composition of (52) and (53). �

3.3.3. In this subsection (which can certainly be skipped by the reader) we

prove that g-opers can be identified with horizontal sections of SpecAg (this

identification was used in 3.3.2).

Denote by g+ the set of all a ∈ g−1 such that the image of a in gα is

nonzero for any simple negative root α (we use the notation of 3.1.1). g+

is an affine scheme. Consider the action of Aut0O on g+ via the standard

character Aut0O → Aut(tO/t2O) = Gm. Denote by B the Borel subgroup

of the adjoint group corresponding to g. Equip B with the trivial action of

Aut0O. Applying the functor J : {Aut0O-schemes} → {AutO-schemes}

from 2.6.7 we obtain JB = the scheme of morphisms SpecO → B and

J g+ = the scheme of g+-valued differential forms on SpecO. The group JB

acts on J g+ by gauge transformations and Opg(O) is the quotient scheme.

The action of JB on J g+ and the morphism J g+ → Opg(O) are AutO-

equivariant. Actually J g+ is a JB-torsor over Opg(O). Moreover, a choice

of η ∈ ω+
O := ωO\tωO defines its section Sη ⊂ J g+, Sη := η · i(f) + V ⊗ ωO

(here f :=
(

0 0
1 0

)
and i, V were defined in 3.1.9). The fact that Sη is a

section is just the local form of Proposition 3.1.10. The sections Sη define

an AutO-equivariant section s : Opg(O) × ω+
O → g+ × ω+

O of the induced

torsor g+ × ω+
O → Opg(O)× ω+

O .
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Now consider the DX -schemes (J g+)X , (JB)X , and Opg(O)X =

SpecAg. Clearly (JB)X is a group DX -scheme over X and the scheme

(J g+)X is a (JB)X -torsor over Opg(O)X . Actually (JB)X = J (BX)

and (J g+)X is the scheme of jets of g+-valued differential forms on X.

Clearly Opg = Sect(g+
X)/ Sect(BX) = Sect∇((J g+)X)/Sect∇((JB)X) ⊂

Sect∇(Opg(O)X). Here Sect denotes the sheaf of sections of an X-scheme

and Sect∇ denotes the sheaf of horizontal sections of a DX -scheme. To

show that Opg = Sect∇(Opg(O)X) it remains to prove the surjectivity of

Sect∇((J g+)X)→ Sect∇(Opg(O)X). To this end use the morphism of DX -

schemes Opg(O)X × (ω+
O)X → (g+)X induced by s and the fact that (ω+

O)X

(i.e., the scheme of jets of non-vanishing differential forms) has a horizontal

section in a neighborhood of each point of X.

So we have identified Opg(X) with the set of horizontal sections of

Opg(O)X = SpecAg. In the same way one identifies the scheme Opg(X)

with the scheme of horizontal sections of SpecAg.

Remark We used s only to simplify the proof ???.

3.4. G-opers and g-opers. In this subsection we assume that G is

semisimple (actually the general case can be treated in a similar way; see

Remark iii at the end of 3.4.2). We fix a non-zero yα ∈ gα for each negative

simple root α. Set Gad := G/Z, Bad := B/Z, Had := H/Z where Z is the

center of G.

3.4.1. There is an obvious projection OpG(X) −→ Opg(X) := OpGad
(X).

We will construct a section Opg(X) −→ OpG(X) depending on the choice

of a square root of ωX , i.e., a line bundle L equipped with an isomorphism

L⊗2 ∼−→ ωX . Let (FBad
,∇) be a g-oper. Lifting it to aG-oper is equivalent to

lifting FBad
to a B-bundle, which is equivalent to lifting FHad

to an H-bundle

(here FHad
is the push-forward of FBad

by Bad −→ Had). In the particular

case g = sl2 we constructed in 3.1.8 a canonical isomorphism FHad

∼−→ ωX ;

the construction from 3.1.8 used a fixed element f ∈ sl2/b0. Quite similarly
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one constructs in the general case a canonical isomorphism FHad

∼−→ λωX :=

the push-forward of ωX by the homomorphism λ : Gm −→ Had such that

for any simple positive root α, λ(t) acts on gα as multiplication by t (the

construction uses the elements yα fixed at the beginning of 3.4). There is a

unique morphism λ# : Gm −→ H such that

(54) λ#(t) mod Z = λ(t)2

(Indeed, λ corresponds to the coweight ρ̌ := the sum of fundamental

coweights, and 2ρ̌ belongs to the coroot lattice). We lift FHad
= λωX to

the H-bundle λ#L where L is our square root of ωX .

3.4.2. Denote by ω1/2(X) the groupoid of square roots of ωX . For a fixed

L ∈ ω1/2(X) we have an equivalence

(55) ΦL : Opg(X)× Z tors(X)
∼−→ OpG(X)

where Z tors(X) is the groupoid of Z-torsors on X. ΦL(F, E) is defined as

follows: using L lift F ∈ Opg(X) to a G-oper (see 3.4.1) and then twist this

G-oper by E . ΦL depends on L in the following way:

ΦL⊗A(F, E) = ΦL(F, E · αA)

Here A is a square root of OX or, which is the same, a µ2-torsor on X, while

αA is the push-forward of the µ2-torsor A by the morphism

(56) α : µ2 −→ Z, α := λ#|µ2

Recall that λ# is defined by (54).

Remarks

(i) If one considers Opg(X) as a scheme and OpG(X) and Z tors(X)

as algebraic stacks then (55) becomes an isomorphism of algebraic

stacks.

(ii) α is the restriction of “the” principal homomorphism SL2 −→ G to

the center µ2 ⊂ SL2.
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(iii) If G is reductive but not semisimple and g := Lie(G/Z) then one

defines the section Opg(X) −→ OpG(X) depending on L ∈ ω1/2(X)

as the composition Opg(X) −→ Op[G,G](X) −→ OpG(X). The

results of 3.4.2 remain valid if Z tors(X) is replaced by Z∇ tors(X),

the groupoid of Z-torsors on X equipped with a connection.

3.4.3. Here is a more natural reformulation of 3.4.2. First let us introduce

a groupoid Z torsθ(X) (θ should remind the reader about θ-characteristics,

i.e., square roots of ωX). The objects of Z torsθ(L) are pairs (E ,L),

E ∈ Z tors(X), L ∈ ω1/2(X), but we prefer to write E · L instead of (E ,L).

We set Mor(E1 · L1, E2 · L2) := Mor(E1, E2 ·α(L2/L1)) where α(L2/L1) is the

push-forward of the µ2-torsor L2/L1 := L2 ⊗L⊗(−1)
1 by the homomorphism

(56). Composition of morphisms is defined in the obvious way. One can

reformulate 3.4.2 as a canonical equivalence:

(57) Φ : Opg(X)× Z torsθ(X)
∼−→ OpG(X)

where Φ(F,L · E) := ΦL(F, E) and ΦL is defined by (55).

In the local situation of 3.2.1 one has a similar canonical equivalence

(58) Opg(O)× Z torsθ(O)
∼−→ OpG(O)

where Z torsθ(O) is defined as in the global case. Of course all the objects

of Z torsθ(O) are isomorphic to each other and the group of automorphisms

of an object of Z torsθ(O) is Z. The same is true for Z tors(O). The

difference between Z torsθ(O) and Z tors(O) becomes clear if one takes the

automorphisms of O into account (see 3.5.2).

3.4.4. To describe an “economical” version of Z torsθ(O) we need some

abstract nonsense.

Let Z be an abelian group. A Z-structure on a category C is a morphism

Z → Aut idC . Equivalently, a Z-structure on C is an action of Z on

Mor(c1, c2), c1, c2 ∈ ObC, such that for any morphisms c1
f→c2

g→c3 and

any z ∈ Z one has z(gf) = (zg)f = g(zf). A Z-category is a category with
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a Z-structure. If C and C ′ are Z-categories then a functor F : C → C ′

is said to be a Z-functor if for any c1, c2 ∈ C the map Mor(c1, c2) →

Mor(F (c1), F (c2)) is Z-equivariant. If A → Z is a morphism of abelian

groups and C is an A-category we define the induced Z-category C ⊗A Z

as follows: Ob(C ⊗A Z) = ObC, the set of (C ⊗A Z)-morphisms c1 → c2

is (MorC(c1, c2) × Z)/A = {the Z-set induced by the A-set MorC(c1, c2)},

and composition of morphisms in C ⊗A Z is defined in the obvious way. We

have the natural A-functor C → C ⊗A Z and for any Z-category C ′ any

A-functor C → C ′ has a unique decomposition C → C ⊗A Z
F→C ′ where F

is a Z-functor.

Denote by ω1/2(O) the groupoid of square roots of ωO. This is a µ2-

category. Z tors(O) and Z torsθ(O) are Z-categories. The canonical µ2-

functor ω1/2(O) → Z torsθ(O) induces an equivalence ω1/2(O) ⊗µ2 Z →

Z torsθ(O).

3.4.5. The reader may prefer the following “concrete” versions of Z torsθ(X)

and Z torsθ(O). Define an exact sequence

(59) 0→ Z → Z̃ → Gm → 0

as the push-forward of

(60) 0→ µ2 → Gm
f→Gm → 0 , f(x) := x2

by the morphism (56). Denote by Z̃ torsω(X) the groupoid of liftings of the

Gm-torsor ωX to a Z̃-torsor (i.e., an object of Z̃ torsω(X) is a Z̃-torsor on X

plus an isomorphism between the corresponding Gm-torsor and ωX). The

morphism from (60) to (59) induces a functor F : ω1/2(X) → Z̃ torsω(X).

The functor Z torsθ(X)→ Z̃ torsω(X) defined by

E · L 7→ E · F (L) , E ∈ Z tors(X) , L ∈ ω1/2(X)

is an equivalence.

Quite similarly one defines Z̃ torsω(O) and a canonical equivalence

Z torsθ(O)
∼−→ Z̃ torsω(O).
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The equivalences (57) and (58) can be easily understood in terms of

Z̃ torsω(X) and Z̃ torsω(O). Let us, e.g., construct the equivalence

Opg(X)× Z̃ torsω(X)
∼−→ OpG(X) .

Consider the following commutative diagram with exact rows:

(61)

0 −→ µ2 −→ Gm −→ Gm −→ 0

α
y λ#

y yλ
0 −→ Z −→ H −→ Had −→ 0

Here the upper row is (60); the lower row and the morphisms λ, λ# were

defined in 3.4.1. According to 3.4.1 a G-oper on X is the same as a g-oper

on X plus a lifting of the Had-torsor λ∗(ωX) to an H-torsor. Such a lifting

is the same as an object of Z̃ torsω(X): look at the right (Cartesian) square

of the commutative diagram

(62)

0 −→ Z −→ Z̃ −→ Gm −→ 0∥∥∥ y yλ
0 −→ Z −→ H −→ Had −→ 0

(the upper row of (62) is (59) and the lower rows of (62) and (61) are the

same).

3.4.6. Z tors(X) is a (strictly commutative) Picard category (see Definition

1.4.2 from [Del73]) and Z torsθ(X) is a Torsor over Z tors(X); actually

Z torsθ(X) is induced from the Torsor ω1/2(X) over µ2 tors(X) via the

Picard functor µ2 tors(X) → Z tors(X) corresponding to (56). We will use

this language in §4, so let us recall the definitions.

A Picard category is a tensor category A in the sense of [De-Mi] (i.e., a

symmetric=commutative monoidal category) such that all the morphisms of

A are invertible (i.e., A is a groupoid) and all the objects of A are invertible,

i.e., for every a ∈ ObA there is an a′ ∈ ObA such that a ·a′ is a unit object

(we denote by · the “tensor product” functor A × A → A; in [De-Mi] and

[Del73] it is denoted respectively by ⊗ and +). Strict commutativity means
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that for every a ∈ ObA the commutativity isomorphism a⊗ a ∼−→ a⊗ a is

the identity.

An Action of a monoidal category A on a category C is a functor A×C →

C (denoted by ·) equipped with an associativity constraint, i.e., a functorial

isomorphism (a1 ·a2)·c ∼−→ a1 ·(a2 ·c), ai ∈ A, c ∈ C, satisfying the pentagon

axiom analogous to the pentagon axiom for the associativity constraint in

A (see [Del73] and [De-Mi]); we also demand the functor F : C → C

corresponding to a unit object ofA to be fully faithful (then the isomorphism

F 2 ∼−→ F yields a canonical isomorphism F
∼−→ id). This definition can

be found in [Pa] and §3 from [Yet]. An A-Module is a category equipped

with an Action of A. If C and C̃ are A-Modules then an A-Module functor

C → C̃ is a functor Φ: C → C̃ equipped with a functorial isomorphism

Φ(a · c) ∼−→ a · Φ(c) satisfying the natural compatibility condition (the two

ways of constructing an isomorphism Φ((a1 · a2) · c) ∼−→ a1 · (a2 ·Φ(c)) must

give the same result; see [Pa], [Yet]). A-Module functors are also called

Morphisms of A-Modules.

A Torsor over a Picard category A is an A-Module such that for some

c ∈ ObC the functor a 7→ a · c is an equivalence between A and C (then this

holds for all c ∈ ObC).

Let A and B be Picard categories. A Picard functor A → B is a functor

F : A → B equipped with a functorial isomorphism F (a1 · a2)
∼−→ F (a1) ·

F (a2) compatible with the commutativity and associativity constraints.

Then F sends a unit object of A to a unit object of B, i.e., F is a tensor

functor in the sense of [De-Mi]. In [Del73] Picard functors are called additive

functors.

Let F : A1 → A2 be a Picard functor and Ci a torsor over Ai, i = 1, 2.

Then C2 is equipped with an Action of A1. In this situation A1-Module

functors C1 → C2 are called F -affine functors.

Examples. 1) Let A be a commutative algebraic group. Then A tors(X)

has a canonical structure of Picard category.
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2) A morphism A→ B of commutative algeraic groups induces a Picard

functor A tors(X)→ B tors(X).

3) The groupoid ω1/2(X) from 3.4.2 is a Torsor over the Picard category

µ2 tors(X). The groupoid Z torsθ(X) from 3.4.3 is a Torsor over

Z tors(X).

If F : A → B is a Picard functor between Picard categories and C is a

Torsor over A then we can form the induced Torsor B ·A C over B. The

defintion of B ·A C can be reconstructed by the reader from the following

example (see 3.4.3): if A = µ2 tors(X), B = Z tors(X), F comes from (56),

and C = ω1/2(X) then B ·A C = Z torsθ(X). The objects of B ·A C are

denoted by b · c, b ∈ ObB, c ∈ ObC (see 3.4.3).

The interested reader can formulate the universal property of B ·AC. We

need the following weaker property. Given a category C̃ with an Action of

B and an A-Module functor Φ: C → C̃ there is a natural way to construct

a B-Module functor Ψ: B ·A C → C̃: set Ψ(b · c) := b · Φ(c), and define

Ψ on morphisms in the obvious way (i.e., the map Mor(b1 · c1, b2 · c2) →

Mor(b1 ·Φ(c1), b2 ·Φ(c2)) is the composition Mor(b1 · c1, b2 · c2) = Mor(b1, b2 ·

c2/c1) → Mor(b1 · Φ(c1), b2 · c2/c1 · Φ(c1))
∼−→ Mor(b1 · Φ(c1), b2 · Φ(c2))).

The isomorphism Ψ(b1 · (b2 · c))
∼−→ b1 ·Ψ(b2 · c) is the obvious one.

We will use this construction in the following situation. Suppose we have

a Picard functor ` : B → B̃, a Torsor C̃ over B̃, and an `′-affine functor

Φ: C → C̃ where `′ is the composition A F−→ B `−→ B̃. Then the above

construction yields an `-affine functor B ·A C → C̃.

3.4.7. Let Z be an abelian group and Z tors the Picard category of Z-torsors

(over a point). The following remarks will be used in 4.4.9.

Remarks

(i) A Picard functor from Z tors to a Picard category A is “the same

as” a morphism Z → Aut 1A where 1A is the unit object of A. More

precisely, the natural functor from the category of Picard functors
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Z tors → A to Hom(Z,Aut 1A) is an equivalence. Here the set

Hom(Z,Aut 1A) is considered as a discrete category.

(ii) The previous remark remains valid if “Picard” is replaced by

“monoidal”.

(iii) An Action of Z tors on a category C is “the same as” a Z-structure

on C, i.e., a morphism Z → Aut idC (notice that an Action of

a monoidal category A on C is the same as a monoidal functor

A → Funct(C,C) and apply the previous remark).

(iv) Let C1 and C2 be Modules over Z tors. According to the previous

remark C1 and C2 are Z-categories in the sense of 3.4.4. It is easy

to see that a (Z tors)-Module functor C1 → C2 is the same as a

Z-functor in the sense of 3.4.4 (i.e., a functor F : C1 → C2 has at

most one structure of a (Z tors)-Module functor and such a structure

exists if and only if F is a Z-functor).

(v) A Torsor over Z tors is “the same as” a Z-category which is Z-

equivalent to Z tors. (do we need this???)

3.5. Local opers II. For most of the Lie algebras g (e.g., g = sln, n > 5)

the Feigin-Frenkel isomorphism (49) is not uniquely determined by the

properties mentioned in Theorem 3.2.2 because Ag(O) has a lot of AutO-

equivariant automorphisms inducing the identity on grAg(O); this is clear

from the geometric description of Opg(O) = SpecAg(O) in 3.2.1 or from

the description of Ag(O) that will be given in 3.5.6 (see (65)–(68)). The

goal of 3.5–3.6 is to formulate the property 3.6.7 that uniquely determines

the Feigin-Frenkel isomorphism. This property and also 3.6.11 will be used

in the proof of our main theorem 5.2.6. In 3.7 and 3.8 we explain how to

extract the properties 3.6.7 and 3.6.11 from [FF92]. One may (or perhaps

should) read §4 and (a large part of ?) §5 before 3.5–3.8. We certainly

recommend the reader to skip 3.5.16–3.5.18 and 3.6.8–3.6.11 before 3.6.11

is used in ??.
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The idea17 of 3.5 and 3.6 is to “kill” the automorphisms of Ag(O) and

its counterpart zLg(O) by equipping these algebras with certain additional

structures. In the case of Ag(O) this is the Lie algebroid ag from 3.5.11. Its

counterpart for zLg(O) is introduced in 3.6.5. The definition of ag is simple:

this is the algebroid of infinitesimal symmetries of the tautological G-bundle

F0
G on Opg(O). F0

G and therefore ag are equipped with an action of DerO.

It turns out that the pair (Ag(O),F0
G) has no nontrivial DerO-equivariant

automorphisms (see 3.5.9) and this is “almost” true for (Ag(O), ag) (see

3.5.13).

3.5.1. We have a universal family of g-opers on SpecO parametrized by

the scheme Opg(O) = SpecAg(O) from 3.2.1. Fix a one-dimensional free

O-module ω
1/2
O equipped with an isomorphism ω

1/2
O ⊗ ω

1/2
O

∼−→ ωO (of

course ω
1/2
O is unique up to isomorphism). Then the above universal family

lifts to a family of G-opers; see 3.4.118. So we have a B-bundle FB on

Spec(Ag(O)⊗̂O) = SpecAg(O)[[t]] and a connection ∇ along SpecO on the

associated G-bundle FG.

3.5.2. Consider the group ind-scheme Aut2O := Aut(O,ω
1/2
O ). We have a

canonical exact sequence

(63) 0→ µ2 → Aut2O → AutO → 0

and Aut2O is connected. The exact sequence (63) and the connectedness

property can be considered as another definition of Aut2O. Denote by

Aut0
2O the preimage of Aut0O in Aut2O.

AutO acts on Ag(O) and O, so it acts on Spec(Ag(O)⊗̂O). This action

lifts canonically to an action of Aut2O on (FB,∇). µ2 ⊂ Aut2O acts on FB

via the morphism (56).

17Inspired by [Phys]
18To tell the truth we must also choose a non-zero yα ∈ gα for each negative simple

root α (see 3.4.1)
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3.5.3. Lemma. Let L be an algebraic group, A an algebra equipped with

an action of AutO. Consider the action of AutO on A⊗̂O induced by its

actions on A and O. Let i : SpecA ↪→ Spec(A⊗̂O) be the natural embedding

and π : Spec(A⊗̂O)→ SpecA the projection.

1) i∗ is an equivalence between the category of Aut2O-equivariant L-

bundles on Spec(A⊗̂O) and that of Aut0
2O-equivariant L-bundles on SpecA.

2) π∗ is an equivalence between the category of Aut2O-equivariant L-

bundles on SpecA and that of Aut2O-equivariant L-bundles on Spec(A⊗̂O)

equipped with an Aut2O-invariant connection along SpecO.

3) These equivalences are compatible with the forgetful functors {Aut2O-

equivariant bundles on SpecA} → {Aut0
2O-equivariant bundles on SpecA}

and {bundles with connection} → {bundles}. �

3.5.4. Denote by F0
B and F0

G the restrictions of FB and FG to Opg(O) =

SpecAg(O) ⊂ SpecAg(O)⊗̂O. F0
B is a B-bundle on Opg(O) and F0

G is

the corresponding G-bundle. F0
B is Aut0

2O-equivariant and according to

3.5.3 F0
G is Aut2O-equivariant. Since the connection ∇ on FG does not

preserve FB the action of Aut2O on F0
G does not preserve F0

B. According to

3.5.3 F0
G equipped with the action of Aut2O and the B-structure F0

B ⊂ F0
G

“remembers”the universal oper (FB,∇).

3.5.5. Denote by F 0
H the H-bundle on Opg(O) corresponding to F0

B. Since

Opg(O) is an (infinite dimensional) affine space any H-bundle on Opg(O) is

trivial and the action of H on the set of its trivializations is transitive. In

particular this applies to F0
H , so FH is the pullback of some H-bundle FH

over SpecC. According to 3.4.1 FH is the pushforward of the Gm-bundle

ω
1/2
O /tω

1/2
O over SpecC via the morphism λ# : Gm → H defined by (54). In

particular the action of Aut0
2O on FH comes from the composition

Aut0
2O → Aut(ω

1/2
O /tω

1/2
O ) = Gm

λ#

−→ H .
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So the action of Der0O on FH is the sum of the “obvious” action (the one

which preserves any trivialization of FH) and the morphism Der0O → h

defined by f(t) · t d
dt
7→ f(0)ρ̌. Here ρ̌ is the sum of fundamental coweights.

3.5.6. Here is an explicit description of Ag(O) and F0
G in the spirit of 3.1.9–

3.1.10. Let e, f ∈ sl2 be the matrices from 3.1.8. Fix a principal embedding

i : sl2 ↪→ g such that i(e) ∈ b. If a Cartan subalgebra h ⊂ b is chosen so

that i([e, f ]) ∈ h then i([e, f ]) can be identified with 2ρ̌. Just as in 3.1.9 set

V := Ker ad i(e). Choose a basis e1, . . . , er ∈ V so that e1 = i(e) and all ej

are eigenvectors of ad ρ̌. In fact [ρ̌, ej ] = (dj − 1)ej where dj are the degrees

of “basic” invariant polynomials on g (in particular d1 = 2). The connection

(64) ∇ d
dt

=
d

dt
+ i(f) + u1(t)e1 + . . . ur(t)er

on the trivial G-bundle defines a g-oper and according to 3.1.10 this

is a bijection between g-opers on SpecO, O := C[[t]], and r-tuples

(u1(t), . . . , ur(t)), uj(t) ∈ C[[t]]. Write uj(t) as uj0 + uj1t + . . .. Then

Ag(O) is the ring of polynomials in ujk, 1 ≤ j ≤ r, 0 ≤ k <∞. The bundles

FB, FG, F0
B, F0

G from 3.5.1 and 3.5.4 are trivial and we have trivialized them

by choosing the canonical form (64) for opers.

To describe the action of DerO on Ag(O) and F0
G introduce the standard

notation Ln := −tn+1 d

dt
∈ DerC((t)) (so Ln ∈ DerO for n ≥ −1). Set

uj := uj0. Then

(65) ujk = (L−1)kuj/k!

(66) L0uj = djuj

(67) Lnuj = 0 if n > 0 , j 6= 1

(68) Lnu1 = 0 if n > 0 , n 6= 2 ; L2u1 = −3 .

So Ag(O) is the commutative (DerO)-algebra with generators u1, . . . , ur

and defining relations (66)–(68). Denote by Lhor
n the vector field on F0

G that
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comes from our trivialization of F0
G and the action of DerO on Ag(O). Ln

acts on F0
G as Lhor

n +Mn, Mn ∈ g⊗Ag(O). One can show that

(69) M0 = −ρ̌

(70) M1 = −i(e) , Mn = 0 for n > 1

M−1 = i(f) + u1e1 + . . .+ urer

Only (69) will be used in the sequel (I’m afraid we’ll use at least (70)) !???!).

Remark. If n ≥ 0 then Mn ∈ i(b0) ⊂ b ⊂ b ⊗ Ag(O) where b0 := LieB0

and B0 ⊂ SL2 is the group of upper-triangular matrices. This means that

we have identified the Aut0
2O-equivariant bundle F0

B with the pullback of a

certain Aut0
2O-equivariant B-bundle on SpecC and the latter comes from a

certain morphism Aut0
2O → B0 → B (cf. Remark (iii) from 3.1.10).

3.5.7. Let A be an algebra equipped with an action of AutO. Then DerO

acts on A, the action of L0 on A is diagonalizable, and the eigenvalues of

L0 : A→ A are integers. Assume that the eigenvalues of L0 : A/C→ A/C

are positive. Then A = C⊕A+ where A+ is the sum of all eigenspaces of L0

in A corresponding to positive eigenvalues. A+ is the unique L0-invariant

maximal ideal of A. The corresponding point of SpecA will be denoted by

0. Since [L0, Ln] = −nLn we have L−1A+ ⊂ A+. Assume that

(71) L1A+ ⊂ A+ .

In particular (71) is satisfied if the eigenvalues of L0 on A/C are greater

than 1, e.g., for A = Ag(O) (see (66) and (65)).

Assume that G is the adjoint group corresponding to g. Let E be an

AutO-equivariantG-bundle on SpecA. The algebra CL−1+CL0+CL1 ' sl2
stabilizes 0 ∈ SpecA, so it acts on the fiber of E over 0. Thus we obtain a

morphism σ : sl2 → g defined up to conjugation.
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Example. The point 0 ∈ SpecAg(O)) = Opg(O) is the push-forward via

the principal embedding sl2 → g of the sl2-oper corresponding to the Sturm-

Liouville operator (d/dt)2. If A = Ag(O) and E = F0
G then σ is the principal

embedding.

3.5.8. Proposition.

1) The following conditions are equivalent:

a) the AutO-equivariant G-bundle E is isomorphic to ϕ∗F0
G for

some AutO-equivariant ϕ : SpecA→ Opg(O);

b) there is an Aut0O-invariant B-structure on E such that the

corresponding Aut0O-equivariant H-bundle is isomorphic to

the pullback of the Aut0O-equivariant H-bundle FH on SpecC

defined in 3.5.519;

c) σ : sl2 → g is the principal embedding.

2) The morphism ϕ and the isomorphism E ∼−→ ϕ∗F0
G mentioned in a)

are unique.

3) The B-structure mentioned in b) is unique.

Proof. According to 3.5.5 b) follows from a). To deduce c) from b) just

look what happens over 0 ∈ SpecA. Let us deduce a) from b) and show

that 2) follows from 3). To do this it suffices to show that if a B-structure

EB ⊂ E with the property mentioned in b) is fixed there is exactly one way

to construct AutO-equivariant ϕ : SpecA → Opg(O) and f : E ∼−→ ϕ∗F0
G

so that f(EB) = ϕ∗F0
B. According to 3.5.3 E and EB yield a G-bundle ẼG

on Spec(A⊗̂O) with a B-structure ẼB ⊂ ẼG, a connection ∇ on ẼG along

SpecO, and an action of AutO on (ẼG, ẼB,∇). Now the uniqueness of ϕ

and f is clear and to prove their existence we must show that (ẼG, ẼB,∇)

is a family of opers, i.e., we must prove that c(∇) defined in 3.1.2 satisfies

conditions 1 and 2 from Definition 3.1.3. In our situation c(∇) is an AutO-

invariant section of (g/b)Ẽ
⊗

O ωO and it is enough to verify conditions 1

19Since G is the adjoint group the action of Aut0
2 O on FH factors through Aut0 O
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and 2 for its restriction c0(∇) to SpecA ⊂ SpecA⊗̂O. c0(∇) is an Aut0O-

invariant element of H0(SpecA, (g/b)EB )⊗ωO/tωO. Let grk g have the same

meaning as in 3.1.1. Since we know the H-bundle corresponding to EB we

see that there is an Aut0O-equivariant isomorphism

(72) H0(SpecA, grk gEB )⊗ ωO/tωO
∼−→ A⊗ (ωO/tωO)⊗(k+1) ⊗ grk g .

Since L0 acts on (ωO/tωO)⊗(k+1) as multiplication by −k − 1 the Aut0O-

invariant part of A ⊗ (ωO/tωO)⊗(k+1) equals 0 if k < −1 and C if k = −1.

Therefore

c0(∇) ∈ gr−1 g ⊂ A⊗ gr−1 g = H0(SpecA, gr−1 gEB )⊗ ωO/tωO .

So we have checked condition 1 from 3.1.3 and it remains to check condition 2

over some point of SpecA, e.g., over 0 ∈ SpecA. Denote by (Ẽ0
G, Ẽ0

B,∇)

the restriction of (ẼG, ẼB,∇) to {0} × SpecO ⊂ Spec(A⊗̂O). Then Ẽ0
G

is the trivial G-bundle, ∇ is the trivial connection, sl2 acts on (Ẽ0
G,∇)

via the morphism σ : sl2 → g mentioned in 3.5.7 and the embedding

sl2 = CL−1 + CL0 + CL1 ↪→ DerO, Ẽ0
B is invariant with respect to sl2.

Since σ is the principal embedding (Ẽ0
G, Ẽ0

B,∇) is the oper corresponding to

0 ∈ Opg(O).

Let us prove 3). Set a = H0(SpecA, gE), ak := {a ∈ a|L0a = ka}. If a B-

structure on E is fixed then the filtration gk from 3.1.1 induces a filtration ak

on a. If the B-structure has the property mentioned in b) then ak is Aut0O-

invariant and ak/ak+1 is Aut0O-isomorphic to A ⊗ (ωO/tωO)⊗k ⊗ grk g

(see (72)). Therefore the eigenvalues of L0 on ak/ak+1 are ≥ −k and the

A-module ak/ak+1 is generated by its L0-eigenvectors corresponding to the

eigenvalue −k. So

(73) ak =
∑
i≤−k

Aai .

The B-structure on E is reconstructed from the Borel subalgebra a0 ⊂ a.

It remains to deduce b) from c). Define ak by (73). Since a is a free L0-

graded A-module of finite type so are ak/ak+1. Therefore ak defines a vector
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subbundle of gE . If k = 0 this subbundle is a Lie subalgebra, so it defines

a section s : SpecA → SE where S is the scheme of subalgebras of g. An

infinitesimal calculation shows that the morphism G/B → S, g 7→ gbg−1, is

an open embedding and since G/B is projective it is also a closed embedding.

According to c) s(0) ∈ (G/B)E ⊂ SE , so s(SpecA) ⊂ (G/B)E and s defines

a B-structure on E . Clearly it is Aut0O-invariant. The corresponding

Aut0O-equivariant H-bundle on SpecA is the pullback of some Aut0O-

equivariant H-bundle F on SpecC (this is true for any Aut0O-equivariant

H-bundle on SpecA and any torus H; indeed, one can assume that H = Gm,

interpret a Gm-bundle as a line bundle and use the fact that a graded

projective A-module of finite type is free). To find F look what happens

over 0 ∈ SpecA. �

Remark. The proof of Proposition 3.5.8 shows that if c) is satisfied then

there is a unique Aut0O-invariant B-structure on E .

3.5.9. Corollary. If G is the adjoint group then the pair (Opg(O),F0
G) has

no nontrivial AutO-equivariant automorphisms.

This is statement 2) of Proposition 3.5.8 for A = Ag(O).

3.5.10. Recall that a Lie algebroid over a commutative C-algebra R is a Lie

C-algebra a equipped with an R-module structure and a map ϕ : a→ DerR

such that 1) ϕ is a Lie algebra morphism and an R-module morphism, 2)

for a1, a2 ∈ a and f ∈ R one has [a1, fa2] = f [a1, a2] + v(f)a2, v := ϕ(a1).

Remarks

(i) [Ma87] and [Ma96] are standard references on Lie algebroids and Lie

groupoids. See also [We] and [BB93]. In this paper we need only the

definition of Lie algebroid.

(ii) Lie algebroids are also known under the name of (C, R)-Lie algebras

(see [R]) and under a variety of other names (see [Ma96]).

3.5.11. Denote by ag the space of (global) infinitesimal symmetries of F0
G.

Elements of ag are pairs consisting of a vector field on Opg(O) = SpecAg(O)
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(i.e., a derivation of Ag(O)) and its lifting to a G-invariant vector field on

the principal G-bundle F0
G. ag is a Lie algebroid over Ag(O). We have a

canonical exact sequence.

0→ guniv → ag → DerAg(O)→ 0

where guniv is the space of global sections of the F0
G-twist of g. Of course

ag and guniv do not change if G is replaced by the adjoint group Gad. So ag

and guniv do not depend on the choice of ω
1/2
O .

The action of DerO on F0
G induces a Lie algebra morphism DerO → ag.

In particular DerO acts on ag.

3.5.12. Lemma. The adjoint representation of ag on guniv defines an

isomorphism between ag and the algebroid of infinitesimal symmetries of

guniv. �

3.5.13. Proposition. The group of DerO-equivariant automorphisms of the

pair (Ag(O), ag) equals Aut Γ where Γ is the Dynkin graph of g.

Proof. Let G be the adjoint group corresponding to g. Denote by L the

group of DerO-equivariant automorphisms of (Ag(O), guniv). According to

3.5.12 we have to show that L = Aut Γ. We have the obvious morphisms

i : Aut Γ = Aut(G,B)/B → L and π : L→ Aut Γ such that πi = id. Kerπ

is the group of DerO-equivariant automorphisms of (Opg(O),F0
G), so Kerπ

is trivial according to 3.5.9. �

3.5.14. Proposition. The pair (Ag(O), ag) does not have nontrivial DerO-

equivariant automorphisms inducing the trivial automorphism of grAg(O)

(gr corresponds to the filtration from 3.2.1).

Proof. Let Γ be the Dynkin graph of g. According to 3.5.13 and (48) we

have to show that the action of Aut Γ on the algebra zclLg(O) from 2.7.1 is

exact. So it suffices to show that the action of Aut Γ on W\h is exact (W

denotes the Weyl group). Let C ⊂ Aut h be the automorphism group of the
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root system. There is an a ∈ h whose stabilizer in C is trivial. So the action

of Aut Γ = C/W on W\h is exact. �

3.5.15. We equip ag with the weakest translation-invariant topology such

that the stabilizer of any regular function on the total space of F0
G is

open (recall that ag acts on F0
G). This is the weakest translation-invariant

topology such that the ag-centralizer of every element of guniv is open. So

the topology is reconstructed from the Lie algebroid structure on ag.

Clearly the canonical morphism DerO → ag is continuous.

3.5.16. Denote by ab the Lie algebroid of (global) infinitesimal symmetries

of F0
B. Let buniv (resp. nuniv) denote the space of global sections of the

F0
B-twist of b (resp. n). There is a canonical exact sequence

0→ buniv → ab → DerAg(O)→ 0 .

ab is a subalgebroid of ag; in fact ab is the normalizer of buniv ⊂ ag. The

image of Der0O in ag is contained in ab.

nuniv is an ideal in ab and ab/nuniv is the algebroid of (global) infinitesimal

symmetries of F0
H . Since F0

H is trivial and its trivialization is “almost”

unique (see 3.5.5) ab/nuniv is canonically isomorphic to the semidirect sum

of DerAg(O) and Ag(O) ⊗ h. Denote by an the preimage of DerAg(O) ⊂

ab/nuniv in ab.

Remark. According to 3.5.5 the composition Der0O → ab/nuniv =

DerAg(O)⊕(Ag(O)⊗h) is contained in DerAg(O)⊕h; it is equal to the sum of

the natural morphism Der0O → DerAg(O) and the morphism Der0O → h

such that L0 7→ −ρ̌, Ln 7→ 0 for n > 0.

3.5.17. We are going to describe ab, buniv, etc. in terms of the action of L0

on ag. The following notation will be used. If DerO acts on a topological

vector space V so that the eigenvalues of L0 : V → V are integers denote

by V ≤k the smallest closed subspace of V containing all v ∈ V such that

L0v = nv, n ≤ k. Set V <k := V ≤k−1. If V is a topological module over
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some algebra A and W is a subspace of V we denote by A ·W the smallest

closed subspace of V containing aw for every a ∈ A and w ∈W .

3.5.18. Proposition. i) The following equalities hold:

(74) buniv = Ag(O) · (guniv)≤0

(75) nuniv = Ag(O) · g<0
univ

(76) ab = Ag(O) · (ag)≤0

(77) an = Ag(O) · a<0
g

ii) The image of the morphism

(ag)
≤0 → Ag(O)(ag)

≤0/Ag(O)a<0
g = ab/an = Ag(O)⊗ h

equals h, so we have a canonical isomorphism

(78) (ag)
≤0/(Ag(O) · a<0

g ∩ (ag)
≤0)

∼−→ h

Proof. i) (74)–(77) follow from (69). Or one can notice that (74) and (75)

are particular cases of (73) and prove, e.g., (76) as follows. According

to (74) Ag(O) · (ag)≤0 ⊃ buniv and Ag(O) · (DerAg(O))≤0 = DerAg(O),

so Ag(O) · (ag)
≤0 ⊃ ab. Ag(O) · (ag)

≤0 ⊂ ab because (ag/ab)
≤0 =

(guniv/buniv)≤0 = (guniv)≤0/(buniv)≤0 = 0 according to (74).

ii) The image of (ag)
≤0 in Ag(O)⊗ h equals (Ag(O)⊗ h)≤0 = h. �

3.6. Feigin-Frenkel isomorphism II.

3.6.1. Let A be an associative algebra over C[h] flat as a C[h]-module. Set

A0 := A/hA. Denote by Z the center of A0. If Z = A0, i.e., if A0 is

commutative, then Z is equipped with the standard Poisson bracket

(79) {z1, z2} := [z̃1, z̃2]/h mod h
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where z1, z2 ∈ Z and z̃i is a preimage of zi in A. Hayashi noticed in [Ha88]

that even without the assumption Z = A0 (79) is a well-defined Poisson

bracket on Z (in particular the r.h.s. of (79) belongs to Z).

Remarks

(i) In the above situation there is a canonical Lie algebra morphism

ϕ : Z→ DerA0/ IntA0 where IntA0 is the space of inner derivations.

ϕ is defined by ϕ(z) = Dz, Dz(a) := [z̃, ã]/h mod h where z̃, ã ∈ A

are preimages of z ∈ Z and a ∈ A0. If z′ ∈ Z then Dz(z
′) = {z, z′}.

DerA0/ IntA0 is a Z-module and ϕ(z1z2) = z1ϕ(z2) + z2ϕ(z1). So ϕ

induces a Z-module morphism Φ : Ω1
Z → DerA0/ IntA0. In fact Φ

is a morphism of Lie algebroids over Z (see 3.5.10 for the definition

of Lie algebroid); the Lie algebroid structure on DerA0/ IntA0 is

defined in the obvious way and the one on Ω1
Z is the standard

algebroid structure induced by the Poisson bracket on Z (cf. [We88]

), i.e., [dz, dz′] := d{z, z′} for z, z′ ∈ Z and the morphism Ω1
Z → DerZ

maps dz to grad z, (grad z)(z′) := {z, z′}.

(ii) The above constructions make sense if C[h] is replaced by C[h]/(h3).

3.6.2. Now let g be a semisimple Lie algebra and K := C((t)). Denote

by A the completed universal enveloping algebra of the Lie algebra g̃⊗K

from 2.5.1, i.e., A := lim
←−
n

(U g̃⊗K)/Jn where Jn ⊂ U g̃⊗K is the left ideal

generated by g⊗tnC[[t]] ⊂ g⊗K ⊂ g̃⊗K, n ≥ 0. Consider the C[h]-algebra

structure on A defined by ha = 1 · a− a, a ∈ A, where 1 ∈ C ⊂ g̃⊗K ⊂ A.

A is flat over C[h] and A/hA is the completed twisted universal enveloping

algebra U
′

= U
′
(g ⊗ K) from 2.5.2 and 2.9.4. So (79) defines a Poisson

bracket on the center Z of U
′
. It was introduced in [Ha88], so we call it the

Hayashi bracket.

3.6.3. For an open Lie subalgebra a ⊂ g ⊗ O denote by Ia (resp. Ĩa)

the closure of the left ideal of U
′

(resp. of A = U g̃⊗K) generated by

a ⊂ g⊗O ⊂ g̃⊗K. Clearly Ia is the image of Ĩa in U
′
. Set Ia := Ia∩Z. We
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equip Z with the topology induced from U
′
. The ideals Ia (resp. Ia) form a

base of neighbourhoods of zero in U
′

(resp. in Z).

3.6.4. Lemma.

(i) {Ia, Ia} ⊂ Ia.

(ii) The Hayashi bracket on Z is continuous.

Proof. Use the fact that A/Ĩa equipped with the C[h]-module structure from

3.6.2 is flat. �

3.6.5. Set I := Ig⊗O. The canonical morphism Z → zg(O) is surjective

(see 2.9.3–2.9.5) and its kernel equals I. So zg(O) = Z/I.

Denote by I2 the closed ideal of Z generated by elements of the form ab

where a, b ∈ I. Then I/I2 is a Lie algebroid over zg(O) (the commutator

I/I2 × I/I2 → I/I2 and the mapping I/I2 → Der zg(O) are induced by the

Hayashi bracket). The Lie algebra DerO acts on I/I2 and zg(O). These

actions are continuous (I/I2 is equipped with the topology induced from Z

and zg(O) is discrete).

3.6.6. Let us formulate a more precise version of Theorem 3.2.2. We have

the algebra zg(O) and the Lie algebroid I/I2 over zg(O). On the other hand

denote by Lg the Langlands dual and consider the algebra ALg(O) (see 3.2.1)

and the Lie algebroid aLg over it (see 3.5.11). I/I2 and aLg are equipped

with topologies (see 3.6.5 and 3.5.15). The Lie algebra DerO acts on all

these objects. zg(O) and ALg(O) are equipped with filtrations (see 1.2.5

and 3.2.1), and we have the morphism σ−1
A σz : gr zg(O)→ grALg(O) where

σz : gr zg(O) → zclg (O) is the symbol map and σA is the isomorphism (48)

with g replaced by Lg.

3.6.7. Theorem. There is an isomorphism of filtered DerO-algebras

(80) ϕO : ALg(O)
∼−→ zg(O)
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such that grϕ−1
O = σ−1

A σz and ϕO extends to a topological DerO-equivariant

isomorphism of Lie algebroids

(81) aLg
∼−→ I/I2 .

This theorem can be extracted from [FF92] (see 3.7.12–3.7.17).

Remark. According to 3.5.14 the isomorphisms (80) and (81) are unique.

In 3.6.11 we will formulate an additional property of the isomorphism

(81). But first we must define an analog of (78) for the algebroid I/I2.

3.6.8. We will use the notation from 3.5.17.

Lemma. Set I− := (U
′
)≤0 ∩ Ia where a = tg[[t]] and Ia was defined in

3.6.3. Then I− is a two-sided ideal in (U
′
)≤0 and

(82) (U
′
)≤0 = Ug⊕ I− .

Proof. (82) is clear. Since I− is a left ideal and [g, I−] ⊂ I− (82) implies

that I− is a two-sided ideal. �

Define π : (U
′
)≤0 → Ug to be the morphism such that π(I−) = 0 and

π(a) = a for a ∈ Ug.

Here is an equivalent definition of π. Set Vac′a := U
′
/Ia, a = tg[[t]]. Then

Vac′a is a left U
′
-module and a right Ug-module. The eigenvalues of L0 on

Vac′a are non-negative and Ker(L0 : Vac′a → Vac′a) = Ug. So Ug ⊂ Vac′a

is invariant with respect to the left action of (U
′
)≤0. The left action of

(U
′
)≤0 commutes with the right action of Ug, so it defines a morphism

(U
′
)≤0 → Ug. This is π.

3.6.9. Denote by C the center of Ug. Then

π(Z≤0) ⊂ C , π(Z · Z<0 ∩ Z≤0) = 0 .

Let m ⊂ C be the maximal ideal corresponding to the unit representation

of Ug. Recall that I := Ker(Z→ zg(O)). Then π(I≤0) ⊂ m. Since (I2)≤0 ⊂

I≤0 · I≤0 + (Z · Z<0 ∩ Z≤0) one has π((I2)≤0) ⊂ m2. So π induces a C-linear

map d : (I/I2)≤0 → m/m2 such that zg(O) · (I/I2)<0 ∩ (I/I2)≤0 ⊂ Ker d.
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Exercise. π({z1, z2}) = 0 for z1, z2 ∈ Z≤0 (so d is a Lie algebra morphism).

3.6.10. Identify C with the algebra of W -invariant polynomials on h∗ where

W is the Weyl group. Then m consists of W -invariant polynomials on h∗

vanishing at ρ := the sum of fundamental weights. Since ρ ∈ h∗ is regular

we can identify m/m2 with h by associating to a W -invariant polynomial

from m its differential at ρ. So we have constructed a map

(83) d : (I/I2)≤0/(zg(O) · (I/I2)<0 ∩ (I/I2)≤0)→ h

3.6.11. Theorem. The diagram

(84)

(aLg)
≤0/(ALg(O) · a<0

Lg
∩ (aLg)

≤0)
∼−→ h∗y o

x o
d : (I/I2)≤0/(zg(O) · (I/I2)<0 ∩ (I/I2)≤0) −→ h

anticommutes. Here the upper arrow is the isomorphism (78) with g replaced

by Lg, the left one is induced by (81), and the right one comes from the scalar

product (18).

This theorem can be extracted from [FF92] (see 3.8.15–3.8.22).

3.6.12. The reason why the “critical” scalar product (18) appears in 3.6.11

is not very serious. The reader may prefer the following point of view.

Denote by B the set of invariant bilinear forms on g. For each b ∈ B we

have the completed twisted universal enveloping algebra U
′
b = U

′
b(g ⊗ K)

corresponding to the cocycle (u, v) 7→ Res b(du, v), u, v ∈ g⊗K (so U
′
= U

′
c

where c is defined by (18)). One can associate to b ∈ B a Poisson bracket

{ }b on Z by applying the general construction from 3.6.1 to the family

of algebras U
′
c+hb depending on the parameter h (the bracket from 3.6.2

corresponds to b = c). The Lie algebroid structure on I/I2 depends on b.

Then 3.6.7 and 3.6.11 hold for every nondegenerate b ∈ B (notice that in

(84) both vertical arrows depend on b).
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3.6.13. In fact, the action of DerO on I/I2 mentioned in 3.6.6–3.6.7 comes

from a canonical morphism DerO → I, which is essentially due to Sugawara.

We will explain this in 3.6.16 after a brief overview of Sugawara formulas

in 3.6.14–3.6.15. These formulas also yield elements of zg(O); in the case

g = sl2 they generate zg(O). We remind this in 3.6.18. Both 3.6.18 and

3.6.19 are not used in the sequel (?).

3.6.14. In this subsection we remind the general Sugawara formulas. In

3.6.15 we remind their consequences for the critical level.

Let A be the completed universal enveloping algebra of g̃⊗K. As a

vector space g̃⊗K is the direct sum of g⊗K and C = C ·1. The Sugawara

elements L̃n ∈ A are defined by

(85) L̃n :=
1

2

∑
r+l=n

gλµ : e
(r)
λ e(l)

µ :

Here {eλ} is a basis of g, e
(r)
λ := eλt

r ∈ g((t)) = g ⊗ K ⊂ g̃⊗K, (gλµ)

is inverse to the Gram matrix (eλ, eµ) with respect to the “critical” scalar

product (18) and

(86) : e
(r)
λ e(l)

µ :=

 e
(r)
λ e

(l)
µ if r ≤ l

e
(l)
µ e

(r)
λ if r > l

Of course summation over λ and µ is implicit in (85). Clearly the infinite

series (85) converges and L̃n → 0 for n→∞.

Remark. If n 6= 0 then : e
(r)
λ e

(l)
µ : can be replaced in (85) by e

(r)
λ e

(l)
µ . Indeed,

since gλµ is symmetric gλµ[e
(r)
λ , e

(l)
µ ] = 0 unless r + l = 0, r 6= 0.
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The proof of the following formulas can be found20, e.g., in Lecture 10

from [KR] and § 12.8 from [Kac90] :

ad L̃n = hLn(87)

Lm(L̃n) = (m− n)L̃m+n + δm,−n ·
m3 −m

12
· (dim g) · 1 .(88)

In (87) ad L̃n is an operator A → A, Ln := −tn+1 d
dt ∈ DerK is also

considered as an operator A → A (the Lie algebra DerK acts on A in

the obvious way), and h has the same meaning as in 3.6.2, i.e., h : A → A

is multiplication by 1− 1.

Using (87) one can rewrite (88) in the Virasoro form:

(89) [L̃m, L̃n] = h((m− n)L̃m+n + δm,−n ·
m3 −m

12
· (dim g) · 1) .

3.6.15. The image of L̃n in A/hA = U
′

will be denoted by Ln. According

to (87) Ln belongs to the center Z ⊂ U ′ and

(90) {Ln, z} = Ln(z), z ∈ Z

where { } denotes the Hayashi bracket on Z. According to (88) and (89)

Lm(Ln) = (m− n)Lm+n + δm,−n ·
m3 −m

12
· dim g(91)

{Lm,Ln} = (m− n)Lm+n + δm,−n ·
m3 −m

12
· dim g .(92)

3.6.16. If n ≥ −1 then Ln ∈ I := Ker(Z→ zg(O)) (indeed, a glance at (85)

shows that Ln annihilates the vacuum vector from Vac′). If m,n ≥ −1 then

the “Virasoro term” δm,−n(m3−m) vanishes, so one has the continuous Lie

algebra morphism DerO → I defined by Ln 7→ Ln, n ≥ −1. It induces a

continuous algebra morphism

(93) DerO → I/I2 .

20The reader should take in account that experts in Kac – Moody algebras usually

equip g with the scalar product obtained by dividing (18) by minus the dual Coxeter

number.
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Remark. According to (90) the action of DerO on I/I2 induced by (93)

coincides with the action considered in 3.6.6–3.6.7.

3.6.17. Lemma. The composition of (93) and the isomorphism I/I2 ∼−→

aLg inverse to (81) is equal to the morphism DerO → aLg from 3.5.11.

Proof The two morphisms DerO → aLg induce the same action of DerO

on aLg. So they are equal by 3.5.12. �

3.6.18. Denote by Ln the image of Ln in Z/I = zg(O) . If n ≥ −1 then

Ln = 0. The natural morphism C[L−2,L−3, . . .] → zg(O) is injective and

if g = sl2 it is an isomorphism. To show this it is enough to compute

the principal symbol of Ln and to use the description of zclg (O) from 2.4.1.

If zclg (O) is identified with the space of G(O)-invariant polynomials on

g∗ ⊗ ωO (see 2.4.1) then the principal symbol of Ln is the polynomial

`n : g∗ ⊗ ωO → C defined by `n(η) = 1
2 Res(η, η)Ln; here (η, η) ∈ ω⊗2

O ,

Ln ∈ ω
⊗(−1)
K , (η, η)Ln ∈ ωK , so the residue makes sense. Clearly the

mapping C[`−2, `−3, . . .] → zclg (O) is injective and if g = sl2 it is an

isomorphism.

For g = sl2 the Feigin – Frenkel isomorphism is the unique DerO-

equivariant isomorphism ALg(O)
∼−→ zg(O). An sl2-oper over SpecO can

be represented as a connection d
dt + ( 0 u

1 0 ), u = u(t) = u0 + u1t + . . ., or

as a Sturm – Liouville operator
(
d
dt

)2 − u(t) : ω
−1/2
O → ω

3/2
O . One has

Asl2(O) = C[u0, u1, . . .] and the Feigin – Frenkel isomorphism maps uj to

−2L−2−j .

For any semisimple g we gave in 3.5.6 a description of ALg(O) as an

algebra with an action of DerO; see (64)–(68). Using the DerO-equivariance

property of the Feigin – Frenkel isomorphism one sees that if g is simple then

L−2−j ∈ zg(O) corresponds to cu1j ∈ ALg(O), c = −(dim g)/6 (???).

3.6.19. Consider the vacuum module Vacλ := VacA /(h − λ) VacA, where

VacA is the quotient of A modulo the closed left ideal generated by g ⊗ O.

In 2.9.3 we mentioned that EndA Vacλ = C for λ 6= 0. The following proof
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of this statement was told us by E. Frenkel. As explained in 2.9.3–2.9.5

any endomorphism f : Vacλ → Vacλ comes from some central element z

of A/(h − λ)A. In fact the center of A/(h − λ)A equals C if λ 6= 0, but

instead of proving this let us notice that [L̃0, z] = 0 and therefore L0(z) = 0

(see (87)). So [L0, f ] = 0 where L0 is considered as an operator in Vacλ.

Therefore f preserves the space Ker(L0 : Vacλ → Vacλ), which is generated

by the vacuum vector. Since the A-module Vacλ is generated by this space

f is a scalar operator.

3.7. The center and the Gelfand - Dikii bracket.

3.7.1. Set Y := SpecO, Y ′ := SpecK where, as usual, O = C[[t]],

K = C((t)). Let A be a (commutative) AutO-algebra. Then for any smooth

curve X one obtains a DX -algebra AX (see 2.6.5). Though Y and Y ′ are

not curves in the literal sense the construction from 2.6.5 works for them

(with a minor change explained below). So one gets a DY -algebra AY and

a DY ′-algebra AY ′ , which is the restriction of AY to Y ′. The fiber of AY at

the origin 0 ∈ Y equals A.

Let us explain some details. The definition of AX from 2.6.5 used

a certain scheme X∧. Since Y is not a curve in the literal sense the

definition of Y ∧ should be modified as follows. Denote by ∆n the n-th

infinitesimal neighbourhood of the diagonal ∆ ⊂ SpecO⊗̂O. The morphism

SpecO⊗̂O → SpecO ⊗ O = Y × Y induces an embedding ∆n ↪→ Y × Y

(if n > 0 then ∆n is smaller than the n-th infinitesimal neighbourhood

of the diagonal ∆ ⊂ Y × Y ). Now in the definition of an R-point of

Y ∧ one should consider only R-morphisms γ : SpecR⊗̂O → Y with

the following property: for any n there is an N such that the morphism

SpecO/tnO× SpecO/tnO× SpecR→ Y × Y induced by γ factors through

∆N (then one can set N = 2n− 2).

3.7.2. Sometimes we will use the section

(94) Y → Y ∧
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corresponding to the morphism γ : SpecO⊗̂O → Y = SpecO defined by

(95) γ∗(t) = t⊗ 1 + 1⊗ t .

The section (94) yields an isomorphism

(96) AY
∼−→ A⊗OY .

Of course (94) and (96) are not canonical: they depend on the choice of a

local parameter t ∈ O.

3.7.3. In the situation of 3.7.1 consider the functor F : {C-algebras} →

{Sets} such that F (R) is the set of horizontal Y ′-morphisms SpecR⊗̂K →

SpecAY ′ or, which is the same, the set of horizontal K-morphisms

H0(Y ′, AY ′) → R⊗̂K. F is representable by an ind-affine ind-scheme S

(which may be called the ind-scheme of horizontal sections of SpecAY ′).

Indeed, F is a closed subfunctor of the functor R 7→ Hom(V,R⊗̂K) where

V = H0(Y ′, AY ′) and Hom means the set of K-linear maps.

Denote by AK the ring of regular functions on S. This is a complete

topological algebra (the ideals of AK corresponding to closed subschemes of

S form a base of neighbourhoods of 0).

AK is equipped with an action of the group ind-scheme AutK (an R-point

of AutK is an automorphism of the topological R-algebra R⊗̂K).

The scheme of horizontal sections of SpecAY is canonically isomorphic

to SpecA (to a horizontal section s : Y → SpecAY one associates

s(0) ∈ SpecA). This is a closed subscheme of S = SpecAK , so we get

a canonical epimorphism

(97) AK → A .

Clearly it is AutO-equivariant.

Example. Suppose that A = C[u0, u1, u2, . . .] and uk = (L−1)ku0/k!,

L0u0 = du0, d ∈ Z (as usual, Ln := −tn+1 d
dt ∈ DerO). Then one has the

obvious isomorphism f between the DY -scheme SpecAY and the scheme of
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jets of d-differentials on Y . Clearly AutO = AutY acts on both schemes

by functoriality. f is equivariant with respect to the group ind-scheme of

AutO generated by L0 and L−1. Using f we identify horizontal sections of

SpecAY ′ with d-differentials on Y ′, i.e., sections of ω⊗dY ′ . A d-differential on

Y ′ can be written as
∑
i
ũit

i(dt)⊗d, so AK = C[[. . . ũ−1, ũ0, ũ1, . . .] where

(98) C[[. . . ũ−1, ũ0, ũ1, . . .] := lim
←−
n

C[. . . ũ−1, , ũ0, ũ1, . . .]/(u−n, u−n−1, . . .) .

Clearly L0ũk = (d + k)ũk, L−1ũk = (k + 1)ũk+1, and the morphism (97)

maps ũk to uk if k ≥ 0 and to 0 if k < 0.

3.7.4. Denote by zg(K) the algebra AK from 3.7.3 in the particular case

A = zg(O) (see 2.5.1 or 2.7.2 for the definition of zg(O)). We are going to

define a canonical morphism from zg(K) to the center Z of the completed

twisted universal enveloping algebra U
′
= U

′
(g⊗K). To this end rewrite (34)

as aK-linear map zg(O)⊗OK → Z⊗̂K. Using the noncanonical isomorphism

zg(O)Y
∼−→ zg(O)⊗OY (see (96)) one gets a map

(99) H0(Y ′, zg(O)Y ′)→ Z⊗̂K ,

which is easily shown to be canonical, i.e., independent of the choice of a

local parameter t ∈ O (in fact, (34) is a noncanonical version of (99); (34)

depends on the choice of t because (32) involves ζ + t, which is nothing but

the noncanonical section Y ′ → Y
′∧ defined by (95)).

3.7.5. Theorem.

(i) The map (99) is a horizontal morphism of K-algebras. Therefore

(99) defines a continuous morphism

(100) zg(K)→ Z .

(ii) The composition zg(K) → Z → zg(O) is the morphism (97) for

A = zg(O).

(iii) The morphism (100) is AutK-equivariant.
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We will not prove this theorem. In fact, the only nontrivial statement is

that (99) (or equivalently (34)) is a ring homomorphism; see ???for a proof.

The natural approach to the above theorem is based on the notion of

VOA (i.e., vertex operator algebra) or its geometric version introduced in

[BD] under the name of chiral algebra.21 In the next subsection (which can

be skipped by the reader) we outline the chiral algebra approach.

3.7.6. A chiral algebra on a smooth curve X is a (left) DX -module A

equipped with a morphism

(101) j∗j
!(A�A)→ ∆∗A

where ∆ : X ↪→ X × X is the diagonal, j : (X × X) \ ∆(X) ↪→ X. The

morphism (101) should satisfy certain axioms, which will not be stated here.

A chiral algebra is said to be commutative if (101) maps A�A to 0. Then

(101) induces a morphism ∆∗(A ⊗ A) = j∗j
!(A � A)/A � A → ∆∗A or,

which is the same, a morphism

(102) A⊗A → A .

In this case the chiral algebra axioms just mean that A equipped with

the operation (102) is a commutative associative unital algebra. So a

commutative chiral algebra is the same as a commutative associative unital

DX -algebra in the sense of 2.6. On the other hand, the DX -module Vac′X

corresponding to the AutO-module Vac′ by 2.6.5 has a natural structure of

chiral algebra (see the Remark below). The map zg(O)X → Vac′X induced

by the embedding zg(O)→ Vac′ is a chiral algebra morphism. Given a point

x ∈ X one defines a functor A 7→ A((x)) from chiral algebras to associative

topological algebras. If A = AX for some commutative AutO-algebra A

then A((x)) is the algebra AKx from 3.7.3. If A = Vac′X then A((x)) is

the completed twisted universal enveloping algebra U
′

= U
′
(g ⊗ K). So

21In 2.9.4 – 2.9.5 we used some ideas of VOA theory (or chiral algebra theory).
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by functoriality one gets a morphism zg(K) = zg(O)K → U
′
. Its image is

contained in Z because zg(O)X is the center of the chiral algebra Vac′X .

Remark. Let us sketch a definition of the chiral algebra structure on Vac′X .

First of all, for every n one constructs a D-module Vac′SymnX on SymnX

(for n = 1 one obtains Vac′X). The fiber Vac′D of Vac′SymnX at D ∈ SymnX

can be described as follows. Consider D as a closed subscheme of X of order

n, denote by OD the ring of functions on the formal completion of X along

D, and define KD by SpecKD = (SpecOD) \ D. One defines the central

extension ˜g⊗KD of g⊗KD just as in the case n = 1. Vac′D is the twisted

vacuum module corresponding to the Harish-Chandra pair ( ˜g⊗KD, G(OD))

(see 1.2.5). Denote by Vac′X×X the pullback of Vac′
Sym2X

to X ×X. Then

(103) j!Vac′X×X = j!(Vac′X �Vac′X) ,

(104) ∆†Vac′X×X = Vac′X

where j and ∆ have the same meaning as in (101) and ∆† denotes the naive

pullback, i.e., ∆† = H1∆!. One defines (101) to be the composition

j∗j
!Vac′X �Vac′X = j∗j

!Vac′X×X → j∗j
!Vac′X×X/Vac′X×X = ∆∗Vac′X

where the last equality comes from (104).

3.7.7. Theorem. (i) The morphism (100) is a topological isomorphism.

(ii) The adjoint action of G(K) on Z is trivial.

The proof will be given in 3.7.10. It is based on the Feigin - Frenkel

theorem, so it is essential that g is semisimple and the central extension

of g ⊗ K corresponds to the “critical” scalar product (18). This was not

essential for Theorem 3.7.5.

We will also prove the following statements.

3.7.8. Theorem. The map grZ→ Zcl defined in 2.9.8 induces a topological

isomorphism griZ
∼−→ Zcl(i) := {the space of homogeneous polynomials from

Zcl of degree i}.
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3.7.9. Theorem. Denote by In the closed left ideal of U
′

topologically

generated by g⊗tnO, n ≥ 0. Then the ideal In := In∩Z ⊂ Z is topologically

generated by the spaces Zmi , m < i(1−n), where Zmi := {z ∈ Zi|L0z = mz},

Zi is the standard filtration of Z, and L0 := −t ddt ∈ DerO.

3.7.10. Let us prove the above theorems. The elements of the image of

(100) are G(K)-invariant (see the Remark from 2.9.6). So 3.7.7(ii) follows

from 3.7.7(i). Let us prove 3.7.7(i), 3.7.8, and 3.7.9.

By 2.5.2 gr zg(O) = zclg (O). According to 2.4.1 zclg (O) can be identified

with the ring of G(O)-invariant polynomial functions on g∗ ⊗ ωO. Choose

homogeneous generators p1, . . . , pr of the algebra of G-invariant polynomials

on g∗ and set dj := deg pj . Define vjk ∈ zclg (O), 1 ≤ j ≤ r, 0 ≤ k <∞, by

(105) pj(η) =
∞∑
k=0

vjk(η)tk(dt)dj , η ∈ g∗ ⊗ ωO .

According to 2.4.1 the algebra zclg (O) is freely generated by vjk. The action

of DerO on zclg (O) is easily described. In particular vjk = (L−1)kvj0/k!,

L0vj0 = djvj0. Lift vj0 ∈ zclg (O) = gr zg(O) to an element uj ∈ zg(O)

so that L0uj = djuj . Then the algebra zg(O) is freely generated by

ujk := (L−1)kuj/k!, 1 ≤ j ≤ r, 0 ≤ k < ∞. Just as in the example

at the end of 3.7.3 we see that zg(O)K = C[[. . . , ũj,−1, ũj0, ũj1, . . .] and

L0ũjk = (dj + k)ũjk.

Denote by ujk the image of ũjk in Z. By 2.9.8 ujk ∈ Zdj and the image

of ujk in Zcl(dj) is the function ṽjk : g∗ ⊗ ωK → C defined by

(106) pj(η) =
∑
k

ṽjk(η)tk(dt)dj , η ∈ g∗ ⊗ ωK .

We have an isomorphism of topological algebras

(107) Zcl = C[[. . . ṽj,−1, ṽj0, ṽj1, . . .]
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because

(108)

the algebra of G(O)-invariant polynomial functions

on g∗ ⊗ t−nωO is freely generated by the restrictions

of ṽjk for k ≥ −ndj while for k < −ndj the restriction

of ṽjk to g∗ ⊗ t−nωO equals 0.

(This statement is immediately reduced to the case n = 0 considered in

2.4.1). Theorem 3.7.8 follows from (107).

Now consider the morphism fn : zg(O)K → Z/In where In was defined in

3.7.9. We will show that

(109)
fn is surjective and its kernel is the ideal Jn topolog-

ically generated by ujk, k < dj(1− n).

Theorems 3.7.7 and 3.7.9 follow from (109).

To prove (109) consider the composition fn : zg(O)K → Z/In ↪→

(U
′
/In)G(O). Equip U

′
/In with the filtration induced by the standard

one on U
′
. The eigenvalues of L0 on the i-th term of this filtration

are ≥ i(1 − n). So Ker fn ⊃ Jn where Jn was defined in (109). Now

gr(U
′
/In)G(O) is contained in (grU

′
/In)G(O), i.e., the algebra of G(O)-

invariant polynomials on g∗ ⊗ t−nωO. Using (108) one easily shows that

the map zg(O)K/Jn → (U
′
/In)G(O) induced by fn is an isomorphism. This

implies (109). We have also shown that

(110) the map Z→ (U
′
/In)G(O) is surjective

and therefore

(111) Z = (U
′
)G(O) .

3.7.11. Remarks

(i) Here is another proof22 of (111). Let u ∈ (U
′
)G(O). Take h ∈ H(K)

where H ⊂ G is a fixed Cartan subgroup. Then h−1uh is invariant

22It is analogous to the proof of the fact that an integrable discrete representation of

g⊗K is trivial. We are not able to use the fact itself because U
′

is not discrete.
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with respect to a certain Borel subgroup Bh ⊂ G. So h−1uh is G-

invariant (it is enough to prove this for the image of h−1uh in the

discrete space U
′
/In where In was defined in 3.7.9). Therefore u is

invariant with respect to hgh−1 ⊂ g ⊗ K for any h ∈ H(K). The

Lie algebra g⊗K is generated by g⊗O and hgh−1, h ∈ H(K). So

u ∈ Z.

(ii) In fact

(112) Z = (U
′
)a for any open a ⊂ g⊗K .

Indeed, one can modify the above proof as follows. First write u

as an (infinite) sum of uχ, χ ∈ h∗ := (LieH)∗, [a, uχ] = χ(a)uχ

for a ∈ h. Then take an h ∈ H(K) such that the image of

h in H(K)/H(O) = {the coweight lattice} is “very dominant”

with respect to a Borel subalgebra b ⊂ g containing h, so that

h−1ah ⊃ [b, b]. We see that uχ = 0 unless χ is dominant, and

h−1u0h is g-invariant. Replacing h by h−1 we see that u = u0, etc.

(iii) Here is another proof of 3.7.7(ii). Consider the canonical filtration

U
′
k of U

′
. It follows from (109) that the union of the spaces U

′
k ∩ Z,

k ∈ N, is dense in Z. So it suffices to show that the action of G(K) on

U
′
k∩Z is trivial for every k. The action of G(K) on Zcl is trivial (see

(107), (106)). So the action of G(K) on grZ is trivial. The action

of g ⊗K on g̃⊗K corresponding to the action of G(K) defined by

(19) is the adjoint action, and the adjoint action of g ⊗ K on Z is

trivial. So the action of G(K) on Z factors through π0(G(K)). The

group π0(G(K)) is finite (see 4.5.4), so we are done.

3.7.12. We are going to deduce Theorem 3.6.7 from [FF92]. Denote by

ALg(O) the coordinate ring of OpLg(O) (i.e., the scheme of Lg-opers on

SpecO). Let ϕO : ALg(O)
∼−→ zg(O) be an isomorphism satisfying

the conditions of 3.2.2. It induces an AutK-equivariant isomorphism

ϕK : ALg(K)
∼−→ zg(K) where ALg(K) is the algebra AK from 3.7.3
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corresponding to A = ALg(O). Recall that AK is the coordinate ring

of the ind-scheme of horizontal sections of SpecAY ′ , Y
′ := SpecK. If

A = ALg(O) then SpecAY ′ is the scheme of jets of Lg-opers on Y ′ and

its horizontal sections are Lg-opers on Y ′ (cf. 3.3.3). So ALg(K) is the

coordinate ring of OpLg(K) := the ind-scheme of Lg-opers on SpecK. It is

a Poisson algebra with respect to the Gelfand - Dikii bracket (we remind its

definition in 3.7.14). The Gelfand - Dikii bracket depends on the choice of a

non-degenerate invariant bilinear form on Lg. We define it to be dual to the

form (18) on g (i.e., its restriction to h∗ = Lh ⊂ Lg is dual to the restriction

of (18) to h).

By 3.7.5 and 3.7.7 we have a canonical isomorphism zg(K)
∼−→ Z, so ϕK

can be considered as an AutK-equivariant isomorphism

(113) ALg(K)
∼−→ Z .

Z is a Poisson algebra with respect to the Hayashi bracket (see 3.6.2).

3.7.13. Theorem. [FF92]

There is an isomorphism

(114) ϕO : ALg(O)
∼−→ zg(O)

satisfying the conditions of 3.2.2 and such that the corresponding isomor-

phism (113) is compatible with the Poisson structures.

We will show (see 3.7.16) that an isomorphism (114) with the properties

mentioned in the theorem satisfies the conditions of 3.6.7. So it is unique

(see the Remark from 3.6.7).

Remark. As explained in 3.6.12, one can associate a Poisson bracket on Z

to any invariant bilinear form B on g (the bracket from 3.6.2 corresponds to

the form (18)). If B is non-degenerate one can consider the dual form on Lg

and the corresponding Gelfand - Dikii bracket on ALg(K). The isomorphism

(113) corresponding to (114) is compatible with these Poisson brackets.
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3.7.14. Let us recall the definition of the Gelfand - Dikii bracket from

[DS85]. This is a Poisson bracket on Opg(K) (i.e., a Poisson bracket on

its coordinate ring Ag(K)). It depends on the choice of a non-degenerate

invariant bilinear form ( , ) on g.

Denote by g̃⊗K the Kac–Moody central extension of g⊗K corresponding

to ( , ). As a vector space g̃⊗K is (g ⊗ K) ⊕ C and the commutator in

g̃⊗K is defined by the 2-cocycle Res(du, v), u, v ∈ g⊗K. The topological

dual space (g̃⊗K)∗ is an ind-scheme. The algebra of regular functions on

(g̃⊗K)∗ is a Poisson algebra with respect to the Kirillov bracket23 (i.e., the

unique continuous Poisson bracket such that the natural map from g̃⊗K

to the algebra of regular functions on (g̃⊗K)∗ is a Lie algebra morphism).

So (g̃⊗K)∗ is a Poisson “manifold”. Denote by (g̃⊗K)∗1 the space of

continuous linear functionals l : g̃⊗K → C such that the restriction of l to

the center C ⊂ g̃⊗K is the identity. (g̃⊗K)∗1 is a Poisson submanifold of

(g̃⊗K)∗.

We identify (g̃⊗K)∗1 with Conn := the ind-scheme of connections on

the trivial G-bundle on SpecK: to a connection ∇ = d + η, η ∈ g ⊗ ωK ,

we associate l ∈ (g̃⊗K)∗1 such that for any u ∈ g ⊗ K ⊂ g̃⊗K one has

l(u) = Res(u, η). It is easy to check that the gauge action of g⊗K on Conn

corresponds to the coadjoint action of g⊗K on (g̃⊗K)∗1, and one defines the

coadjoint action24 of G(K) on (g̃⊗K)∗ so that its restriction to (g̃⊗K)∗1

corresponds to the gauge action of G(K) on Conn. The action of G(K) on

the Poisson “manifold” (g̃⊗K)∗1 is not Hamiltonian in the literal sense, i.e.,

one cannot define the moment map (g̃⊗K)∗1 → (g⊗K)∗. However one can

define the moment map (g̃⊗K)∗1 → (g̃⊗K)∗: this is the identity map.

23As explained in [We83] the “Kirillov bracket” was invented by Sophus Lie and then

rediscovered by several people including A.A. Kirillov.

24It is dual to the adjoint action of G(K) on g̃⊗K defined by (19) (of course in (19)

c should be replaced by our bilinear form on g).



108 A. BEILINSON AND V. DRINFELD

The point is that Opg(K) can be obtained from Conn = (g̃⊗K)∗1 by

Hamiltonian reduction (such an interpretation of Opg(K) automatically

defines a Poisson bracket on Ag(K)). Fix a Borel subgroup B ⊂ Gad.

Let N be its unipotent radical, n := LieN . Since the restriction of

the Kac-Moody cocycle to n ⊗ K is trivial we have the obvious splitting

n ⊗K → g̃⊗K. It is B(K)-equivariant and this property characterizes it

uniquely. The action of N(K) on Conn is Hamiltonian: the moment map

µ : Conn = (g̃⊗K)∗1 → (n ⊗ K)∗ is induced by the above splitting. Let

Char? ⊂ (n ⊗ K)∗ be the set of non-degenerate characters, i.e., the set of

Lie algebra morphisms l : n⊗K → C such that for each simple root α the

restriction of l to gα⊗K is nonzero. For every l ∈ Char? the action of N(K)

on µ−1(l) is free and the quotient N(K)\µ−1(l) can be canonically identified

with Opg(K) (indeed, µ−1(l) is the space of connections ∇ = d+ η ∈ Conn

such that η =
∑
α∈Γ

Jα + q where q ∈ b⊗ ωK , Γ is the set of simple roots, and

Jα = Jα(l) is a fixed nonzero element of g−α ⊗ ωK). So Opg(K) is obtained

from Conn by Hamiltonian reduction over l with respect to the action of

N(K), whence we get a Poisson bracket on Opg(K). It is called the Gelfand

- Dikii bracket. It does not depend on l. Indeed, for l, l′ ∈ Char? consider

the isomorphism

(115) N(K) \ µ−1(l)
∼−→ N(K) \ µ−1(l′)

that comes from the identification of both sides of (115) with Opg(K). The

(co) adjoint action of H(K) on Conn = (g̃⊗K)∗1 preserves the relevant

structures (i.e., the Poisson bracket on Conn, the action of N(K) on Conn,

and the moment map µ : Conn→ (n⊗K)∗). There is a unique h ∈ H(K)

that transforms l to l′ and (115) is induced by the action of this h. So (115)

is a Poisson map.

Remarks

(i) If the bilinear form ( , ) on g is multiplied by c ∈ C∗ then the Poisson

bracket on Opg(K) is multiplied by c−1.
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(ii) The Gelfand - Dikii bracket defined above is the “second Gelfand -

Dikii bracket”. The definition of the first one and an explanation

of the relation with the original works by Gelfand - Dikii ([GD76],

[GD78]) can be found in [DS85] (see Sections 2.3, 3.6, 3.7, 6.5, and

8 from loc. cit).

3.7.15. Let F ∈ Opg(K), i.e., F = (FB,∇) where FB is a B-bundle on

SpecK and ∇ is a connection on the corresponding G-bundle satisfying

the conditions of 3.1.3 (here G is the adjoint group corresponding to g

and B ⊂ G is the Borel subgroup). We are going to describe the tangent

space TFOpg(K) and the cotangent space T ∗FOpg(K). Then we will write an

explicit formula for {ϕ,ψ}(F), ϕ,ψ ∈ Ag(K).

Remark. Of course FB is always trivial, so we could consider F as a

connection ∇ in the trivial G-bundle (i.e., ∇ = d + q, q ∈ g ⊗ ωK) modulo

gauge transformations with respect to B.

To describe TFOpg(K) we must study infinitesimal deformations of

F = (FB,∇). Since FB cannot be deformed all of them come from

infinitesimal deformations of ∇, which have the form ∇(ε) = ∇ + εq,

q ∈ H0(SpecK, g−1
F ⊗ ωK) (see 3.1.1 for the definition of g−1; g−1

F := g−1
FB

is

the FB-twist of g−1). Taking in account the infinitesimal automorphisms of

FB we get:

(116) TFOpg(K) = H0(SpecK,Coker(∇ : bF → g−1
F ⊗ ωK)) .

Here is a more convenient description of the tangent space:

(117) TFOpg(K) = Coker(∇ : nKF → bKF ⊗ ωK)

where nKF := H0(SpecK, nF), bKF := H0(SpecK, bF) (the natural map from

the r.h.s. of (117) to the r.h.s. of (116) is an isomorphism). Using the

invariant scalar product ( , ) on g we identify b∗, n∗ with g/n, g/b and get

the following description of the cotangent space:

(118) T ∗FOpg(K) = {u ∈ gKF |∇(u) ∈ bKF ⊗ ωK}/nKF .
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Here is an explicit formula for the Gelfand - Dikii bracket:

(119) {ϕ,ψ}(F) = Res(∇(dFϕ), dFψ), ϕ, ψ ∈ Ag(K) .

In this formula the differentials dFϕ and dFψ are considered as elements of

the r.h.s. of (118).

3.7.16. Theorem. 25

(i) Set I := Ker(Ag(K)→ Ag(O)). Then {I, I} ⊂ I and therefore I/I2

is a Lie algebroid over Ag(O).

(ii) There is an AutO-equivariant topological isomorphism of Lie

algebroids

(120) I/I2 ∼−→ ag

(see 3.5.11, 3.5.15 for the definition of ag).

(In this theorem I2 denotes the closure of the subspace generated by ab,

a ∈ I, b ∈ I).

Theorem 3.6.7 follows from 3.7.13 and 3.7.16.

Remark. The isomorphism (120) is unique (see 3.5.13 or 3.5.14).

3.7.17. Let us prove Theorem 3.7.16. We keep the notation of 3.7.15. Take

F ∈ Opg(O). Here is a description of TFOpg(O) similar to (117):

(121) TFOpg(O) = Coker(∇ : nOF → bOF ⊗ ωO)

where nOF := H0(SpecO, nF). The fiber of I/I2 over F is the conormal space

T⊥F Opg(O) ⊂ T ∗FOpg(K). According to (121) it has the following description

in terms of (118):

(122) T⊥F Opg(O) = {u ∈ gOF | ∇(u) ∈ bOF ⊗ ωO}/nOF .

Now it is clear that {I, I} ⊂ I: if ϕ,ψ ∈ I, F ∈ Opg(O) then dFϕ and

dFψ belong to the r.h.s. of (122) and therefore the r.h.s. of (119) equals 0.

25Inspired by [Phys]
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The map

(123) I/I2 → DerAg(O) ,

which is a part of the algebroid structure on I/I2, is defined by ϕ 7→ ∂ϕ,

∂ϕ(ψ) := {ϕ,ψ}, ϕ ∈ I, ψ ∈ Ag(K)/I = Ag(O). So according to (119) the

map

(124) T⊥F Opg(O)→ TFOpg(O)

induced by (123) is the operator

(125) ∇ : {u ∈ gOF | ∇(u) ∈ bOF ⊗ ωO}/nOF → (bOF ⊗ ωO)/∇(nOF ) .

The algebroid structure on I/I2 induces a Lie algebra structure on the

kernel aF of the map (124). On the other hand, aF is the kernel of

(125), i.e., aF = {u ∈ gOF | ∇(u) = 0}/{u ∈ nOF | ∇(u) = 0}. Since

{u ∈ nOF | ∇(u) = 0} = 0 we have

(126) aF = {u ∈ gOF | ∇(u) = 0} .

The r.h.s. of (126) is a Lie subalgebra of gOF .

Lemma. The Lie algebra structure on aF that comes from the algebroid

structure on I/I2 coincides with the one induced by (126).

Proof. It suffices to show that if ϕ1, ϕ2 ∈ Ag(K) and dFϕi ∈ aF then

(127) dF{ϕ1, ϕ2} = [dFϕ1, dFϕ2]

(in the r.h.s. of (127) dFϕi are considered as elements of gOF via (126)).

Consider a deformation F(ε) of F, ε2 = 0. Write F as (FB,∇). Without loss

of generality we can assume that F(ε) = (FB,∇+ εq), q ∈ bKF ⊗ ωK . Write

dF(ε)ϕi as dFϕi + εµi. Then

{ϕ1, ϕ2}(F(ε)) = Res((∇+ ε ad q)(dFϕ1 + εµ1), dFϕ2 + εµ2) =

εRes([q, dFϕ1], dFϕ2) = εRes(q, [dFϕ1, dFϕ2])

(we have used that ∇(dFϕi) = 0). The equality (127) follows. �
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According to the lemma the kernel aF of the map (124) coincides as a Lie

algebra with (guniv)F, i.e., the fiber at F of the Lie algebra guniv from 3.5.11.

The map (124)=(125) is surjective because ∇ : gOF → gOF ⊗ωO is surjective.

It is easy to show that (121) and (122) are homeomorphisms and that the

map (124) is open.

In a similar way one shows that the morphism (123) is surjective and

open, and its kernel can be canonically identified with guniv equipped with

the discrete topology (the identification induces the above isomorphism

aF
∼−→ (guniv)F for every F ∈ Opg(O)). Lemma 3.5.12 yields a continuous

Lie algebroid morphism f : I/I2 → ag such that the diagram

0 −→ guniv −→ I/I2 −→ DerAg(O) −→ 0

id
y f

y y id

0 −→ guniv −→ ag −→ DerAg(O) −→ 0

is commutative. Since the rows of the diagram are exact in the topological

sense, f is a topological isomorphism. Clearly f is AutO-equivariant.

3.8. Singularities of opers.

3.8.1. Let U be an open dense subset of our curve X. We are going to

represent the ind-scheme Opg(U) as a union of certain closed subschemes

Opg,D(X) where D runs through the set of finite subschemes of X such that

D ∩ U = ∅.

According to 3.1.9 we have a canonical isomorphism Op
g
(U)

∼−→ Opg(U)

where Op
g
(U) is the Γ(U, VωX )-torsor induced from the Γ(U, ω⊗2

X )-torsor

Opsl2(U) by a certain embedding Γ(U, ω⊗2
X ) ⊂ Γ(U, VωX ). The definition of

this embedding and of V = Vg can be found in 3.1.9. Let us remind that V is

a vector space equipped with a Gm-action (i.e., a grading) and VωX denotes

the twist of V by the Gm-torsor ωX . We have dimV = r := rank g and the

degrees of the graded components of V are equal to the degrees d1, . . . , dr

of “basic” invariant polynomials on g.



HITCHIN’S INTEGRABLE SYSTEM 113

If D is a finite subscheme of X one has a canonical embedding VωX ↪→

VωX(D). Denote by Op
g,D

(X) the Γ(X,VωX(D))-torsor induced by the

Γ(X,VωX )-torsor Op
g
(X). Clearly Op

g,D
(X) is a closed subscheme of

Op
g
(X \D). Denote by Opg,D(X) the image of Op

g,D
(X) in Opg(X \D). If

D ⊂ D′ then Opg,D(X) ⊂ Opg,D′(X) . For any open dense U ⊂ X we have

Opg(U) =
⋃

D∩U=∅
Opg,D(X).

In 3.8.23 we will give an “intrinsic” description of Opg,D(X), which does

not use the isomorphism Op
g

∼−→ Opg. The local version of this description

is given in 3.8.7 – 3.8.10.

3.8.2. Now we can formulate the answer to the problem from 2.8.6:

(128) N∆(G) = OpLg,∆(X) .

N∆(G) is defined as a subscheme of an ind-scheme N ′∆(G), which is

canonically identified withOpLg(X\∆) via the Feigin - Frenkel isomorphism.

(128) is an equality of subschemes of OpLg(X \∆).

We will not prove (128). A hint will be given in 3.8.6.

3.8.3. The definition of Opg,D(X) from 3.8.1 makes sense in the following

local situation: X = SpecO, O := C[[t]], D = SpecO/tnO. In this case

we write Opg,n(O) instead of Opg,D(X). Opg,n(O) is a closed subscheme

of the ind-scheme Opg(K). Of course Opg,0(O) = Opg(O), Opg,n(O) ⊂

Opg,n+1(O), and Opg(K) is the inductive limit of Opg,n(O).

According to 3.7.12 Ag(K) is the algebra of regular functions on Opg(K).

Denote by In the ideal of Ag(K) corresponding to Opg,n(O) ⊂ Opg(K).

Clearly In ⊃ In+1 and I0 is the ideal I from 3.7.16 (i). The ideals In form

a base of neighbourhoods of 0 in Ag(K).

3.8.4. Here is an explicit description of Ag(K) and In. We use the

notation of 3.5.6, so g-opers on SpecK are in one-to-one correspondence

with operators (64) such that uj(t) ∈ C((t)). Write uj(t) as
∑
k

ũjkt
k. Then

Ag(K) = C[[. . . ũj,−1, ũj0, ũj1, . . .] (we use notation (98)). The ideal In is
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topologically generated by ũjk, k < −djn. The ujk from 3.5.6 are the

images of ũjk in Ag(O) = Ag(K)/I.

It is easy to describe the action of DerK on Ag(K). In particular

(129) L0ũjk = (dj + k)ũjk .

Just as in the global situation (see 3.1.12 – 3.1.14) the coordinate ring

Ag(K) ofOpg(K) carries a canonical filtration. Its i-th term consists of those

“polynomials” in ũjk whose weighted degree is ≤ i, it being understood that

the weight of ũjk is dj .

3.8.5. Proposition. The ideal In ⊂ Ag(K) is topologically generated by the

spaces Ami , m < i(1 − n), where Ami is the set of elements a from the i-th

term of the filtration of the Ag(K) such that L0a = ma. �

The isomorphism ALg(K)
∼−→ Z (see (113)) preserves the filtrations and

is AutK-equivariant. So Proposition 3.8.5 implies the following statement.

3.8.6. Proposition. The Feigin - Frenkel isomorphism ALg(K)
∼−→ Z maps

In ⊂ ALg(K) onto the ideal In from 3.7.9.

This is one of the ingredients of the proof of (128).

3.8.7. We are going to describe Opg,n(O) in “natural” terms (without using

the isomorphism (43)). Denote by g+ the locally closed reduced subscheme

of g consisting of all a ∈ g such that for positive roots α one has a−α = 0

if α is non-simple, a−α 6= 0 if α is simple (a−α is the component of a from

the root subspace g−α). Then for any C-algebra R the set g+(R) consists of

a ∈ g ⊗ R such that a−α = 0 for each non-simple α > 0 and a−α generates

the R-module g−α ⊗R for each simple α.

Recall that a g-oper over SpecK is a B(K)-conjugacy class of operators

d
dt + q(t), q ∈ g+(K). Here B is the Borel subgroup of the adjoint group G

corresponding to g.
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3.8.8. Definition. A (≤ n)-singular g-oper on SpecO is a B(O)-conjugacy

class of operators d
dt + t−nq(t), q ∈ g+(O).

Remarks

(i) The action of B(O) on the set of operators d
dt + t−nq(t), q ∈ g+(O),

is free. Indeed, the action of B(K) on { ddt + q(t)|q ∈ g+(K)} is free

(see 3.1.4).

(ii) For n = 0 one obtains the usual notion of g-oper on SpecO.

3.8.9. Proposition. The map {(≤ n)-singular g-opers on SpecO} →

Opg(K) is injective. Its image equals Opg,n(O).

Proof. We use the notation of 3.5.6. For every v1, . . . , vr ∈ C[[t]] the operator

(130)
d

dt
+ t−n(i(f) + v1(t)e1 + . . .+ vr(t)er)

defines a (≤ n)-singular g-oper on SpecO. It is easy to show that this

is a bijection between operators (130) and (≤ n)-singular g-opers on

SpecO. Now let us transform (130) to the “canonical form” (64) by B(K)-

conjugation. Conjugating (130) by t−nρ̌ we obtain

(131)
d

dt
+ i(f) + nρ̌t−1 + t−nd1v1(t)e1 + . . .+ t−ndrvr(t)er .

To get rid of nρ̌t−1 we conjugate (131) by exp(−ne1/2t) and obtain the

operator (64) with

uj(t) = t−ndjvj(t) for j > 1 ,

u1(t) = t−nd1v1(t) + n(n− 2)/4t2 , d1 = 2 .

Clearly vj ∈ C[[t]] if and only if uj ∈ t−ndjC[[t]]. �

3.8.10. If points of Opg,n(O) are considered as (≤ n)-singular g-opers on

SpecO then the canonical embedding Opg,n(O) ↪→ Opg,n+1(O) maps the

B(O)-conjugacy class of d
dt + t−nq(t), q ∈ g+(O), to the B(O)-conjugacy

class of tρ̌( ddt + t−nq(t))t−ρ̌ (it is well-defined because tρ̌B(O)t−ρ̌ ⊂ B(O)).
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3.8.11. Denote by Inv(g) the algebra of G-invariant polynomials on g.

There is a canonical morphism g → Spec Inv(g) = W \ h where W is the

Weyl group.

Suppose one has a (≤ 1)-singular g-oper on SpecO, i.e., a B(O)-conjugacy

class of d
dt + t−1q(t), q ∈ g+(O). The image of q(0) ∈ g in Spec Inv(g) is

called the residue of the oper. So we have defined the residue map

(132) Res : Opg,1(O)→ Spec Inv(g) = W \ h .

It is surjective. Therefore it induces an embedding

(133) Inv(g) ↪→ Ag(K)/I1

(recall that Ag(K)/I1 is the coordinate ring of Opg,1(O); see 3.8.3).

3.8.12. Proposition. Res(Opg(O)) ⊂W \h consists of a single point, which

is the image of −ρ̌ ∈ h.

Remark. We prefer to forget that −ρ̌ and ρ̌ have the same image in W \ h.

Proof. We must compute the composition of the map Opg(O) → Opg,1(O)

described in 3.8.10 and the map (132). If q(t) ∈ g+(O) then tρ̌( ddt+q(t))t
−ρ̌ =

d
dt+

a−ρ̌
t +{something regular} where a belongs to the sum of the root spaces

corresponding to simple negative roots. Now a − ρ̌ and −ρ̌ have the same

image in W \ h. �

3.8.13. Proposition. Let f ∈ Ag(K)/I1, i.e., f is a regular function on

Opg,1(O). Then the following conditions are equivalent:

(i) f ∈ Inv(g), where Inv(g) is identified with its image by (133);

(ii) f is Aut0O-invariant;

(iii) L0f = 0.

Proof. Clearly (i)⇒(ii)⇒(iii). Let us deduce (i) from (iii). Consider a

(≤ 1)-singular g-oper on SpecO. This is the B(O)-conjugacy class of a

connection d
dt + t−1q(t), q ∈ g+(O). If t is replaced by λt this connection is

replaced by d
dt + t−1q(λt). Since L0f = 0 the value of f on the connection
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d
dt+t

−1q(λt) does not depend on λ, so it depends only on q(0) ∈ g+ (because

lim
λ→0

q(λt) = q(0)). It remains to use the fact that a B-invariant regular

function on g+ extends to a G-invariant polynomial on g (see Theorem 0.10

from [Ko63]). �

3.8.14. Remark. According to 3.8.4 the algebra Ag(K)/I1 is freely gen-

erated by ujk, k ≥ −dj , where ujk ∈ Ag(K)/I1 is the image of ũjk ∈

Ag(K). By 3.8.13 and (129) Inv(g) ⊂ Ag(K)/I1 is generated by vj :=

uj,−dj . The isomorphism SpecC[v1, . . . , vr]
∼−→ Spec Inv(g) is the com-

position SpecC[v1, . . . , vr] → g → Spec Inv(g) where the first map equals

i(f)− ρ̌+ v1e1 + . . .+ vrer (we use the notation of 3.5.6).

3.8.15. We are going to prove Theorem 3.6.11. In 3.8.16 – 3.8.17 we

will formulate a property of the Feigin - Frenkel isomorphism (113). This

property reduces Theorem 3.6.11 to a certain statement (see 3.8.19), which

involves only opers and the Gelfand - Dikii bracket. This statement will be

proved in 3.8.20 – 3.8.22.

3.8.16. We will use the notation of 3.5.17. Besides, if DerO acts on a vector

space V we set V 0 := {v ∈ V |L0v = 0}.

As explained in 3.6.9, the map π from 3.6.8 induces a morphism

(134) (Z/Z · Z<0)0 = (Z/Z · Z<0)≤0 = Z≤0/(Z · Z<0 ∩ Z≤0)→ C

where C is the center of Ug. Now (113) induces an isomorphism

(135) (Z/Z · Z<0)0 ∼−→ (ALg(K)/I1)0

because by 3.8.5 I1 = ALg(K) · ALg(K)<0. By 3.8.13 the r.h.s. of (135)

equals Inv(Lg). So (134) and (135) yield a morphism

(136) Inv(Lg)→ C .

Denote by Inv(h∗) the algebra of W -invariant polynomials on h∗. Since

Lh = h∗ there is a canonical isomorphism Inv(Lg)
∼−→ Inv(h∗). We also have
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the Harish-Chandra isomorphism C
∼−→ Inv(h∗). So (136) can be considered

as a map

(137) Inv(h∗)→ Inv(h∗) .

3.8.17. Theorem. (E. Frenkel, private communication)

The morphism (137) maps f ∈ Inv(h∗) to f− where f−(λ) := f(−λ),

λ ∈ h∗. �

3.8.18. Using 3.8.17 we can replace the mysterious lower left corner of

diagram (84) by its oper analog. Diagram (143) below is obtained essentially

this way. Let us define the lower arrow of (143), which is the oper analog of

the map (83) constructed in 3.6.9 – 3.6.10.

According to 3.8.5

(138) I1 = Ag(K) ·Ag(K)<0 .

By 3.8.13 we have a canonical isomorphism

(139) (Ag(K)/I1)0 ∼−→ Inv(g) .

For h ∈ h denote bymh the maximal ideal of Inv(g) consisting of polynomials

vanishing at h. Set m := m−ρ̌. By 3.8.12 the isomorphism (139) induces

(140) (I/I1)0 ∼−→ m.

Now we obtain

(141) (I/(I2 + I1))0 ∼−→ m/m2

(to get (141) from (140) we use that

(I2)0 ⊂ (I0)2 + I · I<0 ⊂ (I0)2 +Ag(K) ·Ag(K)<0 = (I0)2 + I1 ;

see (138)).

For a regular h ∈ h we identify mh/m
2
h with h∗ by assigning to a W -

invariant polynomial on h its differential at h. In particular for m = m−ρ̌



HITCHIN’S INTEGRABLE SYSTEM 119

we have m/m2 ∼−→ h∗ (by the way, if we wrote m as mρ̌ we would obtain a

different isomorphism m/m2 ∼−→ h∗).

Finally, using (138) we rewrite the l.h.s. of (141) in terms of I/I2 and get

an isomorphism

(142) (I/I2)≤0/(Ag(O) · (I/I2)<0 ∩ (I/I2)≤0)
∼−→ h∗ .

3.8.19. Proposition. The diagram

(143)

(ag)
≤0/(Ag(O) · a<0

g ∩ (ag)
≤0)

∼−→ hx o
y o

(I/I2)≤0/(Ag(O) · (I/I2)<0 ∩ (I/I2)≤0)
∼−→ h∗

commutes. Here the lower arrow is the isomorphism (142), the upper one

is the isomorphism (78), the left one is induced by the isomorphism (120)

(which comes from the Gelfand - Dikii bracket on Ag(K)), and the right one

is induced by the invariant scalar product on g used in the definition of the

Gelfand - Dikii bracket.

The proposition will be proved in 3.8.20 – 3.8.22.

Theorem 3.6.11 follows from 3.8.17 and 3.8.19. The commutativity of

(143) implies the anticommutativity of (84) because the following diagram

is anticommutative:

mρ̌/(mρ̌)
2 ∼−→ m−ρ̌/(m−ρ̌)

2

∼−→ ∼−→

h∗

Here the upper arrow is induced by the map f 7→ f− from 3.8.17.

3.8.20. We are going to formulate a lemma used in the proof of Proposi-

tion 3.8.19. Consider the composition

(144) I/I2 → I/(I2 + I1)
∼−→ ag/Ag(O) · a<0

g = ag/an = guniv/nuniv .

Here the second arrow comes from (120) and (138); an and nuniv were

defined in 3.5.16, ag was defined in 3.5.11; the equality an = Ag(O) · a<0
g
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was proved in 3.5.18. The fiber of I/I2 over F = (FB,∇) ∈ Opg(O) equals

{u ∈ gOF |∇(u) ∈ bOF ⊗ωO}/nOF (see (122)) and the fiber of guniv/nuniv over F

equals (gF/nF)0 :=the fiber of gF/nF at the origin 0 ∈ SpecO. Consider the

maps

ϕ,ψ : {u ∈ gOF |∇(u) ∈ bOF ⊗ ωO}/nOF → (gF/nF)0

where ϕ is induced by (144) and ψ is evaluation at 0.

3.8.21. Lemma. ϕ = ψ.

Proof. It follows from 3.7.17 that the restrictions of ϕ and ψ to aF := {u ∈

gOF |∇(u) = 0} are equal. So it suffices to show that Kerϕ ⊂ Kerψ. Clearly

Kerϕ = T⊥F Opg,1(O) := the conormal space to Opg,1(O) at F. For any

q ∈ bOF the oper Fq := (FB,∇ + q · dtt ) is (≤ 1)-singular. So the image

of bOF ⊗ t−1ωO in the r.h.s. of (117) is contained in the tangent space

TFOpg,1(O). Therefore T⊥F Opg,1(O) ⊂ Kerψ. �

3.8.22. Now let us prove 3.8.19. Since the l.h.s. of (142) equals the l.h.s.

of (141) we can reformulate 3.8.19 as follows.

Let f ∈ Inv(g), f(−ρ̌) = 0. Consider f as an element of Ag(K)/I1 (see

(133)). By 3.8.12 f ∈ I/I1. The image of f in I/(I2 + I1) can be considered

as an element ν ∈ guniv/nuniv (see (144)). On the other hand, let λ ∈ h∗ be

the differential at −ρ̌ of the restriction of f ∈ Inv(g) to h. To prove 3.8.19

we must show that ν equals the image of λ under the composition

h∗
∼−→ h ⊂ h⊗Ag(O) = buniv/nuniv ⊂ guniv/nuniv .

By 3.8.21 this is equivalent to the following statement: let F = (FB,∇) ∈

Opg(O), q ∈ bOF , Fεq := (FB,∇+ εq dtt ), then

(145)
d

dε
f(Res(Fεq))|ε=0 = λ(qh(0))

where qh(t) ∈ h[[t]] is the image of q in bOF /n
O
F = h⊗O. Just as in the proof

of 3.8.12 one shows that Res(Fεq) equals the image of −ρ̌+ εqh(0) in W \ h.

So (145) is clear.
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3.8.23. In this subsection (which can certainly be skipped by the reader)

we give an “intrinsic” description of the scheme Opg,D(X) from 3.8.1. It is

obtained by a straightforward “globalization” of 3.8.7 – 3.8.10.

Denote by G the adjoint group corresponding to g. Suppose we are in

the situation of 3.1.2. So we have a B-bundle FB on X, the induced G-

bundle FG, and the gF ⊗ ωX -torsor Conn(FG). Let D be a finite subscheme

of X. Denote by ConnD(FG) the gF ⊗ ωX(D)-torsor induced by Conn(FG);

so sections of ConnD(FG) are connections with (≤ D)-singularities. Just

as in 3.1.2 one defines c : ConnD(FG) → (g/b)F ⊗ ωX(D). The notion of

(≤ D)-singular g-oper on X is defined as follows: in Definition 3.1.3 replace

Conn by ConnD and ωX by ωX(D).

If X is complete then (≤ D)-singular g-opers on X form a scheme. Just as

in 3.8.9 one shows that the natural morphism from this scheme toOpg(X\D)

is a closed embedding and its image equals Opg,D(X). So one can consider

Opg,D(X) as the moduli scheme of (≤ D)-singular g-opers on X.

If D ⊂ D′ then Opg,D(X) ⊂ Opg,D′(X), so we should have a natural way

to construct a (≤ D′)-singular g-oper (F′B,∇′) from a (≤ D)-singular g-

oper (FB,∇). Of course (F′B,∇′) should be equipped with an isomorphism

α : (F′B,∇′)|X\∆
∼−→ (FB,∇)|X\∆ where ∆ ⊂ X is the finite subscheme

such that D′ = D + ∆ if D, D′, ∆ are considered as effective divisors. The

connection ∇′ is reconstructed from ∇ and α, while (F′B, α) is defined by

the following property (cf. 3.8.10): if x ∈ ∆, f is a local equation of ∆ at x

and s is a local section of FB at x then there is a local section s′ of F′B at x

such that α(s′) = λ(f)s where λ : Gm → H is the morphism corresponding

to ρ̌.
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4. Pfaffians and all that

4.0. Introduction.

4.0.1. Consider the “normalized” canonical bundle

(146) ω]BunG
:= ωBunG ⊗ ω

⊗−1
0

where ω0 is the fiber of ωBunG over the point of BunG corresponding to the

trivial G-bundle on X. In this section we will associate to an LG-oper F the

invertible sheaf λF on BunG mentioned in 0.2(d). λF will be equipped with

an isomorphism λ⊗2n
F

∼−→ (ω]BunG
)⊗n for some n 6= 0. This isomorphism

induces the twisted D-module structure on λF required in 0.2(d).

According to formula (57) from 3.4.3 OpLG(X) = OpLg(X)×Z torsθ(X)

where Z is the center of LG. Actually λF depends only on the image of F

in Z torsθ(X). So our goal is to construct a canonical functor

(147) λ : Z torsθ(X)→ µ∞ torsθ(BunG)

where µ∞ torsθ(BunG) is the groupoid of line bundles A on BunG equipped

with an isomorphism A⊗2n ∼−→ (ω]BunG
)⊗n for some n 6= 0.

4.0.2. The construction of (147) is quite simple if G is simply connected.

In this case Z is trivial, so one just has to construct an object of

µ∞ torsθ(BunG). Since G is simply connected BunG is connected and simply

connected (interpret a G-bundle on X as a G-bundle on the C∞ manifold

corresponding to X equipped with a ∂̄-connection). So the problem is to

show the existence of a square root of ω]BunG
(then µ∞ torsθ(BunG) has a

unique object whose fiber over the point of BunG corresponding to the trivial

G-bundle is trivialized). To solve this problem we use the notion of Pfaffian.

To any vector bundle Q equipped with a non-degenerate symmetric form

Q⊗Q → ωX Laszlo and Sorger associate in [La-So] its Pfaffian Pf(Q), which

is a canonical square root of detRΓ(X,Q). In 4.2 we give another definition

of Pfaffian presumably equivalent to the one from [La-So].
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Fix L ∈ ω1/2(X) (i.e., L is a square root of ωX). Then the line bundle on

BunG whose fiber at F ∈ BunG equals

(148) Pf(gF ⊗ L)⊗ Pf(g⊗ L)⊗−1

is a square root of ω]BunG
(see 4.3.1 for details).

So to understand the case where G is simply connected it is enough to

look through 4.2 and 4.3.1. In the general case the construction of (147) is

more complicated. The main point is that the square root of ω]BunG
defined

by (148) depends on L ∈ ω1/2(X).

4.0.3. Here is an outline of the construction of (148) for any semisimple G.

As explained in 3.4.6 Z torsθ(X) is a Torsor over the Picard category

Z tors(X) and µ∞ torsθ(BunG) is a Torsor over the Picard category

(149) µ∞ tors(BunG) := lim
−→
n

µn tors(BunG)

The functor (147) we are going to construct is `-affine in the sense of 3.4.6

for a certain Picard functor ` : Z tors(X) → µ∞ tors(BunG). We define `

in 4.1. The Torsor Z torsθ(X) is induced from ω1/2(X) via a certain Picard

functor µ2 tors(X) → Z tors(X) (see 3.4.6). So to construct λ it is enough

to construct an `′-affine functor λ′ : ω1/2(X)→ µ∞ torsθ(X) where `′ is the

composition µ2 tors(X) → Z tors(X)
`−→µ∞ tors(BunG). We define λ′ by

L 7→ λ′L where λ′L is the line bundle on BunG whose fiber at F ∈ BunG

equals (148). The fact that λ′ is `′-affine is deduced in 4.4 from 4.3.10,

which is a general statement on SOn-bundles26. Actually in subsections 4.2

and 4.3 devoted to Pfaffians the group G does not appear at all.

4.0.4. Each line bundle on BunG constructed in this section is equipped

with the following extra structure: for every x ∈ X a central extension of

G(Kx) acts on its pullback to the scheme BunG,x from 2.3.1. This structure

is used in 4.3. We will also need it in Chapter 5.

26In fact 4.3.10 is a refinement of Proposition 5.2 from [BLaSo].
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4.1. µ∞-torsors on BunG.

4.1.1. Let G be a connected affine algebraic group, Π a finite abelian

group, 0 → Π(1) → G̃ → G → 0 an extension of G. Our goal is to

construct a canonical Picard functor ` : Π∨ tors(X)→ µ∞ tors(BunG) where

Π∨ := Hom(Π, µ∞).

Remark. If G is semisimple and G̃ is the universal covering of G then

Π = π1(G) and Π∨ is canonically isomorphic to the center Z of LG (the

isomorphism is induced by the duality between the Cartan tori of G and

LG). So in this case ` is a Picard functor Z tors(X) → µ∞ tors(BunG), as

promised in 4.0.3.

We construct ` in 4.1.2–4.1.4. We “explain” the construction in 4.1.5

and slightly reformulate it in 4.1.6. In 4.1.7–4.1.9 the action of a central

extension of G(Kx) is considered. In 4.1.10–4.1.11 we give a description

of the fundamental groupoid of BunG, which clarifies the construction of

torsors on BunG. The reader can skip 4.1.5 and 4.1.10–4.1.11.

4.1.2. For F ∈ BunG denote by F̃ the Π(1)-gerbe on X of G̃-liftings of

F . Its class c(F) is the image of cl(F) by the boundary map H1(X,G) →

H2
(
X,Π(1)

)
= Π. For a finite non-empty S ⊂ X the gerbe F̃X\S is neutral.

Therefore |F̃(X\S)| (:= the set of isomorphism classes of objects of F̃(X\S))

is a non-empty H1
(
X \ S,Π(1)

)
-torsor. Denote it by φS,F . When F varies

φS,F become fibers of an H1
(
X \ S,Π(1)

)
-torsor φS over BunG.

4.1.3. For any x ∈ X the set |F̃(SpecOx)| has a single element. We use it

to trivialize the Π-torsor |F̃(SpecKx)| (note that Π = H1
(
SpecKx,Π(1)

)
).

Thus the restriction to SpecKs, s ∈ S, defines a Ress-affine map Ress,F :

φS,F → Π where Ress : H1
(
X \ S,Π(1)

)
→ Π is the residue at s. For c ∈ Π

set ΠS
c := {πS = (πs) :

∑
πs = c} ⊂ ΠS . The map ResS,F := (Ress,F ) :

φS,F → ΠS has image ΠS
c(F).
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4.1.4. Recall that Π∨ is the group dual to Π, so we have a non-degenerate

pairing ( ) : Π×Π∨ → µ∞ .

Let E be a Π∨-torsor on X. Set ES :=
∏
s∈S Es = the set of trivializations

of E at S; this is a (Π∨)S-torsor. For any e ∈ ES we have the class

cl(E , e) ∈ H1
c (X \ S,Π∨). Denote by `S,E,F a µ∞-torsor equipped with a

map

(150) ( , )` : φS,F × ES → `S,E,F

such that for ϕ ∈ φS,F , e = (es) ∈ ES , h ∈ H1
(
X \ S,Π(1)

)
, χ = (χs) ∈

(Π∨)S one has

(151)
(ϕ+ h, e)` = (h, cl(E , e))P(ϕ, e)`

(ϕ, χe)` = (ResS ϕ, χ)(ϕ, e)`.

Here ( , )P : H1
(
X \ S,Π(1)

)
× H1

c

(
X \ S,Π∨

)
→ µ∞ is the Poincaré

pairing and (ResS ϕ, χ) :=
∏
s∈S(Ress ϕ, χs) ∈ µ∞. Such (`S,E,F , ( )`)) exists

and is unique. If S′ ⊃ S then we have obvious maps φS,F ↪→ φS′,F , ES′ � ES ,

and there is a unique identification of µ∞-torsors `S,E,F = `S′,E,F that makes

these maps mutually adjoint for ( , )`. Thus our µ∞-torsor is independent

of S and we denote it simply `E,F .

When F varies `E,F become fibers of a µ∞-torsor `E over BunG. The

functor

(152) ` = `G̃ : Π∨ tors(X)→ µ∞ tors(BunG),

E 7→ `E , has an obvious structure of Picard functor. The corresponding

homomorphism of the automorphism groups Π∨ → Γ(BunG, µ∞) is χ 7→

(c, χ).

Remark. In fact ` is a functor Π∨ tors(X) → µm tors(BunG) where m is

the order of Π. This follows from the construction or from the fact that

(152) is a Picard functor.
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4.1.5. For an abelian group A denote by A gerbes(X) the category

associated to the 2-category of A-gerbes on X (so A gerbes(X) is the

groupoid whose objects are A-gerbes on X and whose morphisms are 1-

morphisms up to 2-isomorphism). In 4.1.2–4.1.4 we have in fact constructed

a bi-Picard functor

(153) Π∨ tors(X)×Π(1) gerbes(X)→ µ∞ tors

where µ∞ tors denotes the category of µ∞-torsors over a point. In this

subsection (which can be skipped by the reader) we give a “scientific

interpretation” of this construction.

In §1.4.11 from [Del73] Deligne associates a Picard category to a complex

K· of abelian groups such that Ki = 0 for i 6= 0,−1. We denote this Picard

category by P (K·). Its objects are elements of K0 and a morphism from

x ∈ K0 to y ∈ K0 is an element f ∈ K−1 such that df = y − x.

In 4.1.4 we implicitly used the interpretation of Π∨ tors(X) as P (K·S)

where K0
S = H1

c (X\S,Π∨) = the set of isomorphism classes of Π∨-torsors

on X trivialized over S, K−1
S = H0(S,Π∨). In 4.1.3 we implicitly used the

interpretation of Π(1) gerbes(X) as P (L·S) where L0
S = H2

S(X,Π(1)) = ΠS ,

L−1
S = H1(X\S,Π(1)) (L0

S parametrizes Π(1)-gerbes on X with a fixed

object over X\S). The construction of the bi-Picard functor (153) given in

4.1.4 uses only the canonical pairing K·S × L·S → µ∞[1].

For S′ ⊃ S we have canonical quasi-isomorphisms K ·S′ → K ·S and

L·S → L·S′ . The corresponding equivalences P (K ·S′)→ P (K ·S) and P (L·S)→

P (L·S′) are compatible with our identifications of P (K ·S) and P (K ·S′) with

Π∨ tors(X) and also with the identifications of P (L·S) and P (L·S′) with

Π(1) gerbes(X). The morphism L·S → L·S′ is adjoint to K ·S′ → K ·S with

respect to the pairings K ·S×L·S → µ∞[1] and K ·S′×L·S′ → µ∞[1]. Therefore

(153) does not depend on S.

Remarks
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(i) Instead of K ·S and L·S it would be more natural to use their images in

the derived category, i.e., (τ≤1RΓ(X,Π∨))[1] and (τ≥1RΓ(X,Π(1)))[2].

However the usual derived category is not enough: according to

§§1.4.13–1.4.14 from [Del73] the image of K · in the derived category

only gives P (K ·) up to equivalence unique up to non-unique iso-

morphism. So one needs a refined version of the notion of derived

category, which probably cannot be found in the literature.

(ii) From the non-degeneracy of the pairing K ·S × L·S → µ∞[1] one can

easily deduce that (153) induces an equivalence between Π∨ tors(X)

and the category of Picard functors Π(1) gerbes(X)→ µ∞ tors (this

is a particular case of the equivalence (1.4.18.1) from [Del73]).

4.1.6. The definition of `E from 4.1.4 can be reformulated as follows. Let

S ⊂ X be finite and non-empty. For a fixed e ∈ ES we have the class c =

cl(E , e) ∈ H1
c (X\S,Π∨) and therefore a morphism λe : H1(X\S,Π(1)) →

µ∞ defined by λe(h) = (h, c)P . Denote by `E,e the λe-pushforward of the

H1(X\S,Π(1))-torsor φS from 4.1.2. The torsors `E,e for various e ∈ ES are

identified as follows.

Let ẽ = χe, χ ∈ (Π∨)S . Then λẽ(h)/λe(h) = (ResS(h), χ) where ResS is

the boundary morphism H1(X\S,Π(1))→ H2
S(X,Π(1)) = ΠS . So `E,ẽ/`E,e

is the pushforward of the ΠS-torsor (ResS)∗φS via χ : ΠS → µ∞. The

map ResS,F : φS,F → ΠS from 4.1.3 induces a canonical trivialization of

(ResS)∗φS and therefore a canonical isomorphism `E,e
∼−→ `E,ẽ. So we can

identify `E,e for various e ∈ ES and obtain a µ∞-torsor on BunG, which does

not depend on e ∈ ES . Clearly it does not depend on S. This is `E .

4.1.7. Let S ⊂ X be a non-empty finite set, OS :=
∏
x∈S

Ox, KS :=
∏
x∈S

Kx

where Ox is the completed local ring of x and Kx is its field of fractions.

Denote by S the formal neighbourhood of S and by BunG,S the moduli

scheme of G-bundles on X trivialized over S (in 2.3.1 we introduced BunG,x,

which corresponds to S = {x}). One defines an action of G(KS) on BunG,S
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extending the action of G(OS) by interpreting a G-bundle on X as a G-

bundle on X \ S with a trivialization of its pullback to SpecKS (see 2.3.4

and 2.3.7).

Let `E be the µ∞-torsor on BunG corresponding to a Π∨-torsor E onX (see

4.1.4, 4.1.6). Denote by `SE the inverse image of `E on BunG,S . The action

of G(OS) on BunG,S canonically lifts to its action on `SE . We claim that a

trivialization of E over S defines an action of G(KS) on `SE extending the

above action of G(OS) and compatible with the action of G(KS) on BunG,S .

Indeed, once e ∈ ES is chosen `SE can be identified with `SE,e = (λe)∗φ̃S where

φ̃S is the pullback of φS to BunG,S and λe was defined in 4.1.6. G(KS) acts

on φ̃S because φS,F depends only on the restriction of F to X \S. So G(KS)

acts on `SE,e.

The isomorphism `SE,e
∼−→ `SE,ẽ induced by the isomorphism `E,e

∼−→ `E,ẽ

from 4.1.6 is not G(KS)-equivariant. Indeed, if ẽ = χe, χ ∈ (Π∨)S , then

according to 4.1.6 `SE,ẽ/`
S
E,e is the pushforward of the ΠS-torsor (Res)∗φ̃S

via χ : ΠS → µ∞. The identification (Res)∗φ̃S = BunG,S ×ΠS from

4.1.6 becomes G(KS)-equivariant if G(KS) acts on ΠS via the boundary

morphism ϕ : G(KS) → H1(SpecKS ,Π(1)) = ΠS (we should check

the sign!!!). Therefore the trivial µ∞-torsor `SE,ẽ/`
S
E,e is equipped with a

nontrivial action of G(KS): it acts by χϕ : G(KS)→ µ∞.

So to each e ∈ ES there corresponds an action of G(KS) on φ̃S , and if e

is replaced by χe, χ ∈ (Π∨)S = Hom(ΠS , µ∞), then the action is multiplied

by χϕ : G(KS)→ µ∞.

Remark. By the way, we have proved that the coboundary map ϕ :

G(KS) → H1(SpecKS ,Π(1)) = ΠS is locally constant27 (indeed, G(KS)

acts on (Res)∗φ̃S as a group ind-scheme, so ϕ is a morphism of ind-

schemes, i.e., ϕ is locally constant. The proof can be reformulated as

follows. Without loss of generality we may assume that S consists of a

single point x. The group ind-scheme G(Kx) acts on BunG,x (see 2.3.3 –

27See also 4.5.4.
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2.3.4), so it acts on π0(BunG,x) = π0(BunG). One has the “first Chern

class” map c : π0(BunG)→ Π. It is easy to show that c(gu) = ϕ(g)c(u) for

u ∈ π0(BunG), g ∈ G(Kx) where ϕ : G(Kx) → H1(Kx,Π(1)) = Π is the

coboundary map. So ϕ is locally constant.

4.1.8. Denote by G̃(KS)E the group generated by µ∞ and elements 〈g, e〉,

g ∈ G(KS), e ∈ ES , with the defining relations

〈g1g2, e〉 = 〈g1, e〉〈g2, e〉

〈g1, χe〉 = χ(ϕ(g)) · 〈g, e〉 , χ ∈ (Π∨)S = Hom(ΠS , µ∞)

α〈g, e〉 = 〈g, e〉α , α ∈ µ∞

G̃(KS)E is a central extension of G(KS) by µ∞. The extension is trivial: a

choice of e ∈ ES defines a splitting

(154) σe : G(KS)→ G̃(KS)E , g 7→ 〈g, e〉 .

It follows from 4.1.7 that G̃(KS)E acts on `SE so that µ∞ ⊂ G̃(KS)E acts

in the obvious way and the action of G(KS) on `SE corresponding to e ∈ ES
(see 4.1.7) comes from the splitting (154).

4.1.9. Consider the point of BunG,S corresponding to the trivial G-bundle

on X with the obvious trivialization over S. Acting by G(KS) on this

point one obtains a morphism f : G(KS) → BunG,S . Suppose that G is

semisimple. Then f induces an isomorphism.

(155) G(KS)/G(AS)
∼−→ BunG,S

where AS := H0(X \ S,OX) (see Theorem 1.3 from [La-So] and its proof in

§3 of loc.cit). It is essential that G(KS) and G(AS) are considered as group

ind-schemes and G(KS)/G(AS) as an fppf quotient, so (155) is more than a

bijection between the sets of C-points. We also have an isomorphism

(156) G(OS) \G(KS)/G(AS)
∼−→ BunG .
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It is easy to see that the µ∞-torsors `E and `SE defined in 4.1.4 and 4.1.7 can

be described as

`SE = G̃(KS)E/G(AS)(157)

`E = G(OS) \ G̃(KS)E/G(AS)(158)

where G̃(KS)E is the central extension from 4.1.8. Here the embeddings

i : G(O)→ G̃(KS)E and j : G(AS)→ G̃(KS)E are defined by

i(g) = 〈g, e〉 , e ∈ ES(159)

j(g) = 〈g, e〉 · (ψ(g), cl(E , e))−1
P , e ∈ ES(160)

(we should check the sign!!!) where ψ is the boundary morphism G(AS)→

H1(X \S,Π(1)) and cl(E , e) ∈ H1
c (X \S,Π∨) is the class of (E , e) (the r.h.s.

of (159) and (160) do not depend on e).

Remark. The morphisms ϕ : G(KS) → ΠS and ψ : G(AS) →

H1(X \ S,Π(1)) induce a morphism

(161) BunG = G(OS) \G(KS)/G(AS)→ ΠS/H1(X \ S,Π(1))

where the r.h.s. of (161) is understood as a quotient stack. Clearly `E is the

pullback of a certain µ∞-torsor on the stack ΠS/H1(X \ S,Π(1)).

4.1.10. The reader can skip the remaining part of 4.1.

Let C be a groupoid. Denote by C the corresponding constant sheaf of

groupoids on the category of C-schemes equipped with the fppf topology. If

the automorphism groups of objects of C are finite then C is an algebraic

stack. By abuse of notation we will often write C instead of C (e.g., if C is

a set then C = C × Spec C is usually identified with C).

Examples. 1) If C has a single object and G is its automorphism group

then C is the classifying stack of G.
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2) If C = P (K ·) (see 4.1.5) then C is the quotient stack of K0 with

respect to the action of K−1. So according to 4.1.5 the r.h.s. of

(161) is the stack corresponding to the groupoid Π(1) gerbes(X).

3) If C = A gerbes(X) then C is the sheaf of groupoids associated to

the presheaf S 7→ A gerbes(X × S).

Consider the groupoid Π(1) gerbes(X) as an algebraic stack. In 4.1.2 we

defined a canonical morphism

(162) c̃ : BunG → Π(1) gerbes(X)

that associates to a G-bundle F the Π(1)-gerbe of G̃-liftings of F (by the

way, the morphism (161) defined for semisimple G coincides with c̃). c̃

is a refinement of the Chern class map c : BunG → H2(X,Π(1)) = Π;

more precisely, c is the composition of c̃ and the canonical morphism

Π(1) gerbes(X) → H2(X,Π(1)) = the set of isomorphism classes of

Π(1) gerbes(X).

The µ∞-torsors on BunG constructed in 4.1.4 come from µ∞-torsors on

Π(1) gerbes(X). The following proposition shows that if G̃ is the universal

covering of G then any local system on BunG comes from a unique local

system on Π(1) gerbes(X).

4.1.11. Proposition. Suppose that G̃ is the universal covering of G (so

Π = π1(G) ). Then the morphism (162) induces an equivalence between

the fundamental groupoid of BunG and Π(1) gerbes(X).

Let us sketch a transcendental proof (since it is transcendental we

will not distinguish between Π and Π(1)). Denote by Xtop the C∞

manifold corresponding to X; for a G-bundle F on X denote by F top

the corresponding G-bundle on Xtop. Consider the groupoid Buntop
G whose

objects are G-bundles on Xtop and morphisms are isotopy classes of C∞

isomorphisms between G-bundles. It is easy to show that the natural functor

Buntop
G → Π gerbes(Xtop) = Π gerbes(X) is an equivalence. So we must

prove that for a G-bundle ξ on Xtop the stack of G-bundles F on X equipped
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with an isotopy class of isomorphisms F top ∼−→ ξ is non-empty, connected,

and simply connected. This is clear if a G-bundle on X is interpreted as a

G-bundle on Xtop equipped with a ∂̄-connection.

Remark. In 4.1.2 we defined the H1(X\S,Π(1))-torsor φS → BunG. If S =

{x} for some x ∈ X then H1(X\S,Π(1)) = H1(X,Π(1)), so φ{x} → BunG is

a H1(X,Π(1))-torsor. Proposition 4.1.11 can be reformulated as follows: if

G̃ is the universal covering of G then the Chern class map π0(BunG)→ Π is

bijective and the restriction of φ{x} → BunG to each connected component

of BunG is a universal covering. This is really a reformulation because a

choice of x defines an equivalence.

(163) Π(1) gerbes(X)
∼−→ Π×H1(X,Π(1)) tors

(to a Π(1)-gerbe on X one associates its class in H2(X,Π(1)) = Π and the

H1(X,Π(1))-torsor of isomorphism classes of its objects over X \ {x}).

4.2. Pfaffians I. In this subsection we assume that for (Z/2Z)-graded

vector spaces A and B the identification of A⊗B with B ⊗A is defined by

a⊗b 7→ (−1)p(a)p(b)b⊗a where p(a) is the parity of a. Following [Kn-Mu] for

a vector space V of dimension n <∞ we consider detV as a (Z/2Z)-graded

space of degree n mod 2.

4.2.1. Let X be a smooth complete curve over C. An ω-orthogonal bundle

onX is a vector bundleQ equipped with a non-degenerate symmetric pairing

Q ⊗ Q → ωX . Denote by ω-Ort the stack of ω-orthogonal bundles on X.

There is a well known line bundle detRΓ on ω-Ort (its fiber over Q is

detRΓ(X,Q)). Laszlo and Sorger [La-So] construct a (Z/2Z)-graded line

bundle on ω-Ort (which they call the Pfaffian) and show that the tensor

square of the Pfaffian is detRΓ. For our purposes it is more convenient to

use another definition of Pfaffian. Certainly it should be equivalent to the

one from [La-So], but we did not check this.
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We will construct a line bundle Pf on ω-Ort which we call the Pfaffian;

its fiber over an ω-orthogonal bundle Q is denoted by Pf(Q). The action

of −1 ∈ AutQ on Pf(Q) defines a (Z/2Z)-grading on Pf. Since Pf is a line

bundle, “grading” just means that there is a locally constant p : (ω-Ort)→

Z/2Z such that Pf(Q) has degree p(Q). Actually p(Q) = dimH0(Q) mod 2

(the fact that dimH0(Q) mod 2 is locally constant was proved by M. Atiyah

and D. Mumford [At, Mu]).

For an ω-orthogonal bundle Q denote by Q− the same bundle Q equipped

with the opposite pairing Q ⊗ Q → ωX . Set Pf−(Q) := Pf(Q−). We will

define a canonical isomorphism Pf ⊗Pf−
∼−→ detRΓ. Define isomorphisms

f±i : Pf(Q)
∼−→ Pf(Q−) by f±i := (ϕ±i)∗ where i =

√
−1 and ϕi : Q ∼−→ Q−

is multiplication by i. Identifying Pf and Pf− by means of f±i we obtain

isomorphisms c±i : Pf⊗2 ∼−→ detRΓ such that (ci)
−1c−i : Pf(Q)⊗2 ∼−→

Pf(Q)⊗2 is multiplication by (−1)p(Q).

Remarks

(i) If Q is an ω-orthogonal bundle then by Serre’s duality H1(X,Q) =

(H0(X,Q))∗, so detRΓ(X,Q) = detH0(X,Q)⊗2. The naive

definition would be Pf?(Q) := detH0(X,Q), but this does not make

sense for families of Q’s because dimH0(X,Q) can jump.

(ii) Let Q be the orthogonal direct sum of Q1 and Q2. Then

detRΓ(X,Q) = detRΓ(X,Q1) ⊗ detRΓ(X,Q2). From the defini-

tions of Pf and Pf ⊗Pf−
∼−→ detRΓ it will be clear that there is a

canonical ismorphism Pf(Q)
∼−→ Pf(Q1)⊗ Pf(Q2) and the diagram

Pf(Q)⊗ Pf(Q−)
∼−→ Pf(Q1)⊗ Pf(Q−1 )⊗ Pf(Q2)⊗ Pf(Q−2 )y o

y o
detRΓ(X,Q)

∼−→ detRΓ(X,Q1)⊗ detRΓ(X,Q2)

is commutative. Therefore the isomorphisms c±i : Pf(Q)⊗2 ∼−→

detRΓ(X,Q) are compatible with decompositions Q = Q1 ⊕Q2.
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(iii) One can define c± : Pf(Q)⊗2 ∼−→ detRΓ(X,Q) by c± = i±p(Q)2
ci

where p(Q)2 is considered as an element of Z/4Z. Then c± does

not change if i is replaced by −i. However c± do not seem to be

naturalobjects, e.g., they are not compatible with decompositions

Q = Q1 ⊕Q2 (the “error” is (−1)p(Q1)p(Q2)).

(iv) The construction of Pf(Q) works if C is replaced by any field k such

that char k 6= 2. The case char k = 2 is discussed in 4.2.16.

4.2.2. A Lagrangian triple consists of an even-dimensional vector space

V equipped with a non-degenerate bilinear symmetric form ( , ) and

Lagrangian (= maximal isotropic) subspaces L+, L− ⊂ V . If X and Q

are as in 4.2.1 and Q′ ⊂ Q is a subsheaf such that H0(X,Q′) = 0 and

S := Supp(Q/Q′) is finite then one associates to (Q,Q′) a Lagrangian triple

(V ;L+, L−) as follows (cf. [Mu]):

(1) V := H0(X,Q′′/Q′) where Q′′ := Hom(Q′, ωX) ⊃ Q;

(2) L+ := H0(X,Q/Q′) ⊂ V ;

(3) L− := H0(X,Q′′) ⊂ V ;

(4) the bilinear form on V is induced by the natural pairing Q′′/Q′ ⊗

Q′′/Q′ → (j∗ωX\S)/ωX and the “sum of residues” mapH0(X, (j∗ωX\S)/ωX)→

C where j is the embedding X\S → X. In this situation one can

identify RΓ(X,Q) with the complex

(164) 0→ L− → V/L+ → 0

concentrated in degrees 0 and 1. In particular H0(X,Q) = L+∩L−,

H1(X,Q) = V/(L+ + L−) and Serre’s pairing between H0(X,Q) =

L+ ∩ L− and H1(X,Q) = V/(L+ + L−) is induced by the bilinear

form on V .

4.2.3. For a Lagrangian triple (V ;L+, L−) set

(165) det(V ;L+, L−) := detL+ ⊗ detL− ⊗ (detV )∗ .
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det(V ;L+, L−) is nothing but the determinant of the complex (164).

Formula (165) defines a line bundle det on the stack of Lagrangian triples. In

4.2.4 and 4.2.8 we will construct a Z/2Z-graded line bundle Pf on this stack

and a canonical isomorphism Pf ⊗Pf−
∼−→ det where Pf−(V ;L+, L−) :=

Pf(V −;L+, L−) and V − denotes V equipped with the form −( , ). The naive

“definition” would be Pf?(V ;L+, L−) := det(L+∩L−) or Pf?(V ;L+, L−)∗ :=

det((L+ ∩ L−)∗) = det(V/(L+ + L−)) (cf. Remark (i) from 4.2.1).

4.2.4. For a Lagrangian triple (V ;L+, L−) define Pf(V ;L+, L−) as follows.

Denote by Cl(V ) the Clifford algebra equipped with the canonical (Z/2Z)-

grading (V ⊂ Cl(V ) is odd). Let M be an irreducible (Z/2Z)-graded Cl(V )-

module (actually M is irreducible even without taking the grading into

account). M is defined uniquely up to tensoring by a 1-dimensional (Z/2Z)-

graded vector space. Set ML− = M/L−M , ML+ := {m ∈ M |L+m = 0}.

Then ML+ and ML− are 1-dimensional (Z/2Z)-graded spaces. We set

(166) Pf(V ;L+, L−) := ML+ ⊗ (ML−)∗ .

In particular we can take M = Cl(V )/Cl(V )L+. Then ML+ = C, so

(167) Pf(V ;L+, L−)∗ = Cl(V )/(L− · Cl(V ) + Cl(V ) · L+) .

Clearly (166) or (167) defines Pf as a (Z/2Z)-graded line bundle on the

stack of Lagrangian triples.28 The grading corresponds to the action of

−1 ∈ Aut(V ;L+, L−) on Pf(V ;L+, L−).

If V is the orthogonal direct sum of V1 and V2 then Cl(V ) is the tensor

product of the superalgebras Cl(V1) and Cl(V2). Therefore if (V 1;L1
+, L

1
−)

and (V 2;L2
+, L

2
−) are Lagrangian triples one has a canonical isomorphism

(168) Pf(V 1⊕V 2;L1
+⊕L2

+, L
1
−⊕L2

−) = Pf(V 1;L1
+, L

1
−)⊗Pf(V 2;L2

+, L
2
−) .

where ⊕ denotes the orthogonal direct sum.

28In other words, passing from individual Lagrangian triples to families is obvious.

This principle holds for all our discussion of Pfaffians (only in the infinite-dimensional

setting of 4.2.14 we explicitly consider families because this really needs some care).
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Pf(V ;L+, L−) is even if and only if dim(L+ ∩ L−) is even. This follows

from (168) and statement (i) of the following lemma.

4.2.5. Lemma.

(i) Any Lagrangian triple (V ;L+, L−) can be represented as an

orthogonal direct sum of Lagrangian triples (V 1;L1
+, L

1
−) and

(V 2;L2
+, L

2
−) such that L1

+ ∩ L1
− = 0, L2

+ = L2
−.

(ii) Moreover, if a subspace Λ ⊂ L+ is fixed such that L+ = Λ⊕ (L+ ∩

L−) then one can choose the above decomposition (V ;L+, L−) =

(V 1;L1
+, L

1
−)⊕ (V 2;L2

+, L
2
−) so that L1

+ = Λ.

Proof

(i) Choose a subspace P ⊂ V such that V = (L+ + L−)⊕ P . Then set

V 2 := (L1 ∩ L2)⊕ P , V 1 := (V 2)⊥.

(ii) Choose a subspace P ⊂ Λ⊥ such that Λ⊥ = L+ ⊕ P (this implies

that V = (L+ + L−) ⊕ P because Λ⊥/L+ → V/(L+ + L−) is an

isomorphism). Then proceed as above. �

4.2.6. In this subsection (which can be skipped by the reader) we

construct a canonical isomorphism between Pf(V ;L+, L−) and the naive

Pf?(V ;L+, L−) from 4.2.3. Recall that Pf?(V ;L+, L−) := det(L+ ∩ L−),

so Pf?(V ;L+, L−)∗ = det((L+ ∩ L−)∗) = det(V/(L+ + L−)), it being

understood that the pairing detW ⊗detW ∗ → C, W := L+∩L−, is defined

by (e1 ∧ . . . ∧ ek) ⊗ (ek ∧ . . . ∧ e1) 7→ 1 where e1, . . . , ek is a base of W and

e1, . . . , ek is the dual base of W ∗ (this pairing is reasonable from the “super”

point of view; e.g., it is compatible with decompositions W = W1 ⊕W2).

To define the isomorphism Pf(V ;L+, L−)
∼−→ Pf?(V ;L+, L−) we use the

canonical filtration on Cl(V ) defined by

(169) Cl0(V ) = C, Clk+1(V ) = Clk(V ) + V · Clk(V ) .

We have Clk(V )/Clk−1(V ) =
∧k V . Set r := dim(L+ ∩ L−). One

has the canonical epimorphism ϕ : Clr(V ) →
∧r V →

∧r(V/(L+ +
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L−)) = det(V/(L+ + L−)) = Pf?(V ;L+, L−)∗. It is easy to deduce

from 4.2.5(i) that the canonical mapping Clr(V ) → Cl(V )/(L− · Cl(V ) +

Cl(V ) · L+) = Pf(V ;L+, L−)∗ factors through ϕ and the induced map

f : Pf?(V ;L+, L−)∗ → Pf(V ;L+, L−)∗ is an isomorphism. f∗ is the desired

isomorphism Pf(V ;L+, L−)
∼−→ Pf?(V ;L+, L−).

Here is an equivalent definition. Let M be an irreducible (Z/2Z)-graded

Cl(V )-module. The canonical embedding det(L+ ∩ L−) ⊂
∧∗(L+ ∩ L−) =

Cl(L+ ∩ L−) ⊂ Cl(V ) induces a map det(L+ ∩ L−)⊗ML+∩L− →ML+∩L− ,

which is actually an isomorphism. It is easy to deduce from 4.2.5(i)

that the composition ML+ → ML+∩L− ∼−→ det(L+ ∩ L−) ⊗ ML+∩L− →

det(L+ ∩ L−) ⊗ ML− is an isomorphism. It induces an isomorphism

Pf(V ;L+, L−) := ML+ ⊗ (ML−)⊗−1 → det(L+ ∩ L−) = Pf?(V ;L+, L−),

which is actually inverse to the one constructed above.

4.2.7. Before constructing the isomorphism Pf ⊗Pf−
∼−→ det we will

construct a canonical isomorphism

(170) Pf(V ⊕ V ∗;L+ ⊕ L⊥+, L− ⊕ L⊥−)
∼−→ det(V ;L+, L−)

where V is a finite dimensional vector space without any bilinear form on it,

L± ⊂ V are arbitrary subspaces and V ⊕ V ∗ is equipped with the obvious

bilinear form (the l.h.s. of (170) makes sense because L±⊕L⊥± is Lagrangian,

the r.h.s. of (170) is defined by (165)). Set

(171) M =
∧
V ⊗ (detL+)∗ ,

∧
V := ⊕

i

∧iV .

M is the irreducible Cl(V ⊕ V ∗)-module with ML+⊕L⊥+ = C, so according

to (166) Pf(V ⊕ V ∗;L+ ⊕ L⊥+, L− ⊕ L⊥−) = (ML−⊕L⊥−
)∗. Clearly

ML− =
∧

(V/L−) ⊗ (detL+)∗ and ML−⊕L⊥−
= det(V/L−) ⊗ (detL+)∗ =

det(V ;L+, L−)∗ (see (165)). So we have constructed the isomorphism (170).
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4.2.8. Now let (V ;L+, L−) be a Lagrangian triple. We will construct a

canonical isomorphism

(172) Pf(V ;L+, L−)⊗ Pf(V −;L+, L−)
∼−→ det(V ;L+, L−)

where V − denotes V equipped with the bilinear form −( , ). If W is a finite

dimensional vector space equipped with a nondegenerate symmetric bilinear

form then (V ⊗W ;L+ ⊗W,L− ⊗W ) is a Lagrangian triple. (170) can be

rewritten as a canonical isomorphism.

(173) det(V ;L+, L−)
∼−→ Pf(V ⊗H;L+ ⊗H,L− ⊗H)

where H denotes C2 equipped with the bilinear form
(

0 1
1 0

)
. On the other

hand (168) yields an isomorphism

(174) Pf(V ;L+, L−)⊗Pf(V −;L+, L−)
∼−→ Pf(V ⊗H ′;L+ ⊗H ′, L− ⊗H ′)

where H ′ denotes C2 equipped with the bilinear form
(

1 0
0 −1

)
. So an

isomorphism ϕ : H ′
∼−→ H induces an isomorphism

ϕ∗ : Pf(V ;L+, L−)⊗ Pf(V −;L+, L−)
∼−→ det(V ;L+, L−) .

Lemma. If ψ ∈ AutH ′ then

(175) (ϕψ)∗ = (detψ)nϕ∗ , n = dim(L+ ∩ L−) .

Proof. AutH ′ acts on the r.h.s. of (174) by some character χ : AutH ′ → C∗.

Any character of AutH ′ is of the form ψ 7→ (detψ)m, m ∈ Z/2Z.

χ
(−1 0

0 1

)
= (−1)n, n := dim(L+ ∩ L−), because −1 ∈ Aut(V ;L+, L−) acts

on Pf(V ;L+, L−) as (−1)n (see 4.2.4). So m = n mod 2. �

We define (172) to be ϕ∗ for any ϕ : H ′
∼−→ H such that detϕ = 1.

Remarks

(i) (172) is compatible with decompositions of (V ;L+, L−) into or-

thogonal direct sums; i.e., if one has such a decomposition

(V ;L+, L−) = (V 1;L1
+, L

1
−) ⊕ (V 2;L2

+, L
2
−) then the isomorphisms
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(172) for (V ;L+, L−), (V 1;L1
+, L

1
−), and (V 2;L2

+, L
2
−) are compat-

ible with (168) and the canonical isomorphism det(V ;L+, L−) =

det(V 1;L1
+, L

1
−)⊗ det(V 2;L2

+, L
2
−).

(ii) (170) is compatible with decompositions of (V ;L+, L−) into direct

sums.

4.2.9. In this subsection (which can be skipped by the reader) we give

an equivalent construction of (172). We will use the superalgebra anti-

isomorphism ∗ : Cl(V −)
∼−→ Cl(V ) identical on V (for any v1, . . . , vk ∈ V

one has (v1 . . . vk)
∗ = (−1)k(k−1)/2vk . . . v1). We also use the canonical map

sTr : Cl(V ) = Cln(V ) → Cln(V )/Cln−1(V ) = detV where n = dimV and

Clk(V ) is defined by (169). It has the “supertrace property”

(176) sTr(ab) = (−1)p(a)p(b) sTr(ba)

where a, b ∈ Cl(V ) are homogeneous of degrees p(a), p(b) ∈ Z/2Z. Indeed,

it is enough to prove (176) in the case a ∈ V , p(ab) = n mod 2; then

b ∈ Cln−1(V ) and (176) is obvious. Or one can check that sTr(a) coincides

up to a sign with the supertrace of the operator a : M →M where M is an

irreducible Cl(V )-module.

Now consider the map

(177) detL− ⊗ Pf(V ;L+, L−)∗ ⊗ detL+ ⊗ Pf(V −;L+, L−)∗ → detV

defined by a−⊗x⊗a+⊗y 7→ sTr(a−xa+y
∗). Here a± ∈ detL± ⊂ Λ∗(L±) =

Cl(L±) ⊂ Cl(V ), x ∈ Pf(V ;L+, L−)∗ = Cl(V )/(L− · Cl(V ) + Cl(V ) · L+),

y∗ ∈ Cl(V )/(L+ · Cl(V ) + Cl(V ) · L−), so (177) is well-defined. It is easy

to see (e.g., from 4.2.5 (i)) that (177) is an isomorphism. It induces an

isomorphism

Pf(V ;L+, L−)⊗Pf(V −;L+, L−)
∼−→ detL+⊗detL−⊗(detV )∗ = det(V ;L+, L−)

One can show that this isomorphism equals (172).
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4.2.10. Let X and Q be as in 4.2.1 and Q′ ⊂ Q as in 4.2.2. To these data we

have associated a Lagrangian triple (V ;L+, L−) such that det(V ;L+, L−) =

detRΓ(X,Q) (see 4.2.2). Set PfQ′(Q) := Pf(V ;L+, L−). According to 4.2.9

we have a canonical isomorphism PfQ′(Q) ⊗ PfQ′(Q−)
∼−→ detRΓ(X,Q).

To define Pf(Q) it is enough to define a compatible system of isomorphisms

PfQ′(Q)
∼−→ PfQ̃′(Q) for all pairs (Q′, Q̃′) such that Q′ ⊂ Q̃′. To define

Pf(Q)⊗Pf(Q−)
∼−→ detRΓ(X,Q) it suffices to prove the commutativity of

PfQ′(Q)⊗ PfQ′(Q−)
∼−→ detRΓ(X,Q)∼−→

PfQ̃′(Q)⊗ PfQ̃′(Q
−)

∼−→

The Lagrangian triple (Ṽ ; L̃+, L̃−) corresponding to Q̃′ is related to the

triple (V ;L+, L−) corresponding to Q′ as follows: if Λ = H0(X, Q̃′/Q′) ⊂

H0(X,Q/Q′) = L+ then

(178) Ṽ = Λ⊥/Λ, L̃+ = L+/Λ ⊂ Ṽ , L̃− = L− ∩ Λ⊥ ↪→ Ṽ

(notice that Λ ∩ L− = H0(X, Q̃′) = 0). So it remains to do some linear

algebra (see 4.2.11). It is easy to check that our definition of Pf(Q) and

Pf(Q)⊗ Pf(Q−)
∼−→ detRΓ(X,Q) makes sense for families of Q’s.

4.2.11. Let (V ;L+, L−) be a Lagrangian triple, Λ ⊂ L+ a subspace such

that Λ ∩ L− = 0. Then (Ṽ ; L̃+, L̃−) defined by (178) is a Lagrangian

triple. In this situation we will say that (Ṽ ; L̃+, L̃−) is a subquotient of

(V ;L+, L−). It is easy to show that a subquotient of a subquotient is

again a subquotient. So we can consider the category T with Lagrangian

triples as objects such that a morphism from (V ;L+, L−) to (V ′;L′+, L
′
−)

is defined to be an isomorphism between (V ;L+, L−) and a subquotient

of (V ′;L′+, L
′
−). Consider also the category C whose objects are finite

complexes of finite dimensional vector spaces and morphisms are quasi-

isomorphisms. Denote by 1I the category whose objects are (Z/2Z)-graded

1-dimensional vector spaces and morphisms are isomorphisms preserving
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the grading. The complex (164) considered as an object of C depends

functorially on (V ;L+, L−) ∈ T : if (Ṽ ; L̃+, L̃−) is the subquotient of

(V ;L+, L−) corresponding to Λ ⊂ L+ then we have the quasi-isomorphism

L− −→ V/L+

↪→ ↪→

L̃− −→ Ṽ /L̃+ = Λ⊥/L+

Applying the functor det : C → 1I from [Kn-Mu] we see that

det(V ;L+, L−) ∈ 1I depends functorially on (V ;L+, L−) ∈ T . If (Ṽ ; L̃+, L̃−)

is the subquotient of (V ;L+, L−) corresponding to Λ ⊂ L+ then the iso-

morphism between det(V ;L+, L−) = (detL+) ⊗ (detL−) ⊗ (detV )∗ and

det(Ṽ ; L̃+, L̃−) = (det L̃+) ⊗ (det L̃−) ⊗ (det Ṽ )∗ comes from the natural

isomorphisms detL+ = det Λ ⊗ det L̃+, detL− = det L̃− ⊗ det(V/Λ⊥),

detV = det Λ⊗ det Ṽ ⊗ det(V/Λ⊥).

As explained in 4.2.10 we have to define Pf as a functor T → 1I and to show

that the isomorphism Pf(V ;L+, L−) ⊗ Pf−(V ;L+, L−)
∼−→ det(V ;L+, L−)

from 4.2.8 is functorial.

If (Ṽ ; L̃+, L̃−) is the subquotient of (V ;L+, L−) corresponding to Λ ⊂ L+

then

Pf(V ;L+, L−)∗ = Cl(V )/(L− · Cl(V ) + Cl(V ) · L+)

Pf(Ṽ ; L̃+, L̃−)∗ = Cl(Λ⊥)/((L− ∩ Λ⊥) · Cl(Λ⊥) + Cl(Λ⊥) · L+) .

So the embedding Cl(Λ⊥)→ Cl(V ) induces a mapping

(179) Pf(Ṽ ; L̃+, L̃−)∗ → Pf(V ;L+, L−)∗ .

This defines Pf∗ as a functor T → {(Z/2Z)-graded 1-dimensional spaces}

(it is easy to see that composition corresponds to composition). It remains

to show that

a) (179) is an isomorphism,
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b) (179) is compatible with the pairings Pf(V ;L+, L−)∗⊗Pf(V −;L+, L−)∗
∼−→

det(V ;L+, L−)∗ and Pf(Ṽ ; L̃+, L̃−)∗⊗Pf(Ṽ −;L+, L−)∗
∼−→ det(Ṽ ; L̃+, L̃−)∗

from 4.2.8.

b) can be checked directly and a) follows from b). One can also prove a)

by reducing to the case where (Ṽ ; L̃+, L̃−) is a maximal subquotient, (i.e.,

Λ⊕ (L+ ∩ L−) = L+) and then using 4.2.5 (ii).

4.2.12. Let E be a vector bundle on X. Then E ⊕ (E∗ ⊗ ωX) has the

obvious structure of ω-orthogonal bundle. We will construct a canonical

isomorphism

(180) Pf(E ⊕ (E∗ ⊗ ωX))
∼−→ detRΓ(X,E) .

Choose a subsheaf E′ ⊂ E and a locally free sheaf E′′ ⊃ E so that

H0(X,E′) = 0, H1(X,E′′) = 0, and E′′/E′ has finite support. Set

V := H0(X,E′′/E′), L+ := H0(X,E′/E) ⊂ V , L− := H0(X,E′′) ⊂ V .

Then RΓ(X,E) can be identified with the complex 0 → L− → V/L+ → 0

and detRΓ(X,E) with det(V ;L+, L−). On the other hand the Pfaffian

of Q := E ⊕ (E∗ ⊗ ωX) can be computed using the subsheaf Q′ :=

E′ ⊕ ((E′′)∗ ⊗ ωX) ⊂ Q. Then PfQ′(Q) equals the l.h.s. of (170). So

(170) yields the isomorphism (180). One checks that (180) does not depend

on E′ and E′′.

4.2.13. The notion of Lagrangian triple has a useful infinite dimensional

generalization. First let us recall some basic definitions.

Definition. A Tate space is a complete topological vector space having a

base of neighbourhoods of 0 consisting of commensurable vector subspaces

(i.e., dimU1/(U1 ∩ U2) <∞ for any U1, U2 from this base).

Remark. Tate spaces are implicit in his remarkable work [T]. In fact,

the approach to residues on curves developed in [T] can be most naturally

interpreted in terms of the canonical central extension of the endomorphism



HITCHIN’S INTEGRABLE SYSTEM 143

algebra of a Tate space, which is also implicit in [T]. A construction of the

Tate extension can be found in 7.13.18.

Let V be a Tate space. A vector subspace P ⊂ V is bounded if for

every open subspace U ⊂ V there exists a finite set {v1, . . . , vn} ⊂ V such

that P ⊂ U + Cv1 + . . .Cvn. The topological dual of V is the space V ∗

of continuous linear functionals on V equipped with the (linear) topology

such that orthogonal complements of bounded subspaces of V form a base

of neighbourhoods of 0 ∈ V ∗. Clearly V ∗ is a Tate space and the canonical

morphism V → (V ∗)∗ is an isomorphism.

Example (coordinate Tate space). Let I be a set. We say that A,B ⊂ I

are commensurable if A\(A∩B) and B\(B∩A) are finite. Commensurability

is an equivalence relation. Suppose that an equivalence class A of subsets

A ⊂ I is fixed. Elements of A are called semi-infinite subsets. Denote

by C((I,A)) the space of formal linear combinations
∑
i
ciei where ci ∈ C

vanish when i /∈ A for some semi-infinite A. This is a Tate vector space

(the topology is defined by subspaces C[[A]] := {
∑
i∈A

ciei} where A is semi-

infinite). The space dual to C((I,A)) is C((I,A′)) where A′ consists of

complements to subsets from A. Any Tate vector space is isomorphic to

C((I,A)) for appropriate I and A; such an isomorphism is given by the

corresponding subset {ei} ⊂ V called topological basis of V .

A c-lattice in V is an open bounded subspace. A d-lattice*) in V is a

discrete subspace Γ ⊂ V such that Γ + P = V for some c-lattice P ⊂ V . If

W ⊂ V is a d-lattice (resp. c-lattice) then there is a c-lattice (resp. d-lattice)

W ′ ⊂ V such that V = W ⊕W ′. If W ⊂ V is a d-lattice (resp. c-lattice)

then W⊥ ⊂ V ∗ is also a d-lattice (resp. c-lattice) and (W⊥)⊥ = W .

A (continuous) bilinear form on a Tate space V is said to be nondegenerate

if it induces a topological isomorphism V → V ∗. Let V be a Tate space

equipped with a nondegenerate symmetric bilinear form. A subspace L ⊂ V

is Lagrangian if L⊥ = L.

*)c and d are the first letters of “compact” and “discrete”.
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Definition. A Tate Lagrangian triple consists of a Tate space V equipped

with a nondegenerate symmetric bilinear form, a Lagrangian c-lattice L+ ⊂

V , and a Lagrangian d-lattice L− ⊂ V .

Example. Let Q be an ω-orthogonal bundle on X. If x ∈ X let Q ⊗ Ox
(resp. Q ⊗ Kx) denote the space of global sections of the pullback of Q

to SpecOx (resp. SpecKx). Q ⊗ Kx is a Tate space equipped with the

nondegenerate symmetric bilinear form Res( , ). For every non-empty finite

S ⊂ X we have the Tate Lagrangian triple

(181) V := ⊕
x∈S

(Q⊗Kx) , L+ := ⊕
x∈S

(Q⊗Ox) , L− := Γ(X\S,Q) .

Let (V ;L+, L−) be a Tate Lagrangian triple. Then for any c-lattice Λ ⊂

L+ such that Λ ∩ L− = 0 one has the finite-dimensional Lagrangian triple

(Ṽ ; L̃+, L̃−) defined by (178). As explained in 4.2.11 Pf(Ṽ ; L̃+, L̃−) and

det(Ṽ ; L̃+, L̃−) do not depend on Λ. Set Pf(V ;L+, L−) := Pf(Ṽ ; L̃+, L̃−),

det(V ;L+, L−) := det(Ṽ ; L̃+, L̃−). Equivalently one can define det(V ;L+, L−)

to be the determinant of the complex (164) and Pf(V ;L+, L−) can be de-

fined by (166) or (167) (the Cl(V )-module M from (166) should be assumed

discrete, which means that {v ∈ V |vm = 0} is open for every m ∈M).

Example. If (V ;L+, L−) is defined by (181) then Pf(V ;L+, L−) = Pf(Q),

det(V ;L+, L−) = detRΓ(X,Q).

The constructions from 4.2.7 and 4.2.8 make sense in the Tate situation

with the following obvious changes: a) in 4.2.7 one should suppose that L+

is a c-lattice and L− is a d-lattice, b) (171) should be replaced by the

following formula:

(182) M = lim
−→
U

∧
(V/U)⊗ det(L+/U)∗

where U belongs to the set of c-lattices in L+. The r.h.s. of (182) is the

fermionic Fock space, i.e., the direct sum of semi-infinite powers of V (cf.

Lecture 4 from [KR] and references therein).
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Remark. The expression for Pf(Q) in terms of the triple (181) can be

reformulated as follows. For x ∈ X consider the abelian Lie superalgebras

aOx ⊂ aKx such that the odd component of aOx (resp. aKx) is Q⊗Ox (resp.

Q ⊗Kx) and the even components are 0. The bilinear symmetric form on

Q ⊗ Kx defines a central extension 0 → C → ãKx → aKx → 0 with a

canonical splitting over aOx . The Clifford algebra Cl(Q⊗Kx) is the twisted

universal enveloping algebra U ′aKx and Mx := Cl(Q ⊗ Kx)/Cl(Q ⊗ Kx) ·

(Q⊗ Ox) is the vacuum module over U ′aKx . According to (167) Pf(Q)∗ is

the space of coinvariants of the action of Γ(X\S,Q) on ⊗
x∈S

Mx.

4.2.14. In this subsection we discuss families of Tate Lagrangian triples.

Let R be a commutative ring. We define a Tate R-module to be a topological

R-module isomorphic to P ⊕ Q∗ where P and Q are (infinite) direct sums

of finitely generated projective R-modules (a base of neighbourhoods of

0 ∈ P ⊕ Q∗ is formed by M⊥ ⊂ Q∗ for all possible finitely generated

submodules M ⊂ Q). This bad*) definition is enough for our purposes.

In fact, we mostly work with Tate R-modules isomorphic to V0⊗̂R where V0

is a Tate space.

The discussion of Tate linear algebra from 4.2.13 remains valid for Tate

R-modules if one defines the notions of c-lattice and d-lattice as follows.

Definition. A c-lattice in a Tate R-module V is an open bounded

submodule P ⊂ V such that V/P is projective. A d-lattice in V is a

submodule Γ ⊂ V such that for some c-lattice P ⊂ V one has Γ ∩ P = 0

and V/(Γ + P ) is a projective module of finite type.*)

Now if 1
2 ∈ R we can define the notion of Tate Lagrangian triple just as

in 4.2.13 (of course, if 1
2 /∈ R one should work with quadratic forms instead

of bilinear ones, which is easy). The Pfaffian of a Tate Lagrangian triple

*)A projective R((t))-module of finite rank is not necessarily a Tate module in the

above sense. Our notion of Tate R-module is not local with respect to SpecR. There are

also other drawbacks.

*)Then this holds for all c-lattices P ′ ⊂ P .
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(V ;L+, L−) over R is defined as in 4.2.13 with the following minor change:

to pass to the finite-dimensional Lagrangian triple (Ṽ ; L̃+, L̃−) defined by

(178) one has to assume that Λ ⊂ L+ is a c-lattice such that Λ ∩ L− = 0

and V/(Λ + L−) is projective (these two properties are equivalent to the

following one: Λ⊥ + L− = V ).

Example. Let D ⊂ X ⊗ R be a closed subscheme finite over SpecR that

can be locally defined by one equation (i.e., D is an effective relative Cartier

divisor). Let Q be a vector bundle on X ⊗ R. Suppose that the morphism

D → SpecR is surjective. Then

V := lim
←−
m

lim
−→
n

H0(X ⊗R,Q(nD)/Q(−mD))

is a Tate R-module*) ,

L+ := lim
←−
m

H0(X ⊗R,Q/Q(−mD)) ⊂ V

is a c-lattice, and

L− := H0((X ⊗R) \D,Q) ⊂ V

is a d-lattice. If Q is an ω-orthogonal bundle then (V ;L+, L−) is a

Lagrangian triple and Pf(Q) = Pf(V ;L+, L−) (cf. 4.2.13).

4.2.15. Denote by B the groupoid of finite dimensional vector spaces over C

equipped with a nondegenerate symmetric bilinear form. In this subsection

(which can be skipped by the reader) we construct canonical isomorphisms

(183)

Pf(V ⊗W ;L+⊗W,L−⊗W )
∼−→ Pf(V ;L+, L−)⊗ dimW⊗|detW |⊗p(V ;L+,L−) ,

(184) Pf(Q⊗W )
∼−→ Pf(Q)⊗ dimW ⊗ | detW |⊗p(Q)

*)In fact, V is isomorphic to V0⊗̂R for some Tate space V0 over C. Indeed, we can

assume that R is finitely generated over C and then apply 7.12.11. We need 7.12.11 in

the case where R is finitely generated over C and the projective module from 7.12.11 is a

direct sum of finitely generated modules; in this case 7.12.11 follows from Serre’s theorem

(Theorem 1 of [Se]; see also [Ba68], ch.4, §2) and Eilenberg’s lemma [Ba63].
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where W ∈ B, (V ;L+, L−) is a (Tate) Lagrangian triple, Q is an ω-

orthogonal bundle on X, | detW | is the determinant of W considered as a

space (not super-space!), and p(V ;L+, L−), p(Q) ∈ Z/2Z are the parities of

Pf(V ;L+, L−), Pf(Q). |detW |⊗n makes sense for n ∈ Z/2Z because one has

the canonical isomorphism |detW |⊗2 ∼−→ C, (w1∧. . .∧wr)⊗2 7→ det(wi, wj).

To define (183) and(184) notice that B is a tensor category with ⊕ as

a tensor “product” and both sides of (183) and (184) are tensor functors

from B to the category of 1-dimensional superspaces (to define the r.h.s. of

(184) as a tensor functor rewrite it as |Pf(Q)|⊗ dimW ⊗ (detW )⊗p(Q) where

|Pf(Q)| is obtained from Pf(Q) by changing the (Z/2Z)-grading to make it

even and detW is the determinant of W considered as a superspace).

We claim that there is a unique way to define (183) and (184) as

isomorphisms of tensor functors so that for W = (C, 1) (183) and (184)

equal id. Here 1 denotes the bilinear form (x, y) 7→ xy, x, y ∈ C.

To prove this apply the following lemma to the tensor functor F obtained

by dividing the l.h.s. of (183) or (184) by the r.h.s.

Lemma. Every tensor functor F : B → {1-dimensional vector spaces}

is isomorphic to the tensor functor F1 defined by F1(W ) = L⊗ dimW ,

L := F (C, 1). There is a unique isomorphism F
∼−→ F1 that induces the

identity map F (C, 1)→ F1(C, 1).

Proof. For every W ∈ B the functor F induces a homomorphism fW :

AutW → C∗. Since AutW is an orthogonal group fW (g) = (det g)n(W )

for some n(W ) ∈ Z/2Z. Clearly n(W ) = n does not depend on W . Set

W1 := (C, 1). F maps the commutativity isomorphism
(

0 1
1 0

)
: W1 ⊕W1 →

W1 ⊕W1 to id. So n = 0, i.e., fW is trivial for every W . The rest is clear

because the semigroup |B| of isomorphism classes of objects of B is Z+. �

Remarks

(i) (183) was implicitly used in 4.2.8.

(ii) We will use (183) in 4.2.16.
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4.2.16. In this subsection (which can certainly be skipped by the reader) we

explain what happens if C is replaced by a field k of characteristic 2. In this

case one must distinguish between quadratic forms (see [Bourb59], §3, n◦4)

and symmetric bilinear forms. In the definition of Lagrangian triple V should

be equipped with a nondegenerate quadratic form. So in the definition of

ω-orthogonal bundle Q should be equipped with a nondegenerate quadratic

form Q → ωX (since k has characteristic 2 nondegeneracy implies that the

rank of Q is even). The construction of Pf ⊗Pf−
∼−→ det from 4.2.8 has to

be modified. If (V ;L+, L−) is a Lagrangian triple and W is equipped with

a nondegenerate symmetric bilinear form then (V ⊗W ;L+⊗W,L−⊗W ) is

a Lagrangian triple. The bilinear forms
(

1 0
0 −1

)
and

(
0 1
1 0

)
are not equivalent

in characteristic 2, but one can use (183) for W = H and W = H ′ to

construct Pf ⊗Pf−
∼−→ det. Finally we have to construct (183) and (184)

in characteristic 2. Let us assume for simplicity that k is perfect. Then the

characteristic property *) of the isomorphisms (183) and (184) is formulated

just as in 4.2.15, but the proof of their existence and uniqueness should be

modified. The semigroup |B| (see the end of the proof of the lemma from

4.2.15) is no longer Z+; it has generators a and b with the defining relation

a+ b = 3a (a corresponds to the matrix (1) of order 1 and b corresponds to(
0 1
1 0

))
. So the group corresponding to B is Z, which is enough.

4.3. Pfaffians II.

4.3.1. Fix an n-dimensional vector space W over C and a nondegenerate

symmetric bilinear form ( ) on it. To simplify notation we write On and

SOn instead of O(W ) and SO(W ).

Let F be an SOn-torsor on X. The corresponding rank n vector bundle

WF carries the bilinear form ( )F , and we have a canonical isomorphism

detWF = OX ⊗ detW . Let L ∈ ω1/2(X), i.e., L is a square root of ωX .

*)To formulate this property in the non-perfect case one should consider B as a stack

rather than a groupoid.
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Then WF ⊗ L is an ω-orthogonal bundle, so Pf(WF ⊗ L) makes sense (see

4.2). Consider the “normalized” Pfaffian

(185) PfL,F := Pf(WF ⊗ L)⊗ Pf(W ⊗ L)⊗−1

and the “normalized” determinant

(186) ν(F) := detRΓ(X,WF )⊗ detRΓ(X,OX ⊗W )⊗−1.

As explained in 4.2.1 there are canonical isomorphisms c±i : Pf⊗2 ∼−→

detRΓ. Using, e.g., ci one obtains an isomorphism*)

(187) PfL,F
⊗2 ∼−→ νL(F)

where

(188) νL(F) := detRΓ(X,WF ⊗ L)⊗ detRΓ(X,W ⊗ L)⊗−1.

Construction 7.2 from [Del87] yields a canonical isomorphism

νL(F) = ν(F)⊗
〈
detWF ⊗ (detW )⊗−1,L

〉
Since detWF = OX ⊗ detW one has νL(F) = ν(F) and

(189) PfL,F
⊗2 = ν(F).

When F varies PfL,F and ν(F) become fibers of line bundles on BunSOn

which we denote by PfL and ν.

Denote by ν1/2(BunSOn) the category of square roots of ν. We have the

functor

(190) Pf : ω1/2(X)→ ν1/2(BunSOn)

defined by L 7→ PfL.

*)So the isomorphism (187)=(189) depends on the choice of a square root of -1. This

dependence disappears if one multiplies (187) by i±p(F)2 where p is the canonical map

BunSOn → π0(BunSOn) = π1(SOn) = Z/2Z and p(F)2 ∈ Z/4Z. We prefer not to do it

for the reason explained in Remark (iii) from 4.2.1.
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ω1/2(X) and ν1/2(BunSOn) are Torsors over the Picard categories

µ2 tors(X) and µ2 tors(BunSOn). We have the Picard functor `Spin :

µ2 tors(X) → µ2 tors(BunSOn); this is the functor ` = `G̃ from 4.1 in

the particular case G = SOn, G̃ = Spinn, Π = Z/2Z. In 4.3.8–4.3.15

we will show that the functor Pf : ω1/2(X)→ ν1/2(BunSOn) has a canonical

structure of `Spin-affine functor. Before doing it we show in 4.3.2–4.3.7 that

for a finite S ⊂ X the action of SOn(KS) on BunSOn,S defined in 4.1.7 lifts

to an action of a certain central extension of SOn(KS) on the pullback of

PfL to BunSOn,S . Once this action is introduced it is easy to characterize

the `Spin-affine structure on the functor Pf essentially by the SOn(KS)-

invariance property (see 4.3.8–4.3.10).

4.3.2. Let V be a Tate space equipped with a nondegenerate symmetric

bilinear form of even type, i.e., there exists a Lagrangian c-lattice L ⊂ V

(see 4.2.13); if dimV <∞ this means that dimV is even. Denote by O(V )

the group of topological automorphisms of V preserving the form. Let us

remind the well known construction of a canonical central extension

(191) 0→ C∗ → Õ(V )→ O(V )→ 0 .

Let M be an irreducible (Z/2Z)-graded discrete module over the Clifford

algebra Cl(V ) (discreteness means that {v ∈ V | vm = 0} is open for every

m ∈ M). Then M is unique up to tensoring by a 1-dimensional (Z/2Z)-

graded space. So there is a natural projective representation of O(V ) in M .

(191) is the extension corresponding to this representation, i.e.,

Õ(V ) := {(g, ϕ)| g ∈ O(V ), ϕ ∈ AutCM, ϕ(vm) = g(v) ·ϕ(m) for m ∈M} .

Clearly Õ(V ) does not depend on the choice of M (in fact AutCM is

the group of invertible elements of the natural completion of Cl(V )). If

(g, ϕ) ∈ Õ(V ) then ϕ is either even or odd. Let χ(g) ∈ Z/2Z denote the

parity of ϕ. Then χ : O(V )→ Z/2Z is a homomorphism.
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The preimages of −1 ∈ O(V ) in Õ(V ) are not central. Indeed, if

ϕ : M → M , ϕ(m) = m for even m and ϕ(m) = −m for odd m then

[−1] := (−1, ϕ) ∈ Õ(V ) and

(192) [−1] · g̃ = (−1)χ(g) · g̃ · [−1] , g ∈ O(V )

where g̃ denotes a preimage of g in Õ(V ).

O(V ) and AutCM have natural structures of group ind-schemes. More

precisely, the functors that associate to a C-algebra R the sets O(V ⊗̂R) and

AutC(M ⊗R) are ind-schemes (if dimV =∞ then they can be represented

as a union of an uncountable filtered family of closed subschemes.) So Õ(V )

is a group ind-scheme.

Denote by Lagr(V ) the set of Lagrangian c-lattices in V . It has a natural

structure of ind-scheme: Lagr(V ) = lim
−→

Lagr(Λ⊥/Λ) where Λ belongs to the

set of isotropic c-lattices in V (so an R-point of Lagr(V ) is a Lagrangian

c-lattice in V ⊗̂R in the sense of 4.2.14). Denote by P = PM the line bundle

on Lagr(V ) whose fiber over L ∈ Lagr(V ) equals ML := {m ∈M |Lm = 0}.

The action of O(V ) on Lagr(V ) canonically lifts to an action of Õ(V ) on P.

Lagr(V ) has two connected components distinguished by the parity of

the 1-dimensional (Z/2Z)-graded space ML, L ∈ Lagr(V ). The proof of this

statement is easily reduced to the case where dimV is finite (and even). The

same argument shows that L1, L2 ∈ Lagr(V ) belong to the same component

if and only if dim(L1/(L1 ∩L2)) is even. Clearly the connected components

of Lagr(V ) are invariant with respect to g ∈ O(V ) if and only if χ(g) = 0.

Therefore χ : O(V )→ Z/2Z is a morphism of group ind-schemes.

Let us prove that (191) comes from an exact sequence of group ind-

schemes

(193) 0→ Gm → Õ(V )→ O(V )→ 0 .

We only have to show that the morphism Õ(V ) → O(V ) is a Gm-torsor.

To this end fix L ∈ Lagr(V ) and set M = Cl(V )/Cl(V )L, so that the fiber

of P = PM over L equals C. Define f : O(V ) → Lagr(V ) by f(g) = gL.
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Set P ′ := P \ {zero section}; this is a Gm-torsor over Lagr(V ). It is easy to

show that the natural morphism Õ(V )→ f∗P ′ is an isomorphism, so Õ(V )

is a Gm-torsor over O(V ).

Remark. Let L ∈ Lagr(V ). Then (193) splits canonically over the stabilizer

of L in O(V ): if g ∈ O(V ), gL = L, then there is a unique preimage of g in

Õ(V ) that acts identically on ML.

4.3.3. Set O := C[[t]], K := C((t)). Denote by ωO the (completed) module

of differentials of O. Fix a square root of ωO, i.e., a 1-dimensional free O-

module ω
1/2
O equipped with an isomorphism ω

1/2
O ⊗ ω1/2

O
∼−→ ωO. Let W

have the same meaning as in 4.3.1. We will construct a central extension of

On(K) := O(W ⊗K) considered as a group ind-scheme over C.

Set ω
1/2
K := ω

1/2
O ⊗O K, ωK := ωO ⊗O K. Consider the Tate space

V := ω
1/2
K ⊗ W . The bilinear form on W induces a K-bilinear form

V × V → ωK . Composing it with Res : ωK → C one gets a nondegenerate

symmetric bilinear form V ×V → C of even type. Restricting the extension

(193) to On(K) ↪→ O(V ) one gets a central extension

(194) 0→ Gm → Õn(K)→ On(K)→ 0 .

It splits canonically over On(O) ⊂ On(K) (use the remark at the end of 4.3.2

for L = ω
1/2
O ⊗W ⊂ V ). The group Autω

1/2
O = µ2 acts on the extension

(194) preserving the splitting over On(O).

4.3.4. Lemma. The automorphism of Õn(K) induced by −1 ∈ Autω
1/2
O

maps g̃ ∈ Õn(K) to (−1)θ(g)g̃ where g is the image of g̃ in On(K) and

θ : On(K)→ K∗/(K∗)2 = Z/2Z is the spinor norm.

Proof. According to (192) we only have to show that χ(g) = θ(g) for

g ∈ On(K) ⊂ O(V ). According to the definition of θ (see [D71], ch. II, §7) it

suffices to prove that if g is the reflection with respect to the orthogonal

complement of a non-isotropic x ∈ Kn then χ(g) equals the image of

(x, x) ∈ K∗ in K∗/(K∗)2 = Z/2Z. We can assume that x ∈ On, x 6∈ tOn.
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L := ω
1/2
O ⊗ W is a Lagrangian c-lattice in V , so χ(g) is the parity of

dimL/(L ∩ gL) = dimO/(x, x)O. �

Remarks

(i) Instead of using reflections one can compute the restriction of χ to

a split Cartan subgroup of SOn(K) and notice that χ(g) = 0 for

g ∈ On(C).

(ii) The restriction of θ to SOn(K) is the boundary morphism

(195) SOn(K)→ H1(K,µ2) = Z/2Z

for the exact sequence 0→ µ2 → Spinn → SOn → 0.

(iii) If g ∈ On(K) = O(W ⊗K) then dim(W ⊗O)/((W ⊗O)∩g(W ⊗O))

is even if and only if θ(g) = 0. This follows from the proof of Lemma

4.3.4.

4.3.5. Consider the restriction of the extension (194) to SOn(K):

(196) 0→ Gm → ˜SOn(K)→ SOn(K)→ 0 .

It splits canonically over SOn(O). The extension (196) depends on the

choice of ω
1/2
O , so one should rather write ˜SOn(K)C where C is a square

root of ωO. Let C′ be another square root of ωO, then C′ = C ⊗ A where

A is a µ2-torsor over SpecO (or over SpecC, which is the same). Consider

the (trivial) extension of Z/2Z by Gm such that A is the µ2-torsor of its

splittings. Its pullback by (195) is a (trivial) extension

(197) 0→ Gm → ˜SOn(K)A → SOn(K)→ 0

equipped with a splitting over SOn(O) (in 4.1.8 we have already introduced

this extension in a more general situation).

Lemma 4.3.4 yields a canonical isomorphism between ˜SOn(K)C′ and the

sum of the extensions ˜SOn(K)C and ˜SOn(K)A. It is compatible with the

splittings over SOn(O).
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4.3.6. Let S, OS , and KS have the same meaning as in 4.1.7. Fix

L ∈ ω1/2(X) and denote by ω
1/2
KS

the space of sections of the pullback of

L to SpecKS . Then proceed as in 4.3.3: set V := ω
1/2
KS
⊗ W , define the

scalar product on V using the “sum of residues” map ωKS → C, embed

SOn(KS) into O(V ) and finally get a central extension

(198) 0→ Gm → ˜SOn(KS)L → SOn(KS)→ 0

with a canonical splitting over SOn(OS).

Remark. (198) is the “super-sum” of the extensions (196) for K = Kx,

x ∈ S. Let us explain that if Gi, i ∈ I, are groups equipped with morphisms

θi : Gi → Z/2Z and G̃i are central extensions of Gi by Gm then the super-

sum of these extensions is the extension of
⊕
i
Gi by Gm obtained from the

usual sum by adding the pullback of the standard extension

0→ Gm → A→
⊕
i∈I

(Z/2Z)→ 0

where A is generated by Gm and elements ei, i ∈ I, with the defining

relations e2
i = 1, cei = eic for c ∈ Gm, eiej = (−1) · ejei for i 6= j. In our

situation θx : SOn(Kx)→ Z/2Z is the spinor norm.

If L ,L′ ∈ ω1/2(X) then L′ = L⊗E where E is a µ2-torsor. It follows from

4.3.5 that there is a canonical isomorphism between ˜SOn(KS)L′ and the sum

of the extensions ˜SOn(KS)L and ˜SOn(KS)E (see 4.1.8 for the definition of

˜SOn(KS)E).

4.3.7. In 4.3.1 we defined the line bundles PfL on BunSOn , L ∈ ω1/2(X).

Denote by PfSL the pullback of PfL to the scheme BunSOn S defined in 4.1.7.

We have the obvious action of SOn(OS) × Gm on PfSL ( λ ∈ Gm acts as

multiplication by λ). We are going to extend it to an action of ˜SOn(KS)L

on PfSL compatible with the action of SOn(KS) on BunSOn,S .

Let u ∈ BunSOn,S , g̃ ∈ ˜SOn(KS)L. Denote by F and F ′ the SO(W )-

bundles corresponding to u and gu where g ∈ SOn(KS) is the image of

g̃. We must define an isomorphism PfL,F
∼−→ PfL,F ′ , i.e., an isomorphism
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Pf(WF⊗L)
∼−→ Pf(WF ′⊗L). According to 4.2.13 it suffices to construct an

isomorphism Pf(V ;L+, L−)
∼−→ Pf(V ;L+, L

′
−) where V is the Tate space

from 4.3.6, L+ = ω
1/2
OS
⊗W ⊂ V , and L− , L

′
− ⊂ V are discrete Lagrangian

subspaces such that L′− = gL−. According to (166) this is equivalent to

constructing an isomorphism f : (ML−)⊗−1 ∼−→ (MgL−)⊗−1. We define f

to be induced by the action of g̃ ∈ Õ(V ) on M .

Attention: λ ∈ Gm ⊂ ˜SOn(KS)L acts on PfSL as multiplication by λ−1.

4.3.8. As explained in 4.3.1 our goal is to define a canonical `Spin-affine

structure on the functor (190). This means that for L ∈ ω1/2(X) and a

µ2-torsor E on X we must define an isomorphism

(199) PfL⊗`Spin
E

∼−→ PfL′ , L′ := L ⊗ E .

We must also check certain compatibility properties for the isomorphisms

(199).

To simplify notation we will write `E instead of `Spin
E . Let S ⊂ X be finite.

In 4.1.7–4.1.8 we constructed an action of the central extension ˜SOn(KS)E

on `SE := the pullback of `E to BunSOn,S . So it follows from 4.3.6–4.3.7 that

˜SOn(KS)L′ acts both on PfSL⊗`SE and PfSL′ . Recall that the fibers of both

sides of (199) over the trivial SOn-bundle equal C.

4.3.9. Theorem. There is a unique isomorphism (199) such that for every S

the corresponding isomorphism PfSL⊗`SE
∼−→ PfSL′ is ˜SOn(KS)L′-equivariant

and the isomorphism between the fibers over the trivial SOn-bundle induced

by (199) is identical.

The proof will be given in 4.3.11–4.3.13. See §5.2 from [BLaSo] for a short

proof of a weaker statement.

4.3.10. Proposition. The isomorphisms (199) define an `Spin-affine struc-

ture on the functor Pf : ω1/2(X)→ ν1/2(BunSOn).

The proof will be given in 4.3.15.
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4.3.11. Let us start to prove Theorem 4.3.9. The uniqueness of (199) is

clear if n > 2: in this case SOn is semisimple, so one has the isomorphism

(155) for G = SOn, S 6= ∅. If n = 2 the action of SOn(KS) on BunSOn,S is

not transitive, but SOn over the adeles acts transitively on lim
←−
S

BunSOn,S(C),

which is enough for uniqueness.

While proving the existence of (199) we will assume that n > 2. The

case n = 2 can be treated using the embedding SO2 ↪→ SO3 and the

corresponding morphism BunSO2 → BunSO3 or using the remark at the

end of 4.3.14.

Consider the SOn(KS)-equivariant line bundle CS := PfSL⊗`SE ⊗ (PfSL′)
∗

on BunSOn,S . The stabilizer of the point of BunSOn,S corresponding to the

trivial SOn-bundle with the obvious trivialization over S equals SOn(AS),

AS := H0(X \S,OX). So the action of SOn(KS) on CS induces a morphism

fS : SOn(AS) → Gm. It suffices to prove that fS is trivial for all S (then

for S 6= ∅ one can use (155) to obtain a SOn(KS)-equivariant trivialization

of CS and of course these trivializations are compatible with each other).

Denote by Σ the scheme of finite subschemes of X (so Σ is the disjoint

union of the symmetric powers of X). AS , OS , and KS make sense for a

non-necessarily reduced*) S ∈ Σ (e.g., OS is the ring of functions on the

completion of X along S) and the rings AS , OS , KS are naturally organized

into families (i.e., there is an obvious way to define three ring ind-schemes

over Σ whose fibers over S ∈ Σ are equal to AS , OS , KS respectively).

It is easy to show that the morphisms fS form a family (i.e., they come

from a morphism of group ind-schemes over Σ). Clearly if S ⊂ S′ then the

restriction of fS′ to SOn(AS) equals fS . In 4.3.12–4.3.13 we will deduce

from these two facts that fS = 1.

*)This is important when S varies. For a fixed S the rings AS , OS and KS depend

only on Sred.



HITCHIN’S INTEGRABLE SYSTEM 157

4.3.12. Let Y be a separated scheme of finite type over C and R a C-algebra.

Set Yrat(R) = lim
−→
U

Mor(U, Y ) where the limit is over all open U ⊂ X⊗R such

that the fiber of U over any point of SpecR is non-empty. In other words,

elements of Yrat(R) are families of rational maps X → Y parameterized by

SpecR. The functor Yrat is called the space of rational maps X → Y . It is

easy to show that Yrat is a sheaf for the fppf topology, i.e., a “space” in the

sense of [LMB93].

We have the spaces Y (AS), S ∈ Σ, which form a family (i.e., there is a

natural space over Σ whose fiber over each S equals Y (AS)). So a regular

function on Yrat defines a family of regular functions fS on Y (AS), S ∈ Σ,

such that for S ⊂ S′ the pullback of fS′ to Y (AS) equals fS . It is easy to

see that a function on Yrat is the same as a family of functions fS with this

property.

4.3.13. Proposition. Let G be a connected algebraic group.

(i) Every regular function on Grat is constant. In particular every group

morphism Grat → Gm is trivial.

(ii) Moreover, for every C-algebra R every regular function on Grat ⊗R

is constant (i.e., an element of R).

Proof. Represent G as
⋃
i
Ui where Ui are open sets isomorphic to (A1 \

{0})r × As (e.g., let U ⊂ G be the big cell with respect to some Borel

subgroup, then G is covered by a finite number of sets of the form gU ,

g ∈ G). One has the open covering Grat =
⋃
i
(Ui)rat and (Ui)rat∩(Uj)rat 6= ∅.

So it is enough to prove the proposition for G = (Gm)r × (Ga)
s. Moreover,

it suffices to prove (ii) for Ga and Gm.

Consider, e.g., the Gm case. Choose an ample line bundle A on X and

set Vn := H0(X,A⊗n), V ′n := Vn \ {0}. Define πn : V ′n × V ′n → (Gm)rat by

(f, g) 7→ f/g. A regular function ϕ on (Gm)rat⊗R defines a regular function

π∗nϕ on (V ′n× V ′n)⊗R, which is invariant with respect to the obvious action

of Gm on V ′n × V ′n. For n big enough dimVn > 1 and therefore π∗nϕ extends
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to a Gm-invariant regular function on (Vn × Vn)⊗R, which is necessarily a

constant. So ϕ is constant. �

4.3.14. This subsection is not used in the sequel (except the definition of

GRASG needed in 5.3.10).

Let G be a connected algebraic group. The following approach to BunG

seems to be natural.

Denote by GRASG the space of G-torsors on X equipped with a

rational section. The precise definition of this space is quite similar to the

definition of Yrat from 4.3.12. We would call GRASG the big Grassmannian

corresponding to G and X because for a fixed finite S ⊂ X the space

of G-bundles on X trivialized over X \ S can be identified with the ind-

scheme G(KS)/G(OS) =
∏
x∈X

G(Kx)/G(Ox) (see 5.3.10), and G(Kx)/G(Ox)

is called the affine Grassmannian or loop Grassmannian (see 4.5 or [MV]).

The morphism π : GRASG → BunG is a Grat-torsor for the smooth

topology (the existence of a section S → GRASG for some smooth surjective

morphism S → BunG is obvious if the reductive part of G equals GLn, SLn,

or Spn; for a general G one can use [DSim]).

Consider the functor

(200) π∗ : Vect(BunG)→ Vect(GRASG)

where Vect denotes the category of vector bundles. It follows from 4.3.13

that (200) is fully faithful. One can show that for any scheme T every vector

bundle on Grat×T comes from T . This implies that (200) is an equivalence.

Remark. Our construction of (199) can be interpreted as follows: we

constructed an isomorphism between the pullbacks of the l.h.s. and r.h.s.

of (199) to GRASSOn , then we used the fact that (200) is fully faithful. It

was not really necessary to use the isomorphism (155). So the construction

of (199) also works in the case of SO2.
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4.3.15. Let us prove Proposition 4.3.10. The isomorphisms (199) are

compatible with each other (use the uniqueness statement from 4.3.9). It

remains to show that the tensor square of (199) equals the composition

(201) Pf⊗2
L

∼−→ νL
∼−→ ν

∼−→ νL′
∼−→ Pf⊗2

L′

where νL is defined by (188).

Fix an SOn-torsor F on X and its trivialization over X \ S for some

non-empty finite S ⊂ X. Using the trivialization we will compute the

isomorphisms Pf⊗2
L,F

∼−→ Pf⊗2
L′,F induced by (199) and (201).

Recall that PfL,F := Pf(WF ⊗ L)⊗ Pf(W ⊗ L)⊗−1. According to 4.2.13

Pf(WF ⊗ L) = Pf(V ;L+, L−), Pf(W ⊗ L) = Pf(V ;L0
+, L−)

where V = LKS ⊗W , L− = Γ(X \S,L⊗W ), L0
+ = LOS ⊗W , and L+ is the

space of sections of the pullback of WF ⊗L to SpecOS (we use the notation

of 4.3.6). Using (166) one gets

(202) PfL,F = ML+ ⊗ (ML0
+)∗

where M is an irreducible Z/2Z-graded discrete module over Cl(V ). PfL′,F

has a similar description in terms of V ′, L′+, (L0
+)′, L′− where V ′ = L′KS⊗W ,

etc. Fix a trivialization of the µ2-torsor E from 4.3.8 over S. It yields a

trivialization of E over SpecOS and therefore an identification

(203) (V ′, L′+, (L
0
+)′) = (V,L+, L

0
+).

Since L− is not involved in (202) we obtain an isomorphism PfL,F
∼−→

PfL′,F . It is easy to show that it coincides with the one induced by (199)

(notice that the trivialization of F over X \ S and the trivialization of E

over S induce a trivialization of `Spin
E over F because the l.h.s. of (150) has

a distinguished element).

Now we have to show that the isomorphism Pf⊗2
L,F

∼−→ Pf⊗2
L′,F induced by

(201) is the identity provided PfL,F and PfL′,F are identified with the r.h.s.

of (202).
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The trivialization of F over X \ S yields an isomorphism νL(F)
∼−→

d(L0
+, L+) where d(L0

+, L+) is the relative determinant, i.e., d(L0
+, L+) =

det(L+/U) ⊗ det(L0
+/U)⊗−1 for any c-lattice U ⊂ L ∩ L0

+. We have a

similar identification νL′(F) = d((L0
+)′, L′+). The isomorphism νL(F)

∼−→

νL′(F) from (201) is defined in [Del87] as follows. One chooses any

isomorphism f between the pullbacks of L and L′ to SpecOS . f yields

an isomorphism f∗ : (V,L+, L
0
+)

∼−→ (V ′, L′+, (L
0
+)′) and therefore an

isomorphism d(L0
+, L+)

∼−→ d(L′+, (L
0
+)′), which actually does not depend

on the choice of f . It is convenient to define f using the above trivialization

of the µ2-torsor E = L′⊗L⊗−1 over SpecOS . Then f∗ coincides with (203).

Thus we have identified νL(F) and νL′(F) with d(L0
+, L+) so that the

isomorphism νL(F)
∼−→ νL′(F) from (201) becomes the identity map. We

have identified both PfL,F and PfL′,F with the r.h.s. of (202). It remains

to show that the isomorphism (187) and its analog for L′ induce the same

isomorphism

(204) (ML+ ⊗ (ML0
+)∗)⊗2 ∼−→ d(L0

+, L+)

According to 4.2.8 and 4.2.13 the isomorphism (204) induced by (187)

can be described as follows. We have the canonical isomorphism

(205) NL+⊗H ⊗ (NL0
+⊗H)∗

∼−→ d(L0
+, L)

where N is an irreducible (Z/2Z)-graded discrete module over the Clifford

algebra Cl(V ⊕ V ∗) = Cl(V ⊕ V ) = Cl(V ⊗H) and H denotes C2 equipped

with the bilinear form
(

0 1
1 0

)
(to construct (205) take for N the r.h.s. of

(182)). On the other hand, P := M ⊗M is an irreducible (Z/2Z)-graded

discrete module over Cl(V )⊗Cl(V ) = Cl(V ⊗H ′′) where H ′′ denotes C2 with

the bilinear form
(

1 0
0 1

)
. Rewrite the l.h.s. of (204) as PL+⊗H′′⊗(PL

0
+⊗H′′)∗.

So an orthogonal isomorphism ψ : H ′′
∼−→ H induces an isomorphism (204).

To get the isomorphism (204) induced by (187) we must normalize ψ by

detψ = i (or −i ?? we should check!).
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Since L− is not involved in the above description the analog of (187) for

L′ induces the same isomorphism (204), QED.

4.3.16. This subsection and 4.3.17 will be used in 4.4.14 (end of the proof

of the horizontality theorem 2.7.3) and in the proof of Theorem 5.4.5 (which

is the main result of this work). However the reader can skip them for the

moment.

As usual, we set O := C[[t]], K := C((t)). Fix L ∈ ω1/2(X), i.e., L is a

square root of ωX . Fix also a square root of ωO and denote it by ω
1/2
O . Then

one defines a 2-sheeted covering X∧2 of the scheme X∧ from 2.6.5. Recall

that an R-point of X∧ is an R-morphism α : Spec(R⊗̂O) → X ⊗ R whose

differential does not vanish over any point of SpecR. Denote by LR the

pullback of L to X⊗R. By definition, the fiber of X∧2 (R) over γ ∈ X∧(R) is

the set of isomorphisms H0(SpecR⊗̂O,α∗LR)
∼−→ R⊗̂ω1/2

O ) in the groupoid

of square roots of R⊗̂ωO.

The group ind-scheme Aut2O := Aut(O,ω
1/2
O ) introduced in 3.5.2 acts

on X∧2 by transport of structure.

Let M be the scheme from 2.8.1 in the particular case G = SO(W ) =

SOn. Denote by M∧2 the fiber product of M and X∧2 over X (so M∧2 is

a 2-sheeted covering of the scheme M∧ from 2.8.3). Then the semidirect

product Aut2O n SOn(K) acts on M∧2 . Indeed, M∧2 is the fiber product of

M∧ and X∧2 over X∧, and Aut2O n SOn(K) acts on the diagram

M∧

↓

X∧2 −→ X∧

(the action of AutOnSOn(K) on M∧ was defined in 2.8.4; Aut2OnSOn(K)

acts on X∧2 and X∧ via its quotients Aut2O and AutO).

Denote by Pf∧L the pullback to M∧2 of the line bundle PfL on BunSOn

defined in 4.3.1. We will lift the action of Aut2O n SOn(K) on M∧2 to an

action of Aut2On ˜SOn(K) on Pf∧L, where ˜SOn(K) is the central extension
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(196) corresponding to ω
1/2
O . The action of Aut2O on Pf∧L is clear because

Aut2O acts on M∧2 considered as a scheme over BunSOn . On the other

hand, ˜SOn(K) acts on PfL,x̂ :=the restriction of Pf∧L to the fiber of M∧2

over x̂ ∈ X∧2 . Indeed, this fiber equals BunSOn,x where x is the image of

x̂ in X, and by 4.3.7 the central extension ˜SOn(Kx)L acts on the pullback

of PfL to BunSOn,x. This extension depends only on Lx :=the pullback

of L to SpecOx. Since x̂ defines an isomorphism between (O,ω
1/2
O ) and

(Ox, H
0(SpecOx,Lx)) we get an isomorphism ˜SOn(Kx)L

∼−→ ˜SOn(K) and

therefore the desired action of ˜SOn(K).

4.3.17. Proposition.

(i) The action of ˜SOn(K) on Pf∧L,x̂, x̂ ∈ X∧2 , comes from an (obviously

unique) action of ˜SOn(K) on Pf∧L.

(ii) The actions of Aut2O and ˜SOn(K) on Pf∧L define an action of

Aut2O n ˜SOn(K).

Remark. Statement (ii) can be interpreted in the spirit of 2.8.2: the action

of Aut2O yields a connection along X on π∗ PfL where π is the morphism

M → BunG, and the compatibility of the action of Aut2O with that of

˜SOn(K) means that the action on π∗ PfL of a certain central extension

J̃mer(SOn)L is horizontal.

Proof. To define the action of Aut2O n ˜SOn(K) on Pf∧L with the desired

properties we proceed as in 4.3.7. Let R be a C-algebra. Consider an R-

point u of M∧2 and an R-point g̃ of Aut2On ˜SOn(K). Recall that SOn is an

abbreviation for SO(W ). Denote by F and F ′ the SO(W )-torsors on X⊗R

corresponding to u and gu where g is the image of g̃ in Aut2O n SOn(K).

We have to define an isomorphism

(206) Pf(WF ⊗ LR)
∼−→ Pf(WF ′ ⊗ LR)

where LR is the pullback of L to X ⊗R.
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Set V := ω
1/2
O ⊗O K ⊗W . This is a Tate space over C equipped with a

nondegenerate symmetric bilinear form (see 4.3.3). By 4.2.14

(207) Pf(WF ⊗ LR) = Pf(V ⊗̂R;L+⊗̂R,Lu−)

where L+ := ω
1/2
O ⊗W ⊂ V (so L+ is a Lagrangian c-lattice in V ) and the

Lagrangian d-lattice Lu− ⊂ V ⊗̂R is defined as follows. The point u ∈M∧2 (R)

is a quadruple (α,F , γ, f) where α, F , γ have the same meaning as in

2.8.4 (in our special case G = SO(W )) and f is an isomorphism between

H0(SpecR⊗̂K,α∗LR) and R⊗̂ω1/2
O in the groupoid of square roots of R⊗̂ωO.

Let Γα have the same meaning as in 2.8.4. Then

Lu− := H0((X⊗R)\Γα,WF⊗LR) ⊂ H0(SpecR⊗̂K,α∗WF⊗α∗LR)
ϕ
∼−→V ⊗̂R

(the isomorphism ϕ is induced by γ and f).

Taking (207) into account we see that constructing (206) is equivalent to

defining an isomorphism

(208) Pf(V ⊗̂R;L+ ⊗R,Lu−)
∼−→ Pf(V ⊗̂R;L+ ⊗R,Lgu− ) .

The group ind-scheme Aut2OnSO(W⊗K) acts on V in the obvious way,

and it is easy to see that Lgu− = gLu−. By (166) the l.h.s. of (208) is inverse to

(M ⊗R)L− whereM is the Clifford module Cl(V )/Cl(V )L+ and L− := Lu−.

So it remains to construct an isomorphism (M⊗R)L−
∼−→ (M⊗R)gL− . We

define it to be induced by the action*) of g̃ on M ⊗R. �

4.4. Half-forms on BunG.

4.4.1. Let G be semisimple. Fix a G-invariant non-degenerate symmetric

bilinear form on g. Set n := dim g and write SOn instead of SO(g).

The adjoint representation G → SO(g) induces a morphism f : BunG →

BunSOn . For L ∈ ω1/2(X) set λ′L := f∗ PfL where PfL is the line bundle

*)Recall that g is an R-point of Aut2 O n ˜SOn(K) = Aut2 O n ˜SO(W ⊗K). By the

definition of ˜SOn(K) it acts on M . The group ind-scheme Aut2 O acts on (V,L+) and

therefore on M .
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from 4.3.1; so the fiber of λ′L over F ∈ BunG equals Pf(gF⊗L)⊗Pf(g⊗L)⊗−1.

The isomorphism (189) induces an isomorphism

(209) (λ′L)⊗2 = ω]BunG

Here ω]BunG
is the normalized canonical bundle (146); according to 2.1.1

the fiber of ω]BunG
over F ∈ BunG equals detRΓ(X, gF ) ⊗ (detRΓ(X, g ⊗

OX))⊗−1.

4.4.2. Consider the functor

(210) λ′ : ω1/2(X)→ (ω])1/2(BunG),

L 7→ λ′L. By 4.3.10 λ′ is affine with respect to the Picard functor

˜̀′ : µ2 tors(X) → µ2 tors(BunG) that sends a µ2-torsor E on X to ˜̀′
E :=

the pullback to BunG of the torsor `Spin
E on BunSOn .

4.4.3. Proposition. ˜̀′ = `′ where `′ is the composition of the functor

µ2 tors(X) → Z tors(X) induced by (56) and the functor ` : Z tors(X) →

µ∞ tors(BunG) constructed in 4.1.1–4.1.4. Here Z = π1(G)∨ =the center of

LG (see the Remark from 4.1.1).

Assuming the proposition we define a canonical `-affine functor

(211) λ : Z torsθ(X)→ µ∞ torsθ(BunG)

by E · L 7→ λE·L := `E · λ′L, E ∈ Z tors(X), L ∈ ω1/2(X). (Attention:

normalization problem!!!???)

To prove Proposition 4.4.3 notice that ˜̀′ is the functor (152) corresponding

to the extension of G by µ2 induced by the spinor extension of SO(g).

Therefore ˜̀′ is the composition of ` : Z tors(X) → µ∞ tors(BunG) and the

functor µ2 tors(X)→ Z tors(X) induced by the morphism µ2 → Z = π1(G)∨

dual to π1(G)→ π1(SO(g)) = Z/2Z. So it suffices to prove the following.
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4.4.4. Lemma. The morphism π1(G) → π1(SO(g)) = Z/2Z is dual to the

morphism (56) for the group LG.

Proof. We have the canonical isomorphism f : P/PG
∼−→ Hom(π1(G)(1), µ∞)

where PG is the group of weights of G and P is the group of weights of its

universal covering G̃; a weight λ ∈ P is a character of the Cartan subgroup

H̃ ⊂ G̃ and f(λ) is its restriction to π1(G)(1) ⊂ H̃. Let M be a spinor rep-

resentation of so(g). Then G̃ acts on M and π1(G)(1) ⊂ G̃ acts according to

some character χ ∈ Hom(π1(G)(1), µ∞). According to the definition of (56)

(see also the definition of λ# in 3.4.1) the lemma just says that χ = f(ρ)

where ρ ∈ P is the sum of fundamental weights.

Let b ⊂ g be a Borel subalgebra. Choose a b-invariant flag 0 ⊂ V1 ⊂

. . . ⊂ Vn = g such that dimVk = k, V ⊥k = Vn−k, and b is one of the Vk. Let

b′ be the stabilizer of this flag in so(g). This is a Borel subalgebra of so(g)

containing b. Let m ∈ M be a highest vector with respect to b′. Then Cm

is b-invariant and the corresponding character of b equals one half of the

sum of the positive roots, i.e., ρ. So χ = f(ρ). �

Remark. According to Kostant (cf. the proof of Lemma 5.9 from [Ko61])

the g-module M is isomorphic to the sum of 2[r/2] copies of the irreducible

g-module with highest wight ρ (where r is the rank of g).

4.4.5. Our construction of (211) slightly depends on the choice of a scalar

product on g (see 4.4.1). Since there are several “canonical” scalar products

on g the reader may prefer the following version of (211).

To simplify notation let us assume that G is simple. Then the space of

invariant symmetric bilinear forms on g is 1-dimensional. Denote it by β.

Choose a square root of β, i.e., a 1-dimensional vector space β1/2 equipped

with an isomorphism β1/2 ⊗ β1/2 ∼−→ β. So g ⊗ β1/2 carries a canonical

bilinear form. Consider the representation G → SO(g ⊗ β1/2) and then

proceed as in 4.4.1–4.4.3 (e.g., now the fiber of λ′L over F ∈ BunG equals

Pf(gF ⊗L⊗ β1/2)⊗Pf(g⊗L⊗ β1/2)⊗−1). The functor (211) thus obtained
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slightly depends on the choice of β1/2. More precisely, −1 ∈ Autβ1/2 acts

on λ′L and therefore on λM, M ∈ Z torsθ(X), as multiplication by (−1)p

where p : BunG → Z/2Z is the composition

BunG → π0(BunG) = π1(G)→ π1(SO(g)) = Z/2Z.

Do we want to consider λM as a SUPER-sheaf??!

4.4.6. We have associated to L ∈ Z torsθ(X) a line bundle λL on BunG (see

4.4.1–4.4.3). For x ∈ X denote by λL,x the pullback of λL to BunG,x. In

4.4.7–4.4.10 we will define a central extension G̃(Kx)L of G(Kx) that acts

on λL,x. In 4.4.11–4.4.13 we consider the Lie algebra of G̃(Kx)L.

4.4.7. Let O, K and ωO have the same meaning as in 4.3.3. Fix a square

root L of ωO. Then we construct a central extension of group ind-schemes

(212) 0→ Gm → G̃(K)L → G(K)→ 0

as follows. L defines the central extension (196). Fix a non-degenerate

invariant symmetric bilinear form*) on g and write SOn instead of SO(g),

n := dim g. We define (212) to be the central extension of G(K) opposite

to the one induced from (196) via the adjoint representation G→ SO(g) =

SOn. The extension (212) splits over G(O).

Remark. In the case G = SOr our notation is ambiguous: G̃(K) 6=
˜SOr(K). Hopefully this ambiguity is harmless.

4.4.8. Let L ∈ ω1/2(X), x ∈ X. According to 4.4.7 the restriction of L

to SpecOx defines a central extension of G(Kx), which will be denoted by

G̃(Kx)L. Denote by λ′L,x the pullback to BunG,x of the line bundle λ′L from

4.4.1. It follows from 4.3.7 that the action of G(Kx) on BunG,x lifts to a

canonical action of G̃(Kx)L on λ′L. The subgroup Gm ⊂ G̃(Kx)L acts on

λ′L in the natural way (see the definition of G̃(Kx)L in 4.4.7 and the last

*)Instead of fixing the form on g the reader can proceed as in 4.4.5.
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sentence of 4.3.7). The action of G(Ox) ⊂ G̃(Kx)L on λ′L,x is the obvious

one.

4.4.9. In 4.4.7 we defined a functor

(213) ω1/2(O)→ {central extensions of G(K) by Gm}

where ω1/2(O) is the groupoid of square roots of ωO. The l.h.s. of (213)

is a µ2-category in the sense of 3.4.4. The r.h.s. of (213) is a Z-category,

Z := π1(G)∨ = Hom(π1(G),Gm). Indeed, the coboundary morphism*)

(214) G(K)→ H1(K,πet
1 (G)) = π1(G) = Z∨

induces a morphism*)

(215) Z → Hom(G(K),Gm) ,

i.e., a Z-structure on the r.h.s. of (213). Using the morphism µ2 → Z

defined by (56) we consider the r.h.s. of (213) as a µ2-category. Then (213)

is a µ2-functor (use 4.3.4, Remark (ii) from 4.3.4, and 4.4.4). So by 3.4.4

the functor (213) yields a Z-functor

(216) Z torsθ(O)→ {central extensions of G(K) by Gm} .

The central extension of G(K) corresponding to L ∈ Z torsθ(O) by (213)

will be denoted by G̃(K)L. The extension

(217) 0→ Gm → G̃(K)L → G(K)→ 0

splits over G(O).

Remarks

(i) According to 3.4.7 (i) the Z-structure on the r.h.s. of (213) yields a

Picard functor

(218) Z tors(O) = Z tors→ {central extensions of G(K) by Gm} .

*)A priori (214) is a morphism of abstract groups, but according to the Remark from

4.1.7 it is, in fact, a morphism of group ind-schemes. See also 4.5.4.

*)In fact, an isomorphism (see 4.5.4)
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Explicitly, (218) is the composition of the canonical equivalence

(219)
{trivial extensions of Z∨ by Gm} = Z tors

an extension 7→ the Z-torsor of its splittings

and the functor from the l.h.s. of (219) to the r.h.s. of (218) induced

by (214). In other words, (218) is the functor E 7→ G̃(K)E from

4.1.8.

(ii) By 3.4.7 (iv) the functor (216) is affine with respect to the Picard

functor (218).

4.4.10. Let L ∈ Z torsθ(X). According to 4.4.9 the image of L in

Z torsθ(Ox) defines a central extension of G(Kx), which will be denoted

by G̃(Kx)L. Denote by λL,x the pullback of λL to BunG,x. The action of

G(Kx) on BunG,x lifts to a canonical action of G̃(Kx)L on λL,x (use 4.3.7–

4.3.9, 4.1.8, and the Remarks from 4.4.9). G(Ox) × Gm ⊂ G̃(Kx)L acts on

λL,x in the obvious way.

4.4.11. Proposition. The Lie algebra extension corresponding to (217) is

the extension

0→ C→ g̃⊗K → g⊗K → 0

from 2.5.1.

Proof. The Lie algebra extension corresponding to (217) does not depend

on L ∈ Z torsθ(O), so instead of (217) one can consider (212) and finally

(194). So it is enough to use the Kac–Peterson–Frenkel theorem which says

that the Lie algebra extension

(220) 0→ C→ õn(K)→ on(K)→ 0

corresponding to (194) is defined by the cocycle (u, v) 7→ 1
2 Res Tr(du, v),

u, v ∈ on(K). In fact, to use [KP] or Proposition I.3.11 from [Fr81] one

has to use the following characterization of õn(K) (which does not involve

the group Õn(K)): let V have the same meaning as in 4.3.3 and let M be

an irreducible discrete module over Cl(V ), then one has a representation of
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õn(K) in M compatible with the action of õn(K) on Cl(V ) and such that

1 ∈ C ⊂ õn(K) acts on M identically. �

4.4.12. Let λL and λL,x have the same meaning as in 4.4.10. According to

4.4.10 and 4.4.11 the action of g⊗Kx on BunG,x lifts to a canonical action

of g̃⊗Kx on λL,x whose restriction to C× (g⊗Ox) ⊂ g̃⊗Kx is the obvious

one; in particular 1 ∈ C ⊂ g̃⊗Kx acts as multiplication by 1.

λL is equipped with an isomorphism λ⊗2n
L

∼−→ (ω]BunG
)⊗n for some n 6= 0,

so the sheaf of differential operators acting on λL is D′. Therefore according

to 1.2.5 the action of g̃⊗Kx on λL,x induces a canonical morphism

hx : zx → Γ(BunG, D
′) .

Clearly hx does not depend on L ∈ Ztorsθ(X).

4.4.13. In this subsection we prove that the hx from 4.4.12 coincides with

the hx from 2.5.4. The reader can skip this proof and simply forget the old

definition of hx (it was introduced only to avoid the discussion of square

roots of ωBunG in Section 2).

To prove that the two definitions of hx are equivalent it suffices to show

that if L is a square root of ωX then the isomorphism λ⊗2
L

∼−→ ω]BunG
induces

a g̃⊗Kx-equivariant isomorphism between their pullbacks to BunG,x. This

can be proved directly, but in fact it cannot be otherwise. Indeed, the

obstruction to g̃⊗Kx-equivariance is a 1-cocycle g̃⊗Kx → H0(BunG,x,O).

Since Hom(g̃⊗Kx,C) = 0 it is enough to show that every regular function f

on BunG,x is locally constant. According to 2.3.1 BunG,x is the inverse limit

of BunG,nx, n ∈ N. Clearly f comes from a regular function on BunG,nx for

some n. So it suffices to prove the following lemma.

Lemma. Every regular function on BunG,nx is locally constant.

Proof. Choose y ∈ X\{x} and consider the scheme M parametrizing G-

bundles on X trivialized over nx and the formal neighbourhood of y (here

the divisor nx is considered as a subscheme). G(Ky) acts on M and a regular
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function f on BunG,nx is a G(Oy)-invariant element of H0(M,OM ). Clearly

H0(M,OM ) is an integrable discrete g ⊗Ky-module. It is well known and

very easy to prove that a (g ⊗ Oy)-invariant element of such a module is

(g ⊗Ky)-invariant. So f is (g ⊗Ky)-invariant. Since the action of g ⊗Ky

on M is (formally) transitive f is locally constant. �

Remark. The above lemma is well known. A standard way to prove it

would be to represent BunG,nx as Γ\G(Ky)/G(Oy) for some Γ ⊂ G(Ky) (see

[La-So] for the case n = 0) and then to use the fact that a regular function

on G(Ky)/G(Oy) is locally constant.

4.4.14. Now we will finish the proof of the horizontality theorem 2.7.3 (see

2.8.3 – 2.8.5 for the beginning of the proof).

Let M be the scheme over X whose fiber over x ∈ X is BunG,x. Fix

L ∈ ω1/2(X) and Lloc ∈ ω1/2(O) (i.e., L is a square root of ωX , Lloc is a

square root of ωO). Then one has the scheme X∧2 defined in 4.3.16. Denote

by M∧2 the fiber product of M and X∧2 over X. The semidirect product

Aut2O nG(K) acts on M∧2 (cf. 4.3.16).

One has its central extension Aut2O n G̃(K) where G̃(K) is the central

extension (212) corresponding to Lloc and Aut2O = Aut(O,Lloc) acts on

G̃(K) = G̃(K)Lloc by transport of structure. Denote by λ∧L the pullback to

M∧2 of the Pfaffian line bundle λ′L from 4.4.1. Since Aut2O acts on M∧2

as on a scheme over BunG one gets the action of Aut2O on λ∧L. On the

other hand, G̃(K) acts on λ∧L,x̂ :=the restriction of λ∧L to the fiber of M∧2

over x̂ ∈ X∧2 . Indeed, this fiber equals BunG,x where x is the image of

x̂ in X, and by 4.4.8 the central extension G̃(Kx)L acts on λ′L,x = λ∧L,x̂.

This extension depends only on Lx :=the pullback of L to SpecOx. Since

x̂ defines an isomorphism (Ox,Lx)
∼−→ (O,Lloc) we get an isomorphism

G̃(Kx)L
∼−→ G̃(K) and therefore an action of G̃(K) on λ∧L,x̂. As explained

in 2.8.5, to finish the proof of 2.7.3 it suffices to show that
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i) the action of G̃(K) on λ∧L,x̂ corresponding to various x̂ ∈ X∧2 come from

an (obviously unique) action of G̃(K) on λ∧L,

ii) this action is compatible with that of Aut2O (i.e., we have, in fact, an

action of Aut2O n G̃(K) on λ∧L).

This follows immediately from 4.3.17.

4.4.15. In this subsection and the following one we formulate and prove a

generalization of statements i) and ii) from 4.4.14, which will be used in the

proof of the main result of this work (Theorem 5.4.5). The generalization

is obvious (ω1/2(X) is replaced by Z torsθ(X), etc.), and the reader can

certainly skip these subsections for the moment.

Fix L ∈ Z torsθ(X) and Lloc ∈ Z torsθ(O). Denote by X∧Z the

etale Z-covering of X∧ such that the preimage in X∧Z(R) of a point of

X∧(R) corresponding to a morphism α : Spec(R⊗̂O) → X is the set of

isomorphisms Lloc
R

∼−→ α∗L in the groupoid*) Z torsθ(R⊗̂O), where Lloc
R

is the pullback of Lloc to SpecR⊗̂O. The group ind-scheme AutZ O =

Aut(O,Lloc) from 4.6.6 acts on X∧Z by transport of structure. Denote by M∧Z

the fiber product of M and X∧Z over X. Let λ∧L denote the pullback to M∧Z of

the line bundle λL defined in 4.4.3. The semidirect product AutZ OnG(K)

acts on M∧Z . One has its central extension AutZ O n G̃(K), where G̃(K) is

the central extension (217) corresponding to Lloc and AutZ O = Aut(O,Lloc)

acts on G̃(K) = G̃(K)Lloc by transport of structure. Let us lift the action

of AutZ O nG(K) on M∧Z to an action of AutZ O n G̃(K) on λ∧L.

Just as in 4.4.14 one defines the action of AutZ O on λ∧L and the action

of G̃(K) on λ∧L,x̂ :=the restriction of λ∧L to the fiber of M∧Z over x̂ ∈ X̂Z .

4.4.16. Proposition.

(i) The actions of G̃(K) on λ∧L,x̂ corresponding to various x̂ ∈ X∧Z come

from an (obviously unique) action of G̃(K) on λ∧L.

*)Here it is convenient to use the definition Z torsθ from 3.4.5
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(ii) The actions of AutZ O and G̃(K) on λ∧L define an action of AutZ On

G̃(K).

Proof. Represent L ∈ Z torsθ(X) as L = E · L0, E ∈ Z tors(X), L0 ∈

ω1/2(X). By definition, λL = lE ⊗ λ′L0
(see 4.1.4 or 4.1.6 for the definition

of the µ∞-torsor lE on BunG).

Consider Lloc as an object of ω1/2(O) (this is possible because both

Z torsθ(O) and ω1/2(O) have one and only one isomorphism class of objects).

Using L0 and Lloc construct X∧2 , M∧2 , and λ∧L0
(see 4.4.14).

Consider E as a Z-covering E → X. Set X∧E := E×XX∧, M∧E := E×XM∧,

where X∧ and M∧ have the same meaning as in 2.6.5 and 2.8.3. Denote by

l∧E the pullback of lE to M∧E .

Set M∧E,2 := E ×X M∧2 . One has the etale coverings M∧E,2 → M∧2 ,

M∧E,2 → M∧E , and p : M∧E,2 → M∧Z . Clearly p∗λ∧L is the tensor product

of the pullbacks of l∧E and λ∧L0
to M∧E,2. Now consider l∧E and λ∧L0

separately.

The semidirect product AutO n G(K) acts on M∧E , and the action of

AutO on M∧E lifts canonically to its action on l∧E (cf. 4.4.14 or 2.8.5). G(K)

acts on the restriction of l∧E to the fiber over each point of X∧E (see 4.1.7). It

is easy to see that these actions come from an action of AutOnG(K) on l∧E .

On the other hand, by 4.4.14 we have a canonical action of Aut2O n G̃(K)

on λ∧L0
.

So we get an action of Aut2On G̃(K) on p∗λ∧L, which is compatible with

the action of Aut2O on λ∧L and with the action of G̃(K) on λ∧L,x̂, x̂ ∈ X∧Z .

Since p is etale and surjective the action of Aut2OnG̃(K) on p∗λ∧L descends

to an action of Aut2On G̃(K) on λ∧L. Since AutZ O is generated by Aut2O

and Z it remains to show that the action of Z ⊂ AutZ O on λ∧L is compatible

with that of G̃(K). This is clear because the actions of Z and G̃(K) on λ∧L,x̂

are compatible for every x̂ ∈ X∧Z . �

4.5. The affine Grassmannian. The affine Grassmannian GR is the fpqc

quotient G(K)/G(O) where O = C[[t]], K = C((t)). In this section we recall



HITCHIN’S INTEGRABLE SYSTEM 173

some basic properties of GR. In 4.6 we construct and investigate the local

Pfaffian bundle; this is a line bundle on GR.

The affine Grassmannian will play an essential role in the proof of our

main theorem 5.2.6. However the reader can skip this section for the

moment.

In 4.5.1 – ? G denotes an arbitrary connected affine algebraic

group. Connectedness is a harmless assumption because G(K)/G(O) =

G0(K)/G0(O) where G0 is the connected component of G.

4.5.1. Theorem.

(i) The fpqc quotient G(K)/G(O) is an ind-scheme of ind-finite type.

(ii) G(K)/G(O) is formally smooth.*)

(iii) The projection p : G(K)→ G(K)/G(O) admits a section locally for

the Zariski topology.

(iv) G(K)/G(O) is ind-proper if and only if G is reductive.

(v) G(K), or equivalently G(K)/G(O), is reduced if and only if

Hom(G,Gm) = 0.

Remark. The theorem is well known. The essential part of the proof

given below consists of references to works by Faltings, Beauville, Laszlo,

and Sorger.

Proof. (i) and (iv) hold for G = GLn. Indeed, there is an ind-proper ind-

scheme Gr(Kn) parametrizing c-lattices in Kn (see 7.11.2(iii) for details).

GLn(K)/GLn(O) is identified with the closed sub-ind-scheme of Gr(Kn)

parametrizing O-invariant c-lattices. To prove (i) and (iv) for any G we

need the following lemma.

Lemma. Let G1 ⊂ G2 be affine algebraic groups such that the quotient

U := G1 \G2 is quasiaffine, i.e., U is an open subscheme of an affine scheme

*)The definition of formal smoothness can be found in 7.11.1.
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Z. Suppose that the fpqc quotient G2(K)/G2(O) is an ind-scheme of ind-

finite type. Then this also holds for G1(K)/G1(O) and the morphism

(221) G1(K)/G1(O)→ G2(K)/G2(O)

is a locally closed embedding. If U is affine then (221) is a closed embedding.

The reader can easily prove the lemma using the global interpretation of

G(K)/G(O) from 4.5.2. We prefer to give a local proof.

Proof. Consider the morphism f : G1(K) → Z(K). Clearly Z(O) is a

closed subscheme of Z(K), and U(O) is an open subscheme of Z(O). So

Y := f−1(U(O)) is a locally closed sub-ind-scheme of G2(K); it is closed if

U is affine. Clearly Y ·G2(O) = Y , so Y is the preimage of a locally closed

sub-ind-scheme Y ′ ⊂ G2(K)/G2(O); if U is affine then Y ′ is closed. Since

G1(K) ⊂ Y we have a natural morphism

(222) G1(K)→ Y ′ .

We claim that (222) is a G1(O)-torsor (G1(O) acts on G1(K) by right

translations) and therefore G1(K)/G1(O) = Y ′. To see that (222) is a

G1(O)-torsor notice that the morphism Y → Y ′ is a G2(O)-torsor, the

morphism ϕ : Y → U(O) = G1(O) \ G2(O) is G2(O)-equivariant, and

G1(K) = ϕ−1(e) where e ∈ G1(O) \G2(O) is the image of e ∈ G2(O). �

Let us prove (i) and (iv) for any G. Choose an embedding G ↪→ GLn. If

G is reductive then GLn/G is affine, so the lemma shows that G(K)/G(O)

is an ind-proper ind-scheme. For any G we will construct an embedding

i : G ↪→ G′ := GLn × Gm such that G′/i(G) is quasiaffine; this will imply

(i). To construct i take a GLn-module V such that G ⊂ GLn is the stabilizer

of some 1-dimensional subspace l ⊂ V . The action of G in l is defined by

some χ : G→ Gm. Define i : G ↪→ G′ := GLn ×Gm by i(g) = (g, χ(g)−1).

To show that G′/i(G) is quasiaffine consider V as a G′-module (λ ∈ Gm acts

as multiplication by λ) and notice that the stabilizer of a nonzero v ∈ l in

G′ equals i(G). So G′/i(G) ' G′v and G′v is quasiaffine.
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Let us finish the proof of (iv). If G(K)/G(O) is ind-proper and G′ is

a normal subgroup of G then according to the lemma G′(K)/G′(O) is also

ind-proper. Clearly Ga(K)/Ga(O) is not ind-proper. Therefore G(K)/G(O)

is ind-proper only if G is reductive.

To prove (iii) it suffices to show that p : G(K) → G(K)/G(O) admits a

section over a neighbourhood of any C-point x ∈ G(K)/G(O) (here we use

that C-points are dense in G(K)/G(O) by virtue of (i)). Since p is G(K)-

equivariant we are reduced to the case where x is the image of e ∈ G(K).

So one has to construct a sub-ind-scheme Γ ⊂ G(K) containing e such that

the morphism

(223) Γ×G(O)→ G(K) , (γ, g) 7→ γg

is an open immersion. According to Faltings [Fal94, p.350–351] the

morphism (223) is an open immersion if the set of R-point of Γ is defined

by

Γ(R) = Ker(G(R[t−1])
f−→G(R)) ⊂ G(R((t))) = G(R⊗̂K)

where f is evaluation at t = ∞. The proof of this statement is due to

Beauville and Laszlo (Proposition 1.11 from [BLa94]). It is based on the

global interpretation of G(K)/G(O) in terms of X = P1 (see 4.5.2) and on

the following property of G-bundles on P1: for a G-bundle F on S × P1 the

points s ∈ S such that the restriction of F to s× P1 is trivial form an open

subset of S (indeed, H1(P1,O ⊗ g) = 0, g := LieG).

Let us deduce*) (ii) from (iii). Since G(K) is formally smooth it

follows from (iii) that each point of G(K)/G(O) has a formally smooth

neighbourhood. Since G(K)/G(O) is of ind-finite type this implies (ii).

It remains to consider (v). G(O) is reduced. So G(K) is reduced

if and only if G(K)/G(O) is reduced. Laszlo and Sorger prove that

if Hom(G,Gm) = 0 then G(K)/G(O) is reduced (see the proof of

Proposition 4.6 from [La-So]); their proof is based on a theorem of

*)In fact, one can prove (ii) without using (iii).
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Shafarevich. If Hom(G,Gm) 6= 0 there exist morphisms f : Gm → G

and χ : G → Gm such that χf = ϕn, n 6= 0, where ϕn(λ) := λn. The

image of the morphism Gm(K) → Gm(K) induced by ϕn is not contained

in Gm(K)red, so G(K) is not reduced. �

4.5.2. Let X be a connected smooth projective curve over C, x ∈ X(C), Ox

the completed local ring of x, and Kx its field of fractions. Then according

to Beauville – Laszlo (see 2.3.4) the fpqc quotient G(Kx)/G(Ox) can be

interpreted as the moduli space of pairs (F , γ) consisting of a principal G-

bundle F on X and its section (=trivialization) γ : X \ {x} → F : to (F , γ)

one assigns the image of γ/γx in G(Kx)/G(Ox) where γx is a section of F

over SpecOx and γ/γx denotes the element g ∈ G(Kx) such that γ = gγx

(we have identified G(Kx)/G(Ox) with the moduli space of pairs (F , γ) at

the level of C-points; the readers can easily do it for R-points where R is

any C-algebra).

4.5.3. Let us recall the algebraic definition of the topological fundamental

group of G. Denote by πet
1 (G) the fundamental group of G in Grothendieck’s

sense. A character f : G → Gm induces a morphism πet
1 (G) → πet

1 (Gm) =

Ẑ(1) and therefore a morphism f∗ : (πet
1 (G))(−1) → Ẑ. Denote by π1(G)

the set of α ∈ (πet
1 (G))(−1) such that f∗(α) ∈ Z for all f ∈ Hom(G,Gm).

We consider π1(G) as a discrete group. In fact, π1(G) does not change if G

is replaced by its maximal reductive quotient. For reductive G one identifies

π1(G) with the quotient of the group of coweights of G modulo the coroot

lattice.

For any finite covering p : G̃→ G one has the coboundary map G(K)→

H1(K,A) = A(−1), A := Ker p. These maps yield a homomorphism

G(K) → (πet
1 (G))(−1). Its image is contained in π1(G). So we have

constructed a canonical homomorphism

(224) ϕ : G(K)→ π1(G)



HITCHIN’S INTEGRABLE SYSTEM 177

where G(K) is understood in the naive sense (i.e., as the group of K-points

of G or as the group of C-points of the ind-scheme G(K)). The restriction

of (224) to G(O) is trivial, so (224) induces a map

(225) G(K)/G(O)→ π1(G)

where G(K)/G(O) is also understood in the naive sense.

Now consider G(K) and G(K)/G(O) as ind-schemes. The set of C-points

of G(K)/G(O) is dense in G(K)/G(O), and the same is true for G(K).

4.5.4. Proposition.

(i) The maps (224) and (225) are locally constant.

(ii) The corresponding maps

(226) π0(G(K))→ π1(G)

(227) π0(G(K)/G(O))→ π1(G)

are bijective.

Proof. We already proved (i) using a global argument (see the Remark

at the end of 4.1.7). The same argument can be reformulated using the

interpretation of G(Kx)/G(Ox) from 4.5.2: the map (225) equals minus the

composition of the natural map G(Kx)/G(Ox)→ BunG and the “first Chern

class” map c : π0(BunG)→ π1(G). For a local proof of (i) see 4.5.5.

Now let us prove (ii). The map π0(G(K))→ π0(G(K)/G(O)) is bijective

(because G is connected). So it suffices to consider (226). Since G can be

represented as a semi-direct product of a reductive group and a unipotent

group we can assume thatG is reductive. Fix a Cartan subgroupH ⊂ G. We

have π0(H(K)) = π1(H) and the composition π0(H(K)) → π0(G(K)) →

π1(G) is the natural map π1(H) → π1(G), which is surjective. So (226)

is also surjective. The map π0(H(K)) → π0(G(K)) is surjective (use the

Bruhat decomposition for the abstract group G(K)). Therefore to prove the

injectivity of (226) it suffices to show that the kernel of the natural morphism
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f : π0(H(K))→ π1(G) is contained in the kernel of π0(H(K))→ π0(G(K)).

Since Ker f is the coroot lattice it is enough to prove that for any coroot

γ : Gm → H the image of Gm(K) in G(K) belongs to the connected

component of e ∈ G(K). A coroot Gm → H extends to a morphism

SL(2) → G, so it suffices to notice that SL(2,K) is connected (because

any matrix from SL(2,K) can be represented as a product of unipotent

matrices). �

In the next subsection we give a local proof of 4.5.4(i).

4.5.5. Lemma. Let M = SpecR be a connected affine variety, A a finite

abelian group, α ∈ H1
et(SpecR((t)), A). For x ∈ M(C) denote by α(x)

the restriction of α to the fiber of SpecR((t)) → SpecR over x, so

α(x) ∈ H1
et(SpecC((t)), A) = A(−1). Then α(x) ∈ A(−1) does not depend

on x.

Proof. It suffices to show that for any smooth connected M ′ and any

morphism M ′ → M the pullback of α to M ′(C) is constant*). So we can

assume that M is smooth. Set V := SpecR[[t]], V ′ := SpecR((t)). We can

assume that A = µn. Then α corresponds to a µn-torsor on V ′, i.e., a line

bundle A on V ′ equipped with an isomorphism ψ : A⊗n ∼−→ OV ′ . Since V is

regular A extends to a line bundle Ã on V . Then ψ induces an isomorphism

Ã⊗n ∼−→ tkOV for some k ∈ Z. Clearly α(x) ∈ Z/nZ is the image of k. �

Here is a local proof of 4.5.4(i). Since G(K)/G(O) is of ind-finite type

it suffices to prove that for every connected affine variety M = SpecR and

any morphism f : M → G(K) the composition M(C) → G(K) → π1(G)

is constant. For any finite abelian group A an exact sequence 0 → A →

G̃ → G → 0 defines a map π1(G) → A(−1) and it is enough to show that

the composition M(C) → G(K) → π1(G) → A(−1) is constant. To prove

this apply the lemma to α = ϕ∗β where ϕ : SpecR((t)) → G corresponds

*)In fact, it is enough to consider only those M ′ that are smooth curves.
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to f : SpecR→ G(K) and β ∈ H1
et(G,A) is the class of G̃ considered as an

A-torsor on G.

Remark. In fact, one can prove that for every affine scheme M = SpecR

over C the “Künneth morphism”

H1
et(M,A)⊕H0(M,Z)⊗H1

et(SpecC((t)), A)→ H1
et(M((t)), A),(228)

M((t)) := SpecR((t)),

is an isomorphism (clearly this implies the lemma). A similar statement

holds for any ring R such that the order of A is invertible in R.

4.5.6. Proposition. Let A ⊂ G be a finite central subgroup, G′ := G/A.

(i) The morphism G(K)/G(O) → G′(K)/G′(O) induces an isomor-

phism between G(K)/G(O) and the union of some connected com-

ponents of G′(K)/G′(O).

(ii) The morphism G(K)→ G′(K) is an etale covering.

Remark. By 4.5.4 the components mentioned in (i) are labeled by elements

of Im(π1(G)→ π1(G′)). The same is true for the connected components of

the image of G(K) in G′(K).

Proof. Clearly (i) and (ii) are equivalent.

Let us prove (i) under the assumption of semisimplicity of G (which

is equivalent to semisimplicity of G′). In this case the morphism f :

G(K)/G(O) → G′(K)/G′(O) is ind-proper by 4.5.1(iv). By 4.5.4(i) the

fibers of f over geometric points*) of components C ⊂ G′(K)/G′(O) such

that f−1(C) 6= ∅ contain exactly one point, and it is easy to see that

these fibers are reduced. By 4.5.1(v) G′(K)/G′(O) is reduced. So in the

semisimple case (i) is clear.

*)The statement for C-points follows immediately from 4.5.4(i). Since 4.5.4 remains

valid if C is replaced by an algebraically closed field E ⊃ C the statement is true for

E-points as well.
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Now let us reduce the proof of (ii) to the semisimple case. We can

assume that A is cyclic. It suffices to construct a morphism ρ from G

to a semisimple group G1 such that ρ|A is injective and ρ(A) ⊂ G1 is

central (then the morphism G(K)→ G′(K) is obtained by base change from

G1(K)→ G′1(K), G′1 := G1/ρ(A)). To construct G1 and ρ one can proceed

as follows. Fix an isomorphism χ : A
∼−→ µn. Let V be a finite-dimensional

G-module such that Z acts on V via χ. Denote by Wpq the direct sum of p

copies of V and q copies of Symn−1 V ∗. If p·dimV = q(n−1)·dim Symn−1 V

then one can set G1 := SL(Wpq) (indeed, the image of GL(V ) in GL(Wpq)

is contained in SL(Wpq). �

Remarks

(i) Proposition 4.5.6 is an immediate consequence of the bijectivity of

(228).

(ii) It is easy to prove Proposition 4.5.6 using the global interpretation

of G(K)/G(O) from 4.5.2.

4.5.7. Suppose that G is reductive. Denote by Gad the quotient of G by

its center. Set T := G/[G,G], G′ := Gad × T . Then G′ = G/A for

some finite central subgroup A ⊂ G. So by 4.5.6 G(K)/G(O) can be

identified with the union of certain connected components ofG′(K)/G′(O) =

Gad(K)/Gad(O)× T (K)/T (O).

The structure of T (K)/T (O) is rather simple. For instance, the reduced

part of Gm(K)/Gm(O) is the discrete space Z and the connected component

of 1 ∈ Gm(K)/Gm(O) is the formal group with Lie algebra K/O.

4.5.8. From now on we assume that G is reductive and set GR :=

G(K)/G(O).

Recall that G(O)-orbits in GR are labeled by dominant coweights of G or,

which is the same, by P+(LG) := the set of dominant weights of LG. More

precisely, χ ∈ P+(LG) defines a conjugacy class of morphisms ν : Gm → G

and, by definition, Orbχ is the G(O)-orbit of the image of ν(π) in GR where
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π is a prime element of O (this image does not depend on the choice of π).

Clearly Orbχ does not depend on the choice of ν inside the conjugacy class,

so Orbχ is well-defined. According to [IM] the map χ 7→ Orbχ is a bijection

between P+(LG) and the set of G(O)-orbits in GR. It is easy to show that

(229) dim Orbχ = (χ, 2ρ)

where 2ρ is the sum of positive roots of G.

Remark. Clearly Orbχ is Aut0O-invariant.

4.5.9. We have the bijection (227) between π0(GR) and π1(G). Let Z

be the center of the Langlands dual group LG. We identify π1(G) with

Z∨ := Hom(Z,Gm) using the duality between the Cartan tori of G and LG.

So the connected components of GR are labeled by elements of Z∨.

Remark. The connected component of GR containing Orbχ corresponds

to χZ ∈ Z∨ where χZ is the restriction of χ ∈ P+(LG) to Z.

4.5.10. There is a canonical morphism α : µ2 → Z. If G is semisimple we

have already defined it by (56). If G is reductive this gives us a morphism

µ2 → Z ′ where Z ′ is the center of the commutant of LG; then we define α

to be the composition µ2 → Z ′ ↪→ Z.

According to 4.4.4 the dual morphism α∨ : π1(G) → Z/2Z is the

morphism of fundamental groups that comes from the adjoint representation

G→ SO(gss), gss := [g, g].

The composition of (227) and α∨ defines a locally constant parity function

(230) p : GR → Z/2Z .

We say that a connected component of GR is even (resp. odd) if (230) maps

it to 0 (resp. 1).

4.5.11. Proposition. All the G(O)-orbits of an even (resp. odd) component

of GR have even (resp. odd) dimension.
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Proof. Let x = gG(O) ∈ GR. Using the relation between α∨ and the adjoint

representation (see 4.5.10) as well as Remarks (ii) and (iii) from 4.3.4 we see

that x belongs to an even component of GR if and only if

(231) dim gss ⊗O/
(
(gss ⊗O) ∩Adg(gss ⊗O)

)
is even. But (231) is the dimension of the G(O)-orbit of x. �

Here is another proof. Using (229) and the Remark from 4.5.9 we see

that the proposition is equivalent to the formula χZ(α(−1)) = (−1)〈χ,2ρ〉,

which is obvious because according to (56) α : µ2 → Z is the restriction of

the morphism λ# : Gm → H ⊂ G corresponding to 2ρ.

4.5.12. The following properties of G(O)-orbits in GR will not be used in

this work but still we think they are worth mentioning.

The closure of Orbχ is the union of Orbχ′ , χ
′ ≤ χ. Indeed, if ρ : G →

GL(V ) is a representation with lowest weight λ then for g ∈ Orbχ one has

ρ(g) ∈ t(χ,λ) End(V ⊗ O), ρ(g) /∈ t(χ,λ)+1 End(V ⊗ O). So if Orbχ′ ⊂ Orbχ

then (χ − χ′, λ) ≤ 0 for every antidominant weight λ of G and therefore

χ − χ′ is a linear combination of simple coroots of G with non-negative

coefficients; by 4.5.4(i) these coefficients are integer, so χ′ ≤ χ. On the

other hand, a GL(2) computation shows that the set of weights χ′ of LG

such that Orbχ′ ⊂ Orbχ is saturated in the sense of [Bour75], Ch. VIII, §7,

no. 2. So Proposition 5 from loc.cit shows that Orbχ′ ⊂ Orbχ for every

dominant χ′ such that χ′ ≤ χ.

The above description of Orbχ implies that Orbχ is closed if and only

if χ is minimal. If G is simple then χ is minimal if and only if χ = 0

or χ is a microweight of LG (see [Bour68], Ch. VI, §2, Exercise 5). So

on each connected component of GR there is exactly one closed G(O)-

orbit (use 4.5.4 and the first part of the exercise from loc.cit). If Orbχ is

closed it is projective, so in this case G(O) acts on Orbχ via G = G(O/tO)

and Orbχ is the quotient of G by a parabolic subgroup. In terms of 9.1.3

Orbχ = orbχ = G/P−χ .
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If G is simple then there is exactly one χ such that Orbχ \Orbχ consists

of a single point*); this χ is the coroot of g := LieG corresponding to the

maximal root αmax of g (see [Bour75], Ch. VIII, §7, Exercise 22). In this

case Orbχ can be described as follows. Set V := g ⊗ (m−1/O) where m is

the maximal ideal of O. Denote by V the projective space containing V

as an affine subspace. So V is the space of lines in V ⊕ C; in particular

V ∗ = g∗ ⊗ (m/m2) acts on V preserving 0 ∈ V . Denote by C the set of

elements of V that are G-conjugate to gαmax ⊗ (m−1/O). This is a closed

subvariety of V . Its projective closure C ⊂ V is V ∗-invariant because C is a

cone. It is easy to show that the morphism exp : C → G(K)/G(O) extends

to an isomorphism f : C
∼−→ Orbχ. Clearly f is Aut0O-equivariant and

G-equivariant. The action of Ker(G(O) → G(O/m)) on C induced by its

action on Orbχ comes from the action of V ∗ on C and the isomorphism

Ker(G(O/m2)→ G(O/m))
∼−→ g⊗m/m2 ∼−→ V ∗

where the last arrow is induced by the invariant scalar product on g such

that (αmax, αmax) = 2.

4.6. Local Pfaffian bundles. Consider the affine Grassmannian GR :=

G(K)/G(O) where O = C[[t]], K = C((t)). Set Z := Hom(π1(G),Gm)

(by the Remark from 4.1.1 Z is the center of LG). In this subsection we

will construct and investigate a functor L 7→ λL = λloc
L from the groupoid

Z torsθ(O) (see 3.4.3) to the category of line bundles on GR. We call λL the

local Pfaffian bundle corresponding to L.

We recommend the reader to skip this subsection for the moment.

4.6.1. In 4.4.9 we defined a functor L 7→ G̃(K)L from Z torsθ(O) to the

category of central extensions of G(K) by Gm. For L ∈ Z torsθ(O) we have

the splitting G(O)→ G̃(K)L and therefore the principal Gm-bundle

(232) G̃(K)L/G(O)→ G(K)/G(O) = GR .

*)Of course, this point is the image of e ∈ G(K).
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4.6.2. Definition. λL is inverse to the line bundle on GR corresponding to

the Gm-bundle (232).

Clearly λL depends functorially on L ∈ Z torsθ(O).

4.6.3. Remark. G̃(K)L depends on the choice of a non-degenerate invariant

bilinear form on g (see 4.4.7). So this is also true for λL.

4.6.4. Let e ∈ GR denote the image of the unit e ∈ G. Our λL is the

unique G̃(K)L-equivariant line bundle on GR trivialized over e such that

any c ∈ Gm ⊂ G̃(K)L acts on λL as multiplication by c−1. Uniqueness

follows from the equality Hom(G(O),Gm) = 0.

4.6.5. By 4.4.11 the action of G̃(K)L on λL induces an action of g̃⊗K on

λL such that 1 ∈ C ⊂ g̃⊗K acts as multiplication by −1. It is compatible

with the action of g⊗K on GR by left infinitesimal translations.

4.6.6. The push-forward of (63) by the morphism (56) is an exact sequence

(233) 0→ Z → AutZO → AutO → 0 .

For any L ∈ Z tors(O) the exact sequence

(234) 0→ Z → Aut(O,L)→ AutO → 0

can be canonically identified with (233). Here Aut(O,L) is the group ind-

scheme of pairs (σ, ϕ), σ ∈ AutO, ϕ : L ∼−→ σ∗L (the reader may prefer

to consider L as an object of the category Z̃ torsω(O) from 3.4.5). The

isomorphism between (233) and (234) is induced by the obvious morphism

Aut2O := Aut(O,ω
1/2
O )→ Aut(O,L).

AutZ O = Aut(O,L) acts on the exact sequence (217) by transport

of structure; the action of AutZ O on Gm is trivial and its action on

G(K) comes from the usual action of AutO on G(K). The subgroup

G(O) ⊂ G̃(K)L is AutZ O-invariant.
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4.6.7. It follows from 4.6.6 that the action of AutO on GR lifts canonically

to an action of AutZ O on the principal bundle (232) and the line bundle

λL. The action of AutZ O on λL induces an action of DerO = Lie AutZ O

on λL.

4.6.8. The action of Z = AutL on the extension (217) comes from (215).

So Z acts on λL via the morphism

(235) Z → H0(GR,O∗GR)

inverse to the composition of (215) and the natural embedding Hom(G(K),Gm) ↪→

H0(GR,O∗GR). Recall that π0(GR) = Z∨ (see 4.5.9), so z ∈ Z defines

fz : π0(GR)→ C∗ and (235) is the map z 7→ f−1
z .

4.6.9. Remark. (Do we need it ???). Consider the category of line bundles

on GR as a Z-category in the sense of 3.4.4, the Z-structure being defined

by (235). By 3.4.7 (i) we have a canonical Picard functor

(236) Z tors(O) = Z tors→ {line bundles on GR} .

Explicitly, (236) assigns to E ∈ Z tors the E-twist of OGR equipped with the

Z-action (235). By 3.4.7 (iv) the functor L 7→ λL, L ∈ Z torsθ(O), is affine

with respect to the Picard functor (236).

4.6.10. The morphism α : µ2 → Z defined by (56) induces an action of

µ2 on λL, L ∈ Z torsθ(O). It defines a (Z/2Z)-grading on λL. In 4.5.10 we

introduced the notions of even and odd component of GR. According to

4.6.8 the restriction of the (Z/2Z)-graded bundle λL to an even (resp. odd)

component of GR is even (resp. odd).

4.6.11. The functor

(237) Z torsθ(O)→ {line bundles on GR}, L 7→ λL

is a Z-functor in the sense of 3.4.4 provided the Z-structure on the r.h.s. of

(237) is defined by (235). Since Z torsθ(O) is equivalent to ω1/2(O) ⊗µ2 Z
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(see 3.4.4) the functor (237) is reconstructed from the corresponding functor

(238) ω1/2(O)→ {line bundles onGR}

where ω1/2(O) is the groupoid of square roots of ω(O). Since the extension

(212) essentially comes from the “Clifford extension” (193) it is easy to give

a Cliffordian description of (238). Here is the answer.

Let L ∈ ω1/2(O). We have fixed a nondegenerate invariant symmetric

bilinear form on g, so the Tate space V = VL := L ⊗O (g ⊗ K) carries a

nondegenerate symmetric bilinear form (see 4.3.3) and L := L ⊗ g ⊂ V is a

Lagrangian c-lattice. Set M = ML := Cl(V )/Cl(V )L; this is an irreducible

(Z/2Z)-graded discrete module over Cl(V ). We have the line bundle PM on

the ind-scheme Lagr(V ) of Lagrangian c-lattices in V (see 4.3.2). We claim

that

(239) λL = ϕ∗PML

where the morphism*) ϕ : G(K)/G(O) → Lagr(V ) is defined by ϕ(g) :=

gLg−1; in other words

(240)
the fiber of λL over g ∈ G(K)/G(O) is MgLg−1

:=

{m ∈ML|(gLg−1) ·m = 0}.

Indeed, the central extension (212) is opposite to the one induced from (193)

and therefore the action of Õ(V ) on PML (see 4.3.2) induces an action of

G̃(K)L on ϕ∗PML such that c ∈ Gm ⊂ G̃(K)L acts as multiplication by c−1;

besides, the fiber of ϕ∗PML over e is C.

Clearly the isomorphism (239) is functorial in L ∈ ω1/2(O).

4.6.12. Remarks

(i) The line bundle PM from 4.3.2 is (Z/2Z)-graded. So both sides of

(239) are (Z/2Z)-graded. The gradings of both sides of (239) are

induced by the action of µ2 = AutL (to prove this for the r.h.s.

*)It is easy to show that ϕ is a closed embedding and its image is the ind-scheme of

Λ ∈ Lagr(V ) such that OΛ = Λ and L−1 ⊗O Λ is a Lie subalgebra of g⊗K.
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notice that the (Z/2Z)-grading on Cl(V ) is induced by the natural

action of µ2 on V ). Therefore (239) is a graded isomorphism.

(ii) According to 4.6.10 −1 ∈ µ2 = AutL acts on the r.h.s. of (239) as

multiplication by (−1)p where p is the parity function (230). This

also follows from the equality χ = θ (see the proof of Lemma 4.3.4)

and Remark (ii) at the end of 4.3.4.

4.6.13. We should think about super-aspects, in particular: what is the

inverse of a 1-dimensional superspace? (maybe this should be formulated in

an arbitrary Picard category; there may be troubles if it is not STRICTLY

commutative).

Consider a G(O)-orbit Orbχ ⊂ GR, χ ∈ P+(LG) (see 4.5.8). We will

compute λL,χ := the restriction of λL to Orbχ, L ∈ Z torsθ(O). By 4.6.4 λL,χ

is G(O)-equivariant. The orbit Orbχ is Aut0O-invariant and by 4.6.7 λL,χ

is Aut0
Z O-equivariant where Aut0

Z O is the preimage of Aut0O in AutZ O

(see (233)). Finally λL,χ is Z/2Z-graded (but in fact λL,χ is even or odd

depending on χ; besides, the Z/2Z-grading can be reconstructed from the

action of Z ⊂ Aut0
Z O.....). The groups G(O) and Aut0

Z O also act on the

canonical sheaf ωOrbχ (Aut0
Z O acts via Aut0O). In 4.6.17-4.6.19 (???) we

will construct a canonical isomorphism

(241) λL,χ
∼−→ ωOrbχ ⊗ (dL,χ)−1

for a certain 1-dimensional vector space dL,χ. This space is equipped with

an action of G(O) and Aut0
Z O and (241) is equivariant with respect to these

groups.

4.6.14. Let us define dL,χ. Of course the action of G(O) on dL,χ is defined

to be trivial (G(O) has no nontrivial characters). So we have to construct

for each χ a functor

(242) Z torsθ(O)→ {Aut0
Z O-mod}, L 7→ dL,χ
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where {Aut0
Z O-mod} denotes the category of Aut0

Z O-modules. First let us

define a functor

(243) ω1/2(O)→ {Aut0
Z O-mod}, L 7→ dL,χ

For L ∈ ω1/2(O) set

(244) dL,χ := (L0)⊗d(χ)

where L0 is the fiber of L over the closed point 0 ∈ SpecO and

(245) d(χ) := (χ, 2ρ) = dim Orbχ

Define the representation of Aut0
Z O in dL,χ as follows: Aut0

2O = Aut0(O,L)

acts in the obvious way and Z ⊂ Aut0
Z O acts via

(246) χZ : Z → Gm

where χZ is the restriction of χ ∈ P+(LG) to Z ⊂ LG (these two actions

are compatible because the composition of χZ and the morphism (56) maps

−1 ∈ µ2 to (−1)(χ,2ρ)).

So we have constructed (243). ω1/2(O) is a µ2-category in the sense of

3.4.4, {Aut0
Z O-mod} is a Z-category, and (243) is a µ2-functor (the µ2-

structure on {Aut0
Z O} comes from the morphism (56) or, equivalently, from

the canonical embedding µ2 → Aut0
2O). So (243) induces a Z-functor

Z torsθ(O) = ω1/2(O) ⊗µ2 Z →{Aut0
Z O-mod}. This is the definition of

(242).

4.6.15. Clearly Lie Aut0
Z O = Der0O acts on the one-dimensional space

dL,χ as follows:

(247) L0 7→ (χ, ρ) = −1

2
dim Orbχ , Ln 7→ 0 for n > 0

As usual, Ln := −tn+1 d
dt ∈ Der0O.
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4.6.16. Remark. The definition of dL,χ from 4.6.14 can be reformulated

as follows. Using the equivalence Z torsθ(O)
∼−→ Z̃ torsω(O) from 3.4.5

we interpret L ∈ Z torsθ(O) in terms of (59) as a lifting of the Gm-torsor

ωO to a Z̃-torsor. We have the canonical morphism Z̃ → LH from (62)

where LH is the Cartan torus of LG or, which is the same, LH is a Cartan

subgroup of LG with a fixed Borel subgroup containing it. Denote by χZ̃

the composition of Z̃ → LH and χ : LH → Gm. The Z̃-torsor L on SpecO

and the 1-dimensional representation χZ̃ : Z̃ → Gm define a line bundle dOL,χ

on SpecO. According to 4.6.6 AutZ O = Aut(O,L), so the action of AutO

on SpecO lifts to a canonical action of AutZ O on dOL,χ. Therefore Aut0
Z O

acts on the fiber of dOL,χ at 0 ∈ SpecO. The reader can easily identify this

fiber with the dL,χ from 4.6.14.

4.6.17. Let us construct the isomorphism (241) for L ∈ ω1/2(O). We use

the Cliffordian description of λL. Just as in 4.6.11 we set V = VL :=

L ⊗O (g ⊗ K), L := L ⊗ g ⊂ V , M = ML := Cl(V )/Cl(V )L. For

x ∈ GR = G(K)/G(O) set Lx := gLg−1 where g is a preimage of x in

G(K). By (240) the fiber of λL at x equals

(248) MLx := {m ∈ML|Lx ·m = 0}

Suppose that x ∈ Orbχ. Since Orbχ is the G(O)-orbit of x the tangent space

to Orbχ at x is (g ⊗ O)/((g ⊗ O) ∩ g(g ⊗ O)g−1) = L−1 ⊗O (L/(L ∩ Lx))

where g ∈ G(K) is a preimage of x. So the fiber of ω−1
Orbχ

at x equals

(L0)⊗−d(χ) ⊗ det(L/(L ∩ Lx)) where d(χ) = dim Orbχ. Taking (244) into

account we see that the fiber of the r.h.s. of (241) at x equals

(249) (det(L/(L ∩ Lx)))−1

So it remains to construct an isomorphism

(250) det(L/(L ∩ Lx))⊗MLx ∼−→ C
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4.6.18. Lemma. Consider a Tate space V equipped with a nondegenerate

symmetric bilinear form. Let L,Λ ⊂ V be Lagrangian c-lattices and M an

irreducible discrete module over the Clifford algebra Cl(V ). Consider the

operator

(251)
∧dL⊗M →M

induced by the natural map
∧d L →

∧d V → Cl(V ). If d = dimL/(L ∩ Λ)

then (251) induces an isomorphism

(252)
∧d(L/(L ∩ Λ))⊗MΛ ∼−→ML

The proof is reduced to the case where dimV <∞ and V = L⊕ Λ.

4.6.19. We define (250) to be the isomorphism (252) for Λ = Lx (in the

situation of 4.6.17 ML = C). So for L ∈ ω1/2(O) we have constructed

the isomorphism (241), which is equivariant with respect to G(O) and

Aut0
2O = Aut0(O,L).

Denote by Cχ the category of line bundles on Orbχ. Both sides of (241)

are µ2-functors ω1/2(O)→ Cχ extended to Z-functors

Z torsθ(O) = ω1/2(O)⊗µ2 Z → Cχ

(the Z-structure on Cχ is defined by the character of Z inverse to (246));

for the l.h.s of (241) this follows from 4.6.8. Clearly (241) is an isomorphism

of functors ω1/2(O) → Cχ. Therefore (241) is an isomorphism of functors

Z torsθ(O)→ Cχ. The isomorphism (241) is Aut0
Z O-equivariant because it

is Aut0
2O-equivariant and Z-equivariant.

4.6.20. Recall that λL depends on the choice of a nondegenerate invariant

bilinear form on g (see 4.6.3 and 4.4.7). As explained in the footnote to 4.4.7

there is a more canonical version of λL. In the case where G is simple this

version λcan
L depends on the choice of β1/2 where β is the line of invariant

bilinear forms on g (cf. 4.4.5); λcan
L comes from the version of (212) obtained
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by using SO(g⊗ β1/2) instead of SO(g). It is easy to see that the (Z/2Z)-

grading on λcan
L , corresponding to the action of −1 ∈ Autβ1/2 coincides with

the grading from 4.6.10. The “canonical” version of (241) is an isomorphism

(253) λcan
L,χ

∼−→ ωOrbχ ⊗ (dL,χ)−1 ⊗ (β1/2)⊗−d(χ)

where d(χ) is defined by (245). Details are left to the reader.
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5. Hecke eigen-D-modules

5.1. Construction of D-modules.

5.1.1. In this subsection we construct a family of D-modules on BunG

parametrized by OpLG(X), i.e., the stack of LG-opers on X.

Denote by Z the center of LG. According to formula (57) from 3.4.3

we must associate to L ∈ Z torsθ(X) a family of D-modules on BunG

parametrized by OpLg(X). In 4.4.3 we defined λL ∈ µ∞ torsθ(BunG). λL is

a line bundle on BunG equipped with an isomorphism λ⊗2n
L

∼−→ (ω]BunG
)⊗n

for some n 6= 0 (see 4.0.1). So λL is a D′-module. Therefore ML :=

λ−1
L
⊗
OBunG

D′ is a left D-module on BunG. According to 3.3.2 and 2.7.4

there is a canonical morphism of algebras hXϕX : ALg(X) → Γ(BunG, D
′).

So the right action of Γ(BunG, D
′) on D′ yields an ALg(X)-module structure

on ML. Therefore we may consider ML as a family of left D-modules on

BunG parametrized by SpecALg(X) = OpLg(X).

So we have constructed a family of left D-modules on BunG parametrized

by OpLG(X). For an LG-oper F the corresponding D-module MF is

ML/mFML = λ−1
L ⊗ D′/D′mF where L is the image of F in Z torsθ(X)

and mF ⊂ ALg(X) is the maximal ideal of the Lg-oper corresponding to F.

5.1.2. Proposition.

(i) For every L ∈ Z torsθ(X) ML is flat over ALg(X).

(ii) For every LG-oper F the D-module MF is holonomic. Its singular

support coincides as a cycle with the zero fiber of Hitchin’s fibration.

Proof. According to 2.2.4 (iii) grD′ is flat*) over grALg(X). So D′ is flat over

ALg(X). This implies i) and the equality gr(D′/D′I) = grD′/(grD′ · gr I)

for any ideal I ⊂ ALg(X). If I is maximal we obtain ii). �

*)This means that if f : S → BunG is smooth and S is affine Γ(S, f∗ grD′) is a free

module over grALg(X) (a flat Z+-graded module over a Z+-graded ring A with A0 = C

is free).
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5.2. Main theorems I: an introduction.

5.2.1. Our main global theorem 5.2.6 asserts that the D-module MF is an

eigenmodule of the Hecke functors. In order to define them we introduce

the big Hecke stack Hecke. The groupoid of S-points Hecke(S) consists of

quadruples (F1,F2, x, α) where F1, F2 are G-torsors on X × S, x ∈ X(S),

and α : F1|U
∼−→ F2|U is an isomorphism over the complement U to the

graph of x. One has the obvious projection p1,2,X = (p1, p2, pX) : Hecke→

BunG × BunG ×X.

The stack Hecke is ind-algebraic and the projections pi, pi,X are ind-

proper. Precisely, there is an increasing family of closed algebraic substacks

Hecke1 ⊂ Hecke2 ⊂ · · · ⊂ Hecke such that Hecke =
⋃
Heckea and

pi : Heckea → BunG, pi,X : Heckea → BunG ×X are proper morphisms.

5.2.2. Remarks. (i) The composition of α’s makes Hecke an X-family of

groupoids on BunG.

(ii) Hecke is a family of twisted affine Grassmannians over BunG × X.

Precisely, for (F2, x) ∈ BunG × X the fiber Hecke(F2,x) := p−1
2,X(F2, x) is

canonically isomorphic to the affine Grassmannian GRx := G(Kx)/G(Ox)

twisted by the G(Ox)-torsor F2(Ox) (with respect to the left G(Ox)-action).

In the case where F2 is the trivial bundle we described this isomorphism in

4.5.2. In the general case the construction is similar: for fixed γ2 ∈ F2(Ox)

we assign to (F1,F2, x, α) the image of γ2/α(γ1) in G(Kx)/G(Ox) where γ1

is any element of F1(Ox) and γ2/α(γ1) denotes the element g ∈ G(Kx) such

that gα(γ1) = γ2; by 2.3.4 the morphism Hecke(F2,x) → G(Kx)/G(Ox) is an

isomorphism.

5.2.3. The set of conjugacy classes of morphisms ν : Gm → G can be

canonically identified with the set P+(LG) of dominant weights of LG. Recall

that G(Ox)-orbits in GRx = G(Kx)/G(Ox) are labeled by χ ∈ P+(LG); by

definition, Orbχ is the orbit of the image of ν(tx) ∈ G(Kx) in GRx where

ν : Gm → G is of class χ and tx ∈ Ox is a uniformizer.
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According to 5.2.2 (ii) the stratification of GRx by Orbχ yields a

stratification of the stack Hecke by substacks Heckeχ, χ ∈ P+(LG). The C-

points ofHeckeχ are quadruples (F1,F2, x, α) such that for some γi ∈ Fi(Ox)

and a formal parameter tx at x one has γ2 = ν(tx)α(γ1) where ν : Gm → G

is of class χ. The involution (F1,F2, x, α) 7→ (F2,F1, x, α
−1) identifies

Heckeχ with Heckeχ◦ where χ◦ is the dual weight. So the fibers of

p2,X : Heckeχ → BunG × X are twisted forms of Orbχ while the fibers

of p1,X : Heckeχ → BunG ×X are twisted forms of Orbχ◦ .

For every χ the stack Heckeχ is smooth over BunG × X. Usually its

closure Heckeχ is not smooth.

Remarks. (i) According to 4.5.12 Heckeχ is the union of the strata

Heckeχ′ , χ
′ ≤ χ.

(ii) If G = GL(n) then our labeling of strata coincides with the “natural”

one. Namely, let V1, V2 be the vector bundles corresponding to F1,F2. Then

Heckeχ consists of all collections (V1, V2, x, α) such that for certain bases of

Vi’s on the formal neighbourhood of x the matrix of α equals tχx .

5.2.4. Let us define the Hecke functors T iχ : M(BunG) → M(BunG × X)

where M denotes the category of D-modules, χ ∈ P+(LG), i ∈ Z.

For χ ∈ P+(LG), M ∈ M(BunG) denote by p?1χM the minimal

(= Goresky–MacPherson) extension to Heckeχ of the pullback of M by the

smooth projection p1χ : Heckeχ → BunG, p1χ := p1|Heckeχ . Notice that the

fibration p1X : Heckeχ → BunG×X is locally trivial (see 5.2.2 (ii), 5.2.3), so

the choice of a local trivialization identifies p?1χM (locally) with the external

tensor product of M and the “intersection cohomology” D-module on the

closure of the corresponding G(O)-orbit*) on the affine Grassmannian.

Define the Hecke functors T iχ : M(BunG)→M(BunG ×X) by

(254) T iχ = H i(p2,X)∗p
?
1χ

*)This orbit is Orbχ◦ where χ◦ is the dual weight, see 5.2.3.
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where H i(p2,X)∗ is the cohomological pushforward functor for the projection

p2,X : Heckeχ → BunG ×X.

Remark. For a representable quasi-compact morphism f : X → Y of

algebraic stacks of locally finite type the definition ofH if∗ : M(X )→M(Y)

is clear. Indeed, in the case of schemes one has a definition of H if∗ and one

knows that H if∗ commutes with smooth base change.

5.2.5. For χ ∈ P+(LG) we denote by V χ the irreducible LG-module of

highest weight χ with marked highest vector. If F is an LG-oper on X (or,

more generally, an LG-bundle with a connection) denote by V χ
F the F-twist

of V χ; this is a smooth D-module on X.

5.2.6. Main Global Theorem. Let F be an LG-oper on X and MF the D-

module on BunG defined in 5.1.1. Then T iχMF = 0 for i 6= 0 and there is a

canonical isomorphism of D-modules on BunG ×X

(255) T 0
χMF

∼−→MF � V
χ
F .

The isomorphisms (255) are compatible with composition of Hecke

correspondences and tensor products of V χ. For the precise statement see

5.4.3. All this means that MF is a Hecke eigen-D-module of eigenvalue F.

5.2.7. Laumon defined (see §§5.3 and 4.3.3 from [La87]) a conjectural

“Langlands transform” KE of an irreducible local system E on X (KE does

exist if rank E ≤ 2). KE is a holonomic D-module on BunGLn , n = rankE,

and at least for n = 2 its singular support is the zero fiber of Hitchin’s

fibration (see §5.5 from [La87]). Besides KE has regular singularities and

its restriction to each connected component of BunGLn is irreducible. If E

is an SLn local system then KE lives on BunPGLn .

Taking in account 5.1.2 and 5.2.6 it is natural to conjecture that for

G = PGLn the D-module MF from 5.1.1 equals KF (some results in this

direction can be found in [Fr]). It would also be interesting to find out (for
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any G) whether MF has regular singularities and whether its restrictions to

connected components of BunG are irreducible.

5.2.8. It is convenient and important to rewrite 5.2.6 in terms of the D-

modules ML from 5.1.1, L ∈ Z torsθ(X). According to (57) L ∈ Z torsθ(X)

defines a family FL of LG-opers on X parametrized by SpecALg(X). Thus

FL is an LG-torsor on X×SpecALg(X) equipped with a connection along X.

For χ ∈ P+(LG) the FL-twist of V χ is a vector bundle on X × SpecALg(X)

equipped with a connection along X. We consider it as a D-module V χ
L on

X equipped with an action of ALg(X).

Now consider the D-module ML on BunG (sec 5.1.1); ALg(X) acts on it.

It is easy to see (use 5.1.2 (i)) that 5.2.6 is a consequence of the following

theorem.

5.2.9. Theorem. There is a canonical isomorphism of D-modules on

BunG ×X

(256) T 0
χML

→∼ML �
ALg

(X)
V χ
L

compatible with the action of ALg(X), and T iχML = 0 for i 6= 0.

5.2.10. We will deduce the above global theorem from its local version

which we are going to explain now. Consider the affine Grassmannian

GR := G(K)/G(O) where O := C[[t]], K = C((t)). This is an ind-proper

ind-scheme. Thus we have the “abstract” categoryM(GR) of D-modules on

GR defined as lim
−→
M(Y ) where Y runs over the set of all closed subschemes

Y ⊂ GR.

We are not able to represent GR as a union of an increasing sequence of

smooth subschemes. However GR is a formally smooth ind-scheme. This

permits to treat D-modules on GR as “concrete” objects in the same way

as if GR were a smooth finite dimensional variety, i.e., to identify them with

certain sheaves of O-modules equipped with some extra structure. Namely,

assume we have an O-module P on GR such that each local section of P
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is supported on some subscheme of GR. Then one easily defines what is a

continuous right action of DerOGR on P . Such P equipped with such an

action is the same as a D-module on GR (we also assume an appropriate

quasi-coherency condition). Details can be found in ???.

5.2.11. Remark. We see that it is the right D-modules that make sense

as sheaves in this infinite dimensional setting. The reason for this is quite

finite dimensional. Indeed, if i : Y ↪→ Z is a closed embedding of smooth

manifolds and M is a D-module on Y then in order to identify M with a

subsheaf of i∗M one needs to consider right D-modules.

5.2.12. According to 3.4.3 one has the groupoid Z torsθ(O), which is the

local analog of Z torsθ(X). A choice of L ∈ Z torsθ(O) (which essentially

amounts to that of square root of ωO) defines the “local” Pfaffian line bundle

λloc
L on GR (see 4.6). The action of g ⊗ K on GR by left infinitesimal

translations lifts to the action of the central extension g̃⊗K from 2.5.1 on

λloc
L such that 1 ∈ C ⊂ g̃⊗K acts as multiplication by −1 (see 4.6.5).

This yields an antihomomorphism U
′ → Γ(GR,D′) where U

′
= U

′
(g ⊗K)

is the completed twisted universal enveloping algebra defined in 2.9.4 and

Γ(GR,D′) is the ring of λloc
L -twisted differential operators on GR. Hence for

any D-module M on GR the algebra U
′
acts on Mλ−1

L := M⊗OGR (λloc
L )⊗−1.

So Γ(GR,Mλ−1
L ) is a (left) U

′
-module.

For example, consider the D-module I1 of δ-functions at the distinguished

point of GR. The U
′
-module Γ(GR, I1λ

−1
L ) is the vacuum module Vac′.

5.2.13. Recall (see 4.5.8) that GR is stratified by G(O)-orbits Orbχ labeled

by χ ∈ P+(LG). Denote by Iχ the irreducible “intersection cohomology”

D-module on GR that corresponds to Orbχ.

Here is the first part of our main local theorem.

5.2.14. Theorem. The U
′
-module Γ(GR, Iχλ−1

L ) is isomorphic to a sum of

several copies of Vac′, and H i(GR, Iχλ−1
L ) = 0 for i > 0.
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Remark. This theorem means (see 5.4.8, 5.4.10) that the Harish-Chandra

module Vac′ is an eigenmodule of the Harish-Chandra version of the Hecke

functors from 7.8.2, 7.14.1.

5.2.15. The group AutO acts on GR, and the action of its Lie algebra

DerO lifts to λloc
L (see 4.6.7). The second part of our theorem describes the

action of DerO on Γ(GR, Iχλ−1
L ).

Consider the scheme of local Lg-opers OpLg(O) = SpecALg(O) from 3.2.1.

Write A instead of ALg(O). Just as in 5.2.8 L defines a family of LG-opers

on SpecO parametrized by SpecA. This family defines an LG-torsor FA

over SpecA equipped with an action of DerO compatible with its action on

A; see 3.5.4*). The FA-twist of the LG-module V χ is a vector bundle over

SpecA. Denote by V χ
LA the A-module of its sections; DerO acts on it.

5.2.16. Theorem. There is a canonical isomorphism of U
′
-modules

(257) Γ(GR, Iχλ−1
L )→∼Vac′⊗AV χ

LA

compatible with the action of DerO.

Here we use the A-module structure on V ac′ that comes from the Feigin–

Frenkel isomorphism (80).

5.2.17. A few words about the proofs. The global theorem follows from the

local one by an easy local-to-global argument similar to that used in 2.8.

The proof of the local theorem is based on the interplay of the following two

key structures:

(i) The Satake equivalence ([Gi95], [MV]) between the tensor category

of representations of LG and the category of D-modules on GR

generated by Iχ’s equipped with the “convolution” tensor structure.

(ii) The “renormalized” enveloping algebra U \. The morphism of

algebras U
′ → Γ(GR,D′) is neither injective (it kills the annihilator

*)In 3.5.4 we used the notation F0
G instead of FA and we considered the “particular”

case where L is a square root of ωO.
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I of Vac′ in the center Z of U
′
) nor surjective (its image does not

contain DerO). We decompose it as U
′ → U \ → Γ(GR,D′) where

U \ is obtained by “adding” to U
′
/IU

′
the algebroid I/I2 from 3.6.5

(the commutation relations between zg(O) = Z/I ⊂ U
′
/IU

′
and

I/I2 come from the algebroid structure on I/I2, they are almost of

Heisenberg type). The vacuum representation Vac′ is irreducible as

an U \-module; the same is true for Γ(GR, Iχλ−1), χ ∈ P+(LG).

5.2.18. Here is the idea of the proof of 5.2.16 (we assume 5.2.14). Set

z := zg(O). Consider the z-modules V χ
Lz := Hom

U
′(Vac′,Γ(GR, Iχλ−1

L )), so

Γ(GR, Iχλ−1
L ) = Vac′⊗

z
V χ
Lz. Some Tannakian formalism joint with Satake

equivalence yields a canonical LG-torsor Fz over Spec z such that V χ
Lz are F-

twists of V χ. The U \-module structure on Γ(GR, Iχλ−1
L ) defines the action

of the Lie algebroid I/I2 on Fz. Some extra geometric considerations define a

canonical B-structure on Fz, which satisfies the “oper” property with respect

to the action of DerO ⊂ I/I2. Now the results of 3.5, 3.6 yield a canonical

identification (Spec z,Fz)→∼(SpecA,FA) such that A→∼ z is the Feigin–Frenkel

isomorphism, and we are done.

5.2.19. DO WE NEED IT???

Here is a direct construction of M that does not appeal to twisted

D-modules. For x ∈ X consider the scheme BunG,x̄ (see 2.3.1). For

L ∈ Z torsθ(X) denote by λL,x̄ the pull-back of the line bundle λL to BunG,x̄.

Let g̃⊗Kx be the central extension of g ⊗ Kx from 2.5.1, so the g ⊗ Kx-

action on BunG,x̄ lifts canonically to a g̃⊗Kx-action on λL,x̄ such that

1 ∈ C acts as identity (see 4.4.12). Denote by BunG,L,x̄ the space of the

Gm-torsor over BunG,x̄ that corresponds to λL,x̄. We have a Harish-Chandra

pair ˜(g⊗Kx,Gm × G(Ox)),LieGm = C ⊂ g̃⊗Kx. The g̃⊗Kx-action on

BunG,L,x̄ extends to the action of this pair in the obvious way.

Note that BunG = Gm ×G(Ox) \ BunG,L,x̄. Therefore by 1.2.4 and 1.2.6

we have the functor ∆L :
(
g̃⊗Kx,Gm ×G(Ox)

)
mod → M`(BunG).
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Consider the projection Gm ×G(Ox)→ Gm as a character; let Vac∼ be the

corresponding induced Harish-Chandra module. One has

(258) ML = ∆L(Vac∼).

Let us identify the ALg(X)-module structure on ML. The action

of End(Vac∼) = zg(Ox) on ∆L(Vac∼) identifies, via Feigin-Frenkel’s

isomorphism ϕOx (see 3.2.2) with an ALg(Ox)-action. This action factors

through the quotient ALg(X).

5.3. The Satake equivalence. We recall the basic facts and construc-

tions, and fix notation. For details and proofs see [MV]. The authors of

[MV] use perverse sheaves; we use D-modules.

5.3.1. Consider the affine (or loop) Grassmannian GR = G(K)/G(O) (as

usual K = C((t)), O = C[[t]]); this is a formally smooth ind-projective

ind-scheme (see 4.5.1). It carries the stratification by G(O)-orbits Orbχ,

χ ∈ P+(LG) (see 4.5.8). Each stratum is Aut0O-invariant.

In 4.5.10 we introduced the notion of parity of a connected component of

GR. According to 4.5.11

(259)
All the strata of an even (resp. odd) component of

GR have even (resp. odd) dimension.

5.3.2. Lemma.

(i) Each stratum Orbχ is connected and simply connected.

(ii) Any smooth D-module on Orbχ is constant.

(iii) Orbχ has cohomology only in even degrees.

Proof. Denote by Stabx the stabilizer of x ∈ GR in G(O). The image

of Stabx in G(O/tO) = G is a parabolic subgroup Px and the morphism

G(O)/Stabx → G/Px is a locally trivial fibration whose fibers are

isomorphic to an affine space. Now (i) and (iii) are clear. Notice that Orbχ

is projective and according to (259) Orbχ\Orbχ has codimension ≥ 2. So by
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Deligne’s theorem*) a smooth D-module on Orbχ has regular singularities

and therefore (ii) follows from (i).

�

Denote by P the category of coherent (or, equivalently, holonomic) D-

modules on GR smooth along our stratification.

5.3.3. Proposition.

(i) The category P is semisimple.

(ii) If M ∈ P is supported on an even (resp. odd) component then

Ha
DR(GR,M) = 0 if a is odd (resp. even).

Proof. Denote by Iχ the intersection cohomology perverse sheaf of C-

vector spaces on Orbχ. Denote by GR(χ) the connected component of GR

containing Orbχ and by p(χ) the parity of GR(χ). According to Lusztig

(Theorem 11c from [Lu83] ) Iχ has the following property: the cohomology

sheaves H i(Iχ) are zero unless i mod 2 = p(χ). Denote by C the category

of all objects of Db(GR(χ)) having this property and smooth along our

stratification. It follows from (259) and 5.3.2 (iii) that for any M,N ∈ C

one has H i(GR(χ),M) = 0 unless i mod 2 = p(χ) and Exti(M,N∗) = 0

for odd i (here N∗ is the Verdier dual of N). In particular H i(GR, Iχ) = 0

unless i mod 2 = p(χ) and Ext1(Iχ1 , Iχ2) = 0. Using 5.3.2 (ii) one gets the

Proposition. �

5.3.4. According to 5.3.2 (ii) the simple objects of P are “intersection

cohomology” D-modules Iχ of the strata Orbχ. Thus 5.3.3 (i) implies

that any object of P has a structure of G(O)-equivariant or Aut0O n

G(O)-equivariant D-module. Such structure is unique and any morphism

is compatible with it (since our groups are connected). We see that

*)Instead of using Deligne’s theorem one can notice that for any vector bundle on Orbχ

its analytic sections are algebraic. Applying this to horizontal analytic sections of a vector

bundle on Orbχ equipped with an integrable connection one sees that (ii) follows from (i).
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P coincides with the category of G(O)-equivariant or Aut0O n G(O)-

equivariant coherent D-modules on GR.

Remark. The existence of G(O)-equivariant structure follows also directly

from the facts that G(O) is connected and Hom(G(O),Gm) = 0 (and

5.3.2 (ii)); one needs not to evoke 5.3.3 (i) and therefore Lusztig’s theorem

(which is a deep result).

5.3.5. The category P carries a canonical tensor structure. There are two

ways to describe it: the ”convolution” construction (see 5.3.5 - 5.3.9) and

the ”fusion” construction (presented, after certain preliminaries of 5.3.10 -

5.3.12, in 5.3.13 - 5.3.16); for the equivalence of these definitions see 5.3.17.

We begin with the convolution picture *). We have to define the convolution

product functor �∗ : P × P → P, the associativity constraint for �∗ , and the

commutativity constraint.

According to [MV] the functor �∗ is defined as follows. Denote by

G(K)×G(O)GR the quotient of G(K)×GR by G(O) where u ∈ G(O) acts on

G(K) × GR by (g, x) 7→ (gu−1, ux). The morphism p : G(K) ×G(O) GR →

G(K)/G(O) = GR defined by (g, x) 7→ g mod G(O) is the locally tivial

fibration with fiber GR associated to the principalG(O)-bundleG(K)→ GR

and the action of G(O) on GR. So G(K) ×G(O) GR is a twisted form of

GR×GR. Let M,N ∈ P. Using the G(O)-equivariant structure on M one

defines a D-module M �′ N on G(K)×G(O) GR, which is a “twisted form”

of M �N . Then

(260) M �∗ N = m∗(M �
′ N)

where m : G(K)×G(O) GR → GR comes from the action of G(K) on GR.

5.3.6. Miraculous Theorem (Lusztig). If M,N ∈ P then M �∗ N ∈ P. �

*)What follows is an algebraic version of Ginzburg’s topological construction [Gi95];

we leave it to the interested reader to identify the two constructions.
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Remark. The nontrivial statement is that M �∗ N is a D-module (not

merely an object of the derived category). Since this D-module is coherent

and G(O)-equivariant it belongs to P.

Remark. G. Lusztig’s original proof [Lu83] of 5.3.6 is based on explicit

estimates showing that the map m restricted to the (twisted) product of

two strata in GR is semi-small. Much later D. Gaitsgory observed [Ga2001]

that 5.3.6 is immediate once we take in consideration geometric structures

involved in the definition of the fusion tensor product.

So we have defined �∗ : P × P → P. The associativity constraint for �∗

is defined in the obvious way. The commutativity constraint will be defined

in 5.3.8.

5.3.7. Remarks. (i) Suppose that G(K) is replaced by an ind-affine group

ind-scheme G and G(O) by its closed group subscheme K; assume that G/K

is an ind-scheme of ind-finite type. The construction of �∗ : P×P → P from

5.3.5 is based on the miracle 5.3.6. In general there is no convolution on

the category of K-equivariant D-modules on G/K and one has to consider

a certain derived category H (the Hecke monoidal category; see 7.6.1 and

7.11.17). This is a triangulated category with a t-structure whose core is the

category of K-equivariant D-modules on G/K; in general �∗ : H × H → H

is not t-exact and there is no commutativity constraint for �∗ . In the case

of (G(K), G(O)) the functor �∗ is t-exact by 5.3.6 and the core of H is the

category of ind-objects of P.

(ii) The construction of H mentioned above is a part of the “Hecke

pattern” developed in §7. Later we will see that this pattern is useful

(or maybe indispensable) even in the miraculously good situation of

(G(K), G(O)).

5.3.8. Let us define the commutativity constraint for �∗ . Let θ : G → G

be an automorphism that sends any dominant weight to its dual. The anti-

automorphism θ′(g) := θ(g)−1 of G yields an anti-automorphism θ′H of the
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monoidal category H, so for any M,N ∈ H one has a canonical isomorphism

lM,N : θ′H(M �∗ N)→∼ θ′H(N)�∗ θ′H(M).

For any M ∈ P ⊂ H there is a canonical isomorphism eM : M →∼ θ′H(M).

To define eM it suffices, according to 5.3.3 (i), to consider the case M = Iχ.

The action of θ′ on G(K) preserves the stratification G(K)χ by the double

G(O)-classes (here G(K)χ is the preimage of Orbχ ⊂ G(K)/G(O)). So we

have the induced automorphism θ′χ of G(K)χ. As an object of H our Iχ is

the Ω-complex ΩG(K)χ [dim Orbχ] on G(K). Now eIχ is the action of θ′χ on

ΩG(K)χ .

For M,N ∈ P define

(261) s : M �∗ N →∼N �∗M

as the composition

M �∗ N →∼ θ′H(M �∗ N)→∼ θ′H(N)�∗ θ′H(M)→∼N �∗M

where the first arrow is the isomorphism e corresponding to M �∗ N and the

other arrows are lM,N and e−1
N �∗ e

−1
M .

5.3.9. Proposition. s is a commutativity constraint for the convolution

tensor product �∗ .

Proof. In 5.3.17 below we identify the convolution tensor product with the

fusion tensor product in a way compatible with all the constraints. Since

the latter data obviously define a tensor category structure on P we are

done. �

So we have defined the promised convolution tensor structure on P.

5.3.10. The fusion description of the tensor structure on P *) is based on

the important chiral semigroup structure on the ”space” GRAS = GRASG

from 4.3.14. This structure may be described as follows.

*)The construction apparently involves a curve X, but actually it is purely local.
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(i) For a C-algebra R and S ∈ Σ(R) (we use notation from 4.3.11, so

S is a subscheme of X ⊗ R finite and flat over SpecR) one has a subset

GRAS(R)S ⊂ GRAS(R) defined as the set of pairs (F , γ) where F is a

G-torsor on X ⊗R, γ is a section of F over the complement to S.

(ii) If S is a disjoint union of subschemes Si, i ∈ I, then one has a canonical

identification

(262) GRAS(R)S →∼
∏
i

GRAS(R)Si

Namely, we identify (F , γ) with the collection (Fi, γi), i ∈ I, where

(Fi, γi) ∈ GRAS(R)Si coincides with (F , γ) over the complement to the

union of Si′ , i
′ 6= i.

The data (i), (ii) enjoy the following properties:

a. If for S1, S2 ∈ Σ(R) one has S1red ⊂ S2red then GRAS(R)S1 ⊂

GRAS(R)S2 . The union of GRAS(R)S , S ∈ Σ(R), coincides with GRAS(R).

So GRAS(R)S form a filtration on GRAS(R). This filtration is functorial

(with respect to R).

b. The isomorphisms (ii) are also functorial and compatible with

subdivisions of I in the obvious manner.

c. The subfunctor GRΣ ⊂ Σ×GRAS defined by

GRΣ(R) := {(S,F , γ)|S ∈ Σ(R), (F , γ) ∈ GRAS(R)S}

is an ind-scheme formally smooth over Σ.

Remark. Let us explain why GRΣ = GRGΣ is an ind-scheme for any affine

algebraic group G. Moreover we will show that GRΣ is of ind-finite type and

if G is reductive then GRΣ is ind-proper. First consider the case G = GLn.

Then GRΣ is the direct limit of GRΣ,k where GRΣ,k parametrizes pairs

consisting of a finite subscheme D ⊂ X and a subsheaf E ⊂ OnX(kD) such

that E ⊃ OnX(−kD). The morphism GRΣ,k → Σ is proper, so GRΣ is ind-

proper. As explained in the proof of Theorem 4.5.1, to reduce the general
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case to the case of GLn it suffices to show that if G ⊂ G′ and G′/G is

affine (resp. quasiaffine) then the morphism GRGΣ → GRG
′

Σ is a closed (resp.

locally closed) embedding. This is easy.

5.3.11. For a finite set J we have the morphism XJ → Σ that assigns to

(xj) ∈ XJ the subscheme D ⊂ X corresponding to the divisor
∑
j
xj . Denote

by GRXJ the fibered product of GRΣ and XJ over Σ. So an R-point of

GRXJ is a collection ((xj),F , γ) where (xj) ∈ XJ(R), F is a G-bundle on

X ⊗ R, and γ is a section of F over the complement to the union of the

graphs of the xj ’s. Our GRXJ is a formally smooth ind-proper ind-scheme

over XJ (see the Remark at the end of 5.3.10).

According to 4.5.2 there is a canonical isomorphism between the fiber

of GRX over x ∈ X(C) and the ind-scheme GRx := G(Kx)/G(Ox). So

according to 5.3.10 (ii) the fiber of GRXJ over (xj) ∈ XJ(C) equals
∏
x∈S
GRx

where S is the subset {xj} ⊂ X.

The following description of GRX will be of use. Consider the scheme X∧

of “formal parameters” on X (its points are smooth morphisms SpecO → X,

see 2.6.5). This is an Aut0O-torsor over X; a choice of coordinate,i.e., étale

A1-valued map, on an open U ⊂ X defines a trivialization of X∧ over U .

Now GRX is the X∧-twist of GR (with respect to the Aut0O-action on GR).

The stratification of GR defines a stratification of GRX by strata OrbχX

smooth over X.

5.3.12. For the future references let us list some of the compatibilities

between GRXJ ’s that follow directly from 5.3.10.

a. For a surjective map π : J � J ′ there is an obvious Cartesian diagram

(263)

GRXJ′
∆̃(π)

↪→ GRXJ

↓ ↓

XJ ′ ∆(π)

↪→ XJ
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where ∆(π) is the π-diagonal embedding. If |J ′| = 1 we have ∆(J) : X ↪→ XJ

and ∆̃(J) : GRX ↪→ GRXJ .

b. Let ν(J) : U (J) ↪→ XJ be the complement to the diagonal divisor. By

5.3.10 (ii) the restrictions to U (J) of the XJ -ind-schemes GRXJ and (GRX)J

are canonically identified. Therefore we have a Cartesian diagram

(264)

(GRX)J
∣∣
U(J)

ν̃(J)

↪→ GRXJ

↓ ↓

U (J) ν(J)

↪→ XJ

5.3.13. Now we are ready to define the fusion tensor structure on P. This

amounts to a construction of tensor product functors *)

(265) �∗
J

: P⊗J → P

for any finite non-empty set J together with identifications

(266) �∗
J

= �∗
J ′

( ⊗
j′∈J ′

( �∗
π−1(j′)

))

for any surjective map J
π
� J ′.

The construction goes as follows.

5.3.14. Since any M ∈ P is Aut0O-equivariant it defines a D-module

on GRX (see the description of GRX at the end of 5.3.11). Denote by

MX ∈ D(GRX)(:= DM(GRX)) its shift by 1 in the derived category. In

other words for any open U as above and a trivialization θ of X∧ over U one

has MU = π!
θM , where MU := MX

∣∣
GRU

, πθ : GRU → GR is the projection

that corresponds to θ, and we glue these objects together using the Aut0O-

action on M . The functor P → D(GRX), M 7→ MX , is fully faithful. Its

essential image consists of (shifted by 1) D-modules isomorphic to a direct

sum of (finitely many) copies of “intersection cohomology” D-modules IχX

that correspond to the trivial local system on OrbχX .

*)Here P⊗J denotes the tensor product of J copies of P (since P is semisimple the

definition of tensor product is clear).
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Let now {Mj}j∈J be a collection of objects of P. Using (264) one

interprets �MjX

∣∣
U(J) as a D-module on GRXJ

∣∣
U(J) shifted by |J |. Denote

by ∗MjX ∈ D(GRXJ ) its minimal (i.e., ν̃
(J)
!∗ −) extension to GRXJ . This is

a D-module on GRXJ shifted by |J |. Therefore we have defined a functor

(267) ∗
J

: P⊗J → D(GRXJ ), ⊗Mj 7→ ∗MjX

which is obviously fully faithful.

5.3.15. Proposition. ([MV])

For any π : J � J ′ the complex ∆̃(π)!(∗MjX) ∈ D(GR(J ′)
X ) belongs to

the essential image of ∗
J ′

. �

5.3.16. We get a functor

(268) �∗
π

: P⊗J → P⊗J ′

such that ∗
J ′
�∗
π

= ∆̃(π)! ∗
J

. In particular for |J ′| = 1 we have the functor

�∗
J

: P⊗J → P which is our tensor product functor (265). The obvious

identification �∗
π

= ⊗
j′∈J ′

( �∗
π−1(j′)

) (look at our D-modules over U (J ′)) and

the standard isomorphism ∆(J)! = (∆(π)∆(J ′))! = ∆(J ′)!∆(π)! yield the

compatibility isomorphisms (266). So P is a tensor category. It is easy

to see that I0 is a unit object in P.

5.3.17. Let us identify the convolution and fusion tensor structures on P.

Below in this subsection we denote by �∗c the convolution tensor product,

and by �∗f the fusion tensor product on P. We have to construct for

M,N ∈ P a canonical isomorphism M �∗cN →∼M �∗f N compatible with the

associativity and commutativity constraints.*)

Let GR′X2 be the ind-scheme over X2 such that GR′X2(R) is the set

of collections (x1, x2,F1,F2, γ1, γ2) where x1, x2 ∈ X(R), F1,F2 are G-

torsors over X ⊗ R, γ1 is a section of F1 over the complement to the

*)The construction is borrowed from [MV] where it is written in more details; however

the commutativity constraint 5.3.8 was not considered there.
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graph of x1, γ2 is an isomorphism F1 → F2 over the complement to the

graph of x2. We have the projection q : GR′X2 → GRX2 that sends

the above data to ((x1, x2),F2, γ2γ1). This projection is ind-proper; over

U := X2 \ {the diagonal} it is an isomorphism.*)

Denote by MX ∗ ′NX ∈ D(GR′X2) the minimal extension to GR′X2 of

MX � NX

∣∣
U

. This is a D-module on GR′X2 shifted by 2. According to

[MV] the obvious identification over U extends (uniquely) to a canonical

isomorphism

(269) q∗(MX ∗ ′NX) →∼ MX ∗NX

Now GR′X2 is a twisted form of (GRX)2. Indeed, a trivialization of F1 on

the formal neighbourhood of x2 yields an identification of the data (F2, γ2)

above with GRx. These trivializations together with formal parameters at x2

form an Aut0OnG(O)-torsor over GRX ×X, and GR′X2 identifies with the

corresponding twist of GR. So MX ∗ ′NX is the “twisted form” of MX �N .

Restricting this picture to the diagonal X ↪→ X×X we see that the pull-back

of q : GR′X2 → GRX2 to X coincides with the X∧-twist of the morphism

m : G(K) ×G(O) GR → GR from (260) and the pull-back of MX ∗ ′NX to

the preimage of X in GR′X2 equals (M �′N)X where M �′N has the same

meaning as in (260). Comparing (269) and (260) (and using the base change

isomorphism) we get the desired canonical isomorphism M �∗cN →∼M �∗f N .

Its compatibility with the associativity constraints comes from the

similar picture over X3. WRITE DOWN THE COMAT WITH COM

CONSTRAINTS (use BunG and Hecke)!

*)Over the diagonal the fibers of q are isomorphic to GR; more precisely, the

closed embedding GR′X2 → (GRX) ×X (GRX2) defined by (x1, x2,F1,F2, γ1, γ2) 7→

(x1, x2,F1, γ1,F2, γ2γ1) becomes an isomorphism when restricted to the diagonal X ↪→

X2. So the maximal open subset over which q is an isomorphism has the form GRX2 \Z

where Z has codimension 1; this is an infinite-dimensional phenomenon.
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5.3.18. For M ∈ P set h·(M) := H·DR(GR,M). This is a Z-graded vector

space; denote by hε(M) the corresponding Z/2Z-graded vector space.

Consider the projection p : GRX → X. The D-modules Hap∗(MX) on X

are constant, i.e., isomorphic to a sum of copies of ωX (recall that we play

with right D-modules). The corresponding fiber is h·(M): for any x ∈ X

one has H·i!xp∗(MX) = h·(M) (here ix is the embedding {x} ↪→ X).

5.3.19. Proposition. ([MV])

For any collection {Mj}j∈J of objects of P the D-modules Hap
(J)
∗ (∗MjX)

on XJ are constant. �

For any (xj) ∈ XJ one has

(270) H·i!(xj)p
(J)
∗ (∗MjX) = ⊗h·(Mj) .

This is clear from 5.3.18 for (xj) ∈ U (J); then use 5.3.19.

5.3.20. For (xj) ∈ X ⊂ XJ (270) yields a canonical isomorphism

h·(�∗Mj) = ⊗h·(Mj) which is obviously compatible with “constraints”

(266). We see that

(271) h· : P → Vect· , hε : P → Vectε

are tensor functors. Here Vect· is the tensor category of Z-graded vector

spaces with the ”super” commutativity constraint, Vectε is the analogous

tensor category of Z/2Z-graded vector spaces.

5.3.21. One may twist the tensor structure on P to get rid of super vector

spaces. To do this note that the objects of P carry a canonical Z/2Z-

grading ε by parity of the components of support (see 4.5.10). This grading

is compatible with �∗ .

Denote by P\ the full subcategory of even objects in Pε := P ⊗ Vectε

(with respect to tensor product of the Z/2Z-gradings). This is a tensor

subcategory in Pε. The “forgetting of the grading” functor oε : Vectε → Vect

yields an equivalence P\→∼P. This is an equivalence of monoidal categories

(i.e., it is compatible with the tensor products and associativity constraints);
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the commutativity constraints A ⊗ B→∼B ⊗ A for P and P\ differ by

(−1)p(A)p(B).

The functor hε is compatible with the Z/2Z-gradings by 5.3.3 (ii).

Therefore it defines a tensor functor

(272) h : P\ → Vect .

Note that h carries a canonical Z-grading which we denote also by h·

by abuse of notation. So h· is a tensor functor on P\ with values in the

tensor category of graded vector spaces equipped with the plain (not super)

commutativity constraint.

5.3.22. According to [MV] (WHAT ABOUT GINZBURG ??) the tensor

category P\ is rigid, i.e., each object has a dual in the sense of §2.1.2 from

[Del91] (the dual objects are explicitly constructed in [MV]). The tensor

functor (272) is C-linear and exact,*) so it is a fiber functor in the sense

of [Del91]. Therefore by the general Tannakian formalism (272) induces an

equivalence between the tensor categories P\ and Rep(Aut⊗ h) where Aut⊗ h

denotes the group scheme of tensor automorphisms of h and Rep means the

category of finite-dimensional representations. According to [MV] there is

an isomorphism κ : LG→∼Aut⊗ h, so we may rewrite the above equivalence

as

(273) h : P\→∼Rep LG .

Here LG is the Langlands dual group, i.e., it is a semisimple group together

with a fixed Cartan torus LH ⊂ LG, an identification of the corresponding

root datum with the dual to the root datum of G, and a collection of fixed

non-zero vectors yα ∈ (Lg)α for simple negative roots α.

*)Exactness is clear since P\ is semisimple. Mirković and Vilonen [MV] have to prove

exactness because they want their proofs to work for perverse sheaves over arbitrary

commutative rings.
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5.3.23. We are going to define a canonical isomorphism

(274) κ : LG→∼Aut⊗ h

by listing some properties of the action of LG on h, which determine κ

uniquely.

(i) Denote by

(275) t 7→ t2ρ

the morphism Gm → LH corresponding to the weight 2ρ of G. Then t2ρ acts

on ha as multiplication by t−a (so the action of the 1-parameter subgroup

(275) corresponds to the grading h· of h).

It follows from (i) that the action of LH on h preserves the grading of h.

(ii) For any χ ∈ P+(LG) the group LH acts on hmin(Iχ) = h− dim Orbχ(Iχ)

by the character χ.

This means that the highest weight of the irreducible LG-module h(Iχ)

equals χ.

Remark. Since dim Orbχ = 〈χ, 2ρ〉 there is no contradiction between (i)

and (ii).

The properties (i) and (ii) can be found in [MV]. They uniquely determine

the restriction of (274) to LH. So (274) is determined by (i) and (ii) up to

LH-conjugation. We normalize (274) by the following property.

(iii) Let c ∈ (Sym2 g∗)G be an invariant bilinear form on g (or on [g, g] in

the reductive case???). Set

(276) fc :=
???

2

∑
α

c(α, α)yα ∈ Lg

(the expression c(α, α) makes sense because α ∈ (Lh)∗ = h ⊂ g). Then the

Lie algebra element fc acts on h(M) = H·DR(GR,M), M ∈ P\ = P, as

multiplication by ν(c) where

(277) ν : (Sym2 g∗)G → H2
DR(GR)
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is the standard morphism whose definition will be reminded in 5.3.24.

Remark. (iii) is formulated by V.Ginzburg [Gi95] in a slightly different

form. In fact, he describes in a similar way the action on h of the whole

centralizer of fc in Lg.

5.3.24. In this subsection (which can be skipped by the reader) we define

the canonical morphism (277). We use the folowing ad hoc definition: for

any ind-scheme Z one has Ha
DR(Z) := lim

←−
Ha(Y,ΩY ) where Y runs over the

set of all closed subschemes of Z and ΩY is the de Rham complex of Y (in the

most naive sense). To define ν let us assume for simplicity (simplicity twice??

BAD STYLE) that G is semisimple *). Then the projection G(K) → GR

induces an isomorphism H2
DR(GR)→∼H2

DR(G(K)) (indeed, this projection

is a G(O)-torsor, G(O) is connected, and H1
DR(G(O)) = H2

DR(G(O)) = 0).

Now our c defines the Kac-Moody cocycle u, v 7→ Rest=0 c(du, v) on g⊗K.

Let ωc be the corresponding right invariant closed 2-form on G(K). The

image of its class by the inverse map to the above isomorphism is ν(c) ∈

H2
DR(GR). WHAT ABOUT THE SIGN???

Remark. In 5.3.23(iii) we used the action of H·DR(GR) on H·DR(GR,M)

where M is a D-module on GR. It is defined as follows. Consider the Ω!-

complex ΩM (see 7.11.13). Then H·DR(GR,M) = lim
−→

H·(Y,ΩM(Y )) where

Y runs over the set of all subschemes of GR. Now ΩM(Y ) is an Ω-complex

on Y , so H·(Y,ΩY ) acts on H·(Y,ΩM(Y )). Therefore H·DR(GR) acts on

H·DR(GR,M).

5.3.25. The brief characterization of the canonical isomorphism (274) given

in 5.3.23 is enough for our purposes. Those who want to understand (274)

better may read ???-??? and [MV].

5.3.26.

*)We leave it to the reader to define ν for arbitrary G.
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Remark. Recall (see 4.5.9) that the connected components of GR are

labeled by elements of Z(LG)∨ where Z(LG)∨ is the group of characters of

the center Z(LG) ⊂ LG. The connected component of GR corresponding

to ζ ∈ Z(LG)∨ will be denoted by GRζ . The support decomposition

D(GR) =
∏
D(GRζ), P = ⊕Pζ defines a Z(LG)∨-grading, i.e., a Z(LG)-

action, on h. This action coincides with the one induced by the LG-action.

In the rest of the section we explain how the above constructions are

compatible with passage to a Levi subgroup of LG. When this subgroup is

LH ⊂ LG this amounts to an explicit description of the action of LH on the

fiber functor h due to Mirković – Vilonen.

5.3.27. Let P ⊂ G be a parabolic subgroup, NP ⊂ P its unipotent radical,

F := P/NP the Levi group. The Cartan tori of F and G are identified in

the obvious way, and the root datum for F is a subset of that for G. So

LF is a Levi subgroup of LG for the standard torus LH ⊂ LF ⊂ LG. Thus

Z(LG) ⊂ Z(LF ).

We are going to define a canonical tensor functor

(278) r\P : P\G → P
\
F

which corresponds, via the equivalences hG, hF , to the obvious restriction

functor rGF : Rep LG→ Rep LF .

5.3.28. The diagram G ←↩ P � F yields the morphisms of the

corresponding affine Grassmanians

(279) GRG i←−GRP π−→GRF .

Here π is a formally smooth ind-affine surjective projection. Its fibers are

NP (K)-orbits. Hence π yields a bijection between the sets of connected

components of GRP and GRF . For any ζ ∈ Z(LF )∨ let GRPζ be the

corresponding component. Then the restriction iζ : GRPζ ↪→ GRG of i

is a locally closed embedding; its image lies in GRG
ζ

where ζ := ζ|Z(LG).

The ind-schemes GRPζ form a stratification of GRG (i.e., for any closed
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subscheme Y ⊂ GRG the intersections Yζ := Y ∩ GRPζ form a stratification

of Y ).

Set ρGF := ρG−ρF ∈ h∗. Since 2ρGF is a character of F (the determinant

of the adjoint action on nP ) we may consider it as a one-parameter subgroup

of Z(LF ) ⊂ LH. So for any ζ as above one has an integer 〈ζ, 2ρGF 〉. Let

GRFn be the union of components GRFζ with 〈ζ, 2ρGF 〉 = n. We have

the corresponding decomposition D(GRF ) =
∏
D(GRFn ), PF = ⊕PFn .

Set PF ′ = ⊕PFn [−n] ⊂ D(GRF ). As in 5.3.18 for M ∈ PF ′ we set

h·F (M) = H·(GRF ,M) ∈ Vect·.

5.3.29. Proposition.

(i) The functor rGFD := π∗i
! : D(GRG)→ D(GRF ) sends PG to PF ′ , so

we have

(280) rGFP : PG → PF ′ .

(ii) There is a canonical identification of functors

(281) h·G = h·F rGFP : PG → Vect· .

Proof. Assume first that P = B is a Borel subgroup. Then F = H and

GRHred = (LH)∨, so D-modules on GRH are the same as (LH)∨-graded

vector spaces, i.e., LH-modules. The strata GRBζ are just NB(K)-orbits on

GRG. Thus 5.3.29 is just the key theorem of [MV].

Recall that the identification (281) is constructed as follows (see [MV]).

Let GRBn ⊂ GRG be the closure of GRBn := π−1(GRHn ) in GRG. Then GRB·
is a decreasing filtration on GRG. For any M ∈ PG the obvious morphisms

hnHr
GH
P (M) = Hn(GRBn , i!M) ←− Hn

GRBn
(GRG,M) −→ Hn(GRG,M) =

hnG(M) are isomorphisms. Their composition is (281).

Now let P be any parabolic subgroup. Choose a Borel subgroup B ⊂ P ,

so BF := B/NP ∩ B is a Borel subgroup of F . Consider the functors

rGHD : D(GRG) → D(GRH), rFHD : D(GRF ) → D(GRH). By base

change one has a canonical identification of functors rGHD = rFHD rGFD . Let
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PH′ ⊂ D(GRH) be the category defined by B ⊂ G, so we know that

rGHD (PG) ⊂ PH′ and (since ρGF = ρG − ρF ) one has rFHD (PF ′) ⊂ PH′ .

The functor rGHP : PF ′ → PH′ is faithful (since up to shift if coincides

with h·F ). Hence an object T ∈ D(GRF ) such that all H iT are in PF belongs

to PF ′ if and only if rFHD (T ) ⊂ PH′ . Applying this remark to T = rGFD (M),

M ∈ PG, we see that rGFD (M) ∈ PF ′ , which is 5.3.29 (i). We also know

that h·G(M) = h·H(rGHP (M)) = h·H(rFHP (M)) = h·F rGF (M) which is the

identification 5.3.29 (ii). We leave it to the reader check that it does not

depend on the auxiliary choice of a Borel subgroup B ⊂ P . �

5.3.30. The category PF ′ has a canonical tensor structure (defined by the

same constructions that were used for PF ). The functor rGFP : PG → PF ′

is a tensor functor in a canonical manner. Indeed, (279) are morphisms of

chiral semi-groups, so we may consider the corresponding functors rGFD :=

π∗i
! : D(GRGXJ )→ D(GRFXJ ) . We leave it to the reader to check (hint: use

5.3.19) that for Mj ∈ PG this functor sends ∗Mj to ∗ rGFD (Mj) (see 5.3.14

for notation). Since (by base change) it also commutes with the functors

∆̃(J)! we get the desired tensor product compatibilities. As in 5.3.19 we see

that (281) is an isomorphism of tensor functors.

Finally let us replace, as in 5.3.21, the tensor category PG by PG\. Since

ρGF = ρG − ρF we see that rGFP yields a tensor functor rGF : PG\ →

PF\ compatible with the fiber functors hG, hF . It defines a morphism

r : Aut⊗ hF → Aut⊗ hG.

5.3.31. Lemma. The morphism κ−1
G rκF : LF → LG coincides with the

canonical embedding from 5.3.27. �

5.4. Main Theorems II: from local to global. In this section we give

the precise version of the main theorems from 5.2 and show that the local

main theorem implies the global one. We use in essential way the ”Hecke

pattern” from Chapter 7. To understand what is going on it is necessary

(and almost sufficient) to read 7.1.1 and 7.9.1.
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5.4.1. We start with the definition of Hecke eigen-D-module. Consider

the pair (G(K), G(O)) equipped with the action of AutO. Let H be

the corresponding (DerO,Aut0O)-equivariant Hecke category as defined

in 7.9.2*). Since any object of P is an AutO-equivariant D-module in

a canonical way*) our P is a full subcategory of H. It follows from the

definitions that the embedding P → H is a monoidal functor.

Consider the canonical AutO-structure X∧ on X (see 2.6.5) and the

scheme M∧ over X∧ defined in 2.8.3; it carries a canonical action of

AutOnG(K) (see 2.8.3 - 2.8.4). The quotient stack (Aut0OnG(O)) \M∧

equals BunG × X. We arrive to the setting of 7.9.1, 7.9.4*). Thus H acts

on D(BunG ×X). Therefore D(BunG ×X) is a P-Module. Identifying the

monoidal category P *) with Rep LG via the Satake equivalence (273) one

gets a canonical Action of Rep LG on D(BunG×X) called the Hecke Action.

We denote it by �∗ .

Note that D(BunG × X) also carries an obvious Action of the tensor

category Vect∇(X) of vector bundles with connection on X (or, in fact, of

the larger tensor category of torsion free left D-modules on X) which we

denote by ⊗. It commutes with the Hecke Action, so D(BunG × X) is a

(Rep LG,Vect∇(X))-biModule.

Let F be an LG-bundle with a connection on X. It yields a tensor functor

Rep LG → Vect∇(X), V → VF, hence the corresponding Action of Rep LG

on D(BunG ×X).

5.4.2. Let M be a D-module on BunG. Let M(X) ∈ M(BunG ×X) be the

pull-back of M . Assume that for any V ∈ Rep LG we are given a natural

*)Our (G(K), G(O)), (DerO,Aut0 O) are (G,K), (l, P ) of 7.9.2.
*)According to 5.3.4 any object of P carries a unique strong Aut0 O-action which is

the same as a strong AutO-action.

*)Our X∧ and M∧ are X∧ and Y ∧ of 7.9.4.
*)In this section (except Remarks 5.4.6) we use only the monoidal structure on P (the

commutativity constraint plays no role). So we may identify P with P\.
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isomorphism αV : V �∗M(X)
→∼M(X) ⊗ VF (so, in particular, V �∗M(X) is

a D-module, and not merely an object of the derived category). We say

that the αV ’s define a Hecke F-eigenmodule structure on M if for any

V1, V2 ∈ Rep LG one has αV1⊗V2 = αV1 ◦ (V1�∗ αV2). We call such (M,αV ),

or simply M , a Hecke F-eigenmodule.

Remark. For any LG-local system F on X one would like to define the

triangulated category of Hecke F-eigenmodules*).

The following theorem is the precise version of Theorem 5.2.6.

5.4.3. Theorem. For any LG-oper F the D-module MF defined in 5.1.1 has

a natural structure of Hecke F-eigenmodule.

We leave it to the reader to check that the functor T iχ coincides with

H iV χ�∗ (see 5.2.4, 5.2.5 for notation). Thus Theorem 5.4.3 implies 5.2.6.

5.4.4. We need a version of 5.4.1-5.4.3 ”with parameters”. Let A be a

commutative ring. Denote by M(BunG ×X,A) the category of A-modules

in M(BunG ×X) (i.e., D-modules with A-action). It has a derived version

D(BunG × X,A), which is a t-category with core M(BunG × X,A) (see

7.3.13). The category D(BunG×X,A) carries, as in 5.4.1, the Hecke Action

of Rep LG.

We also have the obvious Action of the tensor category of A ⊗ OX -flat

A⊗DX -modules on D(BunG×X,A) which commutes with the Hecke Action.

Therefore any flat A-family FA of LG-bundles with connection on X yields

an Action of Rep LG on D(BunG ×X,A).

Now for M ∈ M(BunG, A) one defines the notion of Hecke FA-

eigenmodule structure on M as in 5.4.2. The following theorem is the precise

version of 5.2.9; by 5.1.2(i) it implies 5.4.3.

*)Certainly, in the above definition of Hecke eigenmodule you may take for M any

object of D(BunG) instead of just a D-module. However in this generality the definition

does not look reasonable (such objects do not form a triangulated category).
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5.4.5. Theorem. The D-module ML ∈ M(BunG, ALg(X)) defined in 5.1.1

has a canonical structure of Hecke FL-eigenmodule.

5.4.6. Remarks. (i) Sometimes (when you want to use the commutativity

constraint, see, e.g., the next Remark or the next section) it is convenient to

deal with the above notions in the setting of super D-modules. Note that any

D-module M on BunG has a canonical Z/2Z-grading such that M is even

or odd depending on whether M is supported on even or odd components

of BunG. We denote this super D-module by M \. So \ identifies M(BunG)

with a full subcategoryM(BunG)\ ofM(BunG)ε :=M(BunG)⊗Vectε. The

same applies to D(BunG) and D(BunG ×X).

The Action of P onD(BunG×X) yields an Action of Pε onD(BunG×X)ε.

The Action of P\ ⊂ Pε preserves D(BunG ×X)\, as well as the Vect∇(X)-

Action. Now one defines the notion of Hecke F-eigenobject of M(BunG)\

exactly as in 5.4.2. This definition brings nothing new: a D-module M is a

Hecke F-eigenmodule if and only if M \ is.

(ii) In the above definition of the F-eigenmodule structure on M ∈

M(BunG) we used the convolution construction of the tensor structure on

P. One may rewrite it instead using the fusion construction of �∗ as follows.

DOPISAT’!!!

5.4.7. Let us turn to the main local theorems from 5.2. We are in the setting

of 5.2.12, so we fix L ∈ Z torsθ(O), which defines the central extension

G̃(K) = G̃(K)L of G(K) split over the group subscheme G(O) (see 4.4.9).

We have the corresponding category of twisted Harish-Chandra modules

M(g ⊗ K,G(O))′ and the derived category D(g ⊗ K,G(O))′ of Harish-

Chandra complexes (see 7.8.1 and 7.14.1)*). According to 7.8.2, 7.14.1,

D(g⊗K,G(O))′ carries a canonical Action �∗ of the Hecke monoidal category

H of the pair (G(K), G(O)). Since P is a monoidal subcategory of (the core

of) H our D(g⊗K,G(O))′ is a P-Module.

*)So 1 ∈ C ⊂ g̃⊗K acts on the objects of these categories as identity.
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Let V ac′ ∈M(g⊗K,G(O))′ be the twisted vacuum module.

5.4.8. Theorem. For any object P ∈ P the object P �∗ Vac′ ∈ D(g ⊗

K,G(O))′ is isomorphic to a direct sum of copies of V ac′ *).

This theorem is equivalent to 5.2.14. Indeed, according to (335) of 7.8.5

and 7.14.1, there is a canonical identification of (g̃⊗K,G(O))-modules

(282) H i(P �∗ Vac′) = H i(GR, Pλ−1
L ).

Here Pλ−1
L := P ⊗λ−1

L . The interested reader may pass directly to the proof

of this theorem, which can be found in ???.

5.4.9. We need to incorporate the AutO symmetry in the above setting.

Recall (see 4.6.6) that the action of AutO on G(K) lifts to the action of

AutZ O on G̃(K) that preserves G(O). So we are in the setting of 7.9.5*).

Let DHC be the derived category of Harish-Chandra complexes as defined in

7.9.5. This is a t-category with core MHC equal to the category of Harish-

Chandra modules for the pair (DerOn g̃⊗K,Aut0
Z OnG(O)) (we assume

that the center C ⊂ g̃⊗K acts in the standard way).

The (DerO,Aut0
Z O)-equivariant Hecke category for (G(K), G(O)) (see

7.9.2) contains the corresponding (DerO,Aut0O)-equivariant categories H

and Hc as full monoidal subcategory. So, by 7.9.5, DHC is an H-Module.

hence it is a P-Module.

We will need to change slightly our setting. Let as usual Z be the

center of the completed twisted universal enveloping algebra of g ⊗K and

z the endomorphism ring of the twisted vacuum module V ac′; we have the

obvious morphism of algebras e : Z → z. Let DHCz be the corresponding

derived category of Harish-Chandra complexes as defined in 7.9.8 (see also

*)In particular it is a single Harish-Chandra module, not merely a complex of those.

*)Our (DerO,Aut0
Z O) and (G̃(K), G(O)) are (l, P ) and (G′,K) of 7.9.5.
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7.9.7(iii))*). This is a t-category with core MHCz equal to the category of

Harish-Chandra modules killed by Ker e.

Let Hz be the z-linear version of the (DerO,Aut0
Z O)-equivariant Hecke

category for (G(K), G(O)) as defined in 7.9.7(i). According to 7.9.8 it acts

on DHCz. Due to the obvious monoidal functor H → Hz (see the Remark in

7.9.7)Hz contains P, soDHCz is a P-Module. As in 5.4.1 we will replace P by

Rep LG by means of the Satake equivalence and denote the corresponding

Action of Rep LG on DHCz by �∗ . On the other hand Hz contains in its

center the tensor category M(AutZ O)flz of flat z-modules equipped with

AutZ O-action (see 7.9.7(i)). The corresponding Action of M(AutZ O)flz

on DHCz is the obvious one: for W ∈ M(AutZ O)flz , V ∈ DHCz one has

W �∗ V = W ⊗ V := W ⊗
z
V . Therefore DHCz is a (Rep LG,M(AutZ O)flz )-

biModule.

Let F be an AutZ O-equivariant LG-torsor on Spec z. It yields the tensor

functor Rep LG→M(AutZ O)flz , V 7→ VF, hence the corresponding Action

of Rep LG on DHCz.

5.4.10. Let us repeat the definition from 5.4.2 in the present Harish-

Chandra setting. Namely, a Hecke F-eigenmodule is a Harish-Chandra

module M ∈MHCz together with natural isomorphisms αV : V �∗M →∼M ⊗

VF, V ∈ Rep LG, such that for any V1, V2 ∈ Rep LG one has αV1⊗V2 =

αV1 ◦ (V1�∗ αV2).

Now we can formulate the precise version of 5.2.16. As in 5.2.15, our

L ∈ Z torsθ(O) (see 5.4.7) defines an AutZ O-equivariant*) LG-torsor over

the moduli scheme of local Lg-opers. Identifying this scheme with Spec z

via the Feigin-Frenkel isomorphism (80) we get the corresonding AutZ O-

equivariant torsor FL over Spec z.

*)Our DHCz is De
HC A of 7.9.8. In 7.9.8 Z denotes the set of G(K)-invariant elements

of the center, but according to 3.7.7(ii) all elements of the center are G(K)-invariant.

*)The action of AutZ O comes from the identification AutZ O = Aut(O,L); see 4.6.6.
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From now on we consider V ac′ as an object ofMHCz (with respect to the

AutZ O-action that fixes the vacuum vector).

5.4.11. Theorem. V ac′ has a canonical structure of Hecke FL-eigenmodule.

This theorem implies 5.2.16. Indeed, the isomorphism (282) is AutZ O-

equivariant since AutZ O acts on both sides of (282) by transport of

structure.

Where will it be proved???

Now we may turn to the main result of this section.

5.4.12. Theorem. Theorem 5.4.11 implies 5.4.5.

Proof. We will show that an appropriate ”localization functor” L∆ trans-

forms the local picture into the global one *).

We need to modify slightly the setting of 5.4.1 to be able to use the

”equivariant Hecke pattern” from 7.9. Recall that in the formulation of

the global theorem 5.4.5 we fixed Lglob ∈ Z torsθ(X) (see 5.2.8), while in

the local theorem 5.4.11 we used Lloc ∈ Z torsθ(O). Consider the schemes

X∧Z and M∧Z from 4.4.15 corresponding to Lglob and Lloc (they are etale Z-

coverings of the schemes X∧ and M∧ used in 5.4.1). Recall that AutZ O acts

on X∧Z and AutZ OnG(K) acts on M∧Z (see 4.4.15). One has Aut0
Z O\X∧Z =

X, and the quotient stack (Aut0
Z O n G(O)) \M∧Z equals BunG ×X. It is

clear that in the construction of the Hecke Action on D(BunG×X) in 5.4.1

we may replace (M∧,AutO nG(K)) by (M∧Z ,AutZ O nG(K)).

As in 5.1.1 let λLglob be the Pfaffian line bundle on BunG that corresponds

to Lglob. Denote by λ̂ = λ̂Lglob its pull-back to M∧Z . The action of

AutZ O n G(K) on M∧Z lifts in a canonical way to an action on λ̂ of the

central extension AutZ O n G̃(K) (see 4.4.16). So we are in the setting of

*)The reader may decide if there is a method in this madness.
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7.9.6*), and therefore, one has the right t-exact localization functor

L∆ : DHC → D(BunG ×X)

One has also the corresponding picture in the setting of z-modules. Indeed,

following 7.9.7(ii), consider the DX -algebra zX
*) (which we already used in

2.7) and the corresponding category D(BunG ×X, zX) which is the derived

category of D-modules on BunG ×X equipped with zX -action (see 7.3.13).

It carries a canonical Action of Hz. One has a canonical localization functor

L∆z : DHCz → D(BunG ×X, zX)

which is a Morhism of Hz-Modules. The above L∆’s are compatible (they

commute with the forgetting of z-action).

Now our theorem is immediate consequence of the following facts:

(a) There is a natural identification

(283) L∆(V ac′) = ∆(V ac′) = MLglob �OX

such that the zX -action on ∆(V ac′) = ∆z(V ac
′) coincides with the action

of zX on MLglob �OX through the maximal constant quotient z(X)⊗OX =

ALg(X)⊗OX and the standard ALg(X)-module structure on MLglob . For a

proof see 7.14.9 (and note that zX acts by transport of structure).

(b) The functor L∆z is a Morphism of (Rep LG,M(AutZ O)flz )-biModules.

Indeed, this is a Morphism of Hz-Modules.

(c) For any W ∈ M(AutZ O)flz , T ∈ D(BunG ×X, zX) one has W �∗ T =

WX ⊗
zX
T where WX is the zX -module that corresponds to W .

For a proof see 7.9.7(i).

*)Sorry for a terrible discrepancy of notations: our M∧Z , X∧, λ̂, DerO, Aut0
Z O, G̃(K),

G(O) are Y ∧, X∧, L∗, l, P , G′, K of 7.9.6.

*)Any AutO-module V yields the DX -module VX , see 2.6.6.
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(d) For any V ∈ Rep LG there is a canonical identification

(VFLloc
)X ⊗

zX
(z(X)⊗OX)→∼VFLglob

compatible with tensor products of V ’s (here FLloc is FL from 5.4.10). �

5.5. The birth of opers. In this section we assume Theorem 5.4.8. We

first show that this theorem implies that V ac′ is a Hecke F-eigenmodule

for some AutZ O-equivariant LG-torsor F on Spec z. The main point of this

section is that F comes naturally from an AutZ O-equivariant z-family of

local opers. Later we will see that the corresponding map from Spec z to the

moduli of local opers coincides with the Feigin-Frenkel isomorphism, which

yields the main local theorem.

5.5.1. For any V ∈ Rep LG set

(284) FH(V ) := Hom
g̃⊗K(Vac′, V �∗ V ac′) = (V �∗ V ac′)G(O).

This is an AutZ O-equivariant z-module*). According to 5.4.8 it is a free

z-module, so FH(V ) ∈M(AutZ O)flz . One has a canonical isomorphism

(285) V �∗ V ac′ = V ac′ ⊗ FH(V ).

Since the Action ofM(AutZ O)flz commutes with the Hecke Action we get a

canonical identification FH(V1 ⊗ V2) = FH(V1)⊗ FH(V2), which means that

(286) FH : Rep LG→M(AutZ O)flz

is a monoidal functor.

5.5.2. Lemma. For any V ∈ Rep LG the free z-module FH(V ) has finite

rank.

Proof. Since FH is a monoidal functor FH(V ∗) is dual to FH(V ) in the sense

of monoidal categories (see 2.1.2 of [Del91]). If a free z-module has a dual

in the sense of monoidal categories then its rank is finite. �

*)The two z-module structures on V �∗ V ac′ coincide because the Hecke functors are

z-linear.
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Let

(287) FFL : Rep LG→M(AutZ O)flz

be the tensor functor FFL(V ) = VFL (see 5.4.10).

Now our main local theorem 5.4.11 may be restated as follows.

5.5.3. Theorem. The monoidal functors FH and FFL are canonically

isomorphic.

We are going to show that FH indeed comes from a some canonically

defined family of local opers parametrized by Spec z. First let us check that

FH indeed comes from an LG-torsor on Spec z.

5.5.4. Proposition. The monoidal functor FH is a tensor functor, i.e., it is

compatible with the commutativity constraints.

The proof has two steps. First we write down the compatibility

isomorphism FH(V1) ⊗ FH(V2)→∼FH(V1 ⊗ V2) as convolution product of

sections of (twisted) D-modules (see 5.5.5, 5.5.6). Then, using the fusion

picture for the convolution, we show that it is commutative (see ???).

5.5.5. Let us replace the tensor category of LG-modules by that of D-

modules on the affine Grassmanian using the Satake equivalence h (see

(273)). For P ∈ P\ we set FH(P ) := FH(hP ). Thus (see (282))

(288) FH(P ) = Γ(GR, Pλ−1
L )G(O).

Remark. Recall that P is a “super” D-module and λL is a “super” line

bundle. However their parities coincide (being equal to the parity of

components of GR), so Pλ−1
L is a plain even sheaf. These “super” subtleties

will be relevant when we pass to the commutativity constraint.

To describe the compatibility isomorphism FH(P1)⊗FH(P2)→∼FH(P1�∗ P2)

consider the integration morphism of O!-modules (we use notation of 5.3.5;

for integration see 7.11.16 (??))

(289) im : m·(P1 �
′ P2)→ P1�∗ P2.
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The line bundle λL on GR is G(O)-equivariant and its pull-back by

m : G(K) ×G(O) GR → GR is identified canonically with the “twisted

product” λL �′ λL*). So, twisting im by λL, we get the morphism

m·((P1λ
−1
L )�′ (P2λ

−1
L ))→ (P1�∗ P2)λ−1

L .

Passing to G(O)-invariant sections we get the convolution map (notice

that G(O)-invariance permits to neglect the twist)

(290)

∗ : Γ(GR, P1λ
−1
L )G(O) ⊗ Γ(GR, P2λ

−1
L )G(O) → Γ(GR, (P1�∗ P2)λ−1

L )G(O)

5.5.6. Lemma. The convolution map coincides with the compatibility

isomorphism FH(P1)⊗ FH(P2)→∼FH(P1�∗ P2).

Proof. Consider the canonical isomorphism (the Action constraint) a :

P1�∗(P2�∗ V ac′)→∼(P1�∗ P2)�∗ V ac′. For f ∈ Hom(V ac′, P1�∗ V ac′), g ∈

Hom(V ac′, P2�∗ V ac′) the compatibility isomorphism sends f⊗g to (P1�∗ g)◦

f .

�

5.6. The renormalized universal enveloping algebra.

5.6.1. Let A be the completed universal enveloping algebra of g̃⊗K.

According to 3.6.2 A is a flat algebra over C[h], h := 1−1, and A/hA = U
′
.

The natural topology on A induces a topology on A[h−1] := A⊗C[h]C[h, h−1];

in fact this is the inductive limit topology (represent A[h−1] as the inductive

limit of A→ A→ . . . where each arrow is multiplication by h).

Let I ⊂ Z be the ideal from 3.6.5. Denote by J the preimage of

IU
′ ⊂ U

′
= A/hA in A (IU

′
is understood in the topological sense,

i.e., IU
′

is the closed ideal of U
′

generated by I). J is a closed ideal

of A containing hA. Denote by A\ the union of the increasing sequence

A ⊂ h−1J ⊂ h−2J2 ⊂ . . . where Jk is understood in the topological sense.

Finally set U \ := A\/hA\.

*)This follows since, by definition, λL comes from a central extension of G(K) equipped

with a splitting over G(O).
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A\ is a topological algebra over C[h] (the topology is induced fromA[h−1]).

So U \ is a topological C-algebra (U \ is equipped with the quotient topology).

5.6.2. Set VacA = A/A(g⊗O) where A(g⊗O) denotes the closed left ideal

of A generated by g ⊗ O. I acts trivially on Vac′ = VacA /hVacA. Since

VacA is a flat C[h]-module A\ acts on VacA. Therefore U \ acts on Vac′.

5.6.3. Denote by U \0 the image of A in U \. U \0 is a subalgebra of U \. We

equip U \0 with the induced topology. The map A → U \0 factors through

A/hA = U
′

and actually through U
′
/IU

′
. So we get a surjective continuous

homomorphism f : U
′
/IU

′ → U \0. Probably f is a homeomorphism.

Anyway f induces a topological isomorphism z = Z/I
∼−→ f(z) (use the

action of U \ on Vac′). We will identify z with f(z).

5.6.4. Let JI ⊂ A denote the preimage of I ⊂ U
′

= A/hA. Denote by U \1

the image of h−1JI in U \. Equip U \1 with the topology induced from U \.

The topological algebra U \ is generated by U \1.

5.6.5. Lemma.

(i) U \1 is a Lie subalgebra of U \.

(ii) U \0 is an ideal of U \1.

(iii) zU \1 ⊂ U
\
1, U \1z ⊂ U

\
1.

(iv) [U \1, z] ⊂ z.

Proof. We will use some properties of the Hayashi bracket {, } defined in

3.6.2. (i) follows from the inclusion [JI , JI ] ⊂ hJI , which is clear because

{I, I} ⊂ I (see 3.6.4 (i)). (ii) and (iii) are obvious. (iv) is clear because

{I,Z} ⊂ {Z,Z} ⊂ Z. �

5.6.6. It follows from 5.6.5 that U \1/U
\
0 is a topological Lie algebroid over z.

Multiplication by h−1 defines a map JI → A\, which induces a Lie algebroid

morphism

(291) I/I2 = JI/(J
2
I + hA)→ U \1/U

\
0
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(see 3.6.5 for the definition of the algebroid structure on I/I2 ). The

morphism (291) is continuous and surjective. In fact it is a topological

isomorphism (see ???).

5.6.7. Denote by U [i the set of elements of U \i annihilating the vacuum

vector from Vac′, i = 0, 1. Lemma 5.6.5 remains valid if U \i is replaced by

U [i , i = 0, 1. So U [1/U
[
0 is a topological Lie algebroid over z. The natural map

U [1/U
[
0 → U \1/U

\
0 is a topological isomorphism. So (291) induces a surjective

continuous Lie algebroid morphism

(292) I/I2 → U [1/U
[
0 .

5.6.8. Let V be a topological U \-module (in the applications we have in

mind V will be discrete). Then V g⊗O is a (left) topological module over

the Lie algebroid I/I2. Indeed, first of all V g⊗O is a z-module. Secondly,

V g⊗O = {v ∈ V |U [0v = 0}, so the Lie algebra U [1/U
[
0 acts on V g⊗O. If

v ∈ V g⊗O, z ∈ z, a ∈ U [1/U [0, then a(zv)− z(av) = ∂a(z)v where ∂a ∈ Der z

corresponds to a according to the algebroid structure on U [1/U
[
0. So V g⊗O

is a module over the algebroid U [1/U
[
0. Using (292) we see that V g⊗O is a

module over the Lie algebroid I/I2.

5.6.9. According to (89) one has the continuous Lie algebra morphism

DerO → h−1JI ⊂ A[h−1] such that Ln 7→ h−1L̃n, n ≥ −1. It induces a

continuous Lie algebra morphism DerO → U [1 ⊂ U \. On the other hand in

3.6.16 we defined a canonical morphism DerO → I/I2. Clearly the diagram

DerO −→ U [1

↓ ↓

I/I2 −→ U [1/U
[
0

is commutative.

Remark. The morphism DerO → U [1/U
[
0 induces a homeomorphism of

DerO onto its image. Since U [1/U
[
0 acts continuously on z ⊂ U \0 this follows
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from the analogous statement for the morphism DerO → Der z, which is

clear (look at the Sugawara elements of z).

5.6.10. Suppose we are in the situation of 5.6.8. According to 5.6.9 DerO

acts on V via the morphism DerO → U \, the subspace V g⊗O is DerO-

invariant and the action of DerO on V g⊗O coincides with the one that

comes from the morphism DerO → I/I2.

5.6.11. Remark. The definition of g̃⊗K from 2.5.1 involves the “critical”

scalar product c defined by (18). Suppose we consider the central extension

0→ C→ (g̃⊗K)λ → g⊗K → 0 corresponding to λc, λ ∈ C∗. Denote by Aλ

the completed universal enveloping algebra of (g̃⊗K)λ. The construction

of U \ and the map (291) remain valid if A and h = 1 − 1 are replaced by

Aλ and hλ := 1λ − λ−1, where 1λ denotes 1 ∈ C ⊂ (g̃⊗K)λ. Denote by U \λ

and fλ the analogs of U \ and (291) corresponding to λ. One can identify Aλ

and U \λ with A and U \ using the canonical isomorphism g̃⊗K ∼−→ (g̃⊗K)λ

such that 1 7→ λ · 1λ. Then fλ does depend on λ: indeed, fλ = λf1.
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6. The Hecke property II

6.1.

6.2. Proof of Theorem 8.1.6.

6.2.1. Lemma. Let V be a non-zero U
′
-module such that the representation

of g⊗O on V is integrable, and the ideal I ⊂ Z annihilates V . Then V has

a non-zero g⊗O-invariant vector.

Proof. Denote by m the maximal ideal of O. The kernel of the morphism

G(O)→ G(O/m) is pro-unipotent and its Lie algebra is g⊗m. So V g⊗m 6= 0.

Consider the Sugawara element L0 ∈ I (see 3.6.15, 3.6.16). A glance at (85)

shows that 2L0 acts on V g⊗m as the Casimir of g. On the other hand,

L0V = 0 because L0 ∈ I. So the action of g on V g⊗m is trivial and

V g⊗O = V g⊗m 6= 0. �

6.2.2. Lemma. Let N be a zg(O)-module equipped with an action of the

Lie algebroid I/I2. Suppose that the action of L0 ∈ DerO ⊂ I/I2 on N is

diagonalizable and the intersection of its spectrum with c + Z is bounded

from below for every c ∈ C. Then N is a free zg(O)-module.

Proof. Using (80), (81), and 3.6.17 we can replace zg(O) by ALg(O) and I/I2

by aLg. By definition, aLg is the algebroid of infinitesimal symmetries of F0
G.

In 3.5.6 we described a trivialization of F0
G. The corresponding splitting

DerALg(O)→ aLg is Der0O-equivariant (see (69) and (70); the point is that

the r.h.s. of these formulas are constant as functions on SpecALg(O)). So N

becomes a module over DerALg(O) and the mapping DerALg(O)→ EndN

is Der0O-equivariant. According to 3.5.6 ALg(O) is the ring of polynomials

in ujk, 1 ≤ j ≤ r, 0 ≤ k < ∞, and L0ujk = (dj + k)ujk for some

dj > 0. So N is an L0-graded module over the algebra generated by

ujk and ∂
∂ujk

, deg( ∂
∂ujk

) = −deg ujk = −(dj + k) → −∞ when k → ∞.

Therefore every element of N is annihilated by almost all ∂
∂ujk

and by all

monomials in the ∂
∂ujk

of sufficiently high degree. It is well known (see,
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e.g., Lemma 9.13 from [Kac90] or Theorem 3.5 from [Kac97]) that in this

situation N = ALg(O) ⊗ N0 where N0 is the space of n ∈ N such that

∂
∂ujk

n = 0 for all j and k. �

6.2.3. Let us prove Theorem 8.1.6. According to 5.6.8 we can apply

Lemma 6.2.2 to N := V g⊗O. So N = zg(O) ⊗ W for some vector space

W . We will show that the natural U
′
-module morphism f : Vac′⊗W =

Vac′⊗zg(O)N → V is an isomorphism. One has (Ker f)g⊗O = Ker f∩N = 0,

so by 6.2.1 Ker f = 0. Suppose that Coker f 6= 0. Then according

to 6.2.1 there is a non-zero g ⊗ O-invariant element of Coker f , i.e., a

non-zero U
′
-module morphism Vac′ → Coker f . It induces an extension

0 → Vac′⊗W → P → Vac′ → 0 which does not split (the composition

of a splitting Vac′ → P and the natural morphism P → V would yield a

g⊗O-invariant vector of V not contained in N). So it remains to prove the

following statement.

6.2.4. Proposition. Any extension of discrete U
′
-modules 0→ Vac′⊗W →

P → Vac′ → 0 such that IP = 0 splits (here W is a vector space).

Proof. Let p ∈ P belong to the preimage of the vacuum vector from Vac′.

Then (g ⊗ O) · p ⊂ Vac′⊗W . In fact (g ⊗ O) · p ⊂ Vac′⊗W1 for some

finite-dimensional W1 ⊂W , so we can assume that dimW <∞. Moreover,

since the functor Ext is additive we can assume that W = C.

Let p be as above. Define ϕ : g ⊗ O → Vac′ by ϕ(a) = ap, so ϕ is a

1-cocycle and Kerϕ is open. We must show that ϕ is a coboundary. One

has the standard filtration U
′
k of U

′
. The induced filtration Vac′k of Vac′ is

(g ⊗ O)-invariant because the vacuum vector is annihilated by g ⊗ O. So

g ⊗ O acts on gr Vac′. There is a k such that Imϕ ⊂ Vac′k. Denote by ψ

the composition of ϕ : g⊗O → Vac′k and Vac′k → Vac′k /Vac′k−1 ⊂ gr Vac′.

So ψ : g ⊗ O → gr Vac′ is a 1-cocycle and it suffices to show that ψ is a

coboundary (then one can proceed by induction).
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Denote by Vaccl the space of polynomials on g∗ ⊗ ωO (by definition, a

polynomial on g∗ ⊗ ωO is a function g∗ ⊗ ωO → C that comes from a

polynomial on the vector space g∗ ⊗ (ωO/m
nωO) for some n). According

to 2.4.1 one has a canonical g ⊗ O-equivariant identification gr Vac′ =

Sym(g ⊗ K/g ⊗ O) = Vaccl (the action of g ⊗ O on Vaccl is induced by

the natural action of g⊗O on g∗⊗ωO). So we can consider ψ as a 1-cocycle

g⊗O → Vaccl. Define βψ : (g⊗O)× (g∗ ⊗ ωO)→ C by

(293) βψ(a, η) := (ψ(a))(η) .

We say that η ∈ g∗ ⊗ ωO is regular if the image of η in g∗ ⊗ (ωO/mωO) is

regular.

Lemma. If η ∈ g∗ ⊗ ωO is regular and c(η) is the stabilizer of η in g ⊗ O

then

(294) βψ(a, η) = 0 for a ∈ c(η) .

Proof. We will use that IP = 0. Let F ∈ Ker(Zcl → zclg (O)), i.e., F is

a (g ⊗ K)-invariant polynomial function on g∗ ⊗ ωK whose restriction to

g∗ ⊗ ωO is zero (see 2.9.8). Suppose that F is homogeneous of degree r. By

3.7.8 F is the symbol of some z ∈ Zr. Since the image of F in zclg (O) is zero

the image of z in zg(O) belongs to the (r − 1)-th term of the filtration, so

according to 2.9.5 it comes from some z′ ∈ Zr−1. Replacing z by z − z′ we

can assume that z ∈ I ∩ Zr.

Since I ⊂ U ′ · (g⊗O) we can write z as

(295) z =

∞∑
i=1

uiai , ai ∈ g⊗O , ui ∈ U
′
, ai → 0 for i→∞ .

It follows from the Poincaré – Birkhoff – Witt theorem that the decompo-

sition (295) can be chosen so that ui ∈ U
′
r−1 for all i. Rewrite the equality

zp = 0 as

(296)
∑
i

uiϕ(ai) = 0 .
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Denote by ũi the image of ui in U
′
r−1/U

′
r−2. (295) and (296) imply that

(297) F =
∑
i

ũiai ,

(298)
∑
i

uiψ(ai) = 0

where ai ∈ g⊗O is considered as a linear function on g∗⊗ωK and ui is the

restriction of ũi to g∗ ⊗ ωO. Denote by dF the restriction of the differential

of F to g∗ ⊗ ωO. Since F vanishes on g∗ ⊗ ωO we have dF ∈ Vaccl ⊗̂(g⊗O)

where ⊗̂ is the completed tensor product. According to (297) dF =
∑
i
ui⊗ai,

so we can rewrite (298) as

(299) µ(dF ) = 0

where µ is the composition of id⊗ψ : Vaccl ⊗̂(g ⊗ O) → Vaccl⊗Vaccl and

the multiplication map Vaccl⊗Vaccl → Vaccl.

Now set

(300) F (η) = Res f(η)ν , ν ∈ ω⊗(1−r)
O

where f is a homogeneous invariant polynomial on g∗ of degree r. In this

case (299) can be rewritten as

(301) βψ(Af (η)ν, η) = 0

where βψ is defined by (293) and Af is the differential of f considered as a

polynomial map g∗ → g (so Af (η) ∈ g ⊗ ω⊗(r−1)
O , Af (η)ν ∈ g ⊗ O). Since

f is invariant Af (l) belongs to the stabilizer of l ∈ g∗ and if l is regular

the elements Af (l) for all invariant f generate the stabilizer. So the lemma

follows from (301) �

To prove the Proposition it remains to show that any 1-cocycle ψ :

g⊗O → Vaccl with open kernel such that the function (293) satisfies (294)

is a coboundary.
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Lemma. Let K be a connected affine algebraic group with Hom(K,Gm) =

0, W a K-module, and ψ a 1-cocycle LieK → W . Then ψ comes from a

unique 1-cocycle Ψ : K →W .

Proof. The uniqueness of Ψ is clear. The proof of existence is reduced to

the case where K is unipotent (represent K as a semidirect product of a

semisimple subgroup Kss and a unipotent normal subgroup; then notice

that the restriction of ψ to LieKss is a coboundary and reduce to the case

where this restriction is zero). Let K̃ denote the semidirect product of K

and W . A 1-cocycle K → W is the same as a morphism K → K̃ such

that the composition K → K̃ → K equals id. A 1-cocycle LieK → W

has a similar interpretation. So we can use the fact that the functor

Lie : {unipotent groups} → {nilpotent Lie algebras} is an equivalence. �

So our 1-cocycle ψ : g ⊗ O → Vaccl comes from a 1-cocycle Ψ :

G(O) → Vaccl where G(O) is considered as a group scheme. Define

BΨ : G(O)× (g∗ ⊗ ωO)→ C by BΨ(g, η) = (Ψ(g))(η).

Lemma. If η ∈ g∗ ⊗ ωO is regular and C(η) is the stabilizer of η in G(O)

then

(302) BΨ(g, η) = 0 for g ∈ C(η) .

Proof. For fixed η the map g 7→ BΨ(g, η) is a morphism of group schemes

f : C(η)→ Ga. According to (294) the differential of f equals 0. So f = 0

(even if C(η) is not connected Hom(π0(C(η)),Ga) = 0 because π0(C(η)) is

finite; but in fact if G is the adjoint group, which can be assumed without

loss of generality, then C(η) is connected). �

The fact that Ψ is a cocycle means that

(303) BΨ(g1g2, η) = BΨ(g1, η) +BΨ(g2, g
−1
1 ηg1) .

We have to prove that BΨ is a coboundary, i.e.,

(304) BΨ(g, η) = f(g−1ηg)− f(η)
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for some polynomial function f : g∗ ⊗ ωO → C. Denote by g∗reg the set of

regular elements of g∗ and by (g∗ ⊗ ωO)reg the set of regular elements of

g∗ ⊗ ωO (i.e., the preimage of g∗reg in g∗ ⊗ ωO). Since codim(g∗ \ g∗reg) > 1 it

is enough to construct f as a regular function on (g∗ ⊗ ωO)reg.

Let C have the same meaning as in 2.2.1. The morphism g∗reg → C

is smooth and surjective, G acts transitively on its fibers, and Kostant

constructed in [Ko63] a subscheme Kos ⊂ g∗reg such that Kos → C is an

isomorphism. If g∗ is identified with g using an invariant scalar product on

g then Kos = i (( 0 0
1 0 ))+V where i and V have the same meaning as in 3.1.9.

Define KosO ⊂ g∗ ⊗ ωO by KosO := i (( 0 0
1 0 )) · dt+ V ⊗ ωO.

The equation (304) has a unique solution f that vanishes on KosO. The

restriction of f to (g∗ ⊗ ωO)reg is defined by

(305) f(g−1ηg) = BΨ(g, η) for η ∈ Kos , g ∈ G(O) .

Here f is well-defined since (as follows from (302) and (303)) one has

BΨ(g1g, η) = BΨ(g, η) for η ∈ (g∗ ⊗ ωO)reg , g1 ∈ C(η). Now (303) implies

that the function f defined by (305) satisfies (304) �

Remark. At the end of the proof we used Kostant’s global section of the

fibration (g∗⊗ωO)reg → Hitchg(O) (see 2.4.1 for the definition of Hitchg(O)).

Instead one could use local sections and the equality H1(Hitchg(O),O) = 0,

which is obvious because Hitchg(O) is affine.

6.2.5. Proposition 6.2.4 seems to be related with [F91] (see, e.g., the

Propositions in the lower parts of pages 97 and 98 of [F91]). Maybe a

modification of the methods of [F91] would yield Proposition 6.2.4 and much

more.
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7. Appendix: D-module theory on algebraic stacks

and Hecke patterns

7.1. Introduction.

7.1.1. The principal goal of this section is to present a general Hecke format

which is used in the proof of our main Theorem. Its (untwisted) finite-

dimensional version looks as follows. Let G be an algebraic group, K ⊂ G

an algebraic subgroup, g the Lie algebra of G, and Y a smooth variety with

G-action. Denote by H := D(K \ G/K) the D-module derived category of

the stack K \G/K. One has the similar derived category D(K \Y ) and the

derived category D(g,K) of the categoryM(g,K) of (g,K)-modules. Then

we have the following “Hecke pattern”:

(a) H is a monoidal triangulated category,

(b) D(K \ Y ) is an H-Module,

(c) D(g,K) is an H-Module,

(d) the standard functors

L∆ : D(g,K) −→ D(K \ Y ) , RΓ : D(K \ Y ) −→ D(g,K)

are Morphisms of H-Modules.

Here L∆, RΓ are derived versions of the functors ∆, Γ from 1.2.4.

The tensor product on H and H-Actions from (b) and (c) are appropriate

“convolution” functors �∗ . For example, consider the case K = {1}. Denote

by δg the D-module of δ-functions at g ∈ G. One has δg1 �∗ δg2 = δg1g2 .

For a D-module M on Y δg �∗M is the g-translation of M , and for a g-

module V δg �∗ V is V equipped with the g-action turned by Adg. The

D-module structure on M identifies canonically δg �∗M for infinitely close

g’s; similarly, the g-action on V identifies such δg �∗ V ’s. This allows to define

the convolution functors for an arbitrary D-module on G.

7.1.2. The accurate construction of Hecke functors requires some D-module

formalism for stacks. For example, one needs a definition of the D-module
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derived category D(Y) of a smooth stack Y (it might not coincide with the

derived category of the category of D-modules on Y !). There seems to be

no reference available (except in the specific case when Y is an orbit stack,

i.e., the quotient of a smooth variety by an affine group action, that was

treated in [BL], [Gi87] in a way not too convenient for the Hecke functor

applications), so we have to supply some general nonsense to keep afloat.

We start in 7.2, following Kapranov [Kap91] and Saito [Sa89], with a

canonical equivalence between the derived category of D-modules and that

of Ω-modules (here Ω is the DG algebra of differential forms) which identifies

a D-module with its de Rham complex. When you deal with stacks, Ω-

modules are easier to handle: the reason is that Ω is a sheaf of rings on the

smooth topology while D is not. In the important special case of a stack

for which the diagonal morphism is affine this super*) format is especially

convenient. Here one may define (see 7.3) the D-module derived category

directly using “global” Ω-complexes. In 7.5, after a general homological

algebra digression of 7.4, we give a ”local” definition of the D-module derived

category that works for arbitrary smooth stacks. In 7.6 parts (a), (b) of the

Hecke pattern are explained; we also show that for an orbit stack its D-

module derived category is equivalent to the equivariant derived category

from [BL], [Gi87]. In 7.7 we describe a similar super format for Harish-

Chandra modules; as a bonus we get in 7.7.12 a simple proof of the principal

result of [BL]. The Harish-Chandra parts (c), (d) of the Hecke pattern are

treated in 7.8. A version with extra symmetries and parameters needed in

the main body of the article is presented in 7.9. Before passing to an infinite-

dimensional setting we discuss in 7.10 a crystalline approach to D-modules

which is especially convenient when you deal with singular spaces (we owe

this section to discussions with J.Bernstein back in 1980). Sections 7.11 and

7.12 contain some basic material about ind-schemes, Mittag-Leffler modules,

*)A mathematician’s abbreviation of Mary Poppins’ coinage “supercalifragelistic-

expialidocious”.
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and D-modules on formally smooth ind-schemes. Section 7.13 is a review

of BRST reduction. The infinite-dimensional rendering of parts (c), (d) of

the Hecke pattern is in 7.14. Finally in 7.15 we show that positively twisted

D-modules on affine flag varieties are essentially the same as representations

of affine Kac-Moody Lie algebras of less than critical level. In the particular

case of D-modules smooth along the Schubert stratification, similar result

was found by Kashiwara and Tanisaki [KT95] (the authors of [KT95] do

not use the language of D-modules on ind-schemes). We also identify the

corresponding de Rham and BRST cohomology groups.

Our exposition of D-module theory is quite incomplete; basically we treat

the subjects that are used in the main body of the paper. The exceptions

are sections 7.4, 7.5 (the stack BunG fits into the formalism of 7.3), 7.10

(the singular spaces that we encounter are strata on affine Grassmannians,

so one may use 7.11), and 7.15 (included for the mere fun of the reader).

Recall that M`(X) (resp. Mr(X)) denotes the category of left (resp.

right) D-modules on a smooth variety X; we often identify these categories

and denote them by M(X). If F is a complex then we denote by F · the

corresponding graded object (with the differential forgotten).

7.2. D- and Ω-modules.

7.2.1. Let X be a smooth algebraic variety *). Denote by ΩX the DG

algebra of differential forms on X. Then (X,ΩX) is a DG ringed space, so we

have the category of ΩX -complexes (:= DG ΩX -modules). An ΩX -complex

F = (F ·, d) is quasi-coherent if F i are quasi-coherent OX -modules; quasi-

coherent ΩX -complexes will usually be called Ω-complexes on X. Denote

*)or, more generally, a smooth quasi-compact algebraic space over C such that the

diagonal morphism X → X×X is affine. The constructions and statements of this section

(but 7.2.10) are local, so they make sense for any smooth algebraic space. The condition

on X is needed to ensure that the derived categories we define satisfy an appropriate

local-to-global (descent) property. We discuss this in the more general setting of stacks in

7.5.
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the DG category of Ω-complexes on X by C(X,Ω). This is a tensor DG

category.

Remark. For an ΩX -complex F the differential d : F · → F ·+1 is a

differential operator of order ≤ 1 with symbol equal to the product map

Ω1
X ⊗ F · → F ·+1. We see that the Ω·X -module structure on F · can be

reconstructed from the OX -module structure and d. In fact, forgetting the

Ω≥1
X -action identifies C(X,Ω) with the category of complexes (F ·, d) where

F · are quasi-coherent OX -modules, d are differential operators of order ≤ 1.

7.2.2. Let C(X,D) := C(Mr(X)) be the DG category of complexes of right

D-modules on X (right D-complexes, or just D-complexes for short), and

K(X,D) the corresponding homotopy category. We have a pair of adjoint

DG functors

(306) D : C(X,Ω) −→ C(X,D) , Ω : C(X,D) −→ C(X,Ω)

defined as follows. Denote by DRX the de Rham complex of DX considered

as a left D-module, so DR·X = Ω·X ⊗OX
DX . This is an Ω-complex equipped

with the right action of DX . Now for an Ω-complex F and a right D-complex

M one has

(307) DF = F ⊗
ΩX

DRX , ΩM := HomDX (DRX ,M) .

The adjunction property is clear.

7.2.3. Remarks. (i) One has DF · = F · ⊗
OX
DX = Diff(O, F ·); the

differential dDF : DF · → DF ·+1 sends a differential operator a : OX → F ·

to the composition d·a. The Ω-complex ΩM , (ΩM)i =
⊕

a−b=i
Ma ⊗ΛbΘX is

the de Rham complex of M .

(ii) The category M`(X) of left D-modules on X is a tensor category

in the usual way (tensor product over OX), so the category of left D-

complexes C(M`(X)) is a tensor DG category. The DG functor Ω :
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C(M`(X)) → C(X,Ω) which assigns to a left D-complex N its de Rham

complex, (ΩN)· = Ω·X ⊗OX
N , is a tensor functor.

(iii) The DG categories C(X,Ω) and C(X,D) are Modules over the

tensor DG category C(M`(X)). The functors D and Ω are Morphisms

of C(M`(X))-Modules.

7.2.4. Lemma. For any D-complex M the canonical morphism DΩM →M

is a quasi-isomorphism.

Proof. Set

V i
j :=

⊕
a−b=i
b+c=j

Ma ⊗ ΛbΘX ⊗D≤cX ⊂ (DΩM)i.

Then V∗ is a increasing filtration of DΩM by O-subcomplexes such that

V0
→∼M and Vi/Vi−1 are acyclic for i ≥ 1 (since Vi/Vi−1 is the tensor product

of M and the i-th Koszul complex for ΘX). �

7.2.5. For an Ω-complex F set H·DF = H·DF . Thus HD is a cohomology

functor onK(X,Ω) with values in the abelian categoryMr(X). A morphism

of Ω-complexes φ : F1 → F2 is called D-quasi-isomorphism if the morphism

of D-complexes Dφ : DF1 → DF2 is a quasi-isomorphism, i.e., H·DF1 →

H·DF2 is an isomorphism. We have the following simple properties (use

7.2.4 to prove (ii), (iii)):

(i) If φ is aD-quasi-isomorphism, N is a leftD-module flat as anO-module

then φ⊗ idN : F1 ⊗N → F2 ⊗N is a D-quasi-isomorphism.

(ii) The canonical morphism αF : F → ΩDF is a D-quasi-isomorphism.

(iii) Ω sends quasi-isomorphisms to D-quasi-isomorphisms.

The following lemma will not be used in the sequel; the reader may skip

it. We say that a morphism of Ω-complexes φ : F1 → F2 is a naive quasi-

isomorphism if it is a quasi-isomorphism of complexes of sheaves of vector

spaces.
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7.2.6. Lemma. (i) Any D-quasi-isomorphism is a naive quasi-isomorphism.

(ii) A morphism φ as above is a D-quasi-isomorphism if and only if for any

bounded below complex A of locally free Ω-modules the morphismφ⊗ idA :

F1 ⊗A→ F2 ⊗A is a naive quasi-isomorphism.

(iii) Assume either that Ω≥1F ·i = 0 (i.e., the differential is O-linear), or

that F ·i are bounded and O-coherent. Then any naive quasi-isomorphism φ

is a D-quasi-isomorphism. For arbitrary Ω-complexes this may be not true.

Proof. (i) For any Ω-complex F the canonical morphism αF : F → ΩDF is a

naive quasi-isomorphism. Since Ω sends quasi-isomorphisms of D-complexes

to naive quasi-isomorphisms we see that Ω(Dφ) is a naive quasi-isomorphism.

Now our statement follows from the fact that αF2φ = Ω((Dφ)αF1 .

(ii) To prove the ”if” statement just take A = DRX . Conversely, assume

that φ is a D-quasi-isomorphism. There is a bounded below increasing

filtration Ai on A such that ∪Ai = A and each griA is a locally free Ω·X -

module with generators in degree i (set Ai := ΩX ·A≤i). So φ⊗idA is a naive

quasi-isomorphism if all φ ⊗ idgriA are naive quasi-isomorphisms. Thus we

may assume that A is a locally free Ω·X -module with generators in fixed

degree, say 0, i.e., A = ΩN where N is a left D-module locally free as an

O-module. Then φ⊗ idA = φ⊗ idN , and we are done by (i) from 7.2.5.

(iii) The O-linear case is obvious (since in this situation DF = F ⊗
OX
DX).

The O-coherent case follows from the Sublemma below applied to Dφ (notice

that because of property (ii) from 7.2.5 the fiber of DF at x coincides with

RΓx(X,F )).

Sublemma. Let ψ : M1 → M2 be a morphism of finite complexes of

coherent D-modules on X. Assume that for any x ∈ X(C) the corresponding

morphism of fibers*) M1x →M2x is a quasi-isomorphism. Then ψ is a quasi-

isomorphism.

*)Certainly here we consider the O-moduli fibers in the usual derived category sense.
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Proof of Sublemma. Set C = Cone(ψ); denote by Y the support of H·(C).

Assume that ψ is not a quasi-isomorphism, i.e., Y is not empty. Restricting

X if necessary we may assume that Y is a smooth subvariety of X and the

coherent DY -modules P · := i!YH
·(C) = H·i!Y (C) are free as OY -modules.

Since for x ∈ Y one has H·(Cx) = P ·+nx where n is codimension of Y in X

we see that P · = 0 which is a contradiction.

To get an example of a naive quasi-isomorphism which is not a D-quasi-

isomorphism it suffice to find a non-zero D-module M such that ΩM is an

acyclic complex of sheaves. Take M to be a constant sheaf of DX -modules

equal to the field of fractions of the ring of differential operators (at the

generic point of X). �

7.2.7. Since HD is a cohomology functor, D-quasi-isomorphisms form a

localizing family in the homotopy category of C(X,Ω). Therefore the

corresponding localization D(X,Ω) is a triangulated category (see [Ve]);

we call it D-derived category of Ω-complexes. The functors D, Ω give rise

to mutually inverse equivalences of triangulated categories

(308) D : D(X,Ω) −→ D(X,D) , Ω : D(X,D) −→ D(X,Ω) .

Here D(X,D) = DMr(X). We often denote these triangulated categories

thus identified by D(X). One may consider bounded derived categories as

well.

Remark. For a bounded from below complex of injective D-modules M

the corresponding Ω-complex ΩM is injective. Thus the homotopy category

K+(X,Ω) has many injective objects.

7.2.8. Let f : Y → Z be a morphism of smooth varieties. It yields the

morphism of DG ringed spaces fΩ : (Y,ΩY ) → (Z,ΩZ). Thus we have the

corresponding DG functors f ·Ω : C(Z,Ω) → C(Y,Ω), f· = fΩ· : C(Y,Ω) →

C(Z,Ω). Let us consider first the pull-back functor.
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We have the usual pull-back functor for left D-modules f † : M`(Z) →

M`(Y ), f †(N) = OY ⊗
f−1OZ

f−1N . One has Ωf †(N) = f ·Ω(ΩN). One

may replace left D-modules by right ones*) and consider the corresponding

functor f † :Mr(Z)→Mr(Y ); then f ·Ω(ΩM) = Ωf †M [−dimY/Z].

If f is smooth then for any F ∈ C(Z,Ω) one has H·Df ·ΩF =

f †H
·−dimY/Z
D F . So f ·Ω preserves D-quasi-isomorphisms and we have the

functor f ·Ω : D(Z,Ω) → D(Y,Ω). The adjunction morphism Df ·Ω(ΩM) →

f †M [−dimU/X] is a quasi-isomorphism.

7.2.9. Lemma. Ω-complexes are local objects with respect to the smooth

topology, i.e., the pull-back functors make C(U,Ω), U ∈ Xsm, a sheaf of DG

categories on the smooth topology of X. The notion of D-quasi-isomorphism

is local on Xsm. �

7.2.10. Let us return to situation 7.2.8 and consider the DG functor

f· : C(Y,Ω)→ C(Z,Ω). The right derived functor Rf· : D(Y,Ω)→ D(Z,Ω)

is correctly defined. Indeed, let U· be a (finite) affine covering (either étale

or Zariski) of Y . For F ∈ C(Y,Ω) let F → C(F ) be the corresponding Čech

resolution of F . Then*) f·C(F )→∼Rf·F .

We denote the corresponding functor D(Y ) → D(Z) by f∗. It coincides

with the usual D-module push-forward functor. Indeed, for a D-complex

M on Y one has Df·ΩM = f·(ΩM ⊗ f †DZ) = f·(D(ΩM) ⊗
DY

f †DZ). Since

f †DZ is a flat OY -module and D(ΩM) is a resolution of M we see that

D(ΩM) ⊗
DY

f †DZ = M
L
⊗
DY

f †DZ . Thus f∗M = Rf·(M
L
⊗
DY

f †DZ), q.e.d.

We leave it to the reader to check that Rf· is compatible with

composition of f ’s, i.e., that the canonical morphism R(fg)· → Rf·Rg·
is an isomorphism*), and that this identification (fg)∗ = f∗g∗ coincides with

the standard identification from D-module theory.

*)using the standard equivalence M`(Z)→∼M(Z), N 7→ N ⊗ ωZ .

*)this follows, e.g., from Remark after 7.3.9.

*)see 7.3.10(ii) for a proof of this statement in a more general situation.
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7.2.11. For a D-complex M on Y denote by MO ∈ D(Y,O) same M

considered as a complex of O!-modules. One has a canonical integration

morphism

(309) if : Rf·(MO)→ (f∗M)O

in D(Y,O) defined as follows. It suffice to define the morphism if :

f·(MO)→ D(f·ΩM). Now if is the composition

f·(MO)→ [D(f·(MO))]O → [D(f·ΩM)]O

where the arrows come from the canonical morphisms N → (DN)O (for

N = f·(MO)) and MO → ΩM . In other words, if comes by applying Rf·
to the obvious morphism MO → (M

L
⊗
DY

f †DZ)O.

We leave it to the reader to check that if is compatible with composition

of f ’s.

7.3. D-module theory on smooth stacks I. We establish the basic D-

module formalism for a smooth stack that satisfies condition (310) below. In

7.3.12 we modify the definitions so that one may drop the quasi-compactness

assumption. The arbitrary smooth stacks will be treated in 7.5.

7.3.1. Let Y be a smooth quasi-compact algebraic stack. Assume that it

satisfies the following condition*):

(310) The diagonal morphism Y → Y × Y is affine.

Equivalently, this means that there exist a smooth affine surjective

morphism U → Y such that U is an affine scheme. In other words, Y is

a quotient of a smooth algebraic variety X modulo the action of a smooth

groupoid Q*) such that the structure morphism Q→ X ×X is affine.

*)This condition is needed to ensure that the category D(Y) we define has right local-

to-global properties, see 7.5.3. The constructions 7.3.1-7.3.3 make sense for any smooth

algebraic stack.

*)Q = X ×
Y
X.
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Note that Ω(U), U ∈ Ysm, form a sheaf of DG algebras ΩY on Ysm. An Ω-

complex on Y is a DG ΩY -module which is quasi-coherent as an OY -module.

We denote the DG category of Ω-complexes on Y by C(Y,Ω).

Remark. The categories C(U,Ω), U ∈ Ysm, form a sheaf of DG categories

C(Ysm,Ω) on Ysm (see 7.2.9), and an Ω-complex on Y is the same as a

Cartesian section of C(Ysm,Ω). Equivalently, an Ω-complex on Y is the

same as a Q-equivariant Ω-complex on X.

7.3.2. Recall that the categories of D-modules M(U), U ∈ Ysm, form a

sheaf of abelian categories on Ysm, and the category M(Y) of D-modules

on Y is the category of its Cartesian sections. By 7.2.8 there is a canonical

cohomology functor H·D : C(Y,Ω) → M(Y), H·D(F )U := H
·+dimU/Y
D (FU ).

A morphism of Ω-complexes is called a D-quasi-isomorphism if it induces

an isomorphism of H·D’s. Localizing the homotopy category of Ω-complexes

by D-quasi-isomorphisms we get a triangulated category D(Y) = D(Y,Ω).

One has the corresponding bounded derived categories as well.

There is a fully faithful embedding M(Y) ↪→ D(Y) which assigns to a

D-module M on Y its de Rham complex ΩM , (ΩM)U := ΩMU [−dimU/Y].

One has H0
DΩM = M and Ha

DΩM = 0 for a 6= 0. It is easy to see that

Ω identifies M(Y) with the full subcategory of D(Y) that consists of those

Ω-complexes F that Ha
D(F ) = 0 for a 6= 0.

7.3.3. Example. Denote by ΩDY the Ω-complex on Y defined by ΩDYU :=

ΩU/Y [dimY]. Note that Ha
D(ΩDY) = 0 for a > 0. If Y is good then our

Ω-complex belongs to the essential image of M(Y); the corresponding D-

module DY = H0
D(ΩDY) coincides with the left D-module DY from 1.1.3.

More generally, for any O-module P on Y we have the Ω-complex Ω(DY⊗P )

with Ω(DY ⊗ P )U := ΩU/Y ⊗
OY

PU [dimY]. If Y is good and P is locally

free then our Ω-complex sits in M(Y) and equals to the left D-module

DY ⊗ P = DY ⊗
OY

P .
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Denote by D(Y)≥0 ⊂ D(Y) the full subcategory of Ω-complexes F such

that Ha
DF = 0 for a < 0; define D(Y)≤0 in the similar way.

7.3.4. Proposition. This is a t-structure on D(Y) with core M(Y) and

cohomology functor HD.

This proposition follows immediately from Lemma 7.5.3 below. A

different proof in the particular case where Y is an orbit stack may be found

in 7.6.11.

7.3.5. Remark. Consider the functor Ω : C(M(Y)) → C(Y,Ω). For

M ∈ C(M(Y)) one has H·M = H·D(ΩM), so Ω yields the t-exact functor

Ω : D(M(Y)) → D(Y) which extends the “identity” equivalence between

the cores. This functor is an equivalence of categories if Y is a Deligne-

Mumford stack*), but not in general.

7.3.6. Let f : Y → Z be a morphism of smooth stacks that satisfy (310).

It yields a morphism of DG ringed topologies (Ysm,ΩY)→ (Zsm,ΩZ) hence

a pair of adjoint DG functors

(311) f ·Ω : C(Z,Ω)→ C(Y,Ω), f· : C(Y,Ω)→ C(Z,Ω)

and the corresponding adjoint triangulated functors between the homotopy

categories (since Y is quasi-compact f· preserves quasi-coherency).

If f is smooth then f ·Ω preservres D-quasi-isomorphisms, so it defines

a t-exact functor f · : D(Z) → D(Y). It is obviously compatible with

composition of f ’s.

Let f be an arbitrary morphism. We define the push-forward functor

f∗ : D+(Y) → D+(Z) as the right derived functor Rf·. We will show that

f∗ is correctly defined in 7.3.10 below. One needs for this a sufficient supply

of ”flabby” objects.

*)which means that Y admits an etale covering by a variety. In this situation the functor

D : C(Y,Ω) → C(M(Y)) makes obvious sense (which yields the inverse equivalence

D(M(Y))→ D(Y) as in 7.2.7.
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7.3.7. Definition. We say that an O-module F on Y is loose if for any flat

O-module P on Y one has Ha(Y, P ⊗F ) = 0 for a > 0. An O- or Ω-complex

F is loose if each F i is loose.

7.3.8. Lemma. (i) For any Ω-complex F ′ on Y there exists a D-quasi-

isomorphism F ′ → F such that F is loose. If F ′ is bounded from below

then we may choose F bounded from below.

(ii) Assume that f (see 7.3.6) is smooth and affine. Then f ·Ω, f· send loose

Ω-complexes to loose ones.

(iii) If F1, F2 are loose Ω-complexes on stacks Y1,Y2 then F1 � F2 is a

loose Ω-complex on Y1 × Y2.

Proof. (i) Since Y is quasi-compact, there exists a hypercovering U· of Y such

that Ua are affine schemes. Since the diagonal morphism for Y is affine, the

projections πa : Ua → Y are affine. Take for F the Čech complex of F ′ for

this hypercovering, so F i =
⊕
a≥0

πa·(F i−aUa
).

(ii) Clear.

(iii) We may assume that Fi are loose OYi-modules. Let P be a flat O-

module on Y1×Y2. Since F1 is loose, one has Rap2·(P ⊗p∗1F1) = 0 for a > 0

and p2·(P ⊗ p∗1F1) is a flat O-module on Y2 (here pi : Y1 ×Y2 → Yi are the

projections). Thus Ha(Y1×Y2, P⊗(F1�F2)) = Ha(Y2, (p2·(P⊗p∗1F1))⊗F2)

which vanishes for a > 0 since F2 is loose. �

Let us return to the situation at the end of 7.3.6.

7.3.9. Lemma. If F is a loose Ω-complex on Y bounded from below then

f·F = Rf·F .

Proof. It suffices to check that if our F is in addition D-acyclic (i.e., satisfies

condition H·DF = 0) then f·F is also D-acyclic (use 7.3.8(i)).

a. We may assume that Z is a smooth affine scheme Z. Indeed, the

statement we want to check is local with respect to Z. Replace Z by an
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affine Z ∈ Zsm, Y by Y ×
Z
Z, and F by its pull-back to Y ×

Z
Z. The new data

satisfy all the conditions of the lemma.

b. We may assume that Y is a smooth affine scheme Y . Indeed, take U· as

in (i), and denote by A the Čech complex with terms Ai =
⊕
a≥0

(fπa)·(F i−aUa
).

This is an Ω-complex on Z. Since F is loose the obvious morphism f·F → A

is a D-quasi-isomorphism (use (310)). Note that A carries an obvious

filtration with successive quotients (fπa)·(FUa)[−a]. If we know that these

are D-acyclic, then A is D-acyclic (use the fact that F is bounded from

below), hence f·F is D-acyclic.

c. Let i : Y → Y × Z be the graph embedding for f . Then G := i·F

is D-acyclic. Since f·F = p·G (here p is the projection Y × Z → Z) what

we need to show is that p·G is D-acyclic. Let T be the relative de Rham

complex for DG along the fibers of p. We are in a direct product situation

so p·T is a D-complex on Z. There is an obvious morphism of D-complexes

Dp·G → p·T which is a quasi-isomorphism. Since p·T is acyclic (T carries

a filtration with successive quotients DG⊗ΛΘY , and DG is acyclic) we are

done. �

Remark. If f is an affine morphism then for any F ∈ C(Y,Ω) one has

f·F = Rf·F . Indeed, the statement is local with respect to z, so we may

assume that z is an affine scheme. Then Y is an affine scheme, hence any

complex on Y is loose; now use 7.3.9.

7.3.10. Corollary. (i) The functor f∗ := Rf· : D+(Y) → D+(Z) is

correctly defined.

(ii) f∗ is compatible with composition of f ’s, i.e., the canonical morphism

(f1f2)∗ → f1∗f2∗ is an isomorphism.

Proof. (i) Use 7.3.8(i) and 7.3.9.

(ii) f· sends loose Ω-complexes to loose ones. �

7.3.11. Remarks. (i) The above lemmas are also true in the setting of O-

complexes.
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(ii) Assume that the functor f· on the category of O-modules on Y has

finite cohomology dimension (e.g., this happens when f is representable).

Then f∗ := Rf· is well-defined for the derived categories of Ω-complexes

with arbitrary boundary conditions. Indeed, 7.3.9 (together with its proof)

remains valid for unbounded loose Ω-complexes.

(iii) If our stacks are smooth varieties then the above functor f∗ is the

standard push-forward functor of D-module theory (see 7.2.10). In this

situation lemma 7.3.9 (and its proof) remains valid if we assume only that

the cohomology Ha(U,F i), a > 0, vanish for any Zariski open U of Y such

that U → Y is an affine morphism.

7.3.12. Let now Y be any smooth stack such that the diagonal morphism

Y → Y×Y is affine (i.e., we drop the quasi-compactness assumption). Then

the category of Ω-complexes on Y may be too small to define the right D-

module derived category. One extends the above formalism as follows.

To simplify the notations let us assume that Y admits a countable covering

by quasi-compact opens. In other words Y is a union of an increasing

sequence Y1 ⊂ Y2 ⊂ ... of open quasi-comact substacks. An Ω-complex

on Y· is a collection F = (Fi, ai) where Fi are Ω-complexes on Yi and

ai : Fi+1|Yi → Fi are morphisms of Ω-complexes which are D-quasi-

isomorphisms. Such Ω-complexes form a DG category C(Y·,Ω), so we have

the corresponding homotopy category K(Y·,Ω). It carries the cohomology

functor HD with values in the abelian category M(Y) of D-modules on Y,

HD(F )|Yi = HD(Fi).

We defineD(Y·,Ω) as the localization ofK(Y·,Ω) with respect toD-quasi-

isomorphisms. The triangulated categories D(Y·,Ω) for different Y·’s are

canonically identified. Indeed, let Y ′j be another sequence of open substacks

of Y as above. Choose an increasing function j = j(i) such that Yi ⊂ Y ′j(i).

Let us assign to an Ω-complex F ′ on Y ′· the Ω-complex F on Y·, Fi = F ′j(i)|Yi .

This functor commutes with HD. The corresponding functor between the
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D-derived categories does not depend (in the obvious sense) on the auxiliary

choice of j(i), and it is an equivalence of categories.

We see that the category D(Y·,Ω) depends only on Y, so we denote

it by D(Y,Ω) or simply D(Y). Our triangulated category carries the

cohomology functor HD : D(Y) → M(Y) and there is a canonical fully

faithful embedding Ω :M(Y) ↪→ D(Y) (see 7.3.2). Proposition 7.3.4 remains

true; the proof follows from 7.5.4.

Let f : Y → Z be a morphism of smooth stacks that satisfy our

assumption. If f is smooth then one defines the t-exact pull-back functor

f · : D(Z)→ D(Y) in the obvious manner. If f is an arbitrary quasi-compact

morphism then one has a canonical push-forward functor f∗ : D(Y)+ →

D(Z)+. We define it after a short digression about loose Ω-complexes.

By definition, F ∈ C(Y·,Ω) is loose if such are all Fi ∈ C(Yi,Ω). Lemma

7.3.8(i),(iii) remains true in our setting. This means that one may define

the D-derived category using only loose complexes. To prove 7.3.8(i) choose

coverings πi : Vi → Yi such that Vi is an affine scheme. Denote by Ui the

disjoint union of Vj ’s, 1 ≤ j ≤ i, and by Ui· the corresponding hypercovering

of Yi, Uia is the a-multiple fibered product of Ui over Yi. Now take any

F ′ ∈ C(Y·,Ω). Let Fi be the Čech complex of F ′i for the hypercovering

Ui· (see the proof of 7.3.8(i)). Then Fi form an Ω-complex F on Y· in the

obvious manner. This F is loose, and the obvious morphism F ′ → F is a

D-quasi-isomorphism, q.e.d.

Now let us define f∗. Let Zi be a sequence of open quasi-compact

substacks of Z as above. Then Yi := f−1Zi is the corresponding sequence

for Y. Let F be a bounded from below loose Ω-complex on Y·. Then

(f·F )i := f·(Fi) form an Ω-complex f·F on Z· (use 7.3.9). The functor

f· preserves D-quasi-isomorphisms (by 7.3.9). Our f∗ is the corresponding

functor between the D-derived categories. Corollary 7.3.10(ii) together with

its proof remains true.
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Assume that in addition all the functors fi· :M(Yi,O)→M(Zi,O) have

finite cohomological dimension (e.g., this happens when f is representable).

Then the functor f∗ is correctly defined on the whole D(Y). Indeed, let F

be any loose Ω-complex on Y·. Then (f·F )i := f·(Fi) form an Ω-complex

f·F on Z· (use 7.3.11(ii)). The functor f· preserves D-quasi-isomorphisms,

and we define f∗ : D(Y)→ D(Z) as the corresponding functor between the

D-derived categories.

7.3.13. Remark. Let A be a commutative algebra. Let M(Y, A) be the

abelian category of D-modules on Y equipped with an action of A. One

defines a t-category D(Y, A) with core M(Y, A) as in 7.3.12 using Ω-

complexes with A-action. The standard functors render to the A-linear

setting without problems. More generally, let AY be a commutative D-

algebra on Y (:= a commutative algebra in the tensor category M`(Y)).

We have the abelian category M(Y,AY) of AY -modules and its derived

version D(Y,AY) defined as in 7.3.12 using Ω-complexes with AY -action.

7.4. Descent for derived categories. We explain a general homotopy

inverse limit construction for derived categories. We need it to be able to

formulate a ”local” definition of the D-module derived categories.

7.4.1. Denote by (∆) the category of non-empty finite totally ordered sets

∆n = [0, n] and increasing injections. Let M· be a family of abelian

categories cofibered over (∆) such that for any morphism α : ∆n ↪→ ∆m

the corresponding functor α· : Mn →Mm is exact.

Denote by Mtot the category of cocartesian sections of M·, so an object

of Mtot is a collection M = {Mn, α
∗}, Mn ∈ Mn, α∗ = α∗M : α·Mn

→∼Mm

are isomorphisms such that (αβ)∗ = α∗α·(β∗) (here β : ∆l ↪→ ∆n). This

is an abelian category. Note that Mtot is compatible with duality: one has

(Mtot)
◦ = (M◦)tot.
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Our aim is to define a t-category Dtot(M·) with coreMtot which satisfies

the following key property:

(312)

For any M, N ∈ Mtot there is a canonical spectral

sequence Ep,qr converging to Extp+qDtot(M·)(N,M) with

Ep,q1 = ExtqMp
(Np,Mp).

The construction of Dtot(M·) is compatible with duality.

7.4.2. Consider the category sec+ = sec+(M·) whose objects are collections

M = (Mn, α
∗) where Mn ∈ Mn, α∗ = α∗M : α·Mn → Mm are morphisms

such that (αβ)∗ = α∗α·(β∗), id∗∆n
= idMn . This is an abelian category

which contains Mtot as a full subcategory closed under extensions. Define

sec− = sec−(M·) by duality: sec−(M·) := (sec+(M◦· ))◦, so an object of

sec− is a collection N = (Nn, α∗), Nn ∈Mn, α∗ = αN∗ : Nm → α·Nn.

Consider the DG categories C sec± of complexes in sec± and the

corresponding homotopy categories K sec±. There are adjoint DG functors

(313) c+ : C sec− −→ C sec+ , c− : C sec+ −→ C sec−

defined as follows. Take M ∈ C sec+. Then for any m ≥ 0 we have a

“cohomology type” coefficient system M̃m on the simplex ∆m with values

in CMm. Namely, M̃m assigns to a face α : ∆n ↪→ ∆m the complex α·Mn,

and if α′ : ∆l ↪→ ∆m is a face of α, i.e., α′ = αβ, then the corresponding

connecting morphism α′·Ml → α·Mn is α·(β∗). Now (c−M)m is the total

cochain complex C·(∆m, M̃m) (so c−(M)·m =
⊕

α: ∆n→∆m

α·M ·−nn ), α
c−(M)
∗

are the obvious projections. One defines c+ by duality.

To see that c± are adjoint consider for N , M as above the complex of

abelian groups Hom(N,M) with terms

Hom(N,M)i =
∏
a,n

Hom(Na+n
n ,Ma+i

n )

and the differential wich sends f = (fa,n) ∈ Hom(N,M)i to df ,

(df)a,n = dfa,n − (−1)i+nfa+1,nd+
∑

j=0,..,n

(−1)jα∗jαj·(fa+1,n−1)αj∗.
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Here αj : ∆n−1 → ∆n is the jth face embedding. Now the adjunction prop-

erty follows from the obvious identification of complexes of homomorphisms

(314) Hom(c+N,M)→∼Hom(N,M)←∼Hom(N, c−M)

7.4.3. Remark. Fix some m ≥ 0. For i = 0, ..,m let νi : c−(M)m →Mm be

the composition of the projector c−(M)m → αi·M0 and α∗i : αi·M0 → Mm;

here αi : ∆0 → ∆m is the ith vertex. Now all the morphisms νi’s are

mutually homotopic (with canonical homotopies and ”higher homotopies”).

7.4.4. Lemma. The functors c± preserve quasi-isomorphisms. The adjunc-

tion morphisms c+c−M →M , N → c−c+N are quasi-isomorphisms. �

We see that c± define mutually inverse equivalences between the derived

categories D sec±. Let us denote these categories thus identified by D sec.

So D sec carries two t-structures with cores sec± and cohomology functors

H± : D sec→ sec±.

7.4.5. Let Ctot + ⊂ C sec+ be the full subcategory of complexes M such that

H iM ∈Mtot ⊂ sec+ for any i. In other words M ∈ C sec+ belongs to Ctot +

if all the morphisms α∗M are quasi-isomorphisms. Define Ctot− ⊂ C sec− in

the similar way. Let Ktot± ⊂ K sec±, Dtot± ⊂ D sec± be the corresponding

homotopy and derived categories; these are triangulated categories.

The derived categories D(Mn) form a cofibered category over (∆).

Denote by Dfake
tot the category of its cocartesian sections (this is not a

triangulated category!). The cohomology functors for M· define a functor

H : Dfake
tot →Mtot. One has an obvious functor ε+ : Dtot + → Dfake

tot which

assigns to M the data (Mn, α∗) considered as an object of Dfake
tot . There is

a similar functor ε− : Dtot → Dfake
tot .

7.4.6. Lemma. For any M ∈ Dtot + one has c−M ∈ Dtot−, and there is a

unique isomorphism ε−(c−M)→∼ ε+(M) such that its 0th component is idM0 .

One also has the dual statement with + and - interchanged.

Proof. Use 7.4.3. �
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7.4.7. We see that the functors c± identify the triangulated categories

Dtot±. In other words, the subcategories Dtot± ⊂ D sec coincide; this is

the category Dtot = Dtot(M·) that was promised in 7.4.1. The functors ε±

are canonically identified, so we have the functor ε : Dtot → Dfake
tot . Note

thatH± = Hε, so we have a canonical cohomology functorH : Dtot →Mtot.

This is a cohomology functor for a non-degenerate t-structure on Dtot with

core Mtot. Note that the embedding Dtot ↪→ D sec is t-exact with respect

to either of ± t-structures on D sec; it identifies the core Mtot with the

intersection of cores sec+ and sec−.

7.4.8. Let us derive the spectral sequence (312) from 7.4.1. More generally,

consider objects N ∈ D− sec− ⊂ D sec, M ∈ D+ sec+ ⊂ D sec. Let us

represent them by complexes N ∈ K− sec−, M ∈ K+ sec+. Consider

the complex Hom(N,M) (see 7.4.2). It carries an obvious decreasing

filtration F · with grnF = Hom(Nn,Mn)[−n]. Note that Hom(N,M) is a

bounded below complex and filtration F · induces on each term Hom(N,M)i

a finite filtration. We consider Hom(N,M) as an object of the filtered

derived category DF of such complexes. Let RHom(N, ·) be the right

derived functor of the functor K+ sec+ → DF, M → Hom(N,M). This

functor is correctly defined, and the obvious morphism grnFRHom(N,M)→

RHom(Nn,Mn)[−n] is a quasi-isomorphism for any n. This follows from

the fact that for any quasi-isomorphism f : Mn → I in Mn there

exists a quasi-isomorphism g : M → J in K+ sec+ and a morphism

h : I → Jn such that gn = hf . Consider the spectral sequence Ep,qr of

the filtered complex RHom(N,M). It converges to H·RHom(N,M), and

Ep,q1 = HqRHomMp(Np,Mp).

7.4.9. Remark. Assume that the categories Mn have many injective

objects. Then the category K+
tot− has many injective objects (i.e., the

functor K+
tot− → D+

tot admits a right adjoint functor). Indeed, if I ∈ K+
tot+

is a complex such that eacb Ian is an injective object of Mn then c−I is
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an injective object of K+
tot−, and any object in K+

tot− is quasi-isomorphic to

such I. Dually, if Mn have many projective objects then K−tot+ has many

projective objects.

7.4.10. This subsection will not be used in the sequel; the reader may skip

it. One may define D sec, hence Dtot, in a slightly different way which is

convenient in some applications*). We define the category hot+ = hot+(M·)

as follows. Its objects are families A = (Am), Am ∈ Mm. A morphism

f : A → B is a collection (fα) where for an arrow α : ∆n → ∆m

the corresponding fα is a morphism α·An → Bm. The composition of

morphisms is (fg)α =
∑
α=βγ

fββ·(gγ). This is an additive category. Set

hot−(M·) = (hot+(M◦· )◦. We have the corresponding DG categories of

complexes Chot±.

One has a DG functor t+ : C sec+ → Chot+ which sends M ∈ C sec+

to a complex t+M ∈ Chot+ with components (t+M)am = Ma−m
m and

the differential d = dt+M such that did∆m
= (−1)mda−mMm

: Ma−m
m →

Ma−m+1
m , and for the ith boundary map αi : ∆m ↪→ ∆m+1 one has

dαi = (−1)iα∗i : αi·Ma−m
m → Ma−m

m+1 , all other components of d are zero.

For l ∈ Hom(M1,M2) one has t+(l)id∆m
= lm, the other components are

zero.

Remark. The functor t+ is faithful. One may consider objects of Chot+

as ”generalized complexes” in sec+ with extra higher homotopies.

One also has a DG functor s− : Chot+ → C sec− defined as follows. For

A ∈ Chot+ the complex s−A has components (s−A)am =
∑

β:∆n→∆m

β·Aan.

The compatibility morphism α∗ : (s−A)al → α·(s−A)am for α : ∆m → ∆l

has component γ·Aak → α·β·Aan equal to idγ·Aak if k = n, γ = αβ and zero

otherwise. A component γ·Aak → α·β·Aan of the differential ds−A : (s−A)am →

(s−A)a+1
m is equal to γ·(dAδ) if β = γδ and zero otherwise.

Remark. The DG functor s− is fully faithful.

*)This construction goes back to the works of Toledo and Tong.
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We define DG functors t− : C sec− → Chot− and s+ : Chot− → C sec+

by duality. Note that the composition s+t− : C sec− → C sec+ coincides

with the functor c+ from 7.4.2; similarly, s−t+ = c−. The functors

t−s− : Chot+ → Chot− and t+s+ : Chot− → Chot+ are adjoint (just

as the functors c±, see 7.4.2).

We say that a morphism f : A → B in the homotopy category Khot±

of Chot± is a quasi-isomorphism if all the morphisms fm := fid∆m
: Am →

Bm are quasi-isomorphisms. Quasi-isomorphisms form a localizing family.

Denote the corresponding localized triangulated categories by Dhot±.

The functors s±, t± preserve quasi-isomorphisms, so they define functors

between the derived categories. The adjunction morphisms for compositions

of these functors are quasi-isomorphisms. So our derived categories

D sec±, Dhot± are canonicaly identified.

Remarks. (i) A complex A ∈ Dhot+ belongs to Dtot if and only if for

any α : ∆m → ∆m+1 the α-component dAα : α·Am → Am+1 is a quasi-

isomorphism of complexes (the differential on Am is dA id∆m
, same for Am+1).

(ii) If the categories Mn have many injective objects then K+hot+ has

many injective objects. Dually, if Mn have many projective objects then

K−hot− has many projective objects (cf. 7.4.9).

7.4.11. Some of the above constructions make sense in the following slightly

more general setting. Consider any family of DG categories C· cofibered over

(∆). One has the DG categories C sec± = sec±(C·) (defined exactly as the

categories sec±(M·) in 7.4.2), and the corresponding homotopy categories.

One defines the adjoint functors c± between the ± categories as in 7.4.2.

Assume in addition that we haveM as in 7.4.1 and a family of cohomology

functors H : C· → M· compatible with the fibered category structures.

We get the corresponding cohomology functors H± : C sec± → sec±.

Localising our homotopy categories by H-quasi-isomorphisms we get the

derived categories D sec±. As in Lemma 7.4.4 the functors c± identify the

categories D sec±, so we may denote them simply D sec. One defines the
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categories Ctot±, etc., as in 7.4.5. Lemma 7.4.6 remains true, so we have

the full triangulated subcategory Dtot ⊂ D sec and the cohomology functor

H : Dtot →Mtot.

7.5. D-module theory on smooth stacks II.

7.5.1. Let Y be an arbitrary smooth algebraic stack. Let U· be a

hypercovering of Y such that each Un is a disjoint union of (smooth) quasi-

compact separated algebraic spaces (e.g., affine schemes). We call such

U· an admissible hypercovering. Consider U· as a (∆)◦-algebraic space.

The categories M(U·) form a (∆)-family of abelian categories as in 7.4.1;

the corresponding category Mtot is M(Y). According to 7.4.7 we get the

corresponding t-category Dtot = Dtot(U·,D) with core M(Y).

We may also consider DG categories C(U·,Ω) together with the coho-

mology functors HD· : C(U·,Ω) →M(U·), HDnFn = HDFn[dimUn/Y] for

Fn ∈ C(Un,Ω), and apply 7.4.11. We get a triangulated category Dtot(U·,Ω)

together with a cohomology functor HD : Dtot(U·,Ω)→M(Y).

The categories Dtot(U·,D) and Dtot(U·,Ω) are canonically identified.

Namely, one has a functor Ω· : C(U·,D) → C(U·,Ω), Ωn(Mn) :=

ΩMn[−dimUn/Y]. This functor is compatible with DG and fibered

categories structures, and with the cohomology functors (i.e., H = HD·Ω·).

Therefore it yields an exact functor

(315) Ω : Dtot(U·,D)→ Dtot(U·,Ω)

This functor is an equivalence of categories. Indeed, though the functor D

between C(U·,Ω) and C(U·,D) is not compatible with the fibered category

structures, it provides the functor D : C sec−(U·,Ω) → C sec−(U·,D),

(DF )n = DFn[dimUn/Y] (use 7.2.8 to define α∗’s). This D is left adjoint

to the corresponding Ω functor, and is compatible with the cohomology

functors. The D-Ω adjunction morphisms are quasi-isomorphisms (see 7.2.4,

7.2.5), so D yields the functor inverse to (315).
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We denote the categories Dtot(U·,D) and Dtot(U·,Ω) thus identified

simply by Dtot(U·).

7.5.2. Propositon. There exists a canonical identification of t-categories

Dtot(U·) for different admissible coverings of Y.

For a proof see 7.5.5 below. We denote these categories thus identified by

D(Y); this is a t-category with core M(Y).

Before proving 7.5.2 let us show that if Y satisfies condition (310) then,

indeed, we get the same category D(Y) as in 7.3.2. By the way, this implies

7.3.4.

Choose a hypercovering U· of Y such that Un are affine schemes. There

is an obvious exact functor (restriction to U·)

(316) r : D(Y,Ω)→ Dtot(U·,Ω)

7.5.3. Lemma. The functor r is an equivalence of categories.

Proof. Let us construct the inverse functor. For F ∈ Ktot +(Ω) define the

Ω-complex π·F on Y as the total complex of Čech bicomplex with terms

π·F ab := πb(F
a), so (π·F )n =

⊕
a+b=n

F ab; here πb are projections Ub → Y.

Thus we have the exact functor π· : Ktot +(Ω) → K(Y,Ω). This functor

preserves D-quasi-isomorphisms (since, by (310), the projections πb are

affine), so it defines a functor Dtot(U·,Ω)→ D(Y,Ω).

We leave it to the reader to check that this functor is inverse to r (hint:

for F as above the adjunction quasi-isomorphism π·Ωπ·F → F comes from a

canonical morphism π·Ωπ·F → c−F in C sec−(U·,Ω)).

�

7.5.4. Remark. The above lemma renders to the setting of 7.3.12 as follows.

Let Y be any smooth stack such that the diagonal morphism Y → Y × Y

is affine. Then the categories D(Y) as defined in 7.3.12 and 7.5.1 are

canonically equivalent. Indeed, let Yi be a sequence of open substacks of

Y as in 7.3.12, and Vi → Y be a covering such that Vi are affine schemes.
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Then the Vi’s form a covering of Y. Let U· be the corresponding Čech

hypercovering. Therefore Ua is disjoint union of components Uα labeled

by sequences α = (α1, α2, ...), αi ≥ 0, Σαi = a + 1, where Uα is fibered

product over Y of α1 copies of V1, α2 copies of V2,... For F ∈ C(Y·,Ω) set

FUα := FiαUα where iα is the minimal i such that αi is non-zero (note that

Uα ∈ Ysm. These FUα form an Ω-complex F on U· in the obvious manner

which lies in Ctot(U·,Ω). The functor C(Y·,Ω) → Ctot(U·,Ω) commutes

with the functor HD so it defines a triangulated functor

(317) r : D(Y·,Ω)→ Dtot(U·,Ω)

We leave it to the reader to check that this functor is an equivalence of

categories, and that the corresponding identification of D(Y)’s in the sense

of 7.3.12 and 7.5.2 does not depend on the auxiliary data of Y· and V·.

7.5.5. Proof of 7.5.2. We need to identify canonically the t-categories

Dtot(U·) for different U·’s. Let U ′· be another admissible hypercovering.

First we define a t-exact functor Φ = ΦV : Dtot(U·)→ Dtot(U
′·) in terms of

some auxiliary data V . Then we show that Φ actually does not depend V ,

and it is an equivalence of categories.

Our V is a (∆)◦× (∆)◦ -algebraic space V·· over Y together with smooth

morphisms π : Vmn → Um, π′ : Vmn → U ′n. We assume that π, π′ are

compatible with (∆) projections in the obvious manner, π′·n : V·n → U ′n

are hypercoverings, and π′mn : Vmn → U ′n are affine morphisms. For

F ∈ Ktot +(U·,Ω) we have Ω-complexes FV n ∈ Ktot +(V·n,Ω) - the pull-back

of F to V·n. Set ΦV nF := π′·FV n (see the proof of 7.5.3 for the notation).

This is an Ω-complex on U ′n. The Ω-complexes ΦV n form an Ω-complex

ΦV F ∈ Ktot +(U ′· ,Ω) in the obvious way such that HDF = HDΦV F .

Therefore we have a t-exact functor ΦV : Dtot(U·,Ω) → Dtot(U
′· ,Ω) which

induces the identity functor between the cores M(Y).

Assume that we have V1 and V2 as above. To identify the functors

ΦVi choose another V as above, together with embeddings V1, V2 ⊂ V
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compatible with all the projections which identify (V1)mn, (V2)mn with a

union of connected components of Vmn. The embeddings induce projections

ΦV F → ΦV1 , ΦV F → ΦV2F which are obviously quasi-isomorphisms.

Therefore we have identified the functors ΦVi between the derived categories.

We leave it to the reader to check that this identification does not depend

on the auxiliary data of V .

Thus we have a canonical functor Φ = ΦUU ′ : Dtot(U·,Ω)→ Dtot(U
′· ,Ω).

If U ′′· is the third hypercovering then there is a canonical isomorphism of

functors ΦUU ′′ = ΦU ′U ′′ΦUU ′ ; we leave its definition to the reader, as well as

verification of the usual compatibilities. Since ΦUU is the identity functor

we see that Φ’s identify simultaneously all the categories Dtot(U·). �

7.5.6. Let f : Y → Z be a quasi-compact morphism of smooth stacks.

Let us define the push-forward functor f∗ : D(Y)+ → D(Z)+. To do this

consider any admissible hypercoverings U· of Y and W· of Z . We get

the (∆)◦ × (∆)◦-algebraic space U· ×
Z
W· . One may find a (∆)◦ × (∆)◦-

algebraic space V·· together with morphism φ = (φ1, φ2) : V·· → U· ×
Z
W·

such that the projections Vmn → Um are smooth, Vmn → Wn are affine,

and V·n → Y ×
Z
Wn are hypercoverings. Now for F ∈ K+

tot +(U·,Ω) let

FV n ∈ K+
tot +(V·n,Ω) be its pull-back to V·n. Define the Ω -complex f·Fn

on Wn as the total complex of the Čech bicomplex with terms φ2·FV n.

These Ω-complexes form an object f·F of K+
tot +(W·,Ω). The functor

f· : K+
tot +(U·,Ω) → K+

tot(W·,Ω) preserves D-quasi-isomorphisms hence it

yields a functor f∗ : D(Y)+ → D(Z)+. We leave it to the reader to check

that the construction of f∗ does not depend on the auxiliary choices of

U,W, V , and is compatible with composition of f ’s.

A smooth morphism of smooth stacks f : Y → Z yields a t-exact functor

f † = f ·Ω : D(Z) → D(Y). Namely, choose admissible hypercoverings U· of

Y, W· of Z and a morphism f· : U· → W· compatible with f. The functor

f ··Ω : Ktot±(W·,Ω) → Ktot±(U·,Ω) preserves D-quasi-isomorphisms, so it

defines a functor f ·Ω between the derived categories. We leave it to the reader
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to check that this definition does not depend on the auxiliary choices, that

our pull-back functor is compatible with composition of f ’s, and that in case

when f is quasi-compact the functor f ·Ω is left adjoint to f∗.

7.5.7.

7.5.8. Remarks. (i) One may also try to define D(Y) using appropriate

non-quasi-coherent Ω-complexes in a way similar to the definition of derived

category of O-modules from [LMB93]6.3. Probably such a definition yields

the same category D+(Y).

(ii) The ”local” construction of derived categories is also convenient in the

setting of O-modules. For example, it helps to define the cotangent complex

of an algebraic stack as a true object of the derived category (and not just

the projective limit of its truncations as in [LMB93]9.2), and also to deal

with Grothendieck-Serre duality.

(iii) Replacing D-modules by perverse sheaves we get a convenient

definition of the derived category of constructible sheaves on any algebraic

stack locally of finite type.

7.6. Equivariant setting.

7.6.1. Let us explain parts 7.1.1 (a), (b) of the (finite dimensional) Hecke

pattern. So let G be an algebraic group and K ⊂ G an algebraic subgroup.

Assume for simplicity thatK is affine; then the stacks below satisfy condition

(310) of 7.3.1. Set*) Hc := C(K \G/K,Ω), H := D(K \G/K). We call these

categories pre Hecke and Hecke category respectively. They carry canonical

monoidal structures defined as follows.

Consider the morphisms of stacks

(318) (K \G/K)× (K \G/K)
p←−K \G×

K
G/K

m̄−→K \G/K

*)Here the superscript ”c” means that we deal with the true DG category of complexes,

not the derived category.
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Here G×
K
G is the quotient of G × G modulo the K-action k(g1, g2) =

(g1k
−1, kg2), p is the obvious projection, and m̄ is the product map. For F1,

F2 ∈ Hc set F1

c
�∗ F2 := m̄·p·Ω(F1 � F2) . The convolution tensor product

c
�∗

satisfies the obvious associativity constraint, so we have a monoidal structure

on Hc. We define the convolution tensor product �∗ : H × H −→ H as

the right derived functor of
c
�∗ . One has F1�∗ F2 = m̄∗p

·
Ω(F1 � F2) ; if Ω-

complexes F1, F2 are loose (see 7.3.7) then F1�∗ F2 = F1

c
�∗ F2. Thus the

associativity constraint for �∗ follows from the one of
c
�∗ , so H is a monoidal

triangulated category. Hc and H have a unit object E: one has EG = iK·ΩK

(here iK : K ↪→ G is the embedding).

Let Y be a smooth variety with G-action. Consider the stack B := K \Y .

The Hecke Action on D(B) arises from the diagram

(319) (K \G/K)× B pY←−K \ (G×
K
Y )

m̄Y−→B .

Namely, for F ∈ Hc, T ∈ C(B,Ω) set F
c
�∗ T := m̄Y ·p·Y Ω(F � T ). As

above
c
�∗ satisfies the obvious associativity constraint, so C(B,Ω) is a unital

Hc-Module. Define �∗ : H×D(B) −→ D(B) as the right derived functor of
c
�∗ . One has F�∗T = m̄Y ∗p

·
Y Ω(F � T ), and if F ,T are loose (see 7.3.7) then

F�∗T = F
c
�∗ T . Thus D(B) is a H-Module.

7.6.2. Remarks. (i) In the above definitions we were able to consider the

unbounded derived categories since the projections m̄, m̄Y are representable

(see7.3.11(ii)).

(ii) If f : Z → Y is a morphism of smooth varieties with G-action then

f∗ : D(K \ Z)→ D(K \ Y ) is a Morphism of H-Modules.

7.6.3. Let Y be a smooth variety equipped with an action of an affine

algebraic group K. Consider the stack B := K \ Y . In the rest of 7.6 we

are going to describe D(B) in terms of appropriate equivariant complexes on

Y . We will also introduce certain derived category D(K
\
\ Y ) intermediate

between D(K \ Y ) and D(Y ) that will be of use in 7.7.
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Set KΩ = (K,ΩK), K·Ω = (K,Ω·K) (so K·Ω is KΩ with its de Rham

differential skipped). These are group objects in the category of DG ringed

spaced and graded ringed spaces respectively. Denote by k, kΩ, k·Ω the Lie

algebras of K, KΩ, K·Ω respectively. As a plain complex, kΩ is equal to

the cone of idk so k0Ω = k = k−1
Ω . Since K is a subgroup of KΩ and K·Ω we

have the corresponding Harish-Chandra pairs (kΩ,K), (k·Ω,K). Note that

KΩ modules are the same as DG (kΩ,K)-modules, and K·Ω-modules are the

same as graded (k·Ω,K)-modules.

The K-action on Y yields the action of KΩ on YΩ = (Y,Ω) hence

the action of K·Ω on Y ·Ω = (Y,Ω·). For a graded Ω·Y -module F ·Y a K·Ω-

action on F ·Y is the same as a (k·Ω,K)-action. Explicitly, this is a K-

action on F ·Y together with a K-equivariant morphism k ⊗ F ·Y → F ·−1
Y ,

ξ ⊗ f 7→ iξ(f) (we assume that K acts on k in the adjoint way) such that

iξ(νf) =< ξ, ν > f + νiξ(f), i2ξ = 0 for any ξ ∈ k and ν ∈ Ω1
Y .

7.6.4. Let FY be an Ω-complex on Y . A K-action on FY is a K-action

on the graded OY -module F ·Y such that for any k ∈ K the translation

k∗F ·Y →∼F ·Y is a morphism of Ω-complexes (i.e., it commutes with the

differential). A KΩ-action on FY is an action of KΩ on FY considered

as a DG module on YΩ. In other words, this is a K·Ω-action on the graded

Ω·Y -module F ·Y such that K acts on FY as on an Ω-complex and kΩ acts

on FY as a DG Lie algebra. The latter condition means that for any ξ ∈ k

one has diξ + iξd = Lieξ (here Lie is the k-action on F ·Y that comes from

the K-action). An Ω-complex equipped with a K-action is called a weakly

K-equivariant Ω-complex, and that with KΩ-action is called KΩ-equivariant

Ω-complex.

It is clear that for any Ω-complex F on the stack B := K\Y the Ω-complex

FY carries automatically a KΩ-action.

7.6.5. Lemma. The functor C(K \Y,Ω) −→ (KΩ-equivariant Ω-complexes

on Y ) is an equivalence of DG categories. �
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7.6.6. Remark. Assume we are in situation 7.6.1. Let m : K \G×G/K →

K \ G/K be the product map. Set F1�̃∗F2 = m·(F1K\G � F2G/K); this is

an Ω-complex on K \G/K. The K-action along the fibers of the projection

G×G → G×
K
G yields a KΩ-action on F1�̃∗F2 (with respect to the trivial

K-action on K \ G/K). Its invariants coincide with F1

c
�∗ F2. Similarly,

consider the map mY : (K \ G)×Y → B ; set F �̃∗T := mY ·(FK\G � T ).

The obvious K-action on (K \G)×Y yields a KΩ-action on this Ω-complex

whose invariants coinside with F
c
�∗ T .

7.6.7. We denote the category of weakly K-equivariant Ω-complexes on Y

by C(K
\
\ Y,Ω) and the corresponding homotopy and D-derived categories

by K(K
\
\ Y,Ω), D(K

\
\ Y,Ω) (a morphism of weakly equivariant Ω-

complexes is called a D-quasi-isomorphism if it is a D-quasi-isomorphism

of plain Ω-complexes).

7.6.8. Remarks. (i) The forgetful functor C(B,Ω) → C(K
\
\ Y,Ω) admits

left and right adjoint functors cl, cr : C(K
\
\ Y,Ω) → C(B,Ω), cl(FY ) =

U(kΩ) ⊗
U(k)

FY , cr(FY ) = HomU(k)(U(kΩ), FY ). These functors preserve quasi-

isomorphisms, so they define adjoint functors between the derived categories.

(ii) The forgetful functor C(K
\
\ Y,Ω) → C(Y,Ω) admits a right adjoint

functor Ind : C(Y,Ω) → C(K
\
\ Y,Ω), Ind(TY )· = p∗m

∗(T ·Y ) where

m, p : K × Y−→−→Y are the action and projection maps. These functors

preserve quasi-isomorphisms so they yield the adjoint functors between the

derived categories. The composition cr Ind is the push-forward functor for

the projection Y → B.

(iii) Remark 7.6.6 (ii) remains valid for weakly equivariant Ω-complexes.

(iv) Let f : Z → Y be a morphism of smooth varieties equipped with

K-actions. The construction of the direct image functor from 7.3.6 passes

to the weakly equivariant setting without changes, so we have the functor

f∗ = Rf· : D(K
\
\ Z,Ω)→ D(K

\
\ Y,Ω). The functors f∗ commute with the
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functors from (i), (ii) above. The same holds for the pull-back functors f ·Ω
from 7.2.8, 7.3.6.

(v) Here is a weakly equivariant version of 7.6.1. Assume that Y from 7.6.1

carries in addition an action of an affine algebraic group G′ that commutes

with the G-action (we will write it as a right action). Consider the category

C(K \ Y /
/
G′,Ω) = C(B /

/
G′,Ω) of Ω-complexes on Y equipped with

commuting KΩ- and G-actions. Then the corresponding derived category

D(B /
/
G′,Ω) is an H-Module. The H-action is defined in the same way as

in 7.6.1. Remark 7.6.6 remains valid.

7.6.9. Let us describe the D-module counterpart of the above equivariant

categories (see [BL] for details). For a D-module M on Y a weak K-

action on M is a K-action on M as on an OY -module such that for any

k ∈ K the translation k∗M →∼M is a morphism of D-mosules. A D-module

equipped with a weak K-action is called a weakly K-equivariant D-module;

the category of those is denoted by M(K
\
\ Y ) (as usual we write M`

or Mr to specify left and right D-modules). The notations C(K
\
\ Y,D),

K(K
\
\ Y,D), D(K

\
\ Y,D) = D(K

\
\ Y ) are clear (cf. 7.2).

The functors D and Ω from 7.2.2 send weakly equivariant complexes to

weakly equivariant ones, thus we have the adjoint DG functors

(320) D : C(K
\
\ Y,Ω)→ C(K

\
\ Y,D), Ω : C(K

\
\ Y,D)→ C(K

\
\ Y,Ω)

and the mutually inverse equivalences of triangulated categories

(321) D(K
\
\ Y,D)−→←−D(K

\
\ Y,Ω) .

As usual we denote these categories thus identified by D(K
\
\ Y ).

7.6.10. Remark. For a weakly K-equivariant D-module M the k-action on

Y lifts to the O-module M in two ways: either as the infinitesimal action

defined by the K-action on M or via the k-action on Y σ : k → ΘY and

the D-module structure on M . Denote these actions by ξ,m 7→ Lieξm,

σξm respectively. Set ξ\m : := Lieξm − σξm. Then ξ\ ∈ EndDM and
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\ : k → EndDM is a k-action on M . Note that \ is trivial if and only if M

is a K-equivariant D-module, i.e., M ∈M(B).

7.6.11. A K-equivariant D-complex on Y is a complex N of weakly K-

equivariantD-modules together with morphisms k⊗N · → N ·−1, ξ⊗n 7→ iξn,

such that for any ξ ∈ k our has i2ξ = 0, diξ + iξd = ξ\. By abuse of notation

we denote the DG category of such complexes by C(B,D). Note that any K-

equivariant D-module is a K-equivariant D-complex in the obvious way, and

for any K-equivariant D-complex its cohomology sheaves are K-equivariant

D-modules. So we have the cohomology functor H : C(B,D) → M(B).

Localizing the homotopy category of C(B,D) by H-quasi-isomorphisms we

get a triangulated category D(B,D). It is easy to see that it is a t-category

with core M(B).

For any F ∈ C(B,Ω) the D-complex DF equipped with operators

iDFξ = iFξ ⊗ idDY is K-equivariant. For any N ∈ C(B,D) the Ω-complex

ΩN equipped with the operators iΩNξ which act on N i⊗Λ−jΘY as n⊗ τ 7→

iξn ⊗ τ + (−1)in ⊗ σ(ξ) ∧ τ is a KΩ-equivariant Ω-complex. Thus we have

the adjoint functors D, Ω

(322) C(B,Ω)−→←−C(B,D)

and the mutually inverse equivalences of triangulated categories

(323) D(B,Ω)−→←−D(B,D) .

The latter equivalence identifies the above t-structure on D(B,D) with

that on D(B,Ω) defined in 7.3.2. This provides another proof of 7.3.4 in the

particular case when our stack is a quotient of a smooth variety by a group

action.

7.7. Harish-Chandra modules and their derived category.
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7.7.1. Let G be an affine algebraic group, K ⊂ G an algebraic subgroup,

so we have the Harish-Chandra pair (g,K). Consider the category M(K \

G /
/
G) =M((K\G) /

/
G) of D-modules on G equipped with commuting K-

and weak G-actions (where K and G act on G by left and right translations

respectively). For M ∈ M(K \ G /
/
G) set γ(M) = γr(M) := Γ(G,MG)G;

here we consider MG as a right D-module on G. This is a (g,K)-module:

g acts on γ(M) by vector fields invariant by right G-translations (according

to D-module structure on M), and K acts by left K-translations.

7.7.2. Lemma. The functor γ : M(K \ G /
/
G) −→ M(g,K) is an

equivalence of categories.

Proof. Left to the reader (or see [Kas]). �

7.7.3. Remarks. (i) Set γl(M) := Γ(G,M l
G)G where M l

G is the left D-

module realization of M . This is a (g,K)-module by the same reason as

above; one has the obvious identification γl(M) = γr(M)⊗ det g.

(ii) There is a canonical isomorphism of vector spaces γl(M)→∼M l
G,1 =

M l
K\G,1 which assigns to a G-invariant section its value at 1 ∈ G. The

(g,K)-module structure on M l
K\G,1 may be described as follows. The K-

action comes from the (weak) action of right K-translations on K \G (note

that K is the stabilizer of 1 ∈ K \G), and the g-action comes from \-action

of g that corresponds to the weak G-action (see 7.6.10).

(iii) Let P be a K-module, and P the corresponding G-equivariant vector

bundle on K \ G with fiber P1 = P . We have DP = P ⊗ DK\G ∈

M((K \G) /
/
G), and γ(DP) = U(g) ⊗

U(k)
(P ⊗ det k∗).

7.7.4. The above lemma provides, as was promised in 7.1.1(c), a canonical

H-Action on the derived category D(g,K) of (g,K)-modules. Indeed, by

7.6.8(v) (and 7.6.9) we know that D(K \G /
/
G) is an H-Module. And 7.7.2

identifies D(g,K) with this category.

We give a different description of this Action in 7.8.2 below. Its

equivalence with the present definition is established in 7.8.9, 7.8.10(i).
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The rest of the Section (7.7.5-7.7.11) is a digression about D-Ω equiva-

lences in the Harish-Chandra setting; as a bonus we get in 7.7.12 a simple

proof of Bernstein-Lunts theorem [BL]1.3. The reader may skip it and go

directly to 7.8.

7.7.5. Here is a version of 7.7.2 for Ω-complexes.

Let Ωg be the Chevalley DG-algebra of cochains of g, so Ω·g = Λ·g∗. It

carries a canonical “adjoint” action of KΩ (see 7.6.3 for notations). Namely,

K acts on Ω·g in coadjoint way, and ξ ∈ k = k−1
Ω acts as the derivation iξ of

Ω·g which sends ν ∈ g∗ = Ω1
g to 〈ν, ξ〉.

A Ω(g,K)-complex is a DG (Ωg,KΩ)-module, i.e., it is a complex equipped

with Ωg- and KΩ-actions which are compatible with respect to the KΩ-

action on Ωg. For an Ω(g,K)-complex T we denote the action of ν ∈ g∗ = Ω1
g,

ξ ∈ k = k−1
Ω on T · by aν , iξ. Denote the DG category of Ω(g,K)-complexes

by CΩ(g,K) and its homotopy category by KΩ(g,K).

For F ∈ C(K \ G /
/
G,Ω) set γ(F ) := Γ(G,FG)G. This is an Ω(g,K)-

complex. Indeed, Ωg acts on it via the usual identification with DG

algebra of differential forms on G that are invariant with respect to right

G-translations, and KΩ acts on γ(F ) since it acts on FG (see 7.6.4, 7.6.5).

7.7.6. Lemma. The functor γ : C(K \ G /
/
G,Ω) −→ CΩ(g,K) is an

equivalences of DG categories.

Proof. Left to the reader. �

7.7.7. We identified (g,K)- and Ω(g,K)-complexes with weaklyG-equivariant

complexes on K \ G. Let us write down the standard functors D and Ω

in Harish-Chandra’s setting. It is convenient to introduce a DG Harish-

Chandra pair (kΩ × g,K) (the structure embedding LieK ↪→ kΩ × g is the

diagonal map).

Let DRg be the Chevalley complex of cochains of g with coefficients in

Ug (considered as a left Ug-module), so DRig = Λig∗ ⊗Ug. Now DRg is an

Ωg-complex, and an (kΩ×g,K)-complex; those actions are compatible (here
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(kΩ × g,K) acts on Ωg via the projection (kΩ × g,K)→ (kΩ,K) , see 7.7.5).

Namely, for ν ∈ Ωg, ε = (εl, εr) ∈ k × g = k0Ω × g, ξ ∈ k = k−1
Ω , k ∈ K, and

a = α⊗ υ ∈ DRg one has νa = να⊗ υ, εa = Adεl(α)⊗ υ + α⊗ (εlυ − υεr),

ξa = iξ(α)⊗ υ, ka = Adk(α)⊗Adk(υ).

For a complex of (g,K)-modules ((g,K)-complex for short) V , set ΩV :=

Homg(DRg, V ); this is an Ω(g,K)-complex in the obvious way. For an Ω(g,K)-

complex T set DT = D(g,K)T := T ⊗
Ωg,kΩ

DRg = (T ⊗
Ωg

DRg)kΩ ; this a (g,K)-

complex. Thus we have the adjoint DG functors

(324) D = D(g,K) : CΩ(g,K) −→ C(g,K) , Ω : C(g,K) −→ CΩ(g,K) .

Remark. For T as above let T
· ⊂ T · be the kernel of all operators iξ, ξ ∈ k.

This is a K- and Λ·(g/k)∗-submodule of T · (here Λ·(g/k)∗ ⊂ Λ·g∗ = Ω·g),

and the obvious morphisms

(325) Ω·g ⊗
Λ·(g/k)∗

T
· −→ T · , T

· ⊗
Uk
Ug −→ DT ·

are isomorphisms.

7.7.8. Let us return to the geometric situation. One has the obvious

identification Γ(G,DRG)G = DRg (see 7.2.2 for notation; G acts on itself

by right translations). For M ∈ C((K \ G) /
/
G,D) there is a canonical

isomorphism γ(ΩM)→∼Ω(γM) of Ω(g,K)-complexes defined as composition

Γ(G,HomDG(DRG,MG))G = HomDG(DRG,MG)G = HomUg(DRg, γM).

For F ∈ C(K \ G /
/
G,Ω) there is a similar canonical isomorphism

γDF →∼DγF whose definition is left to the reader.

7.7.9. For an Ω(g,K)-complex T set H·gT = H·DT ∈ M(g,K). Then

H·g : KΩ(g,K) → M(g,K) is a cohomological functor. Define a g-quasi-

isomorphism as a morphism in KΩ(g,K) that induces isomorphism between

H·g’s. The g-quasi-isomorphisms form a localizing family; define DΩ(g,K) as

the corresponding localization of KΩ(g,K). The functors D, Ω yield mutually



270 A. BEILINSON AND V. DRINFELD

inverse equivalences of derived categories

(326) DΩ(g,K)
−→←−D(g,K)

where D(g,K) := DM(g,K). The equivalences γ yield equivalences of

derived categories

(327) D(K \G /
/
G,Ω)→∼DΩ(g,K) , D((K \G) /

/
G,D)→∼D(g,K) .

7.7.10. Remarks. (i) Any g-quasi-isomorphism is a quasi-isomorphism; the

converse might be not true.

(ii) Any Ω(g,K)-complex T may be considered as an Ωg = Ω(g,1)-complex

(forget the KΩ-action), so we have the corresponding complex of g-modules

DgT := T ⊗Ωg DRg. The obvious projection DgT → D(g,K)T is a quasi-

isomorphism. This implies that a morphism of Ω(g,K)-complexes is a g-quasi-

isomorphism if and only if it is a g-quasi-isomorphism of Ωg-complexes.

7.7.11. The format of 7.7.7, 7.7.9 admits the folowing version. Recall that

DRg is a (kΩ×g,K)-complex. Thus the above DgT is a (kΩ×g,K)-complex,

and for a (kΩ × g,K)-complex V the complex ΩV := Homg(DRg, V ) is a

Ω(g,K)-complex. The functors

(328) Dg : CΩ(g,K)−→C(kΩ × g,K), Ω : C(kΩ × g,K)−→CΩ(g,K)

are adjoint, as well as the corresponding functors between the homotopy

categories. Passing to derived categories they become (use 7.7.10(ii))

mutually inverse equivalences

(329) DΩ(g,K)
−→←−D(kΩ × g,K).

The projection (kΩ × g,K) → (g,K) yields a fully faithful embedding

C(g,K)−→C(kΩ × g,K) hence the exact functor

(330) D(g,K)−→D(kΩ × g,K).

The following theorem is due to Bernstein and Lunts [BL] 1.3*):

*)The authors of [BL] consider only bounded derived categories.
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7.7.12. Theorem. The functor (330) is equivalence of categories.

Proof. The functor Ω from (328) restricted to C(g,K) coincides with Ω

from (324). Now 7.7.12 follows from (326) and (329). The inverse functor

D(kΩ × g,K) −→ D(g,K) sends V to D(g,K)ΩV . �

7.8. The Hecke Action and localization functor.

7.8.1. We are going to describe a canonical Hecke Action on the derived

category of Harish-Chandra modules. We consider a twisted situation, i.e.,

representations of a central extension of g. Here is the list of characters.

Let G′ be a central extension of G by Gm equipped with a splitting

K → G′. Therefore the preimage K ′ ⊂ G′ of K is identified with K ×Gm.

Set g′ := LieG′, k′ := LieK ′ = k × C. We have a Harish-Chandra pair

(g′,K ′) and the companion DG pair (kΩ × g′,K ′) (here the first component

of the structure embedding k′ ↪→ kΩ × g′ is the projection k′ → k).

Let M(g,K)′ be the category of (g′,K ′)-modules on which Gm ⊂ K ′

acts by the standard character; we call its objects (g,K)′-modules or,

simply, Harish-Chandra modules. This is an abelian category. Similarly,

let C(kΩ × g,K)′ be the category of those (kΩ × g′,K ′)-complexes on which

Gm acts by the standard character; its objects are called (kΩ × g,K)′-

complexes or, simply, Harish-Chandra complexes. This is a DG category

which carries an obvious cohomology functor with values in M(g,K)′.

Denote the corresponding derived category by D(g,K)′; this is a t-category

with core M(g,K)′.

Remark. By a twisted version of the Bernstein-Lunts theorem D(g,K)′

is equivalent to the derived category of M(g,K)′ *). We will not use this

fact in the sequel since the Hecke Action is naturally defined in terms of

(kΩ × g,K)′-complexes.

*)The twisted Bernstein-Lunts follows from the straight one (see 7.7.12) applied to the

Harish-Chandra pair (g′,K′).
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7.8.2. Now let us define a canonical H-Action on D(g,K)′. First we define

an Action of the pre Hecke monoidal DG category Hc := C(K \G/K,Ω) on

C(kΩ × g,K)′; the Hecke Action comes after passing to derived categories.

Denote by LG the line bundle over G that corresponds to the Gm-torsor

G′ → G. The left and right translation actions of G on itself lift canonically

to G′-actions on LG. So a section of LG is the same as a function φ on G′

such that for c ∈ Gm, g′ ∈ G′ one has φ(cg′) = c−1φ(g′). Therefore the

right translation action of Gm ⊂ G′ on sections of LG is multiplication by

the character inverse to the standard one.

Take a Harish-Chandra complex V ∈ C(kΩ × g,K)′. Set VG := LG ⊗ V .

Then VG is a complex of left D-modules on G. Indeed, the tensor product

of the infinitesimal right translation action of g′ on LG and the g′-action on

V is a g-action on VG. The left D-module structure on VG is such that the

left invariant vector fields act on VG via the above g-action. The D-complex

VG is weakly equivariant with respect to left G′-translations: they act as

tensor product of the corresponding action on LG and the trivial action on

V. Therefore, by 7.6.10, it carries a canonical g′-action \.

Remark. For θ ∈ g′ consider a function θ\ : G → g′, θ\(g) := Adg(θ).

Then for v ∈ V , l ∈ LG one has θ\(l ⊗ v) = l ⊗ θ\(v).

Take F ∈ Hc. Then FG ⊗ VG is an Ω-complex on G (see 7.2.3(ii)). It is

KΩ-equivariant with respect to the right K-translations. Namely, K acts

as tensor product of the corresponding actions on F , LG, and the structure

action on V ; the operators iξ act as the sum of the corresponding operators

for the right translation action on F and the structure ones for V . Denote

by (F ⊗ V)G/K the corresponding Ω-complex on G/K. The action of g′ on

FG⊗VG that comes from the action \ on VG commutes with this KΩ-action,

so it defines g′-action on (F ⊗ V)G/K . We also denote it as \.

Remark. If V is a complex of (g,K)′-modules then VG is a complex of

left DG-modules strongly equivariant with respect to right K-translations.
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Let VG/K be the corresponding complex of left D-modules on G/K. One

has (F ⊗ V)G/K = FG/K ⊗ VG/K .

Set F �̃∗V := Γ(G,FG ⊗ VG) and

(331) F
c
�∗ V = Γ(G/K, (F ⊗ V)G/K) = (F �̃∗V )KΩ .

These are (kΩ × g,K)′-complexes. Indeed, g′ acts according to \ action, K

acts by tensor product of the left translation actions for F and V, and the

operators iξ are the corresponding operators for F . We leave it to the reader

to check the Harish-Chandra compatibilities.

Now
c
�∗ defines an Hc-Module structure on C(kΩ × g,K)′. Indeed, the

associativity constraint (F1

c
�∗ F2)

c
�∗ V = F1

c
�∗(F2

c
�∗ V ) follows from the

obvious identification

Γ(G, (F1

c
�∗ F2)· ⊗ LG) = [Γ(G,F ·1 ⊗ LG)⊗ Γ(G,F ·2 ⊗ LG)]K

·
Ω

where K·Ω acts by tensor product of the right and left translation actions

(see 7.6.5). We define the Hecke Action �∗ : H × D(g,K)′ → D(g,K)′ as

the right derived functor of
c
�∗ . If F is loose then F �∗ V = F

c
�∗ V so the

associativity constraint for �∗ follows from that of
c
�∗ .

Remark. As folows from the previous Remark, for M ∈ M(K \G/K) ⊂

H, V ∈M(g,K)′ one has

(332) H·M �∗ V = H·DR(G/K,M ⊗ VG/K).

7.8.3. Remark. Assume that our twist is trivial, so G′ = G×Gm. One has

obvious equivalences M(g,K)′ = M(g,K) and D(g,K) = D(g,K)′ (see

7.7.11). So we defined a Hecke Action on D(g,K). We will see in 7.8.9 that

this Action indeed coincides with the one from 7.7.4.

Let us return to the general situation. Let U ′ be the twisted enveloping

algebra of g; denote by Z its subalgebra of AdG-invariant elements. The

commutative algebra Z acts on any Harish-Chandra complex in the obvious

manner, so C(kΩ × g,K)′, hence D(g,K), is a Z-category.
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7.8.4. Lemma. The Hecke Actions on C(kΩ× g,K)′, D(g,K)′ are Z-linear.

Proof. Use the first Remark in 7.8.2. �

7.8.5. Example. (to be used in 5). Let V ac′ := U ′/U ′·k be the twisted

vacuum module. Let us compute F �∗ V ac′ explicitely. We use notation

of 7.8.2. So, according to the second Remark in 7.8.2, we have the

left D-module VG/K on G/K, weakly equivariant with respect to left G-

translations, such that VG = LG⊗V ac′. The embedding C ⊂ V ac′ yields an

embedding LG/K ⊂ VG/K . It is easy to see that the corresponding morphism

of left DG/K-modules DG/K ⊗
OG/K

LG/K → VG/K is an isomorphism of weakly

G-equivariant D-modules.

Remark. The g′-action on DG/K⊗LG/K that corresponds to \ is given by

formula α′(ψ⊗l) = ψ⊗α′(l)−ψ·α⊗l where α′ ∈ g′, α is the corresponding left

translation vector field on G/K, and α′(l) is the infinitesimal left translation

of l ∈ LG/K .

So for F ∈ Hc one has (F ⊗ V)G/K = FG/K ⊗ DG/K ⊗ LG/K =

D(FG/K) ⊗
OG/K

LG/K . Therefore

(333) F
c
�∗ V ac′ = Γ(G/K,D(FG/K)⊗ LG/K).

Here the (kΩ × g,K)′-action on Γ(G/K,D(FG/K) ⊗ LG/K) is defined as

follows. The g′-action comes from the g′-action on D(FG/K) ⊗ LG/K
described in the Remark above, the K-action is the action by left

translations, and the operators iξ come from the corresponding operators

on FG/K .

Passing to the derived functors (which amounts to considering loose F in

the above formula) we get

(334) F �∗ V ac′ = RΓ(G/K,D(FG/K)⊗ LG/K).

In particular, for M ∈M(K \G/K) one has

(335) M �∗ V ac′ = RΓ(G/K,MG/K ⊗ LG/K).
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Here the g′-action on the r.h.s. comes from the g′-action on MG/K ⊗ LG/K
given by formula α′(m⊗ l) = m⊗ α′(l)−mα⊗ l.

7.8.6. Let us explain part (d) of the ”Hecke pattern” from 7.1.1. Let us first

define the localization functor ∆. We use the notation of 7.8.1. Let Y be a

smooth variety on which G acts, L = LY a line bundle on Y . Assume that

L carries a G′-action which lifts the G-action on Y in a way that Gm ⊂ G′

acts by the character opposite to the standard one. The line bundle ωY ⊗L

carries the similar action.

We define a DG functor

(336) ∆Ω = ∆ΩL : C(kΩ × g,K)′ → C(K \ Y,Ω)

as follows. Note that (g′,K ′), hence (kΩ × g′,K ′), acts on ωY ⊗ L (since G′

does). For a Harish-Chandra complex V consider the complex of O-modules

ωY ⊗ L ⊗ V . The tensor product of (kΩ × g′,K ′)-actions on ωY ⊗ L and V

yields a (kΩ × g,K)-action on ωY ⊗ L⊗ V . Set

∆Ω(V ) := Homg(DRg, ωY ⊗ L⊗ V )[−dimK]

(see 7.7.7 for notation). In other words ∆Ω(V ) is the shifted Chevalley

chain complex of g with coefficients in ωY ⊗ L ⊗ V . This is an Ω-complex

on Y . Since DRg and ωY ⊗ L⊗ V are (kΩ × g,K)-complexes our ∆Ω(V ) is

KΩ-equivariant, i.e., ∆Ω(V ) ∈ C(K \ Y,Ω).

Note that ∆Ω(V ) carries a canonical increasing finite filtration with

successive quotients equal to Λig⊗ωY ⊗L⊗V [i−dimK]. Therefore ∆Ω sends

quasi-isomorphisms to D-quasi-isomorphisms. So it yields a triangulated

functor

(337) L∆ = L∆L : D(g,K)′ → D(K \ Y )

The above remark also shows that L∆ is a right t-exact functor. The

corresponding right exact functor between the cores ∆L : M(g,K)′ →
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M`(K \ Y ) sends a (g,K)′-module V to a K-equivariant left DY -module

(DY ⊗ L) ⊗
U(g′)

V . More generally, H i
DL∆L(V ) = H−i(g,DY ⊗ L⊗ V ).

7.8.7. Remarks. (i) The above construcion used only the action of (g′,K ′)

on (Y,L) (we do not need the whole G′-action).

(ii) One may show that L∆L is a left derived functor of ∆L (see Remark

in 7.8.1).

(iii) Assume that (g′,K ′) is the trivial extension of (g,K), so (g,K)′-

modules are the same as (g,K)-modules, and L is OY with the obvious

action of (g′,K ′). Then ∆L(V ) = DY ⊗
U(g)

V , i.e., ∆L coincides with the

functor ∆ from 1.2.4.

7.8.8. Proposition. The functor L∆L : D(g,K)′ → D(K\Y ) is a Morphism

of H-Modules.

Proof. It suffices to show that the functor ∆ΩL : C(kΩ×g,K)′ → C(K\Y,Ω)

is a Morphism of Hc-Modules.

Take F , V as in 7.8.2. We have to define a canonical identifica-

tion of Ω-complexes α : ∆Ω(F
c
�∗ V )→∼F

c
�∗ ∆Ω(V ) compatible with the as-

sociativity constraints. We will establish a canonical isomorphism α̃ :

∆Ω(F �̃∗V )→∼F �̃∗∆Ω(V ) compatible with the KΩ-actions (see 7.6.6, 7.8.2 for

notation). One gets α by passing to KΩ-invariants.

Let m, p : G × Y → Y be the action and projection maps, i : G × Y →

G × Y the symmetry i(g, x) = (g, gx); one has pi = m. The G′-action on

LY provides an i-isomorphism of line bundles ĩ : OG � LY →∼LG � LY .

Below for a g-complex P we denote by C(P ) the Chevalley complex of Lie

algebra chains with coefficients in P shifted by dimK. So C(P )· = C· ⊗P ·

where Ca := ΛdimK−ag. Consider the Ω-complexes FG � ∆Ω(V ) = FG �

C(ωY ⊗ LY ⊗ V ) and C((FG ⊗ VG)� (ωY ⊗ LY )) = C((FG ⊗ (LG ⊗ V ))�

(ωY ⊗LY )); here the g-action on (FG⊗VG)�(ωY ⊗LY ) is the tensor product

of the g′-action \ and the standard g′-action on ωY ⊗ LY (see 7.8.2).
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There is a canonical i-isomorphism of Ω-complexes

α̃′ : FG �∆Ω(V )→∼C((FG ⊗ VG)� (ωY ⊗ LY ))

defined as follows. For f ∈ FG, λ ∈ C·, l ∈ ωY ⊗ LY , v ∈ V one has

α̃′(f ⊗ λ⊗ l⊗ v) = a(λ)⊗ f ⊗ ĩ(l)⊗ v; here a(λ) ∈ OG×Y ⊗C· is a function

a(λ)(g, y) = Adg(λ). We leave it to the reader to check that α commutes

with the differentials (use Remark in 7.8.2).

Now one has the obvious identifications m·(FG � ∆Ω(V )) = F �̃∗∆Ω(V )

and p·C((FG⊗VG)� (ωY ⊗LY )) = ∆Ω(F �̃∗V ). Thus α̃′ defines the desired

canonical isomorphism α̃. We leave it to the reader to check its compatibility

with the KΩ-actions and associativity constraints. �

7.8.9. Consider the case when Y = G with the left translation G-action,

and L = LY is the line bundle dual to LG (see 7.8.2) equipped with the

obvious G′-action by left translations. The right G′-translations act on our

data. Therefore the Ω-complexes ∆Ω(V ) are weakly G′-equivariant with

respect to the right translation action of G′.

Let C(K \ G /
/
G,Ω)′ ⊂ C(K \ G /

/
G′,Ω) be the subcategory of those

weakly G′-equivariant Ω-complexes T that Gm ⊂ G′ acts on T by the

standard character. Let D(K \ G /
/
G)′ be the corresponding D-derived

category. The complexes ∆Ω(V ) lie in this subcategory, so we have a

triangulated functor L∆ : D(g,K)′ → D(K \ G /
/
G)′. This categories

are H-Modules (for the latter one see 7.6.8(v), 7.6.9). By 7.8.8, L∆ is a

Morphism of H-modules. A variant of 7.7.6 and 7.7.11 shows that L∆ is an

equivalence of t-categories.

7.8.10. Remarks. i) If G′ is the trivial extension of G then D(g,K)′ =

D(g,K) and L∆ coincides with the equivalence defined by the functor γ−1

from 7.7.2. This shows that the Hecke Actions from 7.7.4 and in 7.8.3 do

coincide.

(ii) Assume that our extension is arbitrary. Then the pull-back functor

r : D(K \ G/K) → D(K ′ \ G′/K ′) is a Morphism of monoidal categories,
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and the fully faithful embedding D(g,K)′ ↪→ D(g′,K ′) is r-Morphism of

Hecke Modules. So the twisted picture is essentially equivalent to untwisted

one for (g′,K ′). However in applications it is convenient to keep the twist

(alias level, alias central charge) separately.

7.8.11. Let us explain the Γ part of the ”Hecke pattern” (d) from 7.1.1.

This subject is not needed for the main part of this paper, so the reader

may skip the rest of the section. We treat a twisted version, so we are

in situation 7.8.6. For T ∈ C(K \ Y,Ω) the D-complex DTY on Y is K-

equivariant (see 7.6.11). Let us consider DTY as an O-complex equipped

with a (kΩ × g,K)-action. Set ΓL(T ) := Γ(Y,DTY ⊗ (ωY ⊗LY )∗). This is a

Harish-Chandra complex (recall that (g′,K) acts on ωY ⊗ LY ), so we have

a DG functor ΓL : C(K \ Y,Ω)→ C(kΩ × g,K)′. Let

RΓL : D(K \ Y )→ D(g,K)′

be its right derived functor. If T is loose then ΓL(T ) = RΓL(T ), so RΓL is

correctly defined.

Note that RΓL is a left t-exact functor; let ΓL :M(K \ Y ) →M(g,K)′

be the corresponding left exact functor. One has ΓL(M) = Γ(Y,M ⊗ (ωY ⊗

LY )∗). If we are in situation 7.8.7(iii) then this functor coincides, after the

standard identification of right and left D-modules, with the functor Γ from

1.2.4.

7.8.12. Lemma. The functor RΓL is a Morphism of H-Modules.

Proof. It suffices to show that ΓL is a Morphism ofHc-Modules, i.e., to define

for F ∈ Hc, T as above a canonical isomorphism β : ΓL(F
c
�∗ T )→∼F

c
�∗ ΓL(T )

compatible with the associativity constraints. Let us write down a canonical

isomorphism β̃ : ΓL(F �̃∗T )→∼F �̃∗ΓL(T ) compatible with the KΩ-actions; one

gets β by passing to KΩ-invariants.

The G′-action on L yields an isomorphism m∗Y ((ωY ⊗ LY )∗) = LG �

(ωY ⊗ LY )∗, and the G-action on DY (as on a left OY -module yields an
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isomorphism m∗Y (DY ) = OG�DY . These isomorphisms identify ΓL(F �̃∗T )·

with Γ(G×Y, (F · ⊗LG)� (DT ·Y ⊗ (ωY ⊗LY )∗)). This vector space coincides

with Γ(G,F · ⊗ LG) ⊗ Γ(Y,DT ·Y ⊗ (ωY ⊗ LY )∗) which is (F �̃∗ΓL(T ))·. Our

β̃ is composition of these identifications. We leave it to the reader to check

that this is an isomorphism of Harish-Chandra complexes compatible with

the KΩ-actions. �

7.9. Extra symmetries and parameters.

7.9.1. In the main body of this paper (namely, in 5.4) we use an equivariant

version of the Hecke pattern from 7.1.1. Namely, we are given an extra

Harish-Chandra pair (l, P ) that acts on (G,K), and we are looking for an

(l, P )-equivariant version of 7.1.1(a)-(d). Let us explain very briefly the

setting; for all the details see the rest of this section. The Hecke category H

is a derived version of the category of weakly (l, P )-equivariant D-modules

on K\G/K. This is a monoidal triangulated category (which is the analog of

7.1.1(a) in the present setting). H acts on the appropriate derived category

DHC of (l n g, P n K)-modules; this is the Harish-Chandra counterpart

similar to 7.1.1(c). The geometric counterpart looks as follows. Let X be

a ”parameter” space equipped with an (l, P )-structure X∧ (see 2.6.4). We

consider a family Y ∧ of smooth varieties with G-action parametrized by X∧.

We assume that the (l, P )-action on X∧ is lifted to Y ∧ in a way compatible

with the G-action. Then H acts on the D-module derived category D(B) of

the X-stack B = (P nK) \ Y ∧ (which is the version of 7.1.1(b)). We have

an appropriate localization functor L∆ : DHC → D(B) which commutes

with the Hecke Actions (this is 7.1.1(d)). For an algebra A with an (l, P )-

action one has an A-linear version of the above constructions: one looks at

Harish-Chandra modules with A-action and D-modules with AX -action (see

2.6.6 for the definition of AX). The corresponding triangulated categories

are denoted by HA, DHC A, and D(B, AX).
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The constructions are essentially straightforward modifications of con-

structions from the previous sections; we write them down for the sake of

direct reference in 5.4.

Remark. The equivariant Hecke pattern does not reduce to the plain

one with G replaced by the group ind-scheme that corresponds to the

Harish-Chandra pair (l n g, P n G). Indeed, our H is much larger then

the corresponding ”plain” Hecke category: the latter is formed by strongly

P -equivariant D-modules on K \G/K. In particular, H contains as a tensor

subcategory the tensor category of (l, P )-modules. The above structure of

fibration Y/X is needed to make the whole H act on D(B).

7.9.2. So we consider a Harish-Chandra pair (l, P ) that acts on (G,K).

Here P could be any affine group scheme (it need not be of finite type), but

we assume that LieP has finite codimension in l. Consider the DG category

Hc of Ω-complexes F on K \G/K equipped with an (l, P )-action on F that

lifts the (l, P )-action on G/K. Such F is the same as an (l, P )n (KΩ×KΩ)-

equivariant Ω-complex on G. We call Hc the (l, P )-equivariant pre Hecke

category. The morphisms in the homotopy category of Hc which are D-

quasi-isomorphisms of plain Ω-complexes form a localizing family. The

(l, P )-equivariant Hecke category H is the corresponding localization. So

H is a t-category with core equal to the category of D-modules on G/K

equipped with a weak (l n k, P n K)-action (here K acts on G/K by left

translations) such that the action of K is actually a strong one.

Now Hc is a DG monoidal category, and H is a monoidal triangulated

category. Indeed, all the definitions from 7.6.1 work in the present situation.

Remark. Take a Harish-Chandra module V ∈ M(l, P ). Assign to it the

corresponding skyscraper sheaf at the distinguished point of G/K considered

as an Ω-complex sitting in degree zero and equipped with the trivial KΩ-

action. This is an object of Hc. The functors M(l, P ) → Hc,H are fully

faithful monoidal functors. Note that M(l, P ) belongs in a canonical way

to the center of the (pre)Hecke monoidal category, i.e., for any V as above,
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F ∈ H there is a canonical isomorphism V �∗ F →∼F �∗ V compatible with

tensor products of F ’s and V ’s. Indeed, both objects coincide with V ⊗ F .

7.9.3. To define the Hecke Action on D-modules we need to fix some

preliminaries.

Let X be a smooth variety, Y be a DX -scheme. A DXΩ/X-complex on Y is

a DG ΩY/X -module equipped with a DX -structure (:= flat connection along

the leaves of the structure connection on Y/X). Precisely, the DX -structure

on Y defines on ΩY/X(DX) := DX ⊗
OX

ΩY/X the structure of an associative

DG algebra. Now a DXΩ/X -complex on Y is a left DG ΩY/X(DX)-module

which is quasi-coherent as an OY -module.

The DG category C(Y,DXΩ/X) of DXΩ/X -complexes on Y is a tensor

category (the tensor product is taken over ΩY/X). The pull-back functor

C(M`(X)) −→ C(Y,DXΩ/X), M → ΩY/X ⊗
OX

ΩY/X , is a tensor functor. In

particular C(Y,DXΩ/X) is an M`(X)-Module (one has M �∗ F = M ⊗
OX

F ).

Note that for a DXΩ/X -complex F on Y we have an absolute Ω-complex

ΩXF defined as de Rham complex along X with coefficient in F *). So

if Y is a smooth variety then we have a notion of D-quasi-isomorphism

of DXΩ/X -complexes. The corresponding localization of the homotopy

category of C(Y,DXΩ/X) is denoted D(Y,DXΩ/X). The functor ΩX :

D(Y,DXΩ/X) −→ D(Y,Ω) is an equivalence of triangulated categories.

7.9.4. Now let X be a smooth variety equipped with a (l, P )-structure X∧

(see 2.6.4). Let Y ∧ be a scheme equipped with an action of (l, P ) n G

and a smooth morphism p∧ : Y ∧ → X∧ compatible with the actions (so

G acts along the fibers and p∧ commutes with the actions of (l, P )). Set

Y := P \ Y ∧. This is a smooth variety equipped with a smooth projection

p : Y → X. The (l, P )-action on Y ∧ defines a structure of DX -scheme

on Y . The G-action on Y ∧ yields a horisontal GX -action on Y (the group

DX -scheme GX was defined in 2.6.6).

*)As in 7.2 the functor ΩX admits left adjoint functor DX .
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Consider the stack B := KX \Y = (PnK)\Y ∧ fibered over X so we have

the corresponding category of left D-modules M`(B) and the t-category

D(B) of Ω-complexes on B. This t-category has a different realization in

terms of DXΩ/X -complexes that we are going to describe.

Consider the DG group DX -schemes GΩX := (GX ,ΩGX/X), KΩX . One

defines a KΩX -action on a DXΩ/X -complex on Y as in 7.6.4. Now we have

the DG category C(KX \Y,DXΩ/X) of KΩX -equivariant DXΩ/X -complexes

on Y . Localizing its homotopy category by D-quasi-isomorphisms we get

the triangulated category D(KX \ Y,DXΩ/X). The de Rham functor ΩX

identifies it with D(B).

Now we can define the Hecke Action on D(B). First let us construct the

Action
c
�∗ of Hc on C(KX \ Y,DXΩ/X). Indeed, for F ∈ Hc we have a

DXΩ/X -complex FX on GX which is KΩX -equivariant with respect to the

left and right translations. So for T ∈ C(KX \Y,DXΩ/X) we have a DXΩ/X -

complex F � T on the DX -scheme GX × Y (the fiber product of GX and Y

overX). It isKΩX -equivariant with respect to all theKX -actions onGX×Y .

So F � T descents to GX ×
KX

Y . We define F
c
�∗ T ∈ C(KX \ Y,DXΩ/X) as

the push-forward of the above complex by the action map GX ×
KX

Y → Y .

The Hecke Action �∗ : H × D(B) −→ D(B) is the right derived functor of
c
�∗ ; as usually you may compute it using loose DXΩ/X -complexes.

Remark. For W ∈ M(l, P ) ⊂ Hc and T as above one has W
c
�∗ T =

W �∗ T = WX ⊗ T (the DX -module WX was defined in 2.6.6).

7.9.5. Let us define the Harish-Chandra categories. Let G′ be as in 7.8.1

and assume that we are given a lifting of the (l, P )-action on G to that on G′

which preserves K ⊂ G′ and fixes Gm ⊂ G′. So we have the Harish-Chandra

pair (l, P ) n (g′,K ′). Let CHC be the category of (l, P ) n (kΩ n g,K)′-

complexes, i.e., (kΩ × g,K)′-complexes equipped with a compatible (l, P )-

action (see 7.8.1 for notation). Let DHC be the corresponding derived

category. This is a t-category with core MHC =M(l n g, P nK)′. Below
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we call the objects of CHC and DHC simply Harish-Chandra complexes and

those of MHC Harish-Chandra modules.

The pre Hecke category Hc acts on CHC . Indeed, the constructions of

7.8.2 make perfect sense in our situation ((l, P ) acts on F
c
�∗ V by transport

of structure). The H-Action �∗ on DHC is the right derived functor of
c
�∗ .

The results of 7.8.4-7.8.5 render to the present setting without changes.

Remark. For W ∈ M(l, P ) ⊂ Hc and a Harich-Chandra complex V

one has a canonical isomorphism of Harish-Chandra complexes W
c
�∗ V =

W �∗ V = W ⊗ V .

7.9.6. Let us pass to the localization functor. The construction of 7.8.6

renders to our setting as follows. We start with Y ∧ as in 7.9.4. Assume

that it carries a line bundle LY ∧ and the (l, P ) n G-action on Y ∧ is lifted

to an action of (l, P ) nG′ on LY ∧ such that Gm ⊂ G′ acts by the character

opposite to the standard one. Let LY be the descent of LY ∧ to Y defined

by the action of P . This line bundle carries a canonical DX -structure that

comes from the l-action on LY ∧ . It also carries a horisontal action of G′X .

We have a DG functor

(338) ∆Ω = ∆ΩL : CHC −→ C(KX \ Y,DXΩ/X),

∆Ω(V ) = HomgX (DRgX , ωY/X × LY × V )[−dimK] (cf. (336)). As in 7.8.6

this functor sends quasi-isomorphisms to D-quasi-isomorphisms, so it yields

a triangulated functor

(339) L∆ = L∆L : DHC −→ D(B)

which is right t-exact. The corresponding right exact functor between the

cores ∆L :MHC −→M`(B) sends V to the KX -equivariant left DY -module

(DY/X ⊗ LY ) ⊗
U(g′X)

VX .

The functors ∆Ω, L∆ commute with the Hecke Action. Indeed, the

proof of 7.8.8 renders to our setting word-by-word. In particular for any

W ∈M(l, P ), V ∈ DHC one has L∆(W ⊗ V ) = WX ⊗ L∆(V ).
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7.9.7. A-linear version. Assume that in addition we are given a commuta-

tive algebra A equipped with an (l, P )-action. One attaches it to the above

pattern as follows.

(i) Denote by HcA the DG category of objects F ∈ Hc equipped with an

action of A such that the actions of A and (l, P ) are compatible and F is

A-flat. Let HA be the corresponding D-derived category. One defines the

convolution product as in 7.9.2 (the tensor product is taken over A) so HcA
and HA are monoidal categories. Let M(l, P )flA be the tensor category of

flat A-modules equipped with an action of (l, P ). As in the Remark in 7.9.2

one has canonical fully faithful monoidal functors M(l, P )flA −→ HcA,HA
which send M(l, P )flA to the center of Hecke categories.

(ii) Assume we are in situation 7.9.4. Consider the category M`(B, AX)

of left D-modules on B equipped with AX -action (the DX -algebra AX was

defined in 2.6.6). Let C(B, AX ⊗ Ω) be the DG category of Ω-complexes

on B equipped with an AX -action and D(B, AX) be the localization of the

corresponding homotopy category with respect to D-quasi-isomorphisms.

This is a t-category with core M`(B, AX). As in 7.9.4 one may also

define this t-category in terms of DXΩ/X -complexes. Namely, let C(KX \

Y,AXDXΩ/X) be the DG category of objects of C(KX\Y,DXΩ/X) equipped

with an AX -action (commuting with the KΩX -action). Localizing it by D-

quasi-isomorphisms we get the triangulated category D(KX\Y,AXDXΩ/X).

The de Rham functor ΩX identifies it with D(B, AX).

The Hecke Action in the A-linear setting is defined exactly as in 7.9.4.

The statement of the Remark in 7.9.4 remains true (you take the tensor

product over AX).

(iii) Assume we are in situation 7.9.5. One defines CHC A as the category

of Harish-Chandra complexes equipped with a compatible A-action (so the

actions of A and (kΩ × g,K)′ commute). Let DHC A be the corresponding

derived category. This is a t-category with coreMHC A equal to the category

of (l n g, P n K)′-modules equipped with a compatible A-action. All the
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constructions and results about the Hecke Action remain valid without

changes. In the Remark in 7.9.5 you take W ∈M(l, P )flA ; the tensor product

W ⊗ V is taken over A. The A-linear setting for the localization functors

requires no changes.

Remark. There are obvious functors (tensoring by A) which send the

plain categories as above to those with A attached. These functors are

compatible with all the structures we considered. The forgetting of the

A-action functors D(B, AX) → D(B), DHC A → DHC are Morphisms of

H-Modules. They commute with the localization functors.

7.9.8. Variant. Assume that in addition to A we are given a morphism

of commutative algebras e : Z → A compatible with the (l, P )-actions.

Here Z := U(g)
′ AdG (so if G is connected then Z is the center of U(g)′).

Then Z acts on any object of MHC A or CHC A in two ways. Denote by

Me
HC A, C

e
HC A the categories of those objects on which the two actions of

Z coincide; let De
HC be the corresponding derived category. The Action of

HcA on CHC A is Z-linear (see 7.8.4) so it preserves CeHC A. Thus we have

an Action of HA on De
HC A. The obvious functor De

HC A → DHC A is a

Morphism of HA-Modules.

Remark. If e is surjective then Me
HC A is the full subcategory of MHC

that consists of Harish-Chandra modules killed by Ker e. Same for CeHC A.

7.10. D-crystals. Below we sketch a crystalline approach to D-module

theory. As opposed to the conventional formalism it makes no distinction

between smooth and non-smooth schemes.

In this section ”scheme” means ”C-scheme locally of finite type”. Same

for algebraic spaces and stacks. The formal schemes or algebraic spaces are

assumed to be locally of ind-finite type*).

7.10.1. Let f : Y → X be a quasi-finite morphism of schemes. Then

Grothendieck’s functor Rf ! : Db(X,O) → Db(Y,O) is left t-exact. Set

*):= any closed subscheme is of finite type.



286 A. BEILINSON AND V. DRINFELD

f ! := H0Rf ! :M(X,O)→M(Y,O); this is a left exact functor. Therefore

the categories M(X,O) together with functors f ! form a fibered category

over the category of schemes and quasi-finite morphisms.

Here is an explicit description of f !. According to Zariski’s Main Theorem

any quasi-finite morphism is composition of a finite morphism and an open

embedding; let us describe f ! in these two cases. If f is an open embedding

(or, more generally, if f is étale) then f ! = f∗. If f is finite then f ! is the

functor right adjoint to the functor f∗ :M(Y,O) →M(X,O). Explicitely,

f∗OY is a finite OX -algebra, and the functor f∗ identifies M(Y,O) with

the category of f∗OY -modules which are quasi-coherent as OX -modules.

Now for an O-module M on X the corresponding f∗OY -module f∗f
!M is

HomOX (f∗OY ,M). In particular, if f is a closed embedding then f !M ⊂M

is the submodule of sections supported (scheme-theoretically) on Y .

The above picture extends to the setting of formal schemes (or algebraic

spaces) as follows. For a formal scheme X̂ we denote by M(X̂,O) the

category of discrete quasi-coherent OX̂ -modules*). For example, if X̂ is

the formal completion of a scheme V along its closed subscheme X then

M(X̂,O) coinsides with the category of O-modules on V supported set-

theoretically on X. If X̂ is affine then for any M ∈ M(X̂,O) one has

M =
⋃
MX′ where X ′ runs the (directed) set of closed subschemes of

X̂ and MX′ ∈ M(X ′,O) is the submodule of sections supported scheme-

theoretically on X ′. The pull-back functors f ! extend in a unique manner*)

to the setting of quasi-finite morphisms of formal algebraic spaces. Indeed,

if f̂ : Ŷ → X̂ is such a morphism then to define f̂ ! :M(X̂,O) →M(Ŷ ,O)

we may assume that X̂, Ŷ are affine; now f̂ !M =
⋃
f̂ |!Y ′MX′ where Y ′ is a

closed subscheme of Ŷ and f̂(Y ′) ⊂ X ′. We leave it to the reader to describe

f̂ ! explicitely if f̂ is ind-finite*).

*)This category is abelian. For a more general setting see 7.11.4.

*)We assume that they are compatible with composition of f ’s.

*):= Yred → Xred is finite.
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7.10.2. For a scheme or an algebraic space X denote by Xcr the category

of diagrams X
j←−S i

↪→Ŝ where j is a quasi-finite morphism and i a closed

embedding of affine schemes such that the corresponding ideal I ⊂ OŜ is

nilpotent. We usually write this object of Xcr as (S, Ŝ) or simply Ŝ. A

morphism (S, Ŝ) → (S′, Ŝ′) in Xcr is a morphism of schemes φ : Ŝ → Ŝ′

such that φ(S) ⊂ S′ and φ|S : S → S′ is a morphism of X-schemes.

Note that for any φ as above the morphism φ : Ŝ → Ŝ′ is quasi-finite.

Therefore the categories M(Ŝ,O) together with the pull-back functors φ!

form a fibered category M!(Xcr,O) over Xcr.

Sometimes it is convenient to consider a larger categoryXĉr which consists

of similar diagrams as above but we permit Ŝ to be a formal scheme (so I

is a pronilpotent ideal, i.e., Ŝred = Sred). As above we have the fibered

category M!(Xĉr,O) over Xĉr.

7.10.3. Definition. A D-crystal on X is a Cartesian section ofM!(Xcr,O).

D-crystals on X form a C-category MD(X).

Explicitely, a D-crystal M is a rule that assigns to any (S, Ŝ) ∈ Xcr an

O-module MŜ = M(S,Ŝ) on Ŝ and to a morphism φ : (S, Ŝ) → (S′, Ŝ′) an

identification αφ : MŜ
→∼φ!MŜ′ compatible with composition of φ’s.

In particular, if φ is a closed embedding defined by an ideal I ⊂ OŜ′ then

MŜ is the submodule of MŜ′ that consists of sections killed by I.

In definition 7.10.3 one may replace Xcr by Xĉr: we get the same category

of D-crystals. Indeed, for (S, Ŝ) ∈ Xĉr one has MŜ =
⋃
M(S,Ŝ′) where Ŝ′

runs the set of all subschemes S ⊂ Ŝ′ ⊂ Ŝ.

7.10.4. Variants. Let X
(i)
cr , .., X

(iv)
cr be the full subcategories of Xcr that

consist of objects (S, Ŝ) which satisfy, respectively, one of the following

conditions (in (ii)-(iv) we assume that X is a scheme):

(i) S → X is étale.

(ii) S → X is an open embedding.

(iii) (assuming that X is affine) S→∼X.
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(iv) S → X is a locally closed embedding.

Denote by M(i)
D (X), ..,M(iv)

D (X) the categories of Cartesian sections of

M!(Xcr,O) over the corresponding subcategories X
(a)
cr . One has the obvious

restriction functorsMD(X)→M(a)
D (X). We leave it to the reader to check

that these functors are equivalences of categories*).

Remark. The categoryX
(ii)
cr is (the underlying category of) Grothendieck’s

crystalline site of X, so D-crystals are the same as crystals for the fibered

category M!(X
(ii)
cr ,O) in Grothendieck’s terminology. We consider Xcr as

the basic set-up since it directly generalizes to the setting of ind-schemes

(see 7.11.6).

7.10.5. Let f : Y → X be a quasi-finite morphism. It yields a faithful

functor Ycr → Xcr which sends Y
j←−S ↪→ Ŝ to Y

fj←−S ↪→ Ŝ. We get

the corresponding “restriction” functor f ! : MD(X) → MD(Y ). It is

compatible with composition of f ’s.

In particular, categoriesMD(U), where U is étale over X, form a fibered

category over the small étale site Xét which we denote by MD(Xét).

7.10.6. Lemma. D-crystals are local objects for the étale topology, i.e.,

MD(Xét) is a sheaf of categories. �

7.10.7. Below we give a convenient “concrete” description of D-crystals.

Assume we have a closed embedding X ↪→ V where V is a formally

smooth*) formal algebraic space such that Xred = Vred
*). Such thing always

exists if X is affine: one may embed X into a smooth scheme W and take

for V the formal completion of W along X.

For n ≥ 1 let V <n> denotes the formal completion of V n along the

diagonal V ⊂ V n (or, equivalently, along X ⊂ V n). The projections p1, p2 :

*)It suffices to notice that 7.10.6, 7.10.7, 7.10.8 together with the proofs remain literally

valid if we replace MD(X) by M(a)
D (X).

*)see 7.11.1.

*)i.e., the ideal of X in OV is pronilpotent.
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V <2> → V , p12, p23, p13 : V <3> → V <2> are ind-finite, so we have the

functors p!
i : M(V,O) →M(V <2>,O), p!

ij : M(V <2>,O) →M(V <3>,O).

Since V is formally smooth these functors are exact.

Denote byMDV (X) the category of pairs (MV , τ) where MV ∈M(V,O)

and τ : p!
1MV

→∼ p!
2MV is an isomorphism such that

(340) p!
23(τ)p!

12(τ) = p!
13(τ).

7.10.8. Proposition. The categoriesMD(X) andMDV (X) are canonically

equivalent.

Proof. We deal with local objects, so we may assume that X is affine. For

M ∈ MD(X) we have MV = M(X,V ) ∈ M(V,O). Since p!
iMV = MV <2>

we have τ that obviously satisfies (340). Conversely, assume we have

(MV , τ) ∈ MDV (X); let us define the corresponding D-crystal M . For

(S, Ŝ) ∈ Xcr choose j′ : Ŝ → V that extends the structure morphism

j : S → X (such j′ exists since V is formally smooth). Consider the

OŜ-module j
′!MV . If j′′ : Ŝ → V is another extension of j then there

is a canonical isomorphism νj′j′′ : j
′!MV

→∼ j
′′!MV . Namely, (j′, j′′) maps

Ŝ to V <2>, hence j
′!MV = (j′, j′′)!p!

1MV ; now use the similar description

of j
′′!MV and set νj′j′′ := (j′, j′′)!(τ). By (340) these identifications are

transitive, so j
′!MV does not depend on the choice of j′. This is M(S,Ŝ).

The definition of structure isomorphisms αφ for M is clear. �

7.10.9. Corollary. (i) For any X the category MD(X) is abelian.

(ii) For Ŝ ∈ Xcr the functorMD(X)→M(Ŝ,O), M 7→MŜ is left exact.

(iii) For a quasi-finite j : Y → X the functor j! : MD(X) → MD(Y ) is

left exact. If j is étale then j! is exact.

Proof. The statement (i) is true if X is affine. Indeed, choose X ↪→ V as

in 7.10.7. The category MDV (X) is abelian since the functors p!
i, p

!
ij are

exact, so we are done by 7.10.8.
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If j : U → X is an étale morphism of affine schemes then the functor

j! :MD(X)→MD(U) is exact. Indeed, let U ↪→ VU be the U -localization

ofX ↪→ V (so VU is étale over V ); then j! coincides with the étale localization

functor MDV (X)→MDVU (U) which is obviously exact.

Now (i) follows from 7.10.6. The rest is left to the reader. �

7.10.10. Lemma. For an étale morphism p : U → X the functor p! admits

a right adjoint functor p∗ :MD(U) →MD(X). If p is an open embedding

then p!p∗ is identity functor.

Proof. Here is an explicit construction of p∗. For (S, Ŝ) ∈ Xcr set SU :=

S×
X
U ; let p̂S : ŜU → Ŝ be the étale morphism whose pull-back to S ↪→ Ŝ

is the projection SU → S. So (SU , ŜU ) ∈ Ucr, and we have the functor

Xcr → Ucr, (S, Ŝ) 7→ (SU , ŜU ).

Now for N ∈ MD(U) set (p∗N)Ŝ := (p̂S)·NŜU
. The identifications αφ

come from the base change isomorphism φ!p̂S′· = p̂S·φ!
U . �

Now let i : Y ↪→ X be a closed embedding and j : U := X \ Y ↪→ X the

complementary open embedding. Denote by MD(X)Y the full subcategory

of MD(X) that consists of those D-crystals M that j!M = 0.

7.10.11. Lemma. (i) The functor i! admits a left adjoint functor i∗ :

MD(Y )→MD(X).

(ii) i∗ sends MD(Y ) to MD(X)Y and

i∗ : MD(Y )→MD(X)Y , i! : MD(X)Y →MD(Y )

are mutually inverse equivalences of categories.

(iii) Let p : Z → X be a quasi-finite morphism; set YZ := Y ×
Z
X, so we

have iZ : YZ ↪→ Z and pY : YZ → Y . Then one has a canonical identification

of functors p!i∗ = iY ∗p
!
Y :MD(Y )→MD(Z).

Proof. Here is an explicit construction of i∗. Take a D-crystal N on Y .

For (S, Ŝ) ∈ Xcr set SY := S×
X
Y , so SY is a closed subscheme of S,
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hence of Ŝ. The projection SY → Y is quasi-finite, so N yields a D-

crystal on SY . We define (i∗N)(S,Ŝ) as the corresponding O-module on

Ŝ (see 7.10.3). The structure isomorphisms αφ for i∗N come from the

corresponding isomorphisms for N in the obvious manner.

The adjunction property of i∗, as well as properties (ii), (iii), are clear. �

7.10.12. Proposition. IfX is smooth thenMD(X) is canonically equivalent

to the category M(X) of D-modules on X.

Proof. We use description 7.10.7 of MD(X) for V = X. So a D-crystal M

amounts to a pair (MX , τ) where MX ∈M(X,O) and τ : p!
1MX

→∼ p!
2MX is

an isomorphism of O-modules on X<2> which satisfies (340). Let us show

that such τ is the same as a right D-module structure on MX .

Consider DX as an object of M(X<2>.O) (via the OX -bimodule

structure). There is a canonical isomorphism DX →∼ p!
1OX which identifies

∂ ∈ DX with the section (f ⊗ g 7→ f∂(g)) ∈ HomOX (OX<2> ,OX) =

p!
1OX . Therefore we have MX ⊗

OX
DX →∼MX ⊗

OX
p!

1OX →∼ p!
1MX . Hence, by

adjunction,

(341) Hom(p!
1MX , p

!
2MX) = Hom(p2·p!

1MX ,MX) = Hom(MX⊗DX ,MX).

Here we consider MX ⊗ DX as an OX -module via the right O-module

structure on DX . So τ : p!
1MX → p!

2MX is the same as a morphism

MX ⊗ DX → MX . One checks that the conditions on τ just mean that

this arrow is a right unital action of DX on MX . See the next Remark for

a comment and some details. �

7.10.13. Remark. Let us discuss certain points of 7.10.12 in a more general

setting. Since OX<2> is a completion of OX ⊗
C
OX one may consider objects

of M(X<2>,O) as certain sheaves of OX -bimodules called Diff-bimodules

on X*). If A,B are Diff-bimodules then such is A ⊗
OX

B (so M(X<2>,O)

is a monoidal category). Notice that A ⊗
OX

B is actually an object of

*)In [BB93] the term “differential bimodule” was used; we refer there for the details.
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M(X<3>,O) in the obvious way. By adjunction, for any C ∈M(X<2>,O)

a morphism of Diff-bimodules A ⊗
OX

B → C is the same as a morphism

A ⊗
OX

B → p!
13C in M(X<3>,O). Thus for a Diff-algebra*) A its product

amounts to a morphism m : A ⊗
OX

A → p!
13A in M(X<3>,O) (we leave it

to the reader to write associativity property in these terms). Similarly,

for a (right) A-module MX we may write the A-action as a morphism

a : MX ⊗
OX

A → p!
2MX in M(X<2>,O); the action (associativity) property

just says that the two morphisms MX ⊗
OX

A ⊗
OX

A → p!
3M in M(X<3>,O)

obtained from m and a coincide. Assume now that A = DX or, more

generally, A is a tdo. Then m : A ⊗
OX

A → p!
13A is an isomorphism*). If

MX is a (possibly, non-unital) A-module then a : MX ⊗
OX

A → p!
2MX is an

isomorphism if and only if our module is unital.

7.10.14. We leave it to the reader to identify (in the smooth setting) the

functors f !, p∗, i∗ from, respectively, 7.10.5, 7.10.10, and 7.10.11(i), with the

standard D-module functors.

Combining 7.10.12 and 7.10.11(ii) we see that if X is any algebraic space

then D-crystals on X are the same as D-modules on X in the sense of

[Sa91]*).

7.10.15. The rest of the section is a sketch of crystalline setting for tdo

and twisted D-modules. First we discuss crystalline O∗-gerbes. In case of a

smooth scheme such gerbe amounts to an étale localized version of the notion

“tdo up to a twist by a line bundle”. Then we define for a crystalline O∗-

gerbe C the corresponding abelian category of twisted D-crystals MC(X).

7.10.16. As before, X is any algebraic space. The category Xcr carries

a structure of site (étale crystalline topology): a covering is a family of

*)i.e., an algebra in the monoidal category of Diff-bimodules.

*)Probably this property characterizes tdo’s.
*)Saito prefers to deal with analytic setting, but his definitions have obvious algebraic

version (and the above definitions have obvious analytic version).
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morphisms {(Si, Ŝi) → (S, Ŝ)} such that {Ŝi → Ŝ} is an étale covering of

Ŝ. It carries a sheaf of rings Ocr where Ocr(S, Ŝ) = O(Ŝ). So we have the

corresponding sheaf O∗cr of invertible elements.

7.10.17. Definition. A crystalline O∗-gerbe on X is an O∗cr-gerbe on Xcr
*).

Explicitely, this means the following. Consider the sheaf of Picard

groupoids Piccr on Xcr where Piccr(S, Ŝ) := Pic(Ŝ) (= the Picard groupoid

of line bundles on Ŝ). Now a crystalline O∗-gerbe on X is a Piccr-Torsor

C over Xcr (i.e., C is a fibered category over Xcr equipped with an Action

of Piccr which makes each fiber C(Ŝ) = C(S, Ŝ) a Pic(Ŝ)-Torsor) such that

locally on Xcr our C(S, Ŝ) is non-empty.

Crystalline O∗-gerbes form a Picard 2-groupoid Gcr(X). The group of

equivalence classes of gerbes is H2(Xcr,O∗cr). For a pair of gerbes C, C′

Morphisms φ : C → C′ form a Pic(Xcr)-Torsor. Here Pic(Xcr) is the Picard

groupoid of O∗cr-torsors on Xcr
*).

7.10.18. Remarks. (i) Let Xét cr be the small étale crystalline site of X (as

a category it equals X
(i)
cr from 7.10.4, the topology is induced from Xcr).

A crystalline O∗-gerbe on X yields by restriction an O∗cr-gerbe on Xét cr.

We leave it to the reader to check that we get an equivalence of the Picard

2-groupoids of gerbes*).

(ii) Our Gcr(X) is the Picard 2-groupoid associated to the complex

τ≤2RΓ(Xcr,O∗cr) = τ≤2RΓ(Xét cr,O∗cr). To compute RΓ look at the

canonical ideal Icr ⊂ Ocr defined by (Ocr/Icr)(S, Ŝ) = O(S). There is

a canonical morphism of ringed topologies i : Xét → Xét cr, i
−1(S, Ŝ) = S,

and Icr fits into short exact sequence 0→ Icr → Ocr → i·OX → 0. Passing

*)i.e., a gerbe over Xcr with band O∗cr in terminology of [De-Mi].
*)If X is smooth then such torsor is the same as a line bundle with flat connection on

X.
*)We consider Xcr as the basic setting since it directly generalizes to the case of ind-

schemes, see 7.11.6).
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to sheaves of invertible elements we get the short exact sequence

(342) 0 −→ Icr
exp−→O∗cr −→ i·O∗X −→ 0

where exp is the exponential map (since each Icr(S, Ŝ) is a nilpotent ideal our

exp is correctly defined). Since RΓ(Xét cr, i·O∗X) = RΓ(Xét,O∗). one may

use (343) to compute RΓ(Xcr,O∗cr). For example, since H0(Xcr, Icr) = 0

the group H0(Xcr,O∗cr) is the group O∗(X)con of locally constant invertible

functions on X.

(iii) Assume that X is smooth. Set Ω≥1
X := (0→ Ω1

X → Ω2
X ..). According

to Grothendieck, one has RΓ(Xcr,Ocr) = RΓ(X,ΩX) and RΓ(Xcr, Icr) =

RΓ(Xcr, Cone(Ocr → i·OX)[−1]) = RΓ(X,Ω≥1
X ). Thus (342) yields the long

cohomology sequence

0 −→ O∗(X)con −→ O∗(X)
d log−→Ω1cl(X) −→ H1(Xcr,O∗cr) −→

−→ Pic(X)
c1−→H2(X,Ω≥1

X ) −→ H2(Xcr,O∗cr) −→ Br(X) −→ 0.

Here H1(Xcr,O∗cr) is the group of isomorphism classes of line bundles with

flat connection on X. One has 0 at the right since H2(Xét,O∗) = Br(X) is

a torsion group and H3(Xcr, Icr) is a C-vector space.

(iv) If X is a scheme then one may consider a weaker topology XZar cr

(as a category it equals X
(ii)
cr from 7.10.4). We get the corresponding

Picard 2-groupoid GZar cr(X) of O∗cr-gerbes on XZar cr. By étale descent

the pull-back functor GZar cr(X) → Gcr(X) is a fully faithful Morphism

of Picard 2-groupoids, i.e., GZar cr(X) is the 2-groupoid of Zariski locally

trivial crystalline O∗-gerbes. It is easy to see*) that C ∈ Gcr(X) belongs to

GZar cr(X) if (and only if) the O∗-gerbe i·C on Xét is Zariski locally trivial.

For example, ifX is smooth thenH2(XZar,O∗) = 0, so Gcr(X)/GZar cr(X) =

Br(X).

*)cf. 7.10.22.
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7.10.19. Below we give a convenient “concrete” description of (appropri-

ately rigidified) crystalline O∗-gerbes.

Assume we have X ↪→ V as in 7.10.7. For C ∈ Gcr(X) and an infinitesimal

neighbourhood X ′ ⊂ V of X we have the Pic(X ′)-Torsor C(X ′). Set

C(V ) := lim
←−
C(X ′) (:= the groupoid of Cartesian sections of C over the

directed set of X ′’s); this is a Pic(V )-Torsor.

Consider pairs (C, EV ) where C ∈ Gcr(X) and EV ∈ C(V ). Such objects

form a Picard groupoid GVcr(X). Namely, a morphism (C, EV ) → (C′, E ′V ) is

a pair (F, ν) where F is a Morphism C → C′ and ν : F (EV )→∼E ′V
*). We are

going to describe GVcr(X).

We use notation from 7.10.7. Let R be a line bundle on V <2> and

β : p∗12R⊗ p∗23R→∼ p∗13R an isomorphism of line bundles on V <3> such that

the following diagram of isomorphisms of line bundles on V <4> commutes

(associativity condition):

(343)

R12 ⊗R23 ⊗R34 −→ R13 ⊗R34y y
R12 ⊗R24 −→ R14

Here Rij is the pull-back of R by projection pij : V <4> → V <2> and the

arrows come from β.

Such pairs (R, β) form a Picard groupoid G(V ) (with respect to tensor

product).

7.10.20. Proposition. The Picard groupoids GVcr(X) and G(V ) are canoni-

cally equivalent.

Proof. For (C, EV ) ∈ GVcr(X) setR := Hom(p∗1EV , p∗2EV ) ∈ Pic(V ) and define

β as the composition isomorphism; it is clear that (R, β) ∈ G(V ). So we

have the Morphism of Picard groupoids GVcr(X)→ G(V ).

*)Notice that such pairs have no symmetries, so GVcr(X) is a plain groupoid (while

Gcr(X) is a 2-groupoid).
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The inverse Morphism assigns to (R, β) the pair (C, EV ) glued from trivial

gerbes by means of (R, β). Namely, one defines (C, EV ) as follows. Since V is

formally smooth the structure morphism j : S → X extends to j′ : Ŝ → V .

Now C(Ŝ) is a Pic(Ŝ)-Torsor together with the following extra structure:

(i) For any j′ as above we are given an object of C(Ŝ) denoted by j
′∗EV .

(ii) If j′′ : Ŝ → V is another extension of j then we have an identification

of line bundles θj′′j′ : Hom(j
′∗EV , j

′′∗EV )→∼(j′′, j′)∗R.

We demand that (ii) identifies composition of Hom’s with the isomor-

phism defined by β. It is easy to see that such C(Ŝ) exists and unique (up

to a unique equivalence). The fibers C(Ŝ) glue together to form a crystalline

O∗-gerbe in the obvious way. We have EV ∈ C(V ) by construction. �

7.10.21. Remark. Let E ′V be another object of C(V ) and (R′, β′) ∈ G(V )

the pair that corresponds to (C, E ′V ). Set L := Hom(EV , E ′V ) ∈ Pic(V ).

Then R′ = AdLR := (p∗2L)⊗R⊗ (p∗1L)⊗−1 and β′ = AdL β.

Now let C be any crystalline O∗-gerbe on X, and assume that we have

X ↪→ V as above. To use 7.10.20 for description of C one has to assure that

C(V ) is non-empty.

7.10.22. Lemma. Assume that X is affine and V is a union of countably

many subschemes. Then C(V ) is non-empty if*) C(X,X) is non-empty.

Proof. Let X ′ ⊂ V be an infinitesimal neighbourhood of X. Then any

EX ∈ C(X,X) admits an extension EX′ ∈ C(X,X ′), and all such extensions

are isomorphic. Now we have a sequence X ⊂ X(1) ⊂ X(2)... of infinitesimal

neighbourhoods of X such that V = lim
−→

X(n). One defines by induction

a sequence EX(n) ∈ C(X,X(n)) together with identifications EX(n+1) |X(n) =

EX(n) . This is EV ∈ C(V ). �

*)and, certainly, only if
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7.10.23. Remarks. (i) Consider the O∗-gerbe i·C on Xét (so i·C(U) =

C(U,U)). Then C(X,X) 6= ∅ if and only if i·C is a trivial gerbe, i.e., its

class in H2(Xét,O∗) = Br(X) vanishes*).

(ii) For any algebraic space X and C ∈ Gcr(X) one may use 7.10.20 to

describe C locally on Xét. Namely, there exists an étale covering Ui of X

such that Ui are affine and C(Ui, Ui) 6= ∅. Embed Ui into a smooth scheme

and take for Vi the corresponding formal completion. Now, by 7.10.22, we

may use 7.10.20, 7.10.21 to describe CUi .

7.10.24. Definition. For C ∈ Gcr(X) a C-twisted D-crystal on X is a

Cartesian functor M : C → M!(Xcr,O) such that for any E ∈ C(Ŝ) and

f ∈ O∗(Ŝ) one has M(fE) = f · idM(E).

The C-twisted D-crystals form a C-category MC(X). It depends on C in

a functorial way (to a Morphism C → C′ there corresponds an equivalence

of categories MC(X)→∼MC′(X), etc.).

The categories MC(U) = MCU (U), U ∈ Xét, form a sheaf of categories

MC(Xét) over Xét in the obvious way.

Let Ctriv be the trivialized gerbe, so Ctriv(Ŝ) = Pic(Ŝ). The Ctriv-

twisted D-crystals are the same as plain D-crystals. Namely, one identifies

M ∈MCtriv(X) with the D-crystal MŜ := M(OŜ).

Remark. In the above definition we may replace Xcr by Xét cr. If X is a

scheme and C ∈ GZar cr(X) then we may replace Xcr by XZar cr. One gets

the same category MC(X).

7.10.25. Here is a twisted version of 7.10.7, 7.10.8. Assume we are in

situation 7.10.19, so we have (C, EV ) ∈ GVcr(X) and the corresponding

(R, β) ∈ G(V ) (see 7.10.20). The category MC(X) may be described

as follows. Let MR(X) = MRβ(X) be the category of pairs (MV , τ)

where MV ∈ M(V,O) and τ : (p!
1MV ) ⊗ R→∼ p!

2MV is an isomorphism

*)This class is the image of the class of C by the map H2(Xcr,O∗cr)→ H2(Xcr, i·O∗) =

Br(X).
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in M(V <2>,O) such that*)

(344) p!
23(τ)p!

12(τ) = p!
13(τ).

7.10.26. Lemma. The categories MC(X) and MR(X) are canonically

equivalent.

Proof. For M ∈ MC(X) set MV = M(EV ) :=
⋃
M(E(X,X′)), and define

τ as composition of the isomorphisms (p!
1MV ) ⊗ R = M(p∗1EV ) ⊗ R =

M((p∗1EV )⊗R) = M(p∗2EV ) = p!
2MV . The rest is an immediate modification

of the proof of 7.10.8. �

7.10.27. Lemma. For any X and C ∈ Gcr(X) the category MC(X) is

abelian.

Proof. An obvious modification of the proof of 7.10.9. Use 7.10.23(ii),

7.10.22, 7.10.26. �

7.10.28. From now on we assume that X is a smooth algebraic space. We

want to compare the above picture with the usual setting of tdo and twisted

D-modules. First let us relate crystalline O∗-gerbes and tdo*).

Look at 7.10.19 for V = X. Consider the Picard groupoid G∼cr(X) :=

GVcr(X) of pairs (C, EX) where C is a crystalline O∗-gerbe on X and EX ∈

C(X).

Here is a convenient interpretation of G∼cr(X). Consider Icr-gerbes on X

(i.e., Icr-gerbes onXcr). SinceH0(Xcr, Icr) = 0 these gerbes form a (shifted)

Picard groupoid GIcr(X). The exponential morphism Icr ↪→ O∗cr yields the

functor exp : GIcr(X)→ Gcr(X). Since I(X,X) = 0, for any Icr-gerbe B the

groupoid BX is trivial, so the groupoid (expB)X has a distinguished object

EBX (defined up to a canonical isomorphism). Thus we defined a Morphism

of Picard groupoids

(345) exp : GIcr(X) −→ G∼cr(X),

*)We use β to identify the modules where the l.h.s. and r.h.s. of the equality lie.

*)see, e.g., [BB93] 2.1 for basic facts about tdo.
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B 7→ (expB, EBX). This is an equivalence of Picard groupoids (as follows

from (342)).

Example. The “boundary map” for (342) yields the morphism of Picard

groupoids c : Pic(X) → GIcr(X) (the crystalline Chern class). In terms of

(345) it assigns to L ∈ Pic(X) the pair (Ctriv,L).

7.10.29. Proposition. G∼cr(X) is canonically equivalent to the Picard

groupoid T DO(X) of tdo’s on X.

Proof. Let us identify, according to 7.10.20 for V = X, our G∼cr(X) with

G(X). Now for (R, β) ∈ G(X) the corresponding tdo DR = D(R,β) is

defined as follows. We use notation from 7.10.13. Consider DX as a

Diff-bimodule (an object of M(X<2>,O)). Set DR := DX ⊗
OX<2>

R. The

multiplication morphism mR : DR ⊗
OX
DR → p!

13DR is the tensor product

of the corresponding morphism for DX and β. One checks easily that DR
is a tdo and G(X) → T DO(X), (R, β) 7→ DR is a Morphism of Picard

groupoids.

The inverse Morphism assigns to a tdo A on X the object (R, β)

where R := HomOX<2> (DX , A) and β is defined by comparison of the

multiplication morphisms m for DX and A. We leave the details for the

reader. �

7.10.30. Remark. Here is another (equivalent) way to spell out the above

equivalence. By (345) G∼cr(X) is equivalent to GIcrys(X), i.e., to the Picard

groupoid associated with complex τ≤1(RΓ(Xcrys, IXcrys)[1]). According to

[BB93] 2.1.6, 2.1.4, T DO(X) is the Picard groupoid associated with the

complex τ≤1(RΓ(X,Ω≥1
X )[1]). Now the above complexes are canonically

quasi-isomorphic (see 7.10.18(iii)).

7.10.31. Here is a twisted version of 7.10.12. For (C, EX) ∈ G∼cr(X) consider

the corresponding (R, β) ∈ G(X) and the tdo DR. Take M ∈ MC(X).

According to 7.10.26 we may consider M as pair (MX , τ) ∈ MR(X).
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Since*) p!
1MX = MX ⊗

OX
DX and DR = DX ⊗

OX<2>

R we may rewrite τ as an

isomorphism

(346) MX ⊗
OX
DR→∼ p!

2MX

in M(X<2>,O). By adjunction, one may consider (346) as a morphism of

OX -modules

(347) MX ⊗DR →MX .

Denote by Mr(X,DR) the category of right DR-modules on X.

7.10.32. Proposition. The morphism (347) is a right unital action of DR
on MX . The functor MC(X) →Mr(X,DR), M 7→ MX , is an equivalence

of categories.

Proof. Left to the reader (see 7.10.12, 7.10.13). �

7.11. D-modules on ind-schemes. In this section we discuss D-module

theory on formally smooth ind-schemes. Notice that the D-crystal picture

(see 7.10) makes immediate sense in the ind-scheme setting, and it is the

conventional approach (differential operators, etc.) that takes some space

to be written down.

7.11.1. An ind-scheme (in the strict sense) X is a “space” (i.e., a set

valued functor on the category of commutative C -algebras A 7→ X(A) =

X(SpecA)) which may be represented as lim
−→

Xα where {Xα} is a directed

family of quasi-compact schemes such that all the maps iαβ : Xα → Xβ,

α ≤ β, are closed embeddings. If X can be represented as above so that the

set of indices α is countable then X is said to be an ℵ0-ind-scheme.*) If P

*)See the proofs of 7.10.12 and 7.10.29.
*)Not all natural examples of ind-schemes are ℵ0-ind-schemes; e.g., for every infinite-

dimensional vector space V the functor A 7→ EndA(V ⊗ A) is an ind-scheme but not an

ℵ0-ind-scheme.
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is a property of schemes stable under passage to closed subschemes then we

say that X satisfies the ind -P property if each Xα satisfies P .

Set Xred := lim
−→

Xα red; an ind-scheme X is said to be reduced if Xred = X.

A formal scheme is an ind-scheme X such that Xred is a scheme (see

7.12.17 for a discussion of the relation between this definition of formal

scheme and the one from EGA). An ℵ0-formal scheme is a formal scheme

which is an ℵ0-ind-scheme. The completion of an ind-scheme Z along a

closed subscheme Y ⊂ Z is the direct limit of closed subschemes Y ′ ⊂ Z

such that Y ′red = Yred. In the case of formal schemes we write “affine” instead

of “ind-affine”. A formal scheme X is affine if and only if Xred is affine.

Following Grothendieck ([Gr64], [Gr67]), we say thatX is formally smooth

if for every A and every nilpotent ideal I ⊂ A the map X(A) → X(A/I)

is surjective. It is easy to see that for ind-schemes of ind-finite type formal

smoothness is a local property (cf. the proof of Proposition 17.1.6 from

[Gr67]).*) A morphism X → Y is said to be formally smooth if for any A,

I as above the map from X(A) to the fiber product of Y (A) and X(A/I)

over Y (A/I) is surjective.

Let X be an ind-scheme. A closed quasi-compact subscheme Y ⊂ X

is called reasonable if for any closed subscheme Z ⊂ X such that Y ⊂ Z

the ideal of Y in OZ is finitely generated. We say that X is reasonable if

X is a union of its reasonable subschemes, i.e., it may be represented as

lim
−→

Xα where all Xα are reasonable. A closed subspace of a reasonable ind-

scheme is a reasonable ind-scheme; a product of two reasonable ind-schemes

is reasonable.

*)We do not know whether this is true for ind-schemes that are not of ind-finite type.

For schemes the answer is “yes”. This follows from Remark 9.5.8 in [Gr68a] and the

following surprising result ([RG], p.82, 3.1.4): the property of being a projective module

is local for the Zariski topology and even for the fpqc topology (without any finiteness

assumptions!).
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Remark. Replacing the word “schemes” in the above definition by

“algebraic spaces” we get the notion of an ind-algebraic space. All the

discussion passes automatically to the setting of ind-algebraic spaces.

7.11.2. Examples. (i) An ind-affine ind-scheme X is the same as a pro-

algebra, i.e., a pro-object R of the category of commutative algebras that

can be represented as lim
←−

Rα so that the maps Rβ → Rα, β ≥ α, are

surjective. We write X = Spf R := lim
−→

SpecRα. A complete topological

commutative algebra R whose topology is defined by open ideals Iα ⊂ R

can be considered as a pro-algebra (set Rα := R/Iα). Not all pro-algebras

are of this type because if the set of indices α is uncountable then the map

from the set-theoretical projective limit of the Rα to Rα0 is not necessarily

surjective*). Of course, an ind-affine ℵ0-ind-scheme is the same as a complete

topological algebra whose topology is defined by a countable or finite system

of open ideals of R.

(ii) Let V be a Tate vector space (see 4.2.13). Then V (or, more

precisely, the functor A 7→ V ⊗̂A) is a reasonable ind-affine ind-scheme.

Indeed, every c-lattice in V is an affine scheme. One has V = Spf R where

R = lim
←−

Sym(U∗α), Uα runs over the set of c-lattices in V .

If X is a reasonable ind-scheme then for x ∈ X(C) the tangent space Θx

of X at x is a Tate vector space: the topology of Θx is defined by tangent

spaces at x of reasonable subschemes of X that contain x. So if H is a

reasonable group ind-scheme then its Lie algebra LieH is a Lie algebra in

the category of Tate vector spaces.

(iii) For V as above denote by Gr(V ) the “space” of c-lattices in V .

More precisely, Gr(V ) is the functor that assigns to a commutative algebra

A the set of c-lattices in V ⊗̂A (in the sense of 4.2.14). Clearly Gr(V )

is an ind-proper formally smooth ind-scheme (indeed, it is a union of the

Grassmannians of U2/U1’s for all pairs of c-lattices U1 ⊂ U2 ⊂ V ).

*)even if the maps Rβ → Rα, β ≥ α, are surjective (as we assume).
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(iv) Let K be a local field, O ⊂ K the corresponding local ring (so K '

C ((t)), O ' C [[t]]). For any “space” Y we have “spaces” Y (O) ⊂ Y (K)

defined as Y (O)(A) := Y (A⊗̂O), Y (K)(A) = Y (A⊗̂K) (here A⊗̂O = A[[t]],

A⊗̂K = A((t))). Assume that Y is an affine scheme. Then Y (O) is also an

affine scheme, and Y (K) is an ind-affine ℵ0-ind-scheme. If Y is of finite type

then Y (K) is reasonable. If Y is smooth then Y (O) and Y (K) are formally

smooth.

Let G be an affine algebraic group, g its Lie algebra. Consider the group

ind-scheme G(K). One has Lie(G(K)) = g(K) = g ⊗ K, Lie(G(O)) =

g(O) = g⊗O.

(v) Let G be a reasonable group ind-scheme such that Gred is an affine

group scheme. The functor G 7→ (LieG,Gred) is an equivalence between the

category of G’s as above and the category of Harish-Chandra pairs. For an

ind-scheme X an action of G on X is the same as a (LieG,Gred)-action on

X. Similarly, a G-module is the same as a (LieG,Gred)-module, etc.

7.11.3. There are two different ways to define O-modules in the setting

of ind-schemes; the corresponding objects are called Op-modules and O!-

modules. We start with the more immediate (though less important) notion

of Op-module*) which makes sense for any ”space” X (see 7.11.1).

An Op-module P on X is a rule that assigns to a commutative algebra A

and a point φ ∈ X(A) an A-module Pφ, and to any morphism of algebras

f : A → B an identification of B-modules fP : B⊗
f
Pφ→∼Pfφ in a way

compatible with composition of f ’s. If X = lim
−→

Xα is an ind-scheme then

such P is the same as a collection of (quasi-coherent) O-modules PXα on

Xα together with identifications i∗αβPXβ = PXα for α ≤ β that satisfy the

obvious transitivity property. We say that P is flat if each Pφ (or each PXα)

is flat. One defines invertible Op-modules on X (alias line bundles) in the

similar way.

*)Here ”p” stands for ”projective limit”.
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We denote the category of Op-modules on X by Mp(X,O). This is a

tensor C-category. The unit object in Mp(X,O) is the ”sheaf” of functions

OX . Note that Mp(X,O) need not be an abelian category. The category

Mp fl(X,O) of flat Op-modules is an exact category (in Quillen’s sense).

For any P, P ′ ∈ Mp(X,O) the vector space Hom(P, P ′) carries the

obvious topology; the composition of morphisms is continuous. In particular

Γ(X,P ) := Hom(OX , P ) is a topological vector space which is a module over

the topological ring Γ(X,OX).

Remarks. (i) The above definitions makes sense if we replace O-modules

by any category fibered over the category of affine schemes. For example, one

can consider left D-modules (alias O-modules with integrable connection);

the corresponding objects over ind-schemes called (left) Dp-modules.

(ii) If X is an ind-affine ℵ0-ind-scheme, X = Spf R = lim
−→

SpecR/Iα (see

7.11.2(i)), then an Op-module on X is the same as a complete and separated

topological R-module P such that the closures of IαP ⊂ P form a basis of

the topology.

7.11.4. Now let us pass to O!-modules. Here we must assume that our

X is a reasonable ind-scheme. An O!-module M on X is a rule that

assigns to a reasonable subscheme Y ⊂ X a quasi-coherent OY -module M(Y )

together with morphisms M(Y ) → M(Y ′) for Y ⊂ Y ′ which identify M(Y )

with i!Y Y ′M(Y ′) := HomOY ′ (OY ,M(Y ′)) and satisfy the obvious transitivity

condition*). If we writeX = lim
−→

Xα whereXα’s are reasonable then it suffices

to consider only Xα’s instead of all reasonable subschemes. O!-modules on

X form an abelian category M(X,O). Note that for any closed subscheme

Y ⊂ X, the categoryM(Y,O) is a full subcategory ofM(X,O) closed under

subquotients, and that for any O!-module M one has M = lim
−→

M(Xα).

The category M(X,O) is a Module over the tensor category Mp(X,O).

Namely, for M ∈ M(X,O), P ∈ Mp(X,O) their tensor product M ⊗ P ∈

*)We need to consider reasonable subschemes to assure that i! preserves quasi-

coherency.
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M(X,O) is lim
−→

M(Xα) ⊗
OXα

PXα . The functor ⊗ :M(X,O)×Mp fl(X,O)→

M(X,O) is biexact.

For an O!-module M we define the space of its global sections Γ(X,M)

as lim
−→

Γ(Xα,M(Xα)). The functor Γ(X, ·) is left exact.

Remarks. (i) The categories M(Y,O) together with the functors i!Y Y ′

form a fibered category over the category (ordered set) of reasonable

subschemes of X, and M(X,O) is the category of its Cartesian sections.

(ii) If X = Spf R and the pro-algebra R is a topological algebra (see

7.11.2) then an O!-module on X is the same as a discrete R-module (where

”discrete” means that the R-action is continuous with respect to the discrete

topology on M).

(iii) If P is flat then (M ⊗ P )(Xα) = M(Xα) ⊗ PXα .

7.11.5. Assume that we have a group ind-scheme (or any group ”space”)

K that acts on X. Then for any commutative algebra A the group K(A)

acts on SpecA × X. For M ∈ M(X,O) an action of K on M is defined

by K(A)-actions on OSpecA �M ∈ M(SpecA × X,O) such that for any

morphism A → A′ the corresponding actions are compatible. We denote

the category of K-equivariant O!-modules on X byM(K
\
\X,O). We leave

it to the reader to define K-equivariant Op-modules.

7.11.6. All the basic definitions and results of 7.10 (the definitions of

topology Xcr, D-crystals, crystalline O∗-torsors, twisted D-crystals, basic

functoriality) make obvious sense for any ind-scheme X of ind-finite type.

So, from the D-crystalline point of view, D-module theory generalizes

automatically to the setting of ind-schemes.

What we will discuss in the rest of this section is the conventional

approach to D-modules (rings of differential operators, etc.) which works

when our ind-scheme is formally smooth. The results 7.10.12, 7.10.29,

7.10.32 comparing the D-crystalline and D-module setting remain literally

true for formally smooth ind-schemes.
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Below we will no more mention D-crystals. In the main body of this

book we employ conventional D-modules (the ind-schemes we meet are affine

Grassmannians, they are formally smooth). Notice, however, that D-crystal

approach is needed to make obvious the following fact (we use it for Y equal

to a Schubert cell): Let i : Y ↪→ X be a closed embedding of a scheme

Y of finite type into formally smooth X as above. Then the category of

D-modules on X supported (set-theoretically) on Y depends only on Y

(and not on i and X). Indeed, this category identifies canonically with the

category of D-crystals on X.

7.11.7. Let us explain what are differential operators in the setting of ind-

schemes. Assume that our X is an ind-scheme of ind-finite type. For an

O!-module M on X set

(348) Der(OX ,M) := lim
−→

Der(OY ,M(Y )) = lim
−→

Hom(ΩY ,M(Y )).

Here Y is a closed subscheme of X. We consider Der(OX ,M) as an O!-

module on X. Similarly, set

(349) D(M) = Diff(OX ,M) := lim
−→

Diff(OY ,M(Y )).

We consider the sheaf of differential operators Diff(OY ,M(Y )) as a ”differ-

ential OY -bimodule” in the sense of [BB93], i.e., an O-module on Y × Y

supported set-theoretically on the diagonal. So D(M) is an O!-module on

X × X supported set-theoretically on the diagonal. We may consider it

as an O!-module on X with respect to either of the two OX -module struc-

tures. Note that D(M) carries a canonical increasing filtration D·(M) where

Di(M) is the submodule of sections supported on the ith infinitesimal neigh-

bourhood of the diagonal; equivalently, Di(M) = lim
−→

Diffi(OY ,M(Y )) is the

submodule of differential operators of order ≤ i. One has D0(M) = M ,⋃
Di(M) = D(M), and the two O!-module structures on griD(M) coincide.

There is an obvious embedding Der(OX ,M) ⊂ D1(M).
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Assume now that X is formally smooth. In the next proposition we

consider D(M) as an O!-module on X with respect to the left O-module

structure.

7.11.8. Proposition. (i) The functors Der(OX , ·), D, Di are exact and

commute with direct limits. So there are flat Op-modules ΘX , DX and

a filtration of DX by flat submodules DiX such that

Der(OX ,M) = M ⊗ΘX , D(M) = M ⊗DX , Di(M) = M ⊗DiX .

(ii) There is a canonical identification gr· DX = Sym·ΘX .

Remark. In 7.12.12 we will show that theOp-modules ΘX , DX , andDiX are

Mittag-Leffler modules in the sense of Raynaud-Gruson (see 7.12.1, 7.12.2,

7.12.9). If X is an ℵ0-ind-scheme the restrictions of these Op-modules to

subschemes of X are locally free (see 7.12.13 for a more precise statement).

Proof. (i) Our functors are obviously left exact and commute with direct

limits. The right exactness of Der(OX , ·) follows from formal smoothness of

X (use the standard interpretation of derivations OX → M as morphisms

Spec(Sym·M/ Sym≥2M)→ X). So we have our ΘX ∈Mp fl(X,O).

(ii) We define a canonical isomorphism*)

(350) σ· : gr· D(M)→∼M ⊗ Sym·ΘX .

This clearly implies the proposition.

Notice that for any n ≥ 0 the obvious morphism M ⊗ Θ⊗nX →

lim
−→

Hom(Ω⊗nY ,M(Y )) is an isomorphism (use the fact that ΩY are coherent).

Therefore (350) is equivalent to identifications

(351) σn : grnD(M)→∼ lim
−→

Hom(Symn ΩY ,M(Y )).

*)In the general case (when the base field may have non-zero characteristic) one has to

replace Sym· by Γ· where for any flat A-module P we define Γn(P ) as Sn-invariants in

P⊗n. Notice that (since P is inductive limit of projective modules) Γn(P ) is flat and for

any A-module M one has (M ⊗ P⊗n)Sn = M ⊗ Γn(P ).
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Our σn is the inductive limit of the maps

σnY : grn Diff(OY ,M(Y ))→ Hom(Symn ΩY ,M(Y ))

defined as follows. One has Diffn(OY ,M(Y )) = HomOY (OY×Y /In+1,M(Y ))

where I ⊂ OY×Y is the ideal of the diagonal (and we consider the source as

an OY -module via one of the projection maps). Now I/I2 = ΩY hence

In/In+1 is a quotient of Symn ΩY , and our σnY comes from the map

Symn ΩY → In/In+1 ⊂ OY×Y /In+1.

It remains to show that σn is an isomorphism; we may assume that n ≥ 1.

It is clear that σnY are injective, hence such is σn. To see that σn is surjective

look at the scheme Z := Spec(Sym·ΩY / Sym≥n+1 ΩY ). The embedding of

its subscheme Spec(Sym·ΩY /Sym≥2 ΩY ) = Spec(OY×Y /I2) ⊂ Y × Y ⊂

Y ×X extends, by formal smoothness of X, to a morphism i : Z → Y ×X

over Y . It is easy to see that i is a closed embedding. There is a closed

subscheme Y ′ ⊂ X such that Y ⊂ Y ′ and Z ⊂ Y × Y ′. Thus Z is a

subscheme of the nth infinitesimal neighbourhood of the diagonal in Y ′×Y ′.

Therefore we get embeddings Hom(Symn ΩY ,M(Y )) ⊂ HomOY (OZ ,M(Y )) ⊂

Diffn(OY ′ ,M(Y ′)). The composition of them with σnY ′ coincides with the

embedding Hom(Symn ΩY ,M(Y )) ⊂ Hom(Symn ΩY ′ ,M(Y ′)). This implies

surjectivity of σn. �

7.11.9. To explain what are D-modules on ind-schemes it is convenient to

use the language of differential bimodules.

Let X be any reasonable ind-scheme. A Diff-bimodule D on X (cf.

[BB93]) is a rule that assigns to any reasonable subscheme Y ⊂ X an O!-

module DY on Y ×X supported set-theoretically on the diagonal Y ⊂ Y ×X;

for Y ⊂ Y ′ one has identifications DY ′ ⊗ OY →∼DY which are transitive in

the obvious sense.

The category Mdi(X,O) of Diff-bimodules is a monoidal C-category.

Namely, for D,D′ ∈ Mdi(X,O) their tensor product D ⊗ D′ is defined

by (D ⊗ D′)Y := lim
−→

(DY )(Y×Y ′) ⊗
OY ′

D′Y ′ . Our OX is the unit object in
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Mdi(X,O) (see Remark (i) below). The category M(X,O) is a right

Mdi(X,O)-Module: for an O!-module M one has M ⊗D = lim
−→

M(Y ) ⊗DY

where we consider M(Y ) ⊗ DY as an O!-module on X with respect to the

right O!-module structure on DY .

Remarks. (i) An Op-module on X is the same as a differential OX -

bimodule supported scheme-theoretically on the diagonal. So we have a

fully faithful embedding of monoidal categoriesMp(X,O) ⊂Mdi(X,O). It

is compatible with the Actions on M(X,O) from 7.11.4, 7.11.9.

(ii) The forgetful*) functor Mdi(X,O) → Mp(X,O) is faithful, so one

may consider Diff-bimodules as Op-modules on X equipped with certain

extra structure. We say that a Diff-bimodule is flat if it is flat as an Op-

module. The category of flat Diff-bimodules is an exact category (cf. 7.11.3).

A Diff-algebra on X is a unital associative algebra D in the monoidal

category Mdi(X,O). A D!-module on X is a (necessarily right) D-module

M in M(X,O). Often we call such M simply a D-module. We denote the

category of D-modules by M(X,D); this is an abelian category.

Remarks. (i) The forgetful functor M(X,D) → M(X,O) admits a left

adjoint functor, namely M 7→M ⊗D.

(ii) The category Mp(X,O) is a left Mdi(X,O)-module in the obvious

way. So one may consider Dp-modules := left D-modules in Mp(X,O).

For D ∈Mdi(X,O) set Γ(X,D) := lim
←−

Γ(Y ×X,DY ); this is a topological

vector space. One has an obvious continuous map Γ(X,D) ⊗ Γ(X,D′) →

Γ(X,D ⊗ D′). For M ∈ M(X,O) there is a similar map Γ(X,M) ⊗

Γ(X,D) → Γ(X,M ⊗ D). Therefore for a Diff-algebra D our Γ(X,D) is

a topological ring and for any D-module M the vector space Γ(X,M) is a

discrete Γ(X,D)-module.

Assume that we have a group ind-scheme (or any group ”space”) K that

acts on X. One defines a weak*) action of K on a Diff-algebra D as follows.

*)forgetting the right O-module structure

*)For strong actions see [BB93].
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For any commutative algebra A we have the action of the group K(A) on

SpecA × X. Now a weak action of K on D is a rule that assigns to A a

lifting of this action to the Diff-algebra OSpecA � D on SpecA × X. For

any morphism A → A′ the correspondings actions must be compatible in

the obvious way. If M is a D-module then a weak action of K on M is

an action of K on M as on O!-module (see 7.11.4) such that the D-action

morphism M ⊗D → M is compatible with the K-actions. We denote the

category of weakly K-equivariant D-modules by M(K
\
\X,D).

7.11.10. Here is a more concrete ”sheaf-theoretic” way to look at differen-

tial bimodules and algebras on a reasonable ℵ0-ind-scheme X .*)We explain

it in two steps.

(i) Assume that Xred is a scheme, so X is a formal scheme*). Then

the underlying topological space of X is well-defined, and OX is a sheaf

of topological algebras. Any Diff-bimodule D yields a sheaf of topological

OX -bimodules lim
←−

DXα which we denote also by D by abuse of notation. It

satisfies the following properties:

- The basis of the topology on D is formed by closures of I·D, where

I ⊂ OX is an open ideal; the topology is complete and separated.

- The quotients D/I·D are O!-modules on X × X supported set-

theoretically at the diagonal.

It is clear that Mdi(X,O) is equivalent to the category of such sheaves

of topological OX -bimodules. Notice that D ⊗ D′ = D ⊗̂
OX

D′. Therefore

a Diff-algebra on X is the same as a sheaf D of topological algebras on X

equipped with a continuous morphism of sheaves of algebras ε : OX → D

such that the OX -bimodule structure on D satisfies the above conditions.

*)The ℵ0 assumption enables us to work with topological algebras instead of pro-

algebras; see 7.11.2(i).
*)See 7.12.22 and 7.12.23 for a description of formally smooth affine ℵ0-formal schemes

of ind-finite type.
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A D-module on X is the same as a sheaf of discrete right D-modules which

is quasi-coherent as an OX -module (i.e., it is an O!-module on X).

(ii) Let X be any reasonable ℵ0-ind-scheme. For a reasonable subscheme

Y ⊂ X denote by Y ∧ the completion of X along Y . This is a formal scheme

as in (i) above. For a Diff-bimodule D on X let DY ∧ be the (Op-module)

pull-back of D to Y ∧. This is a Diff-bimodule on Y ∧, so it may be viewed as

a sheaf of OY ∧-bimodules as in (i) above. If Y ′ ⊂ X is another reasonable

subscheme that contains Y then we have a continuous morphism of sheaves

of OY ′∧-bimodules DY ′∧ → DY ∧ which identifies DY ∧ with the completion

of DY ′∧ with respect to the topology generated by closures of I·DY ′∧ where

I ⊂ OY ′∧ is an open ideal such that Spec(O/I)red = Yred. These morphisms

satisfy the obvious transitivity property. It is clear that Diff-bimodules on

X are the same as such data.

Therefore a Diff-algebra D on X may be viewed as the following data:

- a collection of sheaves of topological algebras DY ∧ equipped with

morphisms εY ∧ : OY ∧ → DY ∧ defined for any reasonable subscheme Y ⊂ X

that satisfy the conditions of (i) above.

- for Y ⊂ Y ′ we have a continuous morphism rY Y ′ : DY ′∧ → DY ∧ which

identifies DY ∧ with the completion of DY ′∧ as above. We demand the

compatibilities rY Y ′εY ′∧ = εY ∧ , rY Y ′′ = rY Y ′rY ′Y ′′ .

We leave it to the reader to describe D-modules in this language.

Remark. For a Diff-algebra D the topological algebra Γ(X,D) is the

projective limit of topological algebras Γ(Y,DY ∧).

7.11.11. The key example. Assume that our X is a formally smooth ind-

scheme of ind-finite type. Consider the Op-module DX as defined in

7.11.8(i). So for a subscheme Y ⊂ X the OY -module (DX)Y is D(OY ) :=

lim
−→

Diff(OY ′ ,OY ) with its left OY -module structure. Our DX carries

an obvious structure of Diff-bimodule. The composition of differential

operators makes DX a Diff-algebra on X. According to 7.11.8 our DX
carries a canonical ring filtration DiX such that gr· DX = Sym·ΘX . The
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topological algebra Γ(X,DX) is called the ring of global differential operators

on X. We denote the category ofDX -modules byM(X,D) or simplyM(X).

If a group ”space” K acts on X then DX carries a canonical weak K-

action (defined by transport of structure). Thus we have the category

M(K
\
\X,DX) =M(K

\
\X) of weakly K-equivariant D-modules.

A twisted version. In the main body of the paper we also need to

consider the rings of twisted differential operators (alias tdo), families of such

rings and modules over them. The corresponding definitions are immediate

modifications of the usual ones in the finite-dimensional setting (see e.g.

[BB93]). Below we describe explicitely particular examples of tdo we need.

Let X be as above, L a line bundle on X (see 7.11.3).

a. The Diff-algebra DL of differential operators acting on L is defined

exactly as DX replacing in (349) D(M) by DL(M) = Diff(L,M ⊗ L) :=

lim
−→

Diff(LY ,M(Y ) ⊗ LY ); proposition 7.11.8 (as well as its proof) remains

true without any changes. Equivalently, DL = L ⊗DX ⊗ L⊗−1.

b. We define a Diff-algebra DLh on X as follows. Let π : X∼ → X be

the Gm-torsor over X that corresponds to L (so X∼ = L\(zero section)).

Consider the Diff-algebra D∼ := π∗DX∼ on X (so for a subscheme Y ⊂ X

one has (D∼)Y := π∗((DX∼)π−1Y )). The weak Gm-action on DX∼ yields a

weak Gm-action on D∼ (with respect to the trivial Gm-action on X). Our

DLh is the subalgebra of Gm-invariants in D∼.

Denote by h the global section of DLh that corresponds to the action of

−t ddt ∈ LieGm. Then DLh is the centralizer of h in D∼. Notice that for any

subscheme Y ⊂ X a trivialization of LY ∧ (which exists locally on Y ) yields

an identification DLhY ∧ →∼DY ∧⊗̂C[h].

Remarks. (i) Consider the Op-module π∗(OX∼) = ⊕L⊗n. It carries the

action of DLh which preserves the grading. The action of DLh on L⊗n

identifies DLh/(h− n)DLh with DL⊗n .
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(ii) Let M∼ be a weakly Gm-equivariant D-module on X∼. Set

M := (π∗M
∼)Gm ; this is a DLh-module. The functor M(Gm

\
\X
∼) →

M(X,DLh), M∼ 7→M , is an equivalence of categories.

7.11.12. Let us explain the D-Ω complexes interplay in the setting of ind-

schemes. First let us define Ω-complexes. Here we assume that X is any

reasonable ind-scheme.

For any reasonable subschemes Y ⊂ Y ′ one has a surjective morphism of

commutative DG algebras ΩY ′ → ΩY . An Ω!-complex F on X (or simply

an Ω-complex) is a rule that assigns to a reasonable subscheme Y ⊂ X a

DG ΩY -module F[Y ] together with morphisms of ΩY ′-modules F[Y ] → F[Y ′]

for Y ⊂ Y ′ which identify F[Y ] with i!ΩY Y ′F[Y ′] := HomΩY ′ (ΩY , F[Y ′]) and

satisfy the obvious transitivity condition. We assume that F i[Y ] is quasi-

coherent as an OY -module. As in 7.11.4 it suffice to consider only Xα’s

instead of all reasonable Y ’s. As in Remark in 7.2.1 such an F is the same

as a complex of O!-modules whose differential is a differential operator of

order ≤ 1. We denote by C(X,Ω) the DG category of Ω!-complexes.

If f : Y → X is a representable quasi-compact morphism of ind-schemes

(so Y = lim
−→

Yα where Yα := f−1(Xα)) then one has a pull-back functor

f ·Ω : C(X,Ω)→ C(Y,Ω), f ·Ω(F ) := lim
−→

ΩYα ⊗
f−1ΩXα

Fα. If f is surjective and

formally smooth then f ·Ω satisfies the descent property.

Assume that a group ”space” K acts on X. One defines a K-action on

an Ω-complex F on X as a rule that assigns to any g ∈ K(A) a lifting

of the action of g on SpecA × X to OSpecA ⊗ F ∈ C(SpecA × X,Ω); the

obvious compatibilities should hold. We denote the corresponding category

by C(K
\
\X,Ω).

Remarks. (i) Assume that K is a group ind-scheme, so we have the Lie

algebra LieK. The definition of KΩ-action on F in terms of operators iξ

from 7.6.4 renders immediately to the present setting. The category of KΩ-

equivariant Ω-complexes is denoted by C(K \X,Ω).
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(ii) If our K is an affine group scheme then a KΩ-equivariant Ω-complex

is the same as an Ω-complex F equipped with an isomorphism m·ΩF = p·XF

of Ω-complexes on K ×X that satisfy the usual condition (see 7.6.5).

7.11.13. Assume that X is a formally smooth ind-scheme of ind-finite

type. Denote by C(X,D) the DG category of complexes of D-modules (D-

complexes for short) on X. We have the DG functor

(352) D : C(X,Ω)→ C(X,D)

which sends an Ω-complex F to the D-complex DF with components

(DF )n := D(Fn) = Fn ⊗ DX (see 7.11.8) and the differential defined by

formula d(a) := dF ◦ a (here a ∈ D(Fn) = Diff(OX , Fn)). This functor

admits a right adjoint functor

(353) Ω : C(X,D)→ C(X,Ω)

which may be described explicitely as follows. For a subscheme Y ⊂ X we

have the D-complex DRY := D(ΩY ). It is also a left DG ΩY -module. Now

for a D-complex M one has ΩM = lim
−→

Hom(DRY ,M) =
⋃

Hom(DRY ,M).

Lemma 7.2.4 remains true as well as its proof. As in 7.2.5 we have the

cohomology functor H·D : C(X,Ω) → M(X), H·D(F ) = H·(DF ), and the

corresponding notion of D-quasi-isomorphism. The adjunction morphisms

for D, Ω are quasi-isomorphism and D-quasi-isomorphism*).

7.11.14. We say that an O!-complex or O!-module has quasi-compact

support if it vanishes on the complement to some closed subscheme. Same

definition applies to D- and Ω-complexes. We mark the corresponding

categories by lower ”c” index. The functors D and Ω preserve the

corresponding full DG subcategories Cc(X,Ω) ⊂ C(X,Ω), Cc(X,D) ⊂

C(X,D).

*)The fact that de Rham complexes of D-modules are not bounded from below does

not spoil the picture.
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In order to ensure that our derived categories are the right ones (i.e.,

that they have nice functorial properties) we assume in addition that the

diagonal morphism X → X×X is affine (cf. 7.3.1). For example, it suffices

to assume that X is separated.

Denote by D(X,O) the homotopy category of Cc(X,O) localized with

respect to quasi-isomorphisms; this is a t-category with core Mc(X,O).

We define D(X,D) (assuming that X is formally smooth of ind-finite type)

in the similar way; this is a t-category with core Mc(X). Let D(X,Ω) be

localization of the homotopy category of Cc(X,Ω) by D-quasi-isomorphisms.

The functors D and Ω yield canonical identification of D(X,D) and D(X,Ω),

so, as usual, we denote these categories thus identified simply D(X)*).

We say that an O!-module F with quasi-compact support is loose if for

any closed subscheme Y ⊂ X such that F is supported on Y ∧ and a flat

Op-module P on Y ∧ one has Ha(X,P ⊗ F ) = 0 for a > 0. An O!- D- or

Ω-complex F is loose if each O!-module F i is loose. One has the following

lemma parallel to 7.3.8:

7.11.15. Lemma. i) For any F ′ ∈ Cc(X,Ω) there exists a D-quasi-

isomorphism F ′ → F such that F is loose and the supports of F, F ′ coincide.

(ii) If f : X → X ′ is a formally smooth affine morphism of ind-schemes

then the functors

f ·Ω : Cc(X
′,Ω)→ Cc(X,Ω), f· : Cc(X,Ω)→ Cc(X

′,Ω)

send loose complexes to loose ones.

*)To get a t-category with core M(X) one may consider complexes which are unions

of subcomplexes with quasi-compact support; however to ensure the good functorial

properties of this category one has to assume that X satisfies certain extra condition

(e.g., that there exists a formally smooth surjective morphism Y → X such that Y is ind-

affine). The category formed by all complexes has unpleasant homological and functorial

properties. Notice that the usual remedy - to consider only Ω-complexes bounded from

below - does not work here (the de Rham complexes of D-modules do not satisfy this

condition).
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(iii) If F1, F2 are loose complexes on X1, X2 then F1 � F2 is a loose Ω-

complex on X1 ×X2.

Proof. Modify the proof of 7.3.8 in the obvious way. �

We see that one can define the derived category D(X) using loose

complexes.

7.11.16. Any morphism f : X → Y of ind-schemes yields the push-forward

functor f· : C(X,Ω) → C(Y,Ω) which preserves the subcategories Cc.

We leave it to the reader to check that f· preserves D-quasi-isomorphisms

between loose complexes with quasi-compact support (cf. 7.3.9, 7.3.11(ii)).

Thus the right derived functor Rf· = f∗ : D(X) → D(Y ) is well-defined:

one has f∗F = f·F if F is a loose complex with quasi-compact support.

Since f· sends loose complexes to loose ones we see that f∗ is compatible

with composition of f ’s.

For M ∈ D(X,D) denote by MO ∈ D(X,O) same M considered as a

complex of O!-modules. One has a canonical integration morphism

if : Rf·(MO)→ (f∗M)O

in D(Y,O) defined as in 7.2.11. It is compatible with composition of f ’s.

7.11.17. Let us define the Hecke monoidal category H as in 7.6.1. We

start with an ind-affine group ind-scheme G and its affine group subscheme

K ⊂ G. We assume that G/K (the quotient of sheaves with respect to fpqc

topology) is a ind-scheme of ind-finite type; it is automatically formally

smooth and its diagonal morphism is affine. Clearly G is a reasonable ind-

scheme, and K is its reasonable subscheme. Consider the DG category Hc

of (K × K)Ω-equivariant Ω!-complexes on G with quasi-compact support

(see Remark (i) in 7.11.12). By descent such a complex is the same as a

KΩ-equivariant admissible Ω!-complex either on G/K or on K \ G. The

corresponding notions of D-quasi-isomorphism are equivalent. Our H is the

corresponding D-derived category.
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The constructions of 7.6.1 make perfect sense in our setting. Thus Hc is

a DG monoidal category, and H is a triangulated monoidal category.

7.11.18. Assume that we have a scheme Y equipped with a G-action such

that there exists an increasing family U0 ⊂ U1 ⊂ ... of open quasi-compact

subschemes of Y =
⋃
Ui with property that for some reasonable group

subscheme Ki ⊂ G the action of Ki on Ui is free and Ki \ Ui is a smooth

scheme (in particular, of finite type). Then the stack B = K \ Y is smooth

(it has a covering by schemes (Ki ∩K) \Ui). The diagonal morphism for B

is affine, so we may use the definition of D(B) from 7.3.12.

To define the H-Action on D(B) you proceed as in 7.6.1 with the

following modifications that arise due to possible non-quasi-compactness

of Y and G. We may assume that the above Ui’s are K-invariant; set

Bi = K \ Ui ⊂ B. Take loose Ω-complexes F = ∪Fn ∈ Ca(K \G/K,Ω) (so

the supports Sn of Fn are quasi-compact) and T ∈ C(B·,Ω). Let j(n, i) be

an increasing (with respect to both n and i) sequence such that S−1
n ·Ui ⊂

Uj(n,i). Consider the Ω-complexes (Fn�∗ T )i := m̄Ui·p·UiΩ(Fn � Tj(n,i))|Bi
and (Fn�∗ T )′i := m̄Ui·p·UiΩ(Fn � Tj(n+1,i))|Bi on Bi. There are the obvious

morphisms (Fn�∗ T )′i → (Fn+1�∗ T )i, (Fn�∗ T )′i → (Fn�∗ T )i; the latter is a

quasi-isomorphism. Set (F �∗ T )i := Cone(⊕(Fn�∗ T )i → ⊕(Fn�∗ T )i) where

the arrow is the (componentwise) difference of the above morphisms. These

(F �∗ T )i form in the obvious manner an object F �∗ T ∈ C(B,Ω). We leave

it to the reader to check that F �∗ T as an object of D(B) does not depend

on the choice of the auxiliary data (of Ui and j(n, i)), and that �∗ is an

H-Action on D(B).

7.12. Ind-schemes and Mittag-Leffler modules. Raynaud and Gruson

[RG] introduced a remarkable notion of Mittag-Leffler module. In this

section we show that the notion of flat Mittag-Leffler module is, in some

sense, a linearized version of the notion of formally smooth ind-scheme of

ind-finite type (see 7.12.12, 7.12.14, 7.12.15). Using the fact that countably
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generated flat Mittag-Leffler modules are projective we describe formally

smooth affine ℵ0-formal schemes of ind-finite type (see 7.12.22, 7.12.23).

The reader can skip this section because its results are not used in the rest

of this work (we include them only to clarify the notion of formally smooth

ind-scheme).

In 7.11 we assumed that “ind-scheme” means “ind-scheme over C” (this

did not really matter). In this section we prefer to drop this assumption.

7.12.1. Let A be a ring*). Denote by C the category of A-modules of finite

presentation. According to [RG], p.69 an A-module M is said to be a Mittag-

Leffler module if every morphism f : F →M , F ∈ C, can be decomposed as

F
u→G → M , G ∈ C, so that for every decomposition of f as F

u′→G′ → M ,

G′ ∈ C, there is a morphism ϕ : G′ → G such that u = ϕu′.

7.12.2. Suppose that M = lim
−→

Mi, i ∈ I, where I is a directed ordered set

and Mi ∈ C. According to loc.cit, M is a Mittag-Leffler module if and only

if for every i ∈ I there exists j ≥ i such that for every k ≥ i the morphism

uij : Mi → Mj can be decomposed as ϕijkuik for some ϕijk : Fk → Fj . A

similar statement holds if I is a filtered category; if I is the category of all

morphisms from objects of C to M and Fi ∈ C is the source of the morphism

i then the above statement is tautological.

7.12.3. The above property of inductive systems (Mi), Mi ∈ C, makes sense

if C is replaced by any category C′. If C′ is dual to the category of sets, i.e., if

we have a projective system of sets (Ei, uij : Ej → Ei) one gets the Mittag-

Leffler condition from EGA 0III 13.1.2: for every i ∈ I there exists j ≥ i

such that uij(Ej) = uik(Ek) for all k ≥ j.

This condition is satisfied if and only if the projective system (Ei, uij)

is equivalent to a projective system (Ẽα, ũαβ) where the maps ũαβ are

*)We assume that A is commutative but in 7.12.1–7.12.8 this is not essential (one only

has to insert in the obvious way the words “left” and “right” before the word “module”).
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surjective. To prove the “only if” statement it suffices to set Ẽi := uij(Ej)

for j big enough.

7.12.4. Suppose that M = lim
−→

Mi, Mi ∈ C. According to [RG] M is

a Mittag-Leffler module if and only if for any contravariant functor Φ

from C to the category of sets the projective system (Φ(Mi)) satisfies the

Mittag-Leffler condition (to prove the “if” statement consider the functor

Φ(N) = Hom(N,
∏
i
Mi) or Φ̃(N) =

⊔
i

Hom(N,Mi) ).

Assume that M is flat. Set M∗i = Hom(Mi, A). According to [RG] M is

a Mittag-Leffler module if and only if the projective system (M∗i ) satisfies

the Mittag-Leffler condition. This is clear if the modules Mi are projective.

The general case follows by Lazard’s lemma (there is an inductive system

equivalent to (Mi) consisting of finitely generated projective modules).

7.12.5. Consider the following two classes of functors from the category of

A-modules to the category of abelian groups:

1) For an A-module M one has the functor

(354) L 7→ L⊗AM ;

2) For a projective system of A-modules Ni (where i belong to a

directed ordered set) one has the functor

(355) L 7→ lim
−→
i

Hom(Ni, L)

7.12.6. Proposition. (i) The functor (354) is isomorphic to a functor of the

form (355) if and only if M is flat.

(ii) The functor (354) is isomorphic to the functor (355) corresponding to

a projective system (Ni) with surjective transition maps Nj → Ni, i ≤ j, if

and only if M is a flat Mittag-Leffler module.

(iii) The functor (355) corresponding to a projective system (Ni) with

surjective transition maps Nj → Ni, i ≤ j, is isomorphic to a functor of the
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form (354) if and only if the functor (355) is exact and the modules Ni are

finitely generated.

Proof. If (354) and (355) are isomorphic then (354) is left exact, so M is

flat. If M is flat then by Lazard’s lemma M = lim
−→

Pi where the modules Pi

are projective and finitely generated, so the functor (355) corresponding to

Ni = P ∗i is isomorphic to (354).

We have proved (i). To deduce (ii) from (i) notice that for Pi as above

the projective system (P ∗i ) is equivalent to a projective system (Ni) with

surjective transition maps Nj → Ni if and only if (P ∗i ) satisfies the Mittag-

Leffler condition (see 7.12.3).

To prove (iii) notice that functors of the form (354) are those additive

functors which are right exact and commute with infinite direct sums (then

they commute with inductive limits). A functor of the form (355) is right

exact if and only if it is exact. If the modules Ni are finitely generated then

(355) commutes with infinite direct sums. If the transition maps Nj → Ni

are surjective and (355) commutes with inductive limits then the modules

Ni are finitely generated. �

7.12.7. According to 7.12.6 a flat Mittag-Leffler module is “the same as”

an equivalence class of projective systems (Ni) of finitely generated modules

with surjective transition maps Nj → Ni, i ≤ j, such that the functor (355)

is exact. More precisely, M = lim
−→
i

Hom(Ni, A) (then the functors (354) and

(355) are isomorphic).

7.12.8. Theorem. (Raynaud–Gruson). (What about D.Lazard? according

to [RG], p.73 the idea goes back to Theorems 3.1 and 3.2 from chapter I of

D.Lazard’s thesis in Bull.Soc.Math.France, vol.97 (1969), 81–128; see also

D.Lazard’s work in Bull.Soc.Math.France, vol.95 (1967), 95–108)

The following conditions are equivalent:

(i) M is a flat Mittag-Leffler module;
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(ii) every finite or countable subset of M is contained in a countably

generated projective submodule P ⊂M such that M/P is flat;

(iii) every finite subset of M is contained in a projective submodule

P ⊂M such that M/P is flat.

In particular, a projective module is Mittag-Leffler and a countably

generated*) flat Mittag-Leffler module is projective.

The implication (iii)⇒(i) is easy. (It suffices to show that if F and F ′ are

modules of finite presentation and ϕ : F → F ′, ψ : F ′ → M are morphisms

such that ψϕ(F ) ⊂ P then there exists ψ̃ : F ′ → M such that ψ̃(F ′) ⊂ P

and ψ̃ϕ = ψϕ; use the fact that Hom(L,M) → Hom(L,M/P ) is surjective

for every L of finite presentation, in particular for L = Cokerϕ).

The implication (i)⇒(ii) is proved in [RG], p.73–74. The key argument

is as follows. Suppose we have a sequence P1 → P2 → . . . where P1, P2, . . .

are finitely generated projective modules and the projective system (P ∗i )

satisfies the Mittag-Leffler property. To prove that P := lim
−→

Pi is projective

one has to show that for every exact sequence 0→ N ′ → N → N ′′ → 0 the

map Hom(P,N)→ Hom(P,N ′′) is surjective. For each i the sequence

0→ P ∗i ⊗N ′ → P ∗i ⊗N → P ∗i ⊗N ′′ → 0

is exact and the problem is to show that the projective limit of these

sequences is exact. According to EGA 0III 13.2.2 this follows from the

Mittag-Leffler property of the projective system (P ∗i ⊗N ′).

Remark. If the set of indices i were uncountable we would not be able*) to

apply EGA 0III 13.2.2.

*)The countable generatedness assumption is essential; see 7.12.24.
*)The argument from EGA 0III 13.2.2 is based on the following fact: if a projective

system of non-empty sets (Yi)i∈I parametrized by a countable set I satisfies the Mittag-

Leffler condition then its projective limit is non-empty. This is wrong in the uncountable

case. For instance, consider an uncountable set S, for every finite F ⊂ A denote by YF

the set of injections F → N; the maps YF ′ → YF , F ′ ⊃ F , are surjective but lim
←−
F

YF = ∅.
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Here is another proof of the projectivity of P (in fact, another version

of the same proof). Denote by fi the map Pi → Pi+1. The Mittag-Leffler

property means that after replacing the sequence {Pi} by its subsequence

there exist gi : Pi+1 → Pi such that gi+1fi+1fi = fi. Set P :=
⊕
i
Pi. Denote

by f : P → P and g : P → P the operators induced by the fi and gi. Then

gf2 = f . We have the exact sequence

0→ P 1−f−→P → P → 0

Since P is projective it suffices to show that this sequence splits, i.e., there

is an h : P → P such that h(1 − f) = 1. Indeed, set h = 1 − (1 − g)−1gf

and use the equality gf2 = f .*)

7.12.9. Proposition. Let B be an A-algebra. If M is a Mittag-Leffler A-

module then B ⊗A M is a Mittag-Leffler B-module. If B is faithfully flat

over A then the converse is true.

This is proved in [RG]. The proof is easy: represent M as an inductive

limit of modules of finite presentation and use 7.12.2.

So the notion of a Mittag-Leffler O-module on a scheme is clear as well

as the notion of Mittag-Leffler Op-module on an ind-scheme.

7.12.10. Proposition. A flat Mittag-Leffler O-module F of countable type

on a noetherian scheme S is locally free. If S is affine and connected, and

F is of infinite type then F is free.

This is an immediate consequence of 7.12.8 and the following result.

7.12.11. Theorem. If R is noetherian and SpecR is connected then every

nonfinitely generated projective R-module is free.

This theorem was proved by Bass (see Corollary 4.5 from [Ba63]).

*)D.Arinkin noticed that it is clear a priori that if f and g are elements of a (non-

commutative) ring R such that gf2 = f and 1− g has a left inverse then 1− f has a left

inverse. Indeed, denote by 1 the image of 1 in R/R(1− f). Then f1 = 1, gf21 = g1, so

g1 = 1 and therefore 1 = 0.
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7.12.12. Proposition. Let X be a formally smooth ind-scheme of ind-finite

type over a field. Then the Op-modules ΘX , DX , DiX (see 7.11.8) are flat

Mittag-Leffler modules.

Proof. Let us prove that the restriction of DX to a closed subscheme Y ⊂ X

is a flat Mittag-Leffler OY -module (the same argument works for ΘX and

DiX). We can assume that Y is affine (otherwise replace X by X \ F for a

suitable closed F ⊂ Y ). According to 7.12.6 it suffices to prove that

(i) The functor L 7→ L⊗DX defined on the category of OY -modules is

exact,

(ii) it has the form (355) where the OY -modules Ni are coherent.

By definition, L ⊗ DX is the sheaf D(L) defined by (349). So (ii) is clear.

We have proved (i) in 7.11.8. �

7.12.13. Proposition. Let X be a formally smooth ℵ0-ind-scheme of ind-

finite type over a field, Y ⊂ X a locally closed subscheme. Then the

restriction of ΘX to Y is locally free. If Y is affine and connected, and

the restriction of ΘX to Y is of infinite type then it is free.

This follows from 7.12.12 and 7.12.10.

7.12.14. Proposition. Let A be a ring, M an A-module. Define an

“A-space” FM (i.e., a functor from the category of A-algebras to that of

sets) by FM (R) = M ⊗R. Then FM is an ind-scheme if and only if M is a

flat Mittag-Leffler module. In this case FM is formally smooth over A and

of ind-finite type over A.

Proof. If M is a flat Mittag-Leffler module then by 7.12.6(ii) FM is an ind-

scheme and by 7.12.6(iii) it is of ind-finite type over A. Formal smoothness

follows from the definition. Now suppose that FM is an ind-scheme.

Represent FM as lim
−→

Si where the Si are closed subshemes of FM containing

the zero section 0 ∈ FM (A). Denote by Ni the restriction of the cotangent
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sheaf of Si to 0 : SpecA ↪→ Si. Then the functor (355) is isomorphic to

(354), so by 7.12.6(ii) M is a flat Mittag-Leffler module. �

Remark. If M is an arbitrary flat A-module then M is an inductive

limit of a directed family of finitely generated projective A-modules Mi,

so FM = lim
−→

FMi is an ind-scheme in the broad sense (the morphisms

FMi → FMj are not necessarily closed embeddings). It is easy to see that if

FM is an ind-scheme in the broad sense then M is flat.

7.12.15. Proposition. Let (Ni)i∈I be a projective system of finitely gener-

ated A-modules parametrized by a directed set I such that all the transi-

tion maps Nj → Ni, j ≥ i, are surjective. Set A(Ni) := Spec Sym(Ni),

S := lim
−→
i

A(Ni). The ind-scheme S is formally smooth over A if and only if

S is isomorphic to the ind-scheme FM from 7.12.14 corresponding to a flat

Mittag-Leffler module M .

Proof. S is formally smooth if and only if the functor (355) is exact (apply

the definition of formal smoothness to A-algebras of the form A⊕J , A·J ⊂ J ,

J2 = 0). Now use 7.12.6(iii). �

7.12.16. Proposition. Let M be a flat Mittag-Leffler module, FM the ind-

scheme from 7.12.14. The following conditions are equivalent:

(i) the pro-algebra corresponding to FM (see 7.11.2(i) ) is a topological

algebra;

(ii) M is a strictly Mittag-Leffler module in the sense of [RG].

According to [RG], p.74 a module M is strictly Mittag-Leffler if for every

f : F → M , F ∈ C, there exists u : F → G, G ∈ C, such that f = gu and

u = hf for some g : G → M , h : M → G (recall that C is the category of

modules of finite presentation). If M = lim
−→

Mi, Mi ∈ C, and uij : Mi →Mj ,

ui : Mi → M are the canonical maps then M is strictly Mittag-Leffler if

and only if for every i there exists j ≥ i such that uij = ϕijuj for some

ϕij : M → Mj . Clearly a projective module is stritly Mittag-Leffler and
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a strictly Mittag-Leffler module is Mittag-Leffler. The converse statements

are not true in general (see 7.12.24).

Proof. Represent M as lim
−→

Pi where the modules Pi are finitely generated

and projective. Set Ni := Im(P ∗j → P ∗i ) where j is big enough. Consider

the following conditions:

(a) the maps ϕi : lim
←−
r

Sym(Nr)→ Sym(Ni) are surjective;

(b) Imϕi ⊃ Ni for every i;

(c) the map lim
←−
r

Nr → Ni is surjective for every i;

(d) for every i there exists j ≥ i such that the images of Hom(M,A) and

Hom(Pj , A) in Hom(Pi, A) are equal.

Clearly (i)⇔(a)⇔(b)⇔(c)⇔(d). For i ≤ j consider the maps uij : Pi →

Pj and ui : Pi → M . To show that (d)⇔(ii) it suffices to prove that the

images of Hom(M,A) and Hom(Pj , A) in Hom(Pi, A) are equal if and only

if uij = ϕuj for some ϕ : M → Pj . To prove the “only if” statement notice

that the images of Hom(M,Pj) and Hom(Pj , Pj) in Hom(Pi, Pj) are equal

and therefore the image of id ∈ Hom(Pj , Pj) in Hom(Pi, Pj) is the image of

some ϕ ∈ Hom(M,Pj). �

7.12.17. Before passing to the structure of formally smooth affine ℵ0-

ind-schemes let us discuss the relation between the definition of formal

scheme from 7.11.1 and Grothendieck’s definition (see EGA I). They are

not equivalent even in the affine case. A formal affine scheme in our sense

is an ind-scheme X that can be represented as lim
−→

SpecRα where (Rα) is a

projective system of rings such that the maps uαβ : Rβ → Rα, β ≥ α, are

surjective and the elements of Keruαβ are nilpotent. Grothendieck requires

the possibility to represent X as lim
−→

SpecRα so that the maps

(356) lim
←−
β

Rβ → Rα
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are surjective*) and the ideals Keruαβ are nilpotent. A reasonable

ℵ0-formal scheme in our sense is a formal scheme in the sense of

EGA I. A quasi-compact formal scheme in Grothendieck’s sense having a

fundamental system of “defining ideals (English?)” (“Idéaux de définition”;

see EGA I 10.5.1) is a formal scheme in our sense; in particular, this is true

for noetherian formal schemes in the sense of EGA I.

Since we are mostly interested in affine ℵ0-formal schemes of ind-finite

type over a field the difference between our definition and that of EGA I is

not essential.

7.12.18. Proposition. Let X be a formally smooth ℵ0-ind-scheme of ind-

finite type over A, S ⊂ X a closed subscheme such that S → SpecA is

an isomorphism. Suppose that Xred = Sred (in particular, X is a formal

scheme). Let M denote the A-module of global sections of the restriction

of the relative tangent sheaf ΘX/A to S. Then M is a countably generated

projective module and (X,S) is isomorphic to the completion F̂M of the

ind-scheme FM (see 7.12.14) along the zero section.

Remark. The Op-module ΘX/A on a formally smooth ind-scheme X of

ind-finite type over A is defined just as in the case A = C (see 7.11.8,

7.11.7).

Proof. Just as in 7.12.12 one shows that M is a flat Mittag-Leffler module.

The ℵ0 assumption implies that M is countably generated. By 7.12.8 M is

projective.

Represent X as lim
−→

Xn, n ∈ N, where the Xn are closed subschemes of

X containing S such that Xn ⊂ Xn+1. Let X(1) be the first infinitesimal

neighbourhood of S in X, i.e., X(1) is the union of the first infinitesimal

*)This is stronger than surjectivity of uαβ ; e.g., if M is a flat Mittag-Leffler A-module

that is not strictly Mittag-Leffler then the arguments from 7.12.6 show that the completion

of FM along the zero section cannot be represented as lim
−→

SpecRα so that the maps (356)

are surjective.
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neighbourhoods of S in Xn, n ∈ N. Clearly X(1) = F
(1)
M :=the first

infinitesimal neighbourhood of 0 ∈ FM . The embedding X(1) → F̂M can be

extended to a morphism ϕ : X → F̂M (to construct ϕ define ϕn : Xn → F̂M

so that ϕn|Xn−1 = ϕn−1 and the restriction of ϕn toXn∩X(1) is the canonical

embedding Xn∩X(1) ↪→ F
(1)
M ; this is possible because F̂M is formally smooth

over A). Quite similarly one extends the embedding F
(1)
M = X(1) ↪→ X to

a morphism ψ : F̂M → X. Since ϕ and ψ induce isomorphisms between

F
(1)
M and X(1) we see that ϕ and ψ are ind-closed embeddings and ϕψ is an

isomorphism. So ϕ and ψ are isomorphisms. �

7.12.19. Example. We will construct a pair (X,S) satisfying the conditions

of 7.12.18 except the ℵ0 assumption such that (X,S) is not A-isomorphic to

a formal scheme of the form F̂M .

Suppose we have a nontrivial extension of flat Mittag-Leffler modules

(357) 0→ N ′ → N → L→ 0.

Such extensions do exist for “most” rings A; see 7.12.24(b, a′′, d). After

tensoring (357) by A[t] we get the extension 0→ N ′[t]→ N [t]→ L[t]→ 0.

Multiplying this extension by t we get 0→ N ′[t]→ Q→ L[t]→ 0. The ind-

scheme FQ is formally smooth over A[t] and therefore over A. Let S ⊂ FQ be

the image of the composition of the zero sections SpecA→ SpecA[t]→ FQ.

Denote by X the completion of FQ along S.

Before proving the desired property of (X,S) let us describe X more

explicitly. For an A-algebra R an R-point of FQ is a pair consisting of an

A-morphism A[t] → R and an element of Q ⊗A[t] R. In other words, an

R-point of FQ is defined by a triple (n, l, t), n ∈ N ⊗AR, l ∈ L⊗AR, t ∈ R,

such that

(358) π(n) = tl

where π is the projection N ⊗A R→ L⊗A R.
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So FQ is a closed ind-subscheme of FN ×FL×A1 defined by the equation

(358). Therefore X ⊂ F̂N × F̂L × Â1 is defined by the same equation (358)

(here Â1 is the completion of A1 at 0 ∈ A1).

Now suppose that (X,S) is A-isomorphic to F̂M . Then M is the module

of global sections of the restriction of ΘX/A to S. Linearizing (358) we see

that

(359) M = N ′ ⊕ L⊕A ⊂ N ⊕ L⊕A.

The composition

(360) F̂M
∼−→ X ↪→ F̂N × F̂L × A1

is defined by a “Taylor series”
∑∞

n=1 ϕn where ϕn is a homogeneous

polynomial map M → N ⊕ L⊕ A of degree n; clearly ϕ1 is the embedding

(359). Set f = prN ◦ϕ2 where prN is the projection N ⊕L⊕A→ N . Since

M = N ′ ⊕ L ⊕ A the module of quadratic maps M → N contains as a

direct summand the module of bilinear maps L× A→ N , i.e., Hom(L,N).

The image of f in Hom(L,N) defines a splitting of (357) (use the fact that

the morphism (360) factors through the ind-subscheme X ⊂ F̂N × F̂L × A1

defined by the equation (358)). So we get a contradiction.

7.12.20. Proposition. Let X be a formally smooth ind-scheme over a ring

A. Suppose that one of the following two assumptions holds:

(i) X is ind-affine;

(ii) A is noetherian and X is of ind-finite type over A.

Then X is the union of a directed family of ind-closed ℵ0-ind-schemes

formally smooth over A.

Proof. It suffices to show that for every increasing sequence of closed

subschemes Yn ⊂ X there is an ind-closed ℵ0-ind-scheme Y ⊂ X formally

smooth over A such that Y ⊃ Yn for all n.

Suppose that X is ind-affine. Then each Yn is affine. Represent Yn as

a closed subscheme of a formally smooth scheme Vn over A (e.g., represent



HITCHIN’S INTEGRABLE SYSTEM 329

the coordinate ring of Yn as a quotient of a polynomial algebra over A).

Let Y ′n ⊂ Vn be the first infinitesimal neighbourhood of Yn in Vn. Since

X is formally smooth the morphism Yn ↪→ X extends to a morphism

Y ′n → Zn ⊂ X for some closed subscheme Zn ⊂ X. Set Y
(2)
n := Z1∪ . . .∪Zn.

Now apply the above construction to (Y
(2)
n ) and get a new sequence (Y

(3)
n ),

etc. The union of all Y
(k)
n is formally smooth over A.

If X is ind-quasicompact but not ind-affine an obvious modification of the

above construction yields an ind-closed ℵ0-ind-scheme Y ⊂ X containing all

the Yn such that for any affine scheme S over A and any closed subscheme

S0 ⊂ S defined by an Ideal I ⊂ OS with I2 = 0 every A-morphism S0 → Y

extends locally to a morphism S → Y . If assumption (ii) holds then this

implies the existence of a global extension. �

7.12.21. We are going to describe formally smooth affine ℵ0-formal schemes

of ind-finite type over a field C (according to 7.12.20 the general case can,

in some sense, be reduced to the ℵ0 case). First of all we have the following

examples.

(0) Set Rmn := C[x1, . . . , xm][[xm+n, . . . , xm+n]]. Then Spf Rmn is a

formally smooth affine ℵ0-formal scheme over C.

(i) Let I ⊂ Rmn be an ideal, A := Rmn/I. Denote by I the sheaf of

ideals on Spf Rmn corresponding to I. Of course, Spf A is an affine

ℵ0-formal scheme of ind-finite type over C. It is formally smooth if

and only if for every u ∈ Spf A the stalk of I at u is generated by

some f1, . . . , fr ∈ I such that the Jacobi matrix ( ∂fi∂xj
(u)) has rank r.

(ii) Suppose that A is as in (i) and Spf A is formally smooth. Then

Spf A[[y1, y2, . . .]] is a formally smooth affine ℵ0-formal scheme of

ind-finite type over C.

In 7.12.22 and 7.12.23 we will show that every connected formally smooth

affine ℵ0-formal scheme of ind-finite type over a field is isomorphic to a

formal scheme from Example (i) or (ii).
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7.12.22. Proposition. Let X be a formally smooth affine formal scheme of

ind-finite type over a field C such that ΘX is coherent (i.e., the restriction

of ΘX to every closed subscheme of X is finitely generated). Then X is

isomorphic to a formal scheme from Example 7.12.21(i).

Proof. Represent X as lim
−→

SpecAi so that for i ≤ j the morphism Aj → Ai

is surjective with nilpotent kernel. The algebras Ai are of finite type.

We can assume that the set of indices i has a smallest element 0. Put

Ii := Ker(Ai → A0).

Lemma. For every k ∈ N there exists i1 such that the morphisms

Ai/I
k
i → Ai1/I

k
i1

are bijective for all i ≥ i1.

Assuming the lemma set A(k) := Ai/I
k
i for i big enough, I(k) :=

Ker(A(k) → A0). Clearly A(1) = A0, A(k) = A(k+1)/I
k
(k+1), I(k) =

I(k+1)/I
k
(k+1). One has X = Spf A, A := lim

←−
A(k). Choose generators

x̄1, . . . , x̄m of the algebra A(1) = A0 and generators x̄m+1, . . . , x̄m+n

of the A0-module I(2). Lift x̄1, . . . , x̄m+n to x̃1, . . . , x̃m+n ∈ A. Set

Rmn := C[x1, . . . , xm][[xm+1, . . . , xm+n]]. There is a unique continuous

homomorphism f : Rmn → A such that xi 7→ x̃i. Clearly f is surjective.

Moreover, f induces surjections ak → Ker(A → A(k)), where a ⊂ Rmn is

the ideal generated by xm+1, . . . , xm+n. So f is an open map. Therefore f

induces a topological isomorphism between A and a quotient of Rmn. The

proposition follows.

It remains to prove the lemma. There exists i0 such that for every i ≥ i0
the morphism SpecAi0 → SpecAi induces isomorphisms between tangent

spaces (indeed, since the restriction of ΘX to SpecA0 is finitely generated the

functor (355) corresponding to the A0-modules Ni := Ωi⊗AiA0 is isomorphic

to the functor L 7→ Hom(Q,L) for some A0-module Q, so there exists i0 such

that Ni = Ni0 for i ≥ i0). We can assume that i0 = 0. Set Yi := SpecAi/I
k
i

(in particular, Y0 = SpecA0). The morphisms Y0 → Yi induce isomorphisms

between tangent spaces.
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Represent A0 as C[x1, . . . , xn]/J and set Ỹ0 := SpecC[x1, . . . , xn]/Jk.

Since X is formally smooth the morphism Y0 ↪→ X extends to a morphism

Ỹ0 → X. Its image is contained in Yi1 for some i1. Let us show that

for i ≥ i1 the embedding ν : Yi1 ↪→ Yi is an isomorphism. We have the

morphism f : Ỹ0 → Yi1 . On the other hand, the morphism Y0 ↪→ Ỹ0

extends to g : Yi → Ỹ0. The composition νfg : Yi → Yi induces the

identity on Y0. So νfg is finite and induces isomorphisms between tangent

spaces. Therefore νfg is a closed embedding. Since Yi is noetherian a

closed embedding Yi → Yi is an isomorphism. So νfg is an isomorphism

and therefore ν is an isomorphism. �

7.12.23. Proposition. Let X be a connected formally smooth affine ℵ0-

formal scheme of ind-finite type over a field C such that ΘX is not coherent

(i.e., the restriction of ΘX to Xred is of infinite type). Then X is isomorphic

to a formal scheme from Example 7.12.21(ii).

Proof. We will construct a formally smooth morphism

X → Spf C[[y1, y2, . . .]]

whose fiber over 0 ∈ Spf C[[y1, y2, . . .]] is a formal scheme from 7.12.21(i).

Represent X as lim
−→

SpecAn, n ∈ N, so that for every n the morphism

An+1 → An is surjective with nilpotent kernel. The algebras An are of finite

type. By 7.12.13 the restriction of ΘX to SpecAn is free; it has countable

rank. This means that for every n the projective system (ΩAi⊗AiAn), i ≥ n,

is equivalent to the projective system

. . .→ A3
n → A2

n → An

(here the map Ak+1
n → Akn is the projection to the first k coordinates). So

after replacing the sequence (An) by its subsequence one gets the diagram

. . .� ΩA3 � F2 � ΩA2 � F1 � ΩA1
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where the Fn are finitely generated free An-modules and the An-modules

Gn := Ker(Fn+1 ⊗An+1 An → Fn) are also free. For each n choose a

base en1, . . . , enkn ∈ Gn. Lift eni to ẽni ∈ Ker(ΩAn+2 ⊗An+2 An → Fn) ⊂

Ker(ΩAn+2 ⊗An+2 An → ΩAn) and represent ẽni as dfni, fni ∈ Ker(An+2 →

A2). Finally lift fni to f̃ni ∈ A := lim
←−
m

Am and organize the fni, n ∈ N,

i ≤ kn, into a sequence ϕ1, ϕ2, . . . . This sequence converges to 0, so one has

a continuous morphism C[[y1, y2, . . .]] → A such that yi 7→ ϕi. It induces a

morphism

(361) f : X → Y := Spf C[[y1, y2, . . .]]

It follows from the construction that the differential

(362) df : ΘX → f∗ΘY

is surjective and its kernel is coherent (indeed, it is clear that these properties

hold for the restriction of (362) to SpecA1 ⊂ X, so they hold for the

restriction to SpecAn, n ∈ N).

Lemma. A morphism f : X → Y of formally smooth ind-schemes of ind-

finite type is formally smooth if and only if its differential (362) is surjective.

In this case ΘX/Y is the kernel of (362).

Assuming the lemma we see that (361) is formally smooth and ΘX/Y is

coherent. So the fiber X0 of (361) over 0 ∈ Y satisfies the conditions of

Proposition 7.12.22. Therefore X0 is isomorphic to a formal scheme from

Example 7.12.21(i). Let us show that X is isomorphic to X̃ := X0 × Y .

Indeed, since X is formally smooth over Y the embedding X0 ↪→ X extends

to a Y -morphism α : X̃ → X. Since X̃ is formally smooth over Y the

embedding X0 ↪→ X̃ extends to a Y -morphism β : X → X̃. Both α and β

are ind-closed embeddings (if a morphism ν : Y → Z of schemes of finite type

induces an isomorphism Yred → Zred and each geometric fiber of ν is reduced

then ν is a closed embedding). The Y -morphism βα : X0 × Y → X0 × Y
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induces the identity over 0 ∈ Y , so βα is an isomorphism. Therefore α and

β are isomorphisms, so we have proved the proposition.

The proof of the lemma is standard. The statement concerning ΘX/Y

follows from the definitions. To prove the first statement take an affine

scheme S with an Ideal I ⊂ OS such that I2 = 0 and let S0 ⊂ S be

the subscheme corresponding to I. For a morphism ψ : S0 → X denote

by EX(S, I, ψ) (resp. EY (S, I, ψ)) the set of extensions of ψ (resp. of

fψ) to a morphism S → X (resp. S → Y ). Formal smoothness of f

means that f∗ : EX(S, I, ψ) → EY (S, I, ψ) is surjective for all S, I, ψ as

above. Since X and Y are formally smooth EX(S, I, ψ) and EY (S, I, ψ)

are non-empty. According to 16.5.14 from [Gr67] they are torsors (i.e., non-

empty affine spaces) over VX(S, I, ψ) := Hom(ψ∗ΩX , I) = Γ(S0, ψ
∗ΘX ⊗I)

and VY (S, I, ψ) = Γ(S0, ψ
∗f∗ΘY ⊗ I). The map f∗ is affine and the

corresponding linear map Γ(S0, ψ
∗ΘX ⊗I)→ Γ(S0, ψ

∗f∗ΘY ⊗I) is induced

by (362). So the first statement of the lemma is clear. �

7.12.24. Examples of Mittag-Leffler modules.

(a) According to [RG], p.77, 2.4.1 for every noetherian A and projective

A-module P the A-module P ∗ := HomA(P,A) is strictly Mittag-

Leffler and flat. To prove that P ∗ is strictly Mittag-Leffler one can

argue as follows: for any f : F → P ∗ with F of finite type the image

of f∗ : P → F ∗ is generated by some l1, . . . , ln ∈ F ∗; the li define

u : F → An such that f = gu and u = hf for some g : An → P ∗,

h : P ∗ → An.

In particular, if A is noetherian then for every set I the A-module

AI is strictly Mittag-Leffler and flat.

(a′) It is well known that if A is a Dedekind ring and not a field then

AI is not projective for infinite I. Indeed, we can assume that I

is countable. Fix a non-zero prime ideal p ⊂ A and consider the

submodule M of elements a = (ai) ∈ AI such that ai → 0 in the
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p-adic topology. If AI were projective the localization Mp would

be free. Since M/pM has countable dimension Mp would have

countable rank. But M contains a submodule isomorphic to AI ,

so (AI)p would have countable rank. This is impossible because the

dimension of (AI)p/p · (AI)p = (A/p)I is uncountable.

(a′′) Suppose that A is finitely generated over Z or over a field*). If A is

not Artinian and I is infinite then AI is not projective: use (a′) and

the existence of a Dedekind ring B finite over A.

(b) If L is a non-projective flat Mittag-Leffler module then there exists a

non-split exact sequence 0→ N ′ → N → L→ 0 where N and N ′ are

flat Mittag-Leffler modules. Indeed, if N is a projective module and

N → L is an epimorphism then it does not split and Ker(N → L) is

Mittag-Leffler ([RG], p.71, 2.1.6).

(c) It is noticed in [RG] that if

(363) 0→ A
f→M ′ →M → 0

is a non-split exact sequence of A-modules and M is flat and Mittag-

Leffler then M ′ is Mittag-Leffler but not strictly Mittag-Leffler.

Indeed, if M ′ were strictly Mittag-Leffler then there would exist a

module G of finite presentation and a morphism u : A → G such

that f = gu and u = hf for some g : G → M ′, h : M ′ → G. Since

M is a direct limit of finitely generated projective modules one can

assume that Im g ⊂ Im f . Then gh would define a splitting of (363),

i.e., one gets a contradiction.

Here is another argument. The fiber of FM ′ over 0 ∈ FM is a

closed subscheme of FM ′ canonically isomorphic to SpecA × A1; if

(363) is non-split then the projection SpecA × A1 → A1 cannot be

extended to a function FM ′ → A1, so by 7.12.16 M ′ is not strictly

Mittag-Leffler.

*)We do not know whether it suffices to assume A noetherian.
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(d) Let A be a Dedekind ring which is neither a field nor a complete

local ring. Then according to [RG], p.76 there is a non-split exact

sequence (363) such thatM is a flat strictly Mittag-Leffler A-module.

Here is a construction. Let K denote the field of fractions of A.

Fix a non-zero prime ideal p ⊂ A and consider the completions

Âp, K̂p; then Âp 6= A, K̂p 6= K. Denote by M the module of

sequences (an) such that an ∈ p−n and (an) converges in K̂p; we

have the morphism lim : M → K̂p. Notice that M is a strictly

Mittag-Leffler module*). Indeed, according to (a) above
∏∞
n=1 p

−n

is strictly Mittag-Leffler and (
∏∞
n=1 p

−n)/M is flat, so M is strictly

Mittag-Leffler. We claim that Ext(M,A) 6= 0, i.e., the morphism

ϕ : Hom(M,K) → Hom(M,K/A) is not surjective. More precisely,

let l : M → K/A be the composition of lim : M → K̂p and the

morphisms K̂p → K̂p/Âp ↪→ K/A. We will show that l /∈ Imϕ.

Suppose that l comes from l̃ : M → K. The restriction of l̃

to p−n ⊂ M defines cn ∈ Hom(p−n, A) = pn. Then l̃ = l̃′ where

l̃′ : M → Kp maps (an) ∈M to

(364)
∞∑
n=1

cnan + lim
n→∞

an .

Indeed, l̃′ − l̃ is a morphism M/M0 → Âp where M0 is the set of

(an) ∈ M such that an = 0 for n big enough; on the other hand,

Hom(M/M0, Âp) = 0 because M/M0 is p-divisible (i.e., pM +M0 =

M). Since l̃′ = l̃ the expression (364) belongs to K ⊂ K̂p for every

sequence (an) ∈M . This is impossible (consider separately the case

where the number of nonzero cn’s is finite and the case where it is

infinite).

*)The fact that M is a Mittag-Leffler module is clear: A is a Dedekind ring, M is

flat, and for every finite-dimensional subspace V ⊂ M ⊗K the module V ∩M is finitely

generated
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Remark. In (d) we had to exclude the case where A is a complete local

ring. The true reason for this is explained by the following results:

1) according to [J] if A is a complete local noetherian ring, M is a flat A-

module, andN is a finitely generatedA-module then Ext(M,N) = 0;

2) according to [RG] (p.76, Remark 4 from 2.3.3) if A is a projective

limit of Artinian rings (is this the meaning of the words “linearly

compact” from [RG]?) then every (flat?) Mittag-Leffler A-module

is strictly Mittag-Leffler. (In [RG] there is no flatness assumption,

but is their argument correct without this assumption? e.g., why

the Fi from [RG] are linearly compact?)

7.13. BRST basics. The BRST construction is a refined version of

Hamiltonian reduction; it is especially relevant in the infinite-dimensional

setting. In the main body of this article we invoke BRST twice: first to

define the Feigin-Frenkel isomorphism and then to construct the localization

functor L∆ used in the proof of the Hecke property. In this section we give

a brief account of the general BRST construction; the functor L∆ is studied

in the next section.

The usual mathematical references for BRST are [F84], [FGZ86], [KS],

and [Ak]. We tried to write down an exposition free from redundand

structures (such as Z-grading, normal ordering, etc.).

We start with the finite-dimensional setting. Then, after a digression

about the Tate central extension, we explain the infinite-dimensional version.

7.13.1. Let F be a finite-dimensional vector space. Denote by Cl· = Cl·F
the Clifford algebra of F ⊕ F ∗ equipped with the grading such that F has

degree -1 and F ∗ has degree 1. We consider Cl· as an algebra in the tensor

category of graded vector spaces*). Set Cl·i := Λ≤iF ·ΛF ∗ ⊂ Cl·. Then

Cl·0 = Λ·F ∗ ⊂ Cl·1 ⊂ ... is a ring filtration on Cl·. The classical Clifford

algebra Cl· = Cl·F := gr Cl· is commutative (as a graded algebra), so it is

*)with the “super” commutativity constraint.
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a Poisson algebra in the usual way. Set Cl·i := gri Cl·. The commutative

graded algebra Cl· is freely generated by F = Cl−1
1 and F ∗ = Cl10. The

Poisson bracket {, } vanishes on F and F ∗, and for f ∈ F , f∗ ∈ F ∗ one has

{f, f∗} = f∗(f).

The subspace Cl01 is a Lie subalgebra of Cl; it normalizes F and F ∗ and

the corresponding adjoint action identifies it with EndF and EndF ∗ . Let

ELie = EndLie
F be EndF considered as a Lie algebra. Then E[ = End[F := Cl01

is a central extension of ELie by C.

Remarks. (i) The action of Cl on ΛF ∗ →∼Cl /Cl ·F identifies it with

the algebra of differential operators on the “odd” vector space F odd. The

filtration on Cl is the usual filtration by degree of the differential operator,

so Cl is the Poisson algebra of functions on the cotangent bundle to F odd.

(ii) (valid only in the finite-dimensional setting) The extension End[F splits

(in a non-unique way). Indeed, we have splittings s′, s” : ELie → E[ which

identify ELie with, respectively, F ∗·F and F ·F ∗. Any other splitting equals

sλ = λs′ + (1 − λ)s” for certain λ ∈ C. For example s1/2 is the “unitary”

splitting which may also be defined as follows. Notice that Cl carries a

canonical anti-automorphism (as a graded algebra) which is identity on F

and F ∗. It preserves Cl01, and the “unitary” splitting is the -1 eigenspace.

7.13.2. Here is the “classical” version of the BRST construction. Let n be a

finite-dimensional Lie algebra, R a Poisson algebra, lc : n→ R a morphism

of Lie algebras*). Set Cl· := Cl·n. The adjoint action of n yields a morphism

of Lie algebras ac : n → Cl01. Set A· := Cl· ⊗ R; this is a Poisson graded

algebra. It also carries an additional grading A·(i) := Cl·i⊗R compatible with

the product (but not with the Poisson bracket). We have the morphism of

Lie algebras Lie : n → A0, n 7→ Lien := ac(n) ⊗ 1 + 1 ⊗ lc(n). Below for

n ∈ n we denote by icn the corresponding element of Cl−1
1 ⊂ A−1

(1). One has

{Lien1 , i
c
n2
} = ic[n1,n2].

*)“c” for “classical”.
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The following key lemma, as well as its “quantum” version 7.13.7, is due

essentially to Akman [Ak].

7.13.3. Lemma. There is a unique element Qc = QcA ∈ A1 such that for any

n ∈ n one has {Qc, icn} = Lien. In fact, Qc ∈ A1
(≤1). One has {Qc, Qc} = 0.

Proof. Let us consider A as a Λn-module where n ∈ n = Λ1n acts as

Adicn = {icn, ·}. The subspace of elements killed by all Adicn ’s (i.e., the

centralizer of n ⊂ A−1
(1)) equals Λn ⊗ R. This is a subspace of A≤0, so the

unicity of Qc is clear. Our Λn-module is free, so the existence of Qc follows

from the fact that the map n1, n2 7→ {Lien1 , i
c
n2
} is skew-symmetric. Our

Qc belongs to A1
(≤1) since Lien ∈ A0

(≤1). Finally, since {Qc, Qc} ∈ A2,

to check that it vanishes it suffices to show that AdicnAdicn′ ({Q
c, Qc}) = 0

for any n, n′ ∈ n. Indeed, AdicnAdicn′ ({Q
c, Qc}) = 2Adicn({Lien′ , Qc}) =

2{ic[n,n′], Q
c}+ 2{Lien′ ,Lien} = 0. �

Remark. Denote by n·♥ the Lie graded algebra whose non-zero components

are n−1
♥ = n, n0

♥ = n, n1
♥ = C = C·Q, the Lie bracket on n0

♥ coincides with

that of n, the adjoint action of n0
♥ on n−1

♥ is the adjoint action of n, and the

operator AdQ : n−1
♥ → n0

♥ is idn. So n♥ equipped with the differential AdQ

is a Lie DG algebra*). Then 7.13.3 says that there is a canonical morphism

of Lie graded algebras Lie : n·♥ → A· whose components are, respectively,

n 7→ icn, n 7→ Lien, Q 7→ Qc.

7.13.4. Set d := AdQc = {Qc, ·}. This is a derivation of A· of degree 1 and

square 0. Thus A is a Poisson DG algebra; it is called the BRST reduction

of R. The morphism Lie : n♥ → A is a morphism of Lie DG algebras.

One says that the BRST reduction is regular if H iA = 0 for i 6= 0.

It is easy to see that Qc = Q1 +Q0 where Q1 ∈ A1
(1) = n⊗Λ2n∗⊗R and

Q0 ∈ A1
(0) = n∗⊗R are, respectively, the image of 1

2a
c ∈ Hom(n, Cl01) = n∗⊗

Cl01 ⊂ A1⊗A0 by the product map, and l ∈ Hom(n,R) = A1
(1). Decomposing

*)Notice that n♥/n
1
♥ is the Lie DG algebra nΩ from 7.6.3.
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the differential by the bigrading we see that A is the total complex of the

bicomplex with bidifferentials d′ : Ai(j) → A
i+1
(j) , d′′ : Ai(j) → A

i+1
(j−1).

The BRST differential preserves the filtration A(≤i). In particular A(0) =

C(n,R) is a DG subalgebra of A, hence one has a canonical morphism of

graded algebras

(365) H·(n,R)→ H·A.

Notice that (A·(−·), d
′′) is the Koszul complex P := Λ−·n ⊗ R for

lc : n→ R. So A is the Chevalley complex C·(n, P ) of Lie algebra cochains

of n with coefficients in P . The obvious projection P → R/Rlc(n) yields

an isomorphism of DG algebras A/I →∼C(n,R/Rlc(n)) where I ⊂ A is the

DG ideal generated by elements icn, n ∈ n. Passing to cohomology we get a

canonical morphism of graded algebras

(366) H·A → H·(n,R/Rlc(n)).

We say that lc is regular if Hi(P ) = 0 for i 6= 0.

7.13.5. Lemma. If lc is regular then (366) is an isomorphism.

Proof. Regularity means that the projection P → R/Rlc(n) is a quasi-

isomorphism. Hence A → C·(n,R/Rlc(n)) is also a quasi-isomorphism. �

Thus H iA vanish for negative i and H0A→∼[R/Rlc(n)]n which is the usual

Hamiltonian reduction of R with respect to the Hamiltonian action lc.

7.13.6. Now let us pass to the “quantum” version of BRST. Let n be a

finite-dimensional Lie algebra. Set Cl· := Cl·n. Denote by n[ the central

extension of n by C defined as the pull-back of End[n by the adjoint action

morphism n → Endn (see the end of 7.13.1 for the notation). In other

words, n[ is a central extension of n by C equipped with a Lie algebra map

a : n[ → Cl0 such that a(1n[) = 1*) and the action of n on Cl induced by

the adjoint action on n⊕ n∗ coincides with the adjoint action by a.

*)Here 1n[ is the generator of C ⊂ n[.
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Let R be an associative algebra, l : n[ → R a morphism of Lie algebras

such that l(1n[) = −1. Set A· := Cl· ⊗R; this is an associative graded

algebra. We have the morphism of Lie algebras Lie := a + l : n → A0,

n 7→ Lien := a(n[) + l(n[) where n[ is any lifting of n to n[. Below for

n ∈ n we denote by in the corresponding element of Cl−1
1 ⊂ A−1. One has

[Lien1 , in2 ] = i[n1,n2].

7.13.7. Lemma. There is a unique element Q = QA ∈ A1 such that for any

n ∈ n one has [Q, in] = Lien. In fact, Q ∈ Cl11⊗R. One has Q2 = 0.

Proof. Coincides with that of the “classical” version 7.13.3. �

Set d := AdQ
*); this is a derivation of A of degree 1 and square 0. Thus A

is an associative DG algebra called the BRST reduction of R. As in Remark

after 7.13.3 and 7.13.4 we have a canonical morphism of Lie DG algebras

Lie : n♥ → A with components n 7→ in, n 7→ Lien, Q 7→ QA.

One says that the BRST reduction is regular if H iA = 0 for i 6= 0.

Denote by C(n, R) the Chevalley DG algebra of Lie algebra cochains of n

with coefficients in R (with respect to the action Adl). As a graded algebra

it equals Λ·n∗ ⊗R, so it is a subalgebra of A·.

7.13.8. Lemma. The embedding C(n, R) ⊂ A is compatible with the

differentials.

Proof. It suuffices to show that on R, n∗ ⊂ A our differential equals,

respectively, the dual to n-action map R → n∗ ⊗ R and the dual to

bracket map n∗ → Λ2n∗. As in the proof of unicity of Q it suffices to

check that [in, [Q, r]] = [l(n), r] and [in1 , [in2 , [Q,n
∗]]] = n∗([n1, n2]) for any

n, n1, n2 ∈ n, n∗ ∈ n∗, r ∈ R; this is an immediate computation. �

Remark. We see that d preserves the ring filtration Cl· ⊗R. On

Cli⊗R/Cli−1⊗R = Λ·+in∗ ⊗ Λin⊗ R = C·+i(n,Λin⊗ R) it coincides with

the Chevalley differential.

*)Of course, we take Ad in the “super” sense, so for v ∈ Aodd one has dv = Qv + vQ.
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The embedding of DG algebras C(n, R) ⊂ A yields the morphism of

graded algebras

(367) H·(n, R)→ H·A.

In particular, since the center z of R lies in Rn, we get the morphism

(368) z→ H0A.

7.13.9. Remark. (valid only in the finite-dimensional setting) Let I be the

left DG ideal of A generated by elements in, n ∈ n. The quotient complex

A/I may be computed as follows. Let n ↪→ n[ be the splitting defined by

the splitting s′ from Remark (ii) in 7.13.1. Then I is generated as a plain

ideal by elements in and l(n), n ∈ n. Restricting the projection A→ A/I to

C(n, R), we get the isomorphism of complexes A/I →∼C(n, R/Rl(n)) which

yields a morphism

(369) H·A→ H·(n, R/Rl(n)).

7.13.10. Remark. Let C· be an irreducible graded Cl·-module (such C· is

unique up to isomorphism and shift of the grading). If M = (M ·, dM ) is an

R-complex (:= complex of R-modules) then M ⊗ C := (M · ⊗ C·, d), where

d := dM ⊗ idC +Q·, is an A-complex (i.e., a DG A-module). The functor

· ⊗ C : (R-complexes) → (A-complexes) is an equivalence of categories.

7.13.11. Let us compare the “quantum” and “classical” settings. Assume

that we are in situation 7.13.6. Let R0 ⊂ R1 ⊂ ... be an increasing ring

filtration on R such that ∪Ri = R and R := grR is commutative. Then R

is a Poisson algebra in the usual way. We endow A with the filtration A·
equal to the tensor product of filtrations Cl· and R·. Then A := grA equals

Cl ⊗R as a Poisson graded algebra. Set Ai := griA.

Assume that l(n[) ⊂ R1; let lc be the corresponding morphism n → R1.

Then (R, lc) are data to define the “classical” BRST construction from

7.13.2. By 7.13.3 we have the corresponding “classical” BRST element Qc.

It is easy to see that Q ∈ A1 and Qc equals to the image of Q in A1.
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Therefore the filtration A· is stable with respect to the differential, and grA

coincides with the corresponding “classical” A as a Poisson DG algebra.

Hence we have the spectral sequence converging to H·A with the first term

Ep,q1 = Hp+qA−p.

7.13.12. Lemma. (i) Assume that lc is regular. Then H iA = 0 for i < 0

and grH0A ⊂ [R/Rlc(n)]n.

(ii) If, in addition, H i(n,R/Rlc(n)) = 0 for i > 0 then H iA = 0 for i 6= 0

and grH0A→∼[R/Rlc(n)]n.

Proof. Look at the spectral sequence and 7.13.5. �

7.13.13. One may compute the algebra H0A explicitely in the following

situation. Assume we are in situation 7.13.11 and l : n[ → R1 is injective.

Denote by b′ the normalizer of l(n[) in R1. So b′ is a Lie algebra which

contains n[, and we have the embedding of Lie algebras lb : b′ → R1 which

extends l. Set b := b′/C, so b′ is a central extension of b by C. The

adjoint action of b yields a morphism of Lie algebras b → Endn; denote by

b[ the pull-back of the central extension End[ (see 7.13.1). Then n[ is a Lie

subalgebra of b[, and we have the morphism of Lie algebras ab : b[ → Cl01

which extends a.

Let b\ be the Baer sum of extensions b′ and b[. By construction we have

a canonical splitting s : n → b\. It is invariant with respect to the adjoint

action of b, so s(n) is an ideal in b\. Set h\ := b\/s(n); this is a central

extension of h := b/n by C.

Set Lieb := ab ⊗ 1 + 1 ⊗ lb : b\ → A0
1. This is a morphism of Lie

algebras which equals idC on C ⊂ b\. Its image commutes with Q (since

all our constructions were natural), i.e., it belongs to Ker d. One has

Lieb ◦s = Lie = d ◦ i : n → A0, so Lieb yields a canonical morphism

Lieh : h\ → H0A. Let U \h be the twisted enveloping algebra of h that

corresponds to h\. Our Lieh yields a canonical morphism of associative
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algebras

(370) h : U \h→ H0A.

This morphism has the obvious “classical” version hc : Sym h → H0A.

Its composition with the projection H0A → [R/lc(n)R]n (see (366)) is

the obvious morphism Sym h → [R/lc(n)R]n whose restriction to h is the

composition of lb with the projection R1 → R1/R0.

7.13.14. Lemma. Assume that lc is regular and the morphism Sym h →

[R/lc(n)R]n is an isomorphism. Then (370) is an isomorphism.

Proof. Use 7.13.12(i). �

7.13.15. Examples. (cf. [Ko78]) (i) We use notation of 7.13.13. Let g be

a (finite-dimensional) semi-simple Lie algebra, b ⊂ g a Borel subalgebra,

n := [b, b]. Set R := Ug and let R· be the standard filtration on R, so

R = Sym g. The extension n[ trivializes canonically since the adjoint action

of n is nilpotent. Let l : n → g ⊂ R be the obvious embedding. Then b′ is

equal to b⊕C, so this extension is trivialized. Let us trivialize the extension

b[ by means of the splitting s′ from Remark (ii) from 7.13.1. Therefore we

split the extension b\, hence U \h = Sym h.

The conditions of 7.13.14 are valid. Indeed, lc is clearly regular, and

the obvious embedding ic : Sym h ↪→ [Sym(g/n)]n is an isomorphism since n

acts simply transitively along the generic fiber of the projection (g/n)∗ → h∗.

Therefore h : Sym h→∼H0A.

Let us show that the canonical morphism (368) z → H0A = Sym h

is the usual Harish-Chandra morphism. The obvious embedding i :

Sym h→∼[R/Rl(n)]n is an isomorphism, and, by definition, the Harish-

Chandra morphism is composition of the embedding z ↪→ Rn and the inverse

to this isomorphism. Consider the map p : H0A → [R/Rl(n)]n from (369).

As follows from the definition of p one has ph = i which implies our assertion.
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(ii) Let now ψ : n→ C be a non-degenerate character of n (we use notation

of 7.13.15 (i)). Set Rt := R[t], lt := l + tψ : n→ Rt.

7.13.16. Let us pass to the infinite-dimensional setting. We need to fix some

Clifford algebra notation. Let F be a Tate vector space, so we have the ind-

scheme Gr(F ) (see 7.11.2(iii)). The ind-scheme Gr(F ) × Gr(F ) carries a

canonical line bundle λ of “relative determinants”. This is a graded line

bundle equipped with canonical isomorphisms

(371) λ(P,P ′′) = λ(P,P ′) ⊗ λ(P ′,P ′′)

and identifications λ(P,P ′) = det(P/P ′) for P ′ ⊂ P that satisfy the obvious

compatibilities; here we assume that det(P/P ′) sits in degree −dim(P/P ′).

Consider the Tate vector space F ⊕ F ∗ equipped with the standard

symmetric form and the Clifford algebra Cl = ClF := Cl(F ⊕ F ∗). Let

C be an irreducible discrete Cl-module*). Since C is unique up to tensoring

by a one-dimensional vector space*), the corresponding projective space P

is canonically defined (this is an ind-scheme). For any c-lattice P ⊂ F ⊗̂A

denote by λCP the set of elements of C ⊗A annihilated by Clifford operators

from P and P⊥ ⊂ F ∗⊗̂A. The A-submodule λCP ⊂ C ⊗A is a “line” (i.e., a

direct summand of rank 1), so λC is a line subbundle of C⊗OGr(F ). It defines

a canonical embedding Gr(F ) ↪→ P. There is a canonical identification

(372) λ(P,P ′) = λCP ⊗ (λCP ′)
∗

compatible with (371): if P ′ ⊂ P the isomorphism λ(P,P ′) ⊗ λCP ′
→∼λCP is

induced by the obvious map λ(P,P ′) = det(P/P ′)→ ClF /ClF ·P ′.

The algebra Cl carries a canonical grading such that F ⊂ Cl−1, F ∗ ⊂ Cl1.

Let C· be a grading on C compatible with the grading on ClF ; it is unique

*)Here “discrete” means that annihilator of any element of C is an open subspace of

F ⊕ F ∗.
*)C is isomorphic to the fermionic Fock space lim

−→U

∧
(F/U) ⊗ det(P/U)∗ (cf. (182)),

where P is a c-lattice in F and U belongs to the set of all c-sublattices of P .
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up to a shift. Then λC is a homogenuous line, and (372) is an isomorphism

of graded line bundles.

7.13.17. Denote by Cl
·

= Cl
·
F the completion of Cl· (as a graded algebra)

with respect to the topology generated by left ideals Cl ·U where U ⊂ F⊕F ∗

is an open subspace. Thus C is a discrete Cl-module. The action of Cl yields

an isomorphism of topological graded algebras Cl
·→∼End·CC.

The graded algebra Cl· has a canonical filtration Cl·0 = Λ·F ∗ ⊂ Cl·1 ⊂ ...

(see 7.13.1). We define the filtration Cl
·
i on Cl

·
as the closure of Cl·i. As

in 7.13.1 the classical Clifford algebra Cl· := gr Cl
·

is a Poisson graded

topological algebra. It carries an additional grading Cl·i := gri Cl
·
; one has

Clai = lim
←−U,V

Λi(F/U)⊗Λa+i(F ∗/V ) where U, V are, respectively, c-lattices

in F, F ∗.

Denote by E = EF the associative algebra of endomorphisms of F . Let

ELie be E considered as a Lie algebra. Notice that Cl01 is a Lie subalgebra of

Cl which normalizes Cl−1
1 . The adjoint action of Cl01 on Cl−1

1 = F identifies

Cl01 with ELie*). Set E[ := Cl
0
1; this is a Lie subalgebra of Cl which is a

central extension of Cl01 = ELie by C.

We see that E[ acts on C in a way compatible with the Clifford action;

this action preserves the grading on C.

The next few sections 7.13.18 - 7.13.22 provide a convenient description of

E[ and some of its subalgebras. The reader may skip them and pass directly

to 7.13.23.

7.13.18. Here is an explicit description of the central extension E[ of ELie

due essentially to Tate [T].

Let E+ ⊂ E be the (two-sided) ideal of bounded operators (:= operators

with bounded image), E− ⊂ E that of discrete operators (:= operators

with open kernel). One has E+ + E− = E; set Etr := E+ ∩ E−. For any

A ∈ Etr its trace trA is well-defined (if U ′ ⊂ U ⊂ F are c-lattices such that

*)Use the above explicit description of Cl01.
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A(F ) ⊂ U , A(U ′) = 0 then we have A∼ : U/U ′ → U/U ′ and trA := trA∼).

The functional tr : Etr → C is invariant with respect to the adjoint action

of ELie; it also vanishes on [E+, E−] ⊂ Etr.

Our extension E[ is equipped with canonical splittings s+ : E+ → E[,

s− : E− → E[. Namely, for A ∈ E+ its lifting s+(A) is characterised

by the property that s+(A) kills any element in C annihilated by all

Clifford operators from ImA ⊂ g. Similarly, s−(A) is the unique lifting

of A ∈ E− that kills any element in C annihilated by all Clifford operators

from (KerA)⊥ ⊂ F ∗. The sections s± commute with the adjoint action of

E, and for A ∈ Etr one has s−(A)−s+(A) = trA ∈ C ⊂ E[. It is easy to see

that the data (E[, s±) with these properties are uniquely defined. Indeed,

consider the exact sequence of E-bimodules

(373) 0 −→ Etr
(−,+)−→E+ ⊕ E−

(+,+)−→E −→ 0.

Now s = (s+, s−) identifies E[ with the push-forward of the extension (373)

by tr : Etr → C. The adjoint action of ELie on E[ comes from the adjoint

action on the E-bimodule E+ ⊕ E−.

Remarks. (i) The vector space F ⊗ F ∗ carries 4 natural topologies with

bases of open subspaces formed, respectively, by U ⊗ V , U ⊗ F ∗, F ⊗ V ,

and U ⊗ F ∗ + F ⊗ V , where U ⊂ F , V ⊂ F ∗ are open subspaces. The

corresponding completions are equal, respectively, to Etr, E+, E−, and E.

The trace functional is the continuous extension of the canonical pairing

F ⊗ F ∗ → C.

(ii) Set (E−/Etr)
[ := E−/Ker tr; this is a central extension of (E−/Etr)

Lie

by C. Note that E−/Etr →∼E/E+, so we have the projection π− : ELie →

(E−/Etr)
Lie. It lifts canonically to a morphism of extensions π[− : E[ →

(E−/Etr)
[ with kernel s+(E+). In other words, E[ is the pull-back of

(E−/Etr)
[ by π−. Same for ± interchanged.

(iii) Let F i be a finite filtration of F by closed subspaces; denote by

B ⊂ EF the subalgebra of endomorphisms that preserve the filtration. We
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have the induced central extension B[ of BLie. On the other hand, we have

the obvious projections gri : B → Egri F ; let B[i be the pull-back of the

extension E[
gri F

of ELie
gri F

. Denote by B[′ the Baer sum of the extensions B[i.

Then there is a canonical (and unique) isomorphism of extensions B[′ →∼B[.

Indeed, B[′ coincides with the extension defined by the exact subsequence

0→ B ∩ Etr → (B ∩ E+)⊕ (B ∩ E−)→ B → 0

of (373) (notice that for e ∈ B∩Etr one has tr(e) = Σtr(grie)). In particular

we see that B[ splits canonically over the Lie subalgebra Ker gr·.

7.13.19. Set K = C((t)), O := C[[t]]. Let F be a finite-dimensional K-

vector space equipped with the usual topology; this is a Tate C-vector space.

Let i : D ↪→ E be the agebra of K-differential operators acting on F , so

we have the induced central extension D[ of the Lie algebra DLie. Let us

rephrase (following [BS]2.4) the Tate description of D[ in geometric terms.

Set F ′ := HomK(F,K), F ◦ := F ′⊗
K
ωK . Clearly F ◦ coincides with the

Tate dual F ∗ (use the pairing f◦, f 7→< f◦, f >:= Res(f◦, f)). Our F is

a left D-module, and F ◦ carries a unique structure of right D-module such

that <,> is a D-invariant pairing; notice that D acts on F ◦ by differential

operators, and this is the usual geometric ”adjoint” action. Let K⊗̂K be the

completion of K⊗K with respect to the topology with basis (tnO)⊗ (tnO),

i.e. K⊗̂K := C[[t1, t2]][t−1
1 ][t−1

2 ]. Let F ⊗̂F ◦ be the similar completion of

F ⊗ F ◦; this is a finite-dimensional K⊗̂K-module. Denote by F ⊗̂F ◦(∞∆)

the localization of F ⊗̂F ◦ by (t1−t2)−1, i.e., by the equation of the diagonal.

Consider the standard exact sequence

(374) 0 −→ F ⊗̂F ◦ −→ F ⊗̂F ◦(∞∆)
r−→D −→ 0

where the projection r sends a ”kernel” k = k(t1, t2)dt2 ∈ F ⊗̂F ◦(∞∆) to

the differential operator r(k) : F → F , f(t) 7→ Rest2=t(k(t, t2), f(t2))dt2.

Note that F ⊗̂F ◦ is a D-bimodule in the obvious way. This biaction extends



348 A. BEILINSON AND V. DRINFELD

in a unique way to the D-biaction on F ⊗̂F ◦(∞∆) compatible with the K-

bimodule structure. It is easy to see that (374) is an exact sequence of

D-bimodules. Let tr : F ◦⊗̂F → C be the morphism f ⊗ f◦ 7→< f◦, f >

(i.e., it is the residue of the restriction to the diagonal). It is invariant with

respect to the adjoint action of DLie. Denote by D[′ the push-forward of

(374) by tr. The adjoint action of on F ⊗̂F ◦(∞∆) yields a DLie-module

structure on D[′ . For l[1, l
[
2 ∈ D[′ set [l[1, l

[
2] := l1(l[2) where l1 is the image of

l[1 in DLie.

7.13.20. Lemma. The bracket [, ] is skew-symmetric, so it makes D[′ a

central extension of DLie by C. There is a unique isomorphism of central

extensions

D[′ →∼D[.

Proof. It suffices to establish an isomorphism of DLie-module extensions

D[′ →∼D[. It comes from a canonical embedding i∼ : (374) ↪→ (373)

of exact sequences of D-bimodules defined as follows. The morphism

D ↪→ E is our standard embedding i, and i∼ : F ⊗̂F ◦ = F ⊗̂F ∗ →∼Etr
is the obvious isomorphism (see Remark (i) in 7.13.18). The map i∼ =

(i∼+, i
∼
−) : F ⊗̂F ◦(∞∆) → E+ ⊕ E− sends the “kernel” k to the operators

i∼−(k) equal to f 7→ −Rest2=0(k(t, t2), f(t2))dt2 and i∼+(k) equal to f 7→

(Rest2=t + Rest2=0)(k(t, t2), f(t2))dt2. Here f ∈ F and (k(t, t2), f(t2))dt2 ∈

F ((t2))dt2. We leave it to the reader to check that the operators i∼±(k)

belong to E±
*). Since i∼ identifies the trace functionals it yields the desired

isomorphism of DLie-modules D[′ →∼D[. �

Remark. Let Di ⊂ D be the subspace of differential operators of degree

≤ i. The extension D[
i carries a natural topology induced by the embedding

*)This is clear for i∼−(k). To check that i∼+(k) ∈ E+ one may use Parshin’s residue

formula ([Pa76], §1, Proposition 7) applied to 2-forms (k(t1, t2), g(t1)f(t2))dt1∧dt2 where

g belongs to a sufficiently small c-lattice in F ∗.
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D[
i ⊂ ClF . This is a Tate topology; the quotient topology on Di coincides

with its natural topology of a finite-dimensional K-vector space.

7.13.21. Example. Set E := EndK F = D0 ⊂ D, so we have the central

extension E[ of ELie. Let L ⊂ DLie be the normaliser of E ; it acts on E[ by

the adjoint action. We will describe the extension E[ as an L-module*).

It is easy to see that L coincides with the Lie algebra of differential

operators of order ≤ 1 whose symbol belongs to DerK · idF . In other words,

L consists of pairs (τ, τ∼) where τ ∈ DerK and τ∼ is an action of τ on F ,

i.e., L is the Lie algebra of infinitesimal symmetries of (K,F ).

As above, set E◦ := E ⊗
K
ωK . We identify E◦ with the Tate vector space

dual E∗ using the pairing <,>: E◦ × E → C, < a, b >:= Res trK(ab). The

adjoint action of L on E◦ is (τ, τ∼)(e⊗ν) = [τ∼, e]⊗ν+e⊗Lieτν. Let ω
⊗1/2
K

be a sheaf of half-forms on SpecK. It carries an L-action ((τ, τ∼) acts by

Lieτ ), so L acts on ⊗ω⊗1/2
K . Consider the set Conn(F⊗ω⊗1/2

K ) of connections

on F ⊗ω⊗1/2
K

*). Since EndK F = EndK(F ⊗ω⊗1/2
K ) our Conn(F ⊗ω⊗1/2

K ) is

an E◦-torsor; L acts on it in the obvious way.

7.13.22. Lemma. There is a unique L- and E◦-invariant pairing

<,>: Conn(F ⊗ ω⊗1/2
K )× E[ → C

such that < ∇, 1E[ >= 1 for any ∇ ∈ Conn(F ⊗ ω⊗1/2
K ).

Remarks.(i) An element λ ∈ E◦ acts on Conn(F⊗ω⊗1/2
K ) and E[ according

to formulas ∇ 7→ ∇+λ and e[ 7→ e[+ < λ, e > (here e := e[ mod CE◦ = E).

So E◦-invariance of <,> means that < ∇+ λ, e[ >=< ∇, e[ > − < λ, e >.

(ii) Clearly <,> identifies E[ with the L-module of continuous affine

functionals on Conn(F ⊗ ω⊗1/2
K ). This is the promised description of E[.

*)Since E ⊂ L we describe in particular the adjoint action of E which amounts to the

Lie bracket on E[.
*)It does not depend on the choice of ω

⊗1/2
K .
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Proof. The unicity of <,> follows since Conn(F ⊗ω⊗1/2
K ) has no L-invariant

elements.

To define < ∇, e[ > let us choose connections ∇F on F and ∇ω on ωK

such that ∇ = ∇F + 1
2∇ω.

a. The connection ∇F identifies the restrictions of F ⊗ K and K ⊗ F

to the formal neighbourhood of the diagonal, i.e., it yields an isomorphism

of K⊗̂K-modules ε(∇F ) : F ⊗̂K →∼K⊗̂F . Let ε(∇F ) : F ⊗̂F ◦ → K⊗̂ωK be

the composition of ε(∇F )⊗ idF ◦ and the obvious morphism K⊗̂(F ⊗F ◦)→

K⊗̂ωK defined by the pairing F ⊗ F ◦ → ωK . Localizing ε(∇F ) by the

equation of the diagonal we get the morphism F ⊗̂F ◦(∞∆)→ K⊗̂ωK(∞∆).

Applying it to e[ we get a 1-form ε(∇F , e[) ∈ K⊗̂ωK(∆) well-defined up to

the subspace of those forms φ(t1, t2)dt2 ∈ K⊗̂ωK that Res0 φ(t, t)dt = 0.

Notice that for λ ∈ E◦ one has ε(∇F + λ, e[) = ε(∇F , e[) − trK(λ·e) (here

trK(λ·e) ∈ ωK = K⊗̂ωK/(t1 − t2)K⊗̂ωK).

b. Let ν ∈ ωK⊗̂K(∆) be a form with residue 1 at the diagonal

(i.e., ν equals dt1
t1−t2 modulo ωK⊗̂K). Let ψ(∇ω) be a similar form such

that ψ(∇ω)⊗2 = −∇(1)
ω ν*). Notice that ψ(∇ω) is well-defined modulo

(t1 − t2)ωK⊗̂K. For l ∈ ωK one has ψ(∇ω + l) = ψ(∇ω) − l (here we

consider l as an element in ωK⊗̂K/(t1 − t2)ωK⊗̂K).

c. Consider the 2 form ε(∇F , e[) ∧ ν. Set

< ∇, e[ >:= Res0 Res∆(ε∇(e[) ∧ ν)

Then < ∇, e[ > is well-defined (i.e., it does not depend on the auxiliary

choices) and <,> is E◦-invariant. Since all the constructions where natural

it is also L-invariant. �

Remarks. (i) Let eα be an F -basis of F , e′α the dual basis of F ′, and

∇ the connection such that e′α·(dt)−1/2 are horisontal sections. Denote by

(eα·e′β)[ ∈ E[ the image of eα ⊗ e′β
dt2
t2−t1 . Then < ∇, (eα·eβ)[ >= δα,β.

*)here ∇(1)
ω is the covariant derivative along the first variable.
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(ii) The above lemma is a particular case of the local Riemann-Roch

formula; see, e.g., Appendix in [BS].

7.13.23. Now let n be a Lie algebra in the Tate setting, i.e., a Tate vector

space equipped with a continuous Lie bracket [ , ]. The following lemma

may help the reader to feel more comfortable.

Lemma. n admits a base of neighbourhoods of 0 that consists of Lie

subalgebras of n.

Proof. Take any c-lattice P ⊂ n. We want to find an open Lie algebra k ⊂ P .

Note that

(375) nP := {α ∈ n : [α, P ] ⊂ P}

is an open Lie subalgebra. Set k := P ∩ nP . �

7.13.24. We use the notation of 7.13.17 for F = n. So we have the Clifford

graded topological algebra Cl
·

= Cl
·
n, the corresponding classical Clifford

algebra Cl· = gr Cl
·

(which is a Poisson graded topological algebra), the

central extension E[ of the Lie algebra ELie of endomorphisms of the Tate

vector space n and the embedding E[ ↪→ Cl
0
. The adjoint action defines a

morphism n→ ELie; denote by n[ the pull-back of the extension E[ to n. So

n[ is a central extension of n by C. We equip n[ with the weakest topology

such that the projection n[ → n and the morphism n[ → Cl
0

are continuous.

Then n[ is a Tate space and the map n[/C→ n is a homeomorphism*).

7.13.25. Now we are ready to render the BRST construction to the infinite-

dimensional setting. Let us start with the ”classical” version. Let R be a

topological Poisson algebra. We assume that R is complete and separated

and topology.

*)Indeed, the extension n[ has a canonical continuous splitting over any subalgebra of

the form (375) (its image consists of operators annihilating λP ).
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7.13.26. Denote byM(g)[ the category of discrete g[-modules V such that

1 ∈ C ⊂ g[ acts as − idV . For such V , the g[-actions on C· and V yield a g-

module structure on C· ⊗V . It is also a Clg-module in the obvious manner,

and the g -action is compatible with the Clifford action. For α ∈ g we denote

its action on C· ⊗V by Lieα, and the Clifford operator C· ⊗V → C·−1⊗V

by iα.

It is convenient to rewrite the operators acting on C· ⊗ V as follows (cf.

7.7.5). Let Ωg be the DG algebra of continuous Lie algebra cochains of

g. The corresponding plane graded algebra Ω·g is the completed exterior

algebra of g∗. We identify it with the closed subalgebra of the completed

Clifford algebra Clg generated by g∗ ⊂ Clg, so Ω·g acts on C· ⊗V by Clifford

operators. Now let gΩ be a DG Lie algebra defined as follows. The only

non-zero components are g0
Ω = g−1

Ω = g, the differential g−1
Ω → g0

Ω is idg, the

bracket on g0
Ω is the bracket of g. Recall that gΩ acts on Ωg (namely, g0

Ω

acts in coadjoint way, and g−1
Ω acts by ”constant” derivations). The graded

Lie algebra g·Ω acts on C· ⊗ V via the operators Lieα and iα. So C· ⊗ V is

a graded (Ω·g, g·Ω) -module.

7.13.27. Proposition. There is a unique linear map d : C· ⊗V → C·+1⊗V

such that for any α ∈ g one has Lieα = diα + iαd. One has d2 = 0, and

Cg(V ) := (C· ⊗ V, d) is a DG (Ωg, gΩ) -module.

Proof. Uniqueness. The difference of two such d’s is an operator that

commutes with any iα. It is easy to see that the algebra of all such operators

coincides with the closed subalgebra generated by g−1
Ω and EndV . Since it

has no operators of positive degree we are done.

A similar argument shows that the action of (Ωg, gΩ) is compatible with

the differentials and that d2 = 0 (first you prove that [d, Lieα] = 0, then the

rest of properties).

Existence. We write d explicitely. Let ei, i ∈ I, be a topological basis of

g (see 4.2.13), e∗i the dual basis of g∗. For a semi-infinite (with respect to g)
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subset A ⊂ I denote by λA ⊂ C· the homogenuous line λC that corresponds

to the c-lattice generated by ea, a ∈ A (see 7.13.16). In other words λA

is the subspace of vectors killed by the Clifford operators ea, e
∗
b for a ∈ A,

b ∈ I \A. Our C· is the direct sum of λA’s. Note that for a, b as above one

has e∗a(λA) = λA\a, eb(λA) = λA∪b.

Set VA := λA ⊗ V ; then C· ⊗ V is direct sum of VA’s. For c ∈ I set

Lc := Lieec , ic := iec ; for semi-infinite A,A′, we denote by LA,A
′

c , iA,A
′

c the

A,A′-components VA → VA′ of these operators.

Let A,B be semi-infinite subsets such that |A|−|B| = 1 (here |A|−|B| :=

|A\ (A∩B)|− |B \ (A∩B)|). Choose any a = aA,B ∈ A\ (A∩B) (this set is

not empty). Denote by dA,B the composition VA → VB∪a → VB where the

first arrow is LA,B∪aa , the second one is the Clifford operator e∗a. It is easy

to see that the operator d : C· ⊗ V → C·+1 ⊗ V with components dA,B is

correctly defined (use the fact that for any v ∈ V and there is only finitely

many a ∈ A such that La(λA ⊗ v) is non-zero).

It remains to show that our d satisfies the condition of the Proposition,

i.e., that for any c ∈ I one has [d, ic] = Lc. One checks this fact by a direct

computation; the key point is the skew-symmetry of [La, ib] with respect to

a, b. We leave the details for the reader. �

7.13.28. If V is a complex in M(g)[ then we denote by Cg(V ) the total

complex for the bicomplex C(V ·). This is a discrete DG (Ωg, gΩ)-module

(an (Ωg, gΩ)-complex for short). The functor Cg is an equivalence between

the DG category C(g)[ of complexes in M(g)[ (we call them g[-complexes)

and the DG category C(Ωg, gΩ) of (Ωg, gΩ)-complexes. The inverse functor

assigns to F ∈ C(Ωg, gΩ) the complex HomClg(C·, F ).

7.13.29. Let k ⊂ g be an open bounded Lie subalgebra. For a ≥ 0 denote

by C·a ⊂ C· the subspace of elements killed by product of any a + 1

Clifford operators from k⊥ ⊂ g∗. Then 0 = C·−1 ⊂ C·0 ⊂ C·1 ⊂ ... is an

increasing filtration on C· = ∪C·a. Any Clifford operator ν ∈ g∗ preserves
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our filtration; if ν belongs to k⊥ then it sends C·a to C·+1
a−1. Any Clifford

operator from g sends C·a to C·−1
a+1; if it belongs to k then it preserves the

filtration. Thus gr∗C
· is a module over the Clifford algebra Clg:k of the vector

space (g/k)⊕(g/k)∗⊕k⊕k∗ (equipped with the standard ”hyperbolic” form).

This is an irreducible Clg:k-module; and C·0 is an irreducible module over

the subalgebra Clk ⊂ Clg,k. The homogenuous line λk = λ
(C)
k (see 7.13.16)

sits in C·0, and gr∗C
· is a free module over the subalgebra Λ(g/k)⊗Λk∗ ⊂ Clg:k

generated by this line. If λk ⊂ C0 (we may assume this shifting the · filtration

if necessary) then graC
b = Λa(g/k)⊗ Λb+ak∗ ⊗ λk.

Let k[ ⊂ g[ be the preimage of k. This is a central extension of k by C

which splits canonically: the image of the splitting k → k[ consists of those

elements that kill λk (we consider the Lie algebra action of k[ on C·).

For V ∈ C(g)[ the subspaces C·a ⊗ V are subcomplexes of Cg(V ); denote

them by Cg(V )a. We get a filtration on Cg(V ) preserved by the Clifford

operators from g∗ and k; the successive quotients graCg(V ) are (Ωk, kΩ)-

complexes. For a k-complex P denote by Ck(P ) the Chevalley complex of Lie

algebra cochains of k with coefficients in P ; this is an (Ωk, kΩ)-complex. The

identification graCg(V )· = Λ·+ak∗ ⊗ (V · ⊗ Λa(g/k)⊗ λk) is an isomorphism

of (Ωk, kΩ)-complexes

(376) graCg(V )→∼Ck(V ⊗ Λa(g/k)⊗ λk)[a]

Here k acts on Λa(g/k) according to the adjoint action. The correspond-

ing spectral sequence converges to H·Cg(V ); its first term is Ep,q1 =

Hp+q gr−pCg(V ) = Hq(k,Λ−p(g/k)⊗ V ⊗ λk).

7.13.30. Remark. Assume that we have a k[-subcomplex T ⊂ V such that

V is induced from T , i.e., V = U(g[) ⊗
U(k[)

T . Then the composition of

embeddings Ck(T ⊗ λk) ⊂ Cg(V )0 ⊂ Cg(V ) is a quasi-isomorphism.
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7.14. Localization functor in the infinite-dimensional setting. Now

we may explain the parts (c), (d) of the ”Hecke pattern” from 7.1.1 in the

present infinite-dimensional setting.

7.14.1. Let G, K be as in 7.11.17 and G′ be a central extension of G by Gm

equipped with a splitting K → G′ (cf. 7.8.1). Then g, g′ are Lie algebras

in Tate’s setting, and k = LieK is an open bounded Lie subalgebra of g, g′.

All the categories from 7.8.1 make obvious sense in the present setting.

One defines the Hecke Action on the category D(g,K)′ as in 7.8.2. Now

the line bundle LG is an Op-module on G, and VG is a complex of left

Dp-modules (see 7.11.3). All the constructions of 7.8.2 pass to our situation

word-by-word, as well as 7.8.4-7.8.5 (in 7.8.4 we should take for U ′, as usual,

the completed twisted enveloping algebra).

7.14.2. To define the localization functor L∆ we need some preliminaries.

Let Y be a scheme, F a Tate vector space. A ClF -module on Y is a Z-graded

O-module C· on Y equipped with a continuous action of the graded Clifford

algebra Cl·F (see 7.13.16). For any c-lattice P ⊂ F denote by λP (C·) the

graded O-submodule of C· that consists of local sections killed by Clifford

operators from P ⊂ F and P⊥ ⊂ F ∗. The functor λP : C(Y ) → { the

category of graded O-modules on Y } is an equivalence of categories*). For

two c-lattices P1, P2 there is a canonical isomorphism

(377) λP1(C·)→∼λ(P1,P2) ⊗ λP2(C·)

that satisfies the obvious transitivity property (see 7.13.16). Same is true

for Y -families of c-lattices (see loc. cit.).

7.14.3. Now assume we are in situation 7.11.18. Then Y carries a canonical

Clg-module C·Y defined as follows. Let K ⊂ G be a reasonable group

subscheme, k := LieK. Denote by ω(K\Y ) the pull-back of the canonical

*)The inverse functor is tensoring by an appropriate irreducible graded Clifford module

over C.
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bundle ωK\Y = det ΩK\Y by the projection Y → K \Y (recall that K \Y is

a smooth stack). This is a graded line bundle that sits in degree dimK \Y .

If K1,K2 ⊂ G are two reasonable group subschemes as above, then there is

a canonical isomorphism

(378) ω(K1\Y ) = λ(k1,k2) ⊗ ω(K2\Y )

which satisfies the obvious transitivity property. Indeed, to define (378)

it suffices to consider the case K2 ⊂ K1. The pull-back to Y of the

relative tangent bundle for the smooth projection K2 \ Y → K1 \ Y equals

(k1/k2)⊗OY , which yields (378). The transitivity property is clear.

Now our C·Y ∈ C(Y ) is a Clifford module together with data of

isomorphisms λk(C
·
Y )→∼ω(K\Y ) for any reasonable subgroup K ⊂ G that

are compatible with (377) and (378). Such C·Y exists and unique (up to a

unique isomorphism).

The action of G on Y lifts canonically to a G-action on C·Y compatible

with adjoint action of G on the Clifford operators g⊕ g∗. Indeed, G(C) acts

on all the objects our C·Y is cooked up with, so it acts on C·Y . To define the

action of A-points G(A) on C·Y ⊗ A one has to spell out the characteristic

property of the Clifford module C·Y ⊗ A on Y × SpecA using A-families of

reasonable group subschemes of G. We leave it to the reader.

Remark. Take any y ∈ Y . The fiber C·y of C·y at y is an irreducible graded

Cl·g-module which may be described as follows. Consider the ”action” map

g→ Θy. Its kernel gy (the stabilizer of y) is a d-lattice in g. The cokernel T

is a finite-dimensional vector space. Let C·ygy be the graded vector space of

gy-coinvariants in C·y (with respect to the Clifford action of gy). Now there

is a canonical identification CdimT
ygy

→∼det(T ∗), and C·y is uniquely determined

by this normalization.

7.14.4. Let L = LY be a line bundle on Y equipped with a G′-action that

lifts the G-action on Y ; we assume that Gm ⊂ G acts on L by the character

opposite to the standard.
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Take V ∈M(g)′, so V is a discrete g′-module on which C ⊂ g′ acts by the

standard character. Then the tensor product L⊗V is a g-module, as well as

C·Y ⊗L⊗V (i.e., the g-action on Y lifts to a continuous g-action on these O-

modules). We denote the action of α ∈ g on C·Y ⊗L⊗V by Lieα. Note that

C·Y ⊗L⊗ V is also a Clifford module, and the above g-action is compatible

with the Clifford operators. As usual we denote the Clifford action of α ∈ g

by iα. So, as in 7.13.26, our C·Y ⊗ L⊗ V is a graded (Ω·g, g·Ω)-module.

The following proposition is similar to 7.13.27, as well as its proof which

we leave to the reader.

7.14.5. Proposition. There is a unique morphism of sheaves

d : C·Y ⊗ L⊗ V → C·+1
Y ⊗ L⊗ V

such that for any α ∈ g one has Lieα = diα + iαd. This d is a differential

operator of first order, d2 = 0, and CL(V ) := (C·Y ⊗ L ⊗ V, d) is a DG

(Ωg, gΩ)-module.

Remark. One may deduce 7.14.5 directly from 7.13.27. Namely, pick any

K as in 7.14.3. Then C·Y ⊗ ω∗(K\Y ) is a ”constant” Clifford module: it is

canonically isomorphic to C· ⊗ OY for some irreducible Clifford module

C·. The g[-action on C· and the g-action on C·Y yield a g[-action on

ω(K\Y ) = Hom(C·Y , C· ⊗ OY ) which lifts the g-action on Y . Thus g[-acts

on ω(K\Y ) ⊗ L ⊗ V , and d from 7.14.5 coincides with d from 7.13.27 for

C· ⊗ (ω(K\Y ) ⊗ L⊗ V ).

7.14.6. So we defined an Ω-complex CL(V ) on Y . One extends this

definition to the case when V is a complex inM(g)′ in the obvious manner.

Now assume we have K as in 7.14.1. For a Harish-Chandra complex

V ∈ C(kΩ × g,K)′ the Ω-complex CL(V ) is KΩ-equivariant. Indeed, K acts

on CL(V ) according to the K-actions on C·Y , L, and V , and the operators

iξ, ξ ∈ k, are sums of the corresponding Clifford operators for C·Y and the

operators for the k−1
Ω -action on V .
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Set ∆ΩL(V ) := CL(V )[dim(K \ Y )]. We have defined a DG functor

(379) ∆Ω = ∆ΩL : C(kΩ × g,K)′ −→ C(K \ Y,Ω)

7.14.7. Remark. The Ω-complex ∆Ω(V ) carries a canonical filtrartion

∆Ω(V )· where ∆Ω(V )a consists of sections killed by product of any a + 1

Clifford operators from k⊥ ⊂ g∗ (see 7.13.29). By (376) one has a canonical

isomorphism of KΩ-equivariant Ω-complexes

(380) gra∆Ω(V )→∼Ck(ω(K\Y ) ⊗ L⊗ V ⊗ Λa(g/k))[a]

7.14.8. Lemma. (i) The functor ∆Ω sends quasi-isomorphisms to D-quasi-

isomorphisms, so it yields a triangulated functor

(381) L∆ = L∆L : D(g,K)′ → D(K \ Y )

(ii) The functor L∆ is right t-exact, and the corresponding right exact

functor ∆ = ∆L : M((g,K)′ →M`(K \ Y ) is

(382) ∆L(V )Y = (DY ⊗ L) ⊗̂
U(g)

V = L∗ ⊗DY,L ⊗̂
U(g′)

V

Here DY is the topological algebra of differential operators on Y (see 1.2.6),

DY,L := L ⊗DY ⊗ L∗ is the corresponding L-twisted algebra.

Proof. (i) Our statement is local, so, shrinking K if necessary, we may

assume that the K-action on Y is free. Let us consider ∆Ω(V ) as a filtered

Ω-complex on K \ Y . For a K-module P denote by P∼ the Y -twist of

P which is an O-module on K \ Y . The projection Ck → Ck/C
≥1
k yields,

according to (380), a canonical isomorphism

(383) gra∆Ω(V )K\Y = ωK\Y ⊗ LK\Y ⊗ V ∼ ⊗ Λa(g/k)∼[a]

The r.h.s. is an O-complex, so a quasi-isomorphism between V ’s defines a

(filtered) D-quasi-isomorphism of ∆Ω(V )’s.

(ii) As above we may assume that the K-action is free. For V ∈M(g,K)′

we can rewrite (383) as an isomorphism ∆Ω(V )aK\Y = ωK\Y ⊗ LK\Y ⊗

V ∼ ⊗ Λ−a(g/k)∼. This shows that ∆Ω is right t-exact. One describes the
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differential in ∆Ω(V )K\Y as follows. The g-action on Y defines on (g/k)∼

the structure of Lie algebroid on K \ Y . The g-action on LY ⊗ V defines on

LK\Y ⊗V ∼ the structure of a left (g/k)∼-module, hence ωK\Y ⊗LK\Y ⊗V ∼ is

a right (g/k)∼-module. Now ∆Ω(V )K\Y is the Chevalley homology complex

of (g/k)∼ with coefficients in ωK\Y ⊗ LK\Y ⊗ V ∼. The right D-module

H0
D(L∆(V )) on K \Y is (ωK\Y ⊗LK\Y ⊗V ∼) ⊗

(g/k)∼
DK\Y ; the corresponding

left D-module is DK\Y ⊗
(g/k)∼

(LK\Y ⊗ V ∼). Lifting this isomorphism to Y

we get (382). �

7.14.9. Example. Let us compute L∆(V ac′). The embedding C → V ac′

yields an embedding of Ω-complexes on Y Ck(ω(K\Y )⊗LY )→ ∆ΩL(V ac′)0.

We leave it to the reader to check that the corresponding morphism

Ck(ω(K\Y ) ⊗ LY )→ ∆ΩL(V ac′)

of KΩ-equivariant Ω-complexes is a D-quasi-isomorphism. Now the l.h.s. is

the Ω-complex Ω(DK\Y ⊗LK\Y on K \ Y (see 7.3.3). Therefore if K \ Y is

a good stack then

L∆(V ac′) = ∆(V ac′) = DK\Y ⊗ LK\Y .

Remark. Since EndV ac′ is anti-isomorphic to the algebra D′(g,K) from

1.2.5 (cf. also 1.2.2) we have a right action of D′(g,K) on ∆(V ac′) =

DK\Y ⊗LK\Y , i.e., a homomorphism from D′(g,K) to the twisted differential

operator ring Γ(K \ Y,D′K\Y ). This is the homomorphism h from 1.2.5 (cf.

also 1.2.3 and 1.2.4).

7.14.10. Proposition. The functor L∆ : D(g,K)′ → D(K \ Y ) is a

Morphism of H-Modules.

Proof. The constructions and arguments of 7.8.8 render to our infinite-

dimensional setting in the obvious manner. �

The infinite-dimensional versions of 7.9 are straightforward.
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7.15. Affine flag spaces are D-affine. In this section we show that

representations of affine Lie algebras of less than critical level are related to

D-modules on affine flag spaces just as they do in the usual finite-dimensional

situation.

7.15.1. Below as usual K = C((t)), O = C[[t]]. Let g be a simple (finite-

dimensional) Lie algebra*), G the corresponding simply connected simple

group. We have the group ind-scheme G(K) and its group subscheme

G(O) (see 7.11.2(iv)). The adjoint action of G(K) on the Tate vector space

LieG(K) = g(K) yields the central extension G(K)[ of G(K) by Gm (see

??). Its Lie algebra is the central extension g(K)[ of g(K) defined by cocycle

φ, ψ 7→ Res(dφ, ψ) where (a, b) := Tr(ada · adb) (see ??). LetG(O)[ ⊂ G(K)[

be the preimage of G(O). The adjoint action of G(O) preserves the c-lattice

g(O) ⊂ g(K), so we have a canonical identification s : G(O)[→∼G(O)×Gm
*).

Let N ⊂ B ⊂ G be a Borel subgroup and its radical, so H = B/N

is the Cartan group of G. Let N+, B+ be the preimages of N,B by the

obvious projection G(O) → G, so B+/N+ = H, G(O)/B+ = G/B. Let

B† ⊂ G(K)[ be the preimage of B+. There is a unique section N+ → G(K);

set H[ := B†/N+, h[ = LieH[. The section s yields an isomorphism

B+ ×Gm
→∼B†, hence isomorphisms H ×Gm

→∼H[, h× C→∼ h[.

Set X := G(K)/B+ = G(K)[/B† (the quotient of sheaves with respect

to either flat or Zariski topology - the result is the same, as follows from

4.5.1). One calls X the affine flag space. This is a reduced connected ind-

projective formally smooth ind-scheme*). Set X† := G(K)[/N+: this is a

left H[-torsor over X (the action is h[·x† = x†h[−1). It carries the obvious

action of G(K)[. Denote the projection X† → X by p.

*)A generalization to the case when g is any reductive Lie algebra is immediate.

*)Since G is simple the splitting G(O)→ G(O)[ is unique.

*)X is smoothly fibered over the affine Grassmannian G(K)/G(O), see 4.5.1.
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7.15.2. Let M†(X) be the category of weakly H[-equivariant D-modules

on X† (see 7.11.11). This is an abelian category. For M ∈ M†(X) set

MX := (p·M)H
[ ∈ M(X,O). The functor M†(X)→M(X,O), M 7→MX ,

is exact and faithful.

Set D† := (p·DX†)H
[
. This is a Diff-algebra on X. The map

(384) h[ → Γ(X,D†) = Γ(X†,DX†)H
[

equal to minus the left action along the fibers of p takes values in the center

of D†. In fact, D† is a Sym(h[)-family of tdo (see 7.11.11(b)).

Notice that D† acts (from the right) on any MX as above in the obvious

manner, so we have a functor

(385) M†(X)→M(X,D†).

One has (see Remark (ii) in 7.11.11):

7.15.3. Lemma. The functor (385) is an equivalence of categories. �

7.15.4. For χ = (χ0, c) ∈ h[∗ = h∗ × C we denote by Dχ the corresponding

tdo from our family D†. Thus D(0,0) = DX . Set Mχ(X) := M(X,Dχ) ⊂

M(X,D†). Consider the topological algebra ΓDχ = Γ(X,Dχ) (see 7.11.9,

7.11.10). We have the functor

(386) Γ :Mχ(X)→Mr(ΓDχ)

where Mr(ΓDχ) is the category of discrete right ΓDχ-modules and ΓM :=

Γ(X,M).

The action of g(K)[ on X† yields a continuous morphism g(K)[ →

Γ(X,D†). The corresponding morphism g(K)[ → ΓDχ sends 1[ ∈ g(K)[

to −c.

7.15.5. We say that χ is anti-dominant if the Verma g(K)[-module M(χ)

is irreducible. As follows from [KK] 3.1 this amounts to the following three

conditions:

(i) One has c 6= −1/2.
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(ii) For any positive coroot hα ∈ h of g one has (χ0 + ρ0)(hα) 6= 1, 2, ..

(iii) For any hα as above and any integer n > 0 one has

±(χ0 + ρ0)(hα) + 2n
c+ 1/2

(α, α)
6= 1, 2, ..

Here ρ0 ∈ h∗ is the half sum of the positive roots of g and (, ) is the scalar

product on h∗ that corresponds to (, ) on h (see 7.15.1).

Remark. To deduce the above statement from [KK] 3.1 it suffices to notice

that the “real” positive coroots of g(K)[ are hα and ±hα + 2n(α, α)−1·1[

for hα, n as above, and that the weight ρ from [KK] is given by the next

formula.

Set ρ := (ρ0, 1/2) ∈ h[∗. We say that χ is regular if the stabilizer of χ+ ρ

in the affine Weyl group Waff is trivial*).

7.15.6. Theorem. Assume that χ is anti-dominant and regular. Then (386)

is an equivalence of categories.

We prove 7.15.6 in 7.15.8-?? below.

7.15.7. Remarks. (i) Let Mc(g(K)) be the category of discrete g(K)[-

modules on which 1[ acts as multiplication by c. Let

(387) Γ :Mχ(X)→Mc(g(K))

be the composition of (386) and the obvious “restriction” functorMr(ΓDχ)→

Mc(g(K)). According to 7.15.6 this functor is exact and faithful.

(ii) One may hope that g(K)[ generates a dense subalgebra in ΓDχ*). In

other words, ΓDχ◦ is a completion of the enveloping algebra Ū c = Ū cg(K)

of level c by certain topology. Can one determine this topology explicitely?

Notice that in the finite-dimensional setting (see [BB81] or [Kas]) one

usually deduces the corresponding statement from its ”classical“ version

*)Remind that the action of Waff on h[∗ comes from the adjoint action of G(K) on

g(K)[.
*)This amounts to the property that for M ∈ Mχ(X) any g(K)[-submodule of ΓM

comes from a Dχ-submodule of M .
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(using Kostant’s normality theorem). This ”classical“ statement (which says

that g(K) ↪→ Γ(X,ΘX) generates a dense subalgebra in ⊕
n≥0

Γ(X,Θ⊗nX )) is

false for the affine flags (e.g., the map g(K) ↪→ Γ(X,ΘX) is not surjective).

As in [BB81] or [Kas] it is easy to see that 7.15.6 follows from the next

statement:

7.15.8. Theorem. (i) If χ is anti-dominant then for any M ∈ Mχ(X) one

has Hr(X,M) = 0 for any r > 0*).

(ii) If, in addition, χ is regular and M 6= 0 then ΓM 6= 0.

Remark. The proof of 7.15.8(i) is very similar to the proof of the

corresponding finite-dimensional statement (see [BB81] or [Kas]). It would

be nice to find a proof of 7.15.8(ii) similar to that in [BB81] (using translation

functors) for it could be of use for understanding 7.15.7(ii).

7.15.9. Let us begin the proof of 7.15.8(i). Let ψ = (ψ0, b) be a character

of H[ and L = Lψ the corresponding G(K)[-equivariant line bundle on X

(defined by X†). Assume that L is ample. This amounts*) to the following

property of ψ: for any positive coroot hα of g one has 2b
(α,α) < ψ0(hα) < 0.

Denote by V be the dual to the pro-finite dimensional vector space

Γ(X,L). This is a G(K)[-module in the obvious way, hence an integrable

g(K)[-module*) of level −b. Consider the canonical section of V ⊗̂L; this is

a G(K)[-equivariant morphism OX → V ⊗̂L of Op-modules. Tensoring it by

M we get a morphism of O!-modules

(388) i : M → V ⊗ L⊗M

that commutes with the action of g(K)[.

*)Here Hr(X,M) := lim
−→

Hr(Y,M(Y )); we use notation of 7.11.4.

*)See Remark in 7.15.5.
*)According to a variant of Borel-Weil theorem (see, e.g., [?]) V is an irreducible g(K)[-

module.
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7.15.10. Below we will consider !-sheaves of vector spaces on X. Such

object F is a rule that assigns to a closed subscheme Y ⊂ X a sheaf F(Y ) on

the Zariski topology of Y together with identifications i!Y Y ′F(Y ′) = F(Y )
*)

for Y ⊂ Y ′ that satisfy the obvious transitivity property (cf. Remark (i)

in 7.11.4). Notice that !-sheaves form an abelian category. It contains the

categories of sheaves on Y ’s as full subcategories closed under subquotients

and extensions. Any O!-module M on X yields a !-sheaf lim
−→

M(Y ) on X

(so the corresponding sheaf on Y is M(Y ∧))
*); we denote it by M by abuse

of notation. We will also consider !-sheaves of g(K)[-modules which are !-

sheaves of vector spaces equipped with g(K)[-action such that the action on

each F(Y ) is discrete in the obvious sense. Any O!-module equipped with

g(K)[-action may be considered as a !-sheaf of g(K)[-modules.

7.15.11. Proposition. Considered as a morphism of !-sheaves of g(K)[-

modules, (388) is a direct summand embedding.

7.15.12. Proof of 7.15.8(i). Take any α ∈ Hr(X,M) = lim
−→

Hr(X(Y ),M(Y )).

It comes from certain closed subscheme Y ⊂ X and an O-coherent submod-

ule F ⊂ M(Y ). Choose an ample L as above such that Hr(Y,L ⊗ F ) = 0.

Since i(α) belongs to the image of Hr(Y, V ⊗ L ⊗ F ) it vanishes. We are

done by 7.15.11. �

7.15.13. Proof of 7.15.11. We are going to define an endomorphism A of

V ⊗ L⊗M such that

(389) KerA = M, V ⊗ L⊗M = KerA⊕ ImA.

This settles 7.15.11.

Let Ū := Ūg(K)[ be the usual completed enveloping algebra of g(K)[.

Consider the Sugawara element L̃0 ∈ Ū defined by formula (85). For any

ftr ∈ g((t)) ⊂ Ū we have [L̃0, ft
r] = (1[ + 1/2)rftr (see (87)). For any

*)Here i!Y Y ′F(Y ′) := the subsheaf of sections supported (set-theoretically) on Y .

*)See 7.11.4 for notation.
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N ∈Me(g(K)) where e 6= −1/2 consider the operator ∆N := (e+1/2)−1L̃0

acting on N . If also e− b 6= −1/2 we set

(390) AV,N := ∆V⊗N −∆V ⊗ idN − idV ⊗∆N ∈ End(V ⊗N).

This operator commutes with the action of g(K)[.

Let us apply this construction to the !-sheaf of g(K)[-modules N := L⊗M

(so e = b+ c and the condition on levels is satisfied). Set

(391) A := AV,L⊗M ∈ End(V ⊗ L⊗M).

Let us show that A satisfies (389). �

7.15.14. Now let us turn to 7.15.8(ii). It is an immediate consequence of

the following proposition which shows, in particular, how to compute fibers

of M in terms of ΓM . We start with notation.

Consider the stratification of X by N+-orbits (Schubert cells). The cells

are labeled by elements of the affine Weyl group Waff . For w ∈ Waff the

corresponding cell is iw : Yw ↪→ X; it has dimension l(w). The restriction

to Yw of the H[-torsor X† is trivial*). Since any invertible function on Yw is

constant, the trivialization is unique up to a constant shift. Therefore the

pull-back of the tdo Dχ to Yw is canonically trivialized.

Let M be any object of the derived category D(X,Dχ)*). For any w ∈

Waff we have (untwisted, as we just explained) D-complexes i!wM ∈ D(Yw).

We want to compute Lie algebra (continuous) cohomology Ha(n+,ΓM)

(notice that, because of 7.15.8(i), Γ = RΓ). Since h[ = b†/n+ these are

h[-modules. We assume that χ is regular.

7.15.15. Proposition. There is a canonical isomorphism

Ha(n+,ΓM) →∼ ⊕
w∈Waff

H
a−l(w)
DR (Yw, i

!
wM).

*)A section is provided by any N+-orbit in X† over Yw.

*)Its definition is similar to one given in 7.11.14 in the untwisted situation.
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such that h[ acts on the w-summand as multiplication by w(χ)*).

7.15.16. Proof of 7.15.8(ii). Since Γ is exact we may assume that M is

compactly supported and finitely generated. Let Y ⊂ X be a smooth Zariski

open subset of the (reduced) support of M . Then M(Y ) is a coherent D-

module on a smooth scheme Y . So, shrinking Y farther, we may assume

that M(Y ) is a free OY -module. Now for any x ∈ Y one has H·i!xM 6= 0.

Translating M we may assume that x = Y1. By 7.15.15 H·(n+,ΓM) 6= 0,

hence ΓM 6= 0. �

7.15.17. Proof of 7.15.15. We may assume that M = iw∗N for certain

N ∈ D(Yw). Indeed, any M ∈ D(X,Dχ) carries a canonical filtration with

griM = ⊕
l(w)=i

iw∗i
!
wM . Now the isomorphism 7.15.15 for M comes from

the corresponding isomorphisms for iw∗i
!
wM ’s together with the spectral

decomposition for the action of h[. Here we use the assumption of regularity

of χ; for the rest of the argument one needs only anti-dominance of χ.

Consider first the case M = δ, so Γδ is the Verma module from 7.15.5 (see

7.15.7(iii)). This Verma module is cofree N+-module of rank 1 (it is cofreely

generated by any functional ν which does not kill the vacuum vector)*). Thus

H·(n+
x ,Γδ) = H0(n+

x ,Γδ)
χ = C·vac. Since also H·i!xδ = H0i!xδ = C·vac, we

get the desired isomorphism.

*)Remind that the adjoint action of G(K) on g(K)[ yields the Waff -action on h[.
*)The kernel of ν contains no non-trivial n+-submodule (otherwise, since n+ is nilpotent,

it would contain n+-invariant vectors which contradicts 7.15.5(i)). So the morphism

defined by ν from Γδ to the cofree N+-module is injective. Then it is an isomorphism by

dimensional reasons.
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8. To be inserted into 5.x

8.1.

8.1.1. Choose L ∈ Z torsθ(O). Recall that λL denotes the corresponding

local Pfaffian bundle on GR = G(K)/G(O) (see 4.6.2). We are going to

prove the following statement, which is weaker than 5.2.14 and will be used

in the proof of Theorem 5.2.14 itself.

8.1.2. Proposition. For any χ ∈ P+(LG) and i ∈ Z the U
′
-module

H i(GR, Iχλ−1
L ) is isomorphic to a direct sum of copies of V ac′.

At this stage we do not claim that the number of copies is finite.

Proposition 8.1.2 is an immediate consequence of Theorems 8.1.4 and

8.1.6 formulated below (the first theorem is geometric while the second one

is representation-theoretic).

8.1.3. For any D-module M on GR the renormalized universal enveloping

algebra U \ acts on the sheaf Mλ−1
L (see ???). So the canonical morphism

DerO → U \ from 5.6.9 yields an action of DerO on Mλ−1
L . According to

??? this action is induced by the action of DerO on the sheaf M (DerO

is mapped to the algebra of vector fields on GR, which acts on M) and

the action of DerO on λL (see 4.6.7). The action of DerO on the sheaf Iχ

integrates to the action of AutO. The action of DerO on λL comes from

the action of AutZ O on λL (see 4.6.7). Therefore the action of DerO on

Iχλ
−1
L integrates to the action of Aut2O. So the action of L0 ∈ DerO on

H i(GR, Iχλ−1
L ) is diagonalizable and its spectrum is contained in 1

2Z (in

fact, it is contained in Z or 1
2 + Z depending on the parity of Orbχ).

8.1.4. Theorem. The eigenvalues of L0 on H i(GR, Iχλ−1
L ) are ≥ −d(χ)/2

where d(χ) = dim Orbχ.

The proof will be given in 9.1; we will also obtain the following description

of the eigenspace corresponding to −d(χ)/2. Set Fχ := Orbχ \ Orbχ,

Uχ := GR\Fχ. The restriction of Iχ to Uχ is the direct image of the (right)
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D-module ωOrbχ . It contains the sheaf-theoretic direct image of ωOrbχ , so

H0(Uχ, Iχλ
−1
L ) ⊃ H0(Orbχ, ωOrbχ ⊗λ−1

L,χ) where λL,χ is the restriction of λL

to Orbχ. Therefore (241) yields an embedding

(392) dL,χ ↪→ H0(Uχ, Iχλ
−1
L )

where dL,χ is the 1-dimensional representation of Aut0
Z O constructed in

4.6.14. According to 4.6.15 L0 acts on dL,χ as multiplication by −d(χ)/2.

8.1.5. Proposition. The image of (392) is contained in H0(GR, Iχλ−1
L ).

It equals the eigenspace of L0 on H0(GR, Iχλ−1
L ) corresponding to the

eigenvalue −d(χ)/2.

The proof is contained in 9.1.

Remark. The natural map ϕ : H0(GR, Iχλ−1
L ) → H0(Uχ, Iχλ

−1
L ) is

injective because Iχ is irreducible and therefore the morphism f : Iχ →

R0j∗j
∗Iχ is injective, where j denotes the immersion Uχ ↪→ GR. In fact,

the semisimplicity theorem 5.3.3(i) implies that f is an isomorphism and

therefore ϕ is an isomorphism. So the first statement of Proposition 8.1.5 is

obvious modulo the highly nontrivial theorem by Lusztig used in the proof

of 5.3.3.

Proposition 8.1.2 is a consequence of Theorem 8.1.4 and the following

statement, which will be proved in 6.2.

8.1.6. Theorem. Let V be a discrete U \-module such that

1) the representation of g ⊗ O ⊂ U \ in V is integrable (i.e., it comes

from a representation of G(O)),

2) the action of L0 ∈ DerO ⊂ U \ on V is diagonalizable and the

intersection of its spectrum with c + Z is bounded from below for

every c ∈ C.

Then V considered as a U
′
-module is isomorphic to a direct sum of copies

of Vac′ (i.e., to Vac′⊗W for some vector space W ).
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Remark. Suppose that V is a discrete U \-module such that V is isomorphic

to Vac′⊗W as a U
′
-module. Write V more intrinsically as Vac′⊗zN ,

z := zg(O), N := Hom
U
′(Vac′, V ) = V g⊗O. According to 5.6.8 N is a

module over the Lie algebroid I/I2. The U \-module V can be reconstructed

from the (I/I2)-module N as follows: V is the quotient of U \ ⊗z N by the

closed U \-submodule generated by u ⊗ n − 1 ⊗ an where n ∈ N , u ∈ U [1,

a ∈ I/I2, and the images of u and a in U [1/U
[
0 coincide (see 5.6.7).
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9. To be inserted into Section 6

9.1. Proof of Theorem 8.1.4 and Proposition 8.1.5. We keep the

notation of 5.2.13, 8.1.1, and 8.1.4. Theorem 8.1.4 and Proposition 8.1.5

can be easily deduced from the following statement.

9.1.1. Theorem. The eigenvalues of L0 on H i(Uχ, Iχλ
−1
L ) are ≥ −d(χ)/2.

If i > 0 they are > −d(χ)/2. If i = 0 the eigenvalue −d(χ)/2 occurs with

multiplicity 1 and the corresponding eigenspace is the image of (392).

Let us start to prove the theorem. Denote by IUχ the restriction of Iχ to

Uχ, i.e., IUχ is the direct image of the right D-module ωOrbχ with respect

to the closed embedding Orbχ ↪→ Uχ. Consider the O-module filtration

on IUχ λ
−1
L whose k-th term is formed by sections supported on the k-th

infinitesimal neighbourhood of Orbχ. The filtration is Aut0
2O-invariant

and grj(I
U
χ λ
−1
L ) = ωOrbχ ⊗ λ−1

L ⊗ Symj Nχ where Nχ is the normal sheaf

of Orbχ ⊂ Uχ. Using (241) we get an Aut0
2O-equivariant isomorphism

grj(I
U
χ λ
−1
L ) = dL,χ ⊗ Symj Nχ. By 4.6.15 L0 acts on dL,χ as multiplication

by −d(χ)/2. So it remains to prove the following.

9.1.2. Proposition. i) The eigenvalues of L0 onH i(Orbχ,Symj Nχ) are non-

negative.

ii) They are positive if i > 0 or j > 0. There are no L0-invariant regular

functions on Orbχ except constants.

Remark. The eigenvalues of L0 on H i(Orbχ,Symj Nχ) are integer because

Nχ is an Aut0O-equivariant sheaf.

Before proving the proposition we need some lemmas.

9.1.3. Let us introduce some notation. Recall that χ is a dominant coweight

of G. Fix a Cartan subgroup H ⊂ G and a Borel subgroup B ⊂ G

containing H. We will understand “coweight” as “coweight of H” and

“dominant” as “dominant with respect to B”. Let tχ ∈ H(K) denote

the image of t ∈ C((t))∗ = K∗ by χ : Gm → H. Recall that Orbχ is
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the G(O)-orbit of [χ], where [χ] is the image of tχ in GR = G(K)/G(O).

Denote by orbχ the G-orbit of [χ] and by P−χ the stabilizer of [χ] in G, i.e.,

P−χ = {g ∈ G|t−χgtχ ∈ G(O)}. P−χ is the parabolic subgroup of G such

that LieP−χ is the sum of LieH and the root spaces corresponding to roots

α with (α, χ) ≤ 0 (in particular P−χ contains the Borel subgroup B− ⊃ H

opposite to B). So orbχ = G/P−χ is a projective variety. Clearly the action

of Aut0O on orbχ is trivial.

9.1.4. Endomorphisms of O form an affine semigroup scheme End0O (for a

C-algebra R an R-point of End0O is an R-morphism f : R[[t]]→ R[[t]] such

that f(t) ∈ tR[[t]] ). Aut0O is dense in End0O. Let 0 ∈ End0O denote the

endomorphism of O = C[[t]] such that t 7→ 0.

9.1.5. Lemma. i) The action of Aut0O on Orbχ extends to an action of

End0O on Orbχ.

ii) Let ϕ be the endomorphism of Orbχ corresponding to 0 ∈ End0O.

Then ϕ2 = ϕ and the scheme of fixed points of ϕ equals orbχ.

iii) The morphism p : Orbχ → orbχ induced by ϕ is affine. Its fibers are

isomorphic to an affine space.

Proof. i)Orbχ = G(O)/S where S is the stabilizer of [χ] in G(O). The action

of Aut0O on G(O) extends to an action of End0O. Since S is Aut0O-

invariant it is End0O-invariant.

ii) The morphism f : G(O) → G(O) corresponding to 0 ∈ End0O is

the composition G(O) → G ↪→ G(O). So ϕ(Orbχ) ⊂ orbχ. Clearly the

restriction of ϕ to orbχ equals id.

iii) G(O) = G · U where U := Ker(G(O) → G). One has f(S) ⊂ S,

so S = SG · SU , SG := S ∩ G, SU := S ∩ U . p is the natural morphism

G(O)/S → G(O)/(SG · U) = G/SG = orbχ. Since U is prounipotent

(SG · U)/S = U/SU is isomorphic to an affine space. �

9.1.6. Remark. It follows from 9.1.5(ii) that the scheme of fixed points of

L0 on Orbχ equals orbχ.
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9.1.7. Since p : Orbχ → orbχ is affine

H i(Orbχ, Symj Nχ) = H i(orbχ, p∗ Symj Nχ).

p is Aut0O-equivariant, so Aut0O and therefore L0 acts on p∗ Symj Nχ. To

prove Proposition 9.1.2 it suffices to show the following.

9.1.8. Lemma. The eigenvalues of L0 on p∗ Symj Nχ are non-negative. If

j > 0 they are positive. If j = 0 the zero eigensheaf of L0 equals the

structure sheaf of orbχ.

Proof. Denote by OOrb and Oorb the structure sheaves of Orbχ and orbχ. It

follows from 9.1.5(i) that the eigenvalues of L0 on p∗OOrb are non-negative.

9.1.5(ii) or 9.1.6 implies that the cokernel of L0 : p∗OOrb → p∗OOrb equals

Oorb.

The obvious morphism OOrb ⊗ (g ⊗ K/g ⊗ O) → Nχ is surjective

and Aut0O-equivariant. It induces an Aut0O-equivariant epimorphism

p∗OOrb ⊗ Symj(g ⊗ (K/O)) → p∗ Symj Nχ. Since the eigenvalues of L0

on K/O are positive we are done. �

9.1.9. So we have proved 9.1.2 and therefore 8.1.4, 8.1.5. Now we are

going to compute the canonical bundle of Orbχ in terms of the morphism

p : Orbχ → orbχ. The answer (see 9.1.12, 9.1.13) will be used in 10.1.7.

9.1.10. Orbχ is a homogeneous space of G(O), while orbχ is a homogeneous

space of G. Using the projection G(O) → G(O/tO) = G we get an action

of G(O) on orbχ. The morphism p : Orbχ → orbχ is G(O)-equivariant.*)

9.1.11. Proposition. The functor p∗ induces an equivalence between the

groupoid of G-equivariant line bundles on orbχ and the groupoid of G(O)-

equivariant line bundles on Orbχ.

*)Of course the embedding orbχ ↪→ Orbχ is not G(O)-equivariant. DO WE NEED

THIS FOOTNOTE?
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Proof. One has Orbχ = G(O)/S, orbχ = G/SG where S is the stabilizer

of [χ] in G(O) and SG = S ∩ G. In fact, SG is the image of S in G and

p : G(O)/S → G/SG is induced by the projection G(O)→ G (see the proof

of 9.1.5(iii) ). We have to show that the morphism π : S → SG induces

an isomorphism Hom(SG,Gm) → Hom(S,Gm). This is clear because

Kerπ ⊂ Ker(G(O)→ G) is prounipotent. �

Remark. We formulated the proposition for equivariant bundles because

we will use it in this form. Of course the statement still holds if one drops

the word “equivariant” (indeed, p is a locally trivial fibration whose fibers

are isomorphic to an affine space). Besides, if G is simply connected then a

line bundle on orbχ has a unique G-equivariant structure (because by 9.1.3

orbχ = G/P−χ and P−χ is parabolic).

9.1.12. The canonical sheaf ωOrbχ is a G(O)-equivariant line bundle on

Orbχ. By 9.1.11 it comes from a unique G-equivariant line bundle Mχ on

orbχ. Since orbχ = G/P−χ (see 9.1.3) isomorphism classes of G-equivariant

line bundles on orbχ are parametrized by Hom(P−χ ,Gm). The embedding

H ↪→ P−χ induces an embedding Hom(P−χ ,Gm) ↪→ Hom(H,Gm). So Mχ

defines a weight of H, which can be considered as an element lχ ∈ h∗.

9.1.13. Proposition. lχ = Bχ where χ ∈ Hom(Gm, H) is identified in the

usual way with an element of h and B : h → h∗ is the linear operator

corresponding to the scalar product (18).

Proof. The tangent space to Orbχ at [χ] equals

(393) (g⊗O)/((g⊗O) ∩ tχ(g⊗O)t−χ).

The action of H on (393) comes from the adjoint action of H on g ⊗ O.

So the weights of H occuring in (393) are positive roots, and for a positive

root α its multiplicity in (393) equals (χ, α). Therefore the weight of h
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corresponding to the determinant of the vector space dual to (393) equals

−
∑
α>0

(χ, α) · α = −1

2

∑
α

(χ, α) · α = Bχ.

�

Note for the authors: the notation U := Ker(G(O) → G) is not quite

compatible with the notation Uχ. Is this OK ???
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10. To be inserted into Section 6, too

10.1. Delta-functions. Is the title of the section OK ???

10.1.1. According to 8.1.5 we have the canonical embedding dL,χ ↪→

Γ(GR, Iχλ−1
L ). Its image is contained in Γ(GR, Iχλ−1

L )G(O). The Lie

algebroid I/I2 acts on Γ(GR, Iχλ−1
L )G(O) (see ??? and 5.6.8). Using (81) we

identify I/I2 with the Lie algenroid aLg from 3.5.11, where Lg := Lie LG

and LG is understood in the sense of 5.3.22 (in particular, Lg has a

distinguished*) Borel subalgebra Lb and a distinguished Cartan subalgebra

Lh ⊂ Lb; we set Ln := [Lb, Lb]). By 3.5.16 we have the Lie subalgebroids

aLn ⊂ aLb ⊂ aLg and a canonical isomorphism of ALg(O)-modules aLb/aLn =

ALg(O)⊗ Lh. In particular Lh ⊂ aLb/aLn.

10.1.2. Theorem. i) aLn annihilates dL,χ, so aδ makes sense for a ∈ Lh,

δ ∈ dL,χ .

ii) aδ = χ(a)δ for a ∈ Lh, δ ∈ dL,χ.

Remark. We identify χ ∈ P+(LG) with a linear functional on Lh, so χ(a)

makes sense.

Statement (i) is easy. Indeed, DerO acts on Γ(GR, Iχλ−1
L )G(O) (see 5.6.10)

and the action of aLg on Γ(GR, Iχλ−1
L )G(O) is compatible with the actions of

DerO on aLg and Γ(GR, Iχλ−1
L )G(O) (use the DerO-equivariance of (81) and

the Remark at the end of 3.6.16).*) So statement (i) follows from Theorem

8.1.4, Proposition 8.1.5, and (77). In a similar way one proves using (78)

that adL,χ ⊂ dL,χ for a ∈ Lh, which is weaker than (ii). We will prove (ii)

*)In §3 (where we worked with G-opers rather than LG-opers) we assumed that a Borel

subgroup B ⊂ G is fixed (see 3.1.1), so we are pleased to have a distinguished Lb ⊂ Lg.

But in fact this is not essential here: one could rewrite §3 without fixing B; in this case

we would have the Lie algebroids ab and an without having concrete b, n ⊂ g.
*)In fact, a stronger statement is true: the action of DerO on Γ(GR, Iχλ−1

L )G(O)

coincides with the one coming from the morphism DerO → aLg defined in 3.5.11 and

the action of aLg on Γ(GR, Iχλ−1
L )G(O) (this follows from 3.6.17).
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in 10.1.3 – 10.1.7. In this proof we fix*) L ∈ Z torsθ(O) and write λ instead

of λL, dχ instead of dL,χ, etc.

10.1.3. By 3.6.11 we can reformulate 10.1.2(ii) as follows:

(394) aδ = −(d(a), Bχ) · δ for a ∈ I≤0, δ ∈ dχ

where d : I≤0 → h is the map (83), χ is considered as an element of h (see

the Remark from 10.1.2) and B : h→ h∗ corresponds to the scalar product

(18).

Remark. The “critical” scalar product (18) appears in the r.h.s. of (394)

because the definition of the l.h.s. involves the map (291), which depends

on the choice of the scalar product on g (see 5.6.11).

10.1.4. The method of the proof of (394) will be described in 10.1.5.

Let us explain the difficulty we have to overcome. The action of I/I2

on Γ(GR, Iχλ−1)G(O) comes from the action of the renormalized universal

enveloping algebra U \ on Γ(GR, Iχλ−1), which is defined by deforming the

critical level (see ???). So the naive idea would be to deform Iχ, i.e., to

try to construct a family of λh-twisted D-modules M?
h, h ∈ C, such that

M?
0 = Iχ. But this turns out to be impossible (at least globally) because

λh-twisted D-modules on Orbχ that are invertible O-modules exist only for

a discrete set of values of h. Therefore we have to modify the naive idea

(see 10.1.5 and 10.1.7).

10.1.5. We are going to use the notion of Dλh-module from 7.11.11 (so

h ∈ C[h] is a parameter). In 10.1.7 we will construct a Dλh-module M on

Uχ and an embedding

(395) dχ ↪→ Γ(Uχ,Mλ−1)

such that

*)By the way, all objects of Z torsθ(O) are isomorphic.
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(i) M is a flat C[h]-module*);

(ii) There is a D-module morphism M0 := M/hM → IUχ := Iχ|Uχ such

that the composition

dχ ↪→ Γ(Uχ,Mλ−1)→ Γ(Uχ,M0λ
−1)→ Γ(Uχ, I

U
χ λ
−1)

equals (392);

(iii) The image of (395) is annihilated by g⊗ m where m is the maximal

ideal of O;

(iv) for c ∈ C := the center of Ug and δ ∈ dχ one has

(396) cδh = ϕ(c)δh

where δh ∈ Γ(Uχ,Mλ−1) is the image of δ under (395), ϕ : C → C[h] is the

character corresponding to the Verma module with highest weight −hBχ,

and B : h→ h∗ is the scalar product (18).

Remarks. 1) Mλ−1 is a Dλh+1-module.

2) Of course, Dλh+1 := Dλs ⊗C[s] C[h] where the morphism C[s]→ C[h] is

defined by s 7→ h+ 1. Quite simialrly one defines, e.g., Dλ−h (this notation

will be used in 10.1.7).

10.1.6. Let us deduce (394) from (i) – (iv). By 5.6.7 – 5.6.8 the l.h.s. of

(394) equals a[δ where a[ ∈ U [1 and a ∈ I≤0 have the same image in U [1/U
[
0.

To construct a[ we can lift a to an element ã ∈ A := the completed universal

enveloping algebra of g̃⊗K so that ã belongs to the ideal of A topologically

generated by g⊗O; then h−1ã belongs to the algebra A\ from 5.6.1 and we

can set a[ := the image of h−1ã in U \.

We will show that for a suitable choice*) of ã

(397) a[δ0 = −(d(a), Bχ) · δ0

*)So for each a ∈ C we have the module Ma := M/(h− a)M over Dλa := Dλh/(h− a),

and M is, so to say, a flat family formed by Ma, a ∈ C.
*)a[δ does not depend on the choice of ã while a[δ0 does (because δ0 is annihilated by

g⊗m, but not by g⊗O).
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where δ0 is the image of δh in Γ(Uχ,M0λ
−1) and d, B have the same meaning

as in (394). By 10.1.5(ii) the equality (397) implies (394).

Let us describe our choice of ã. We can write a ∈ I≤0 as c + a′ where

c ∈ C and a′ belongs to the left ideal of U
′

topologically generated by g⊗m

(in terms of 3.6.8 – 3.6.9 c = π(a)). We choose ã ∈ A so that ã 7→ a and

ã− c belongs to the left ideal of A topologically generated by g⊗m. Then

(397) holds.

Indeed, Mλ−1 is a Dλh+1-module. Therefore by ??? A\ acts on

Γ(Uχ,Mλ−1) (can we write simply Mλ−1 ???) so that h := 1−1 ∈ g̃⊗K ⊂

A\ acts as multiplication by h (is this expression OK ???). We can rewrite

(397) as

(398) h−1ã · δh ≡ −(d(a), Bχ) · δh mod h .

By 10.1.5(iii) and 10.1.5(iv) we have ãδh = cδh = ϕ(c)δh. On the other hand,

ϕ(c) ∈ C[h] is congruent to −(d(a), Bχ)h modulo h2 (see the definition of ϕ

from 10.1.5 and the definition of d from 3.6.10). So we get (398).

10.1.7. Let us construct the Dλh-module M and the morphism (395)

satisfying 10.1.5(i) – 10.1.5(iv).

We have the G(O)-equivariant line bundle λ = λL on GR. Denote by

λχ its restriction to Orbχ. Let orbχ and p : Orbχ → orbχ have the

same meaning as in 9.1.3 and 9.1.5. Recall that G(O) acts on orbχ via

G(O/tO) = G and p is G(O)-equivariant. By 9.1.11 there is a unique G-

equivariant line bundle λχ on orbχ such that λχ = p∗λχ.

On orbχ we have the sheaf of twisted differential operators Dλhχ . Set

N := p†Dλ−hχ where Dλ−hχ is considered as a left Dλ−hχ -module and p† is the

usual pullback functor. N is a left Dλ−hχ -module on Orbχ equipped with a

canonical section 1I := p†(1) ∈ Γ(Orbχ, N). Clearly ωOrbχ ⊗O N is a right
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Dλhχ-module*) on Orbχ. The section 1I induces an O-module morphism

(399) ωOrbχ → ωOrbχ ⊗O N .

We define M to be the direct image of ωOrbχ ⊗O N under the closed

embedding Orbχ ↪→ Uχ. The morphism (395) is defined to be the

composition

dχ ↪→ Γ(Orbχ, ωOrbχ ⊗ λ−1
χ ) ↪→ Γ(Orbχ, (ωOrbχ ⊗O N)λ−1

χ ) ↪→ Γ(Uχ,Mλ−1)

where the first morphism is induced by (241) and the second one is induced

by (399).

The property 10.1.5(i) is clear. The property 10.1.5(ii) is also clear: the

morphism M0 → IUχ comes from the D-module morphism N0 = p†Dorbχ →

OOrbχ such that 1I 7→ 1 (is it OK to write 1I instead of 1I mod h, or 1I0, etc.

???). Notice that 10.1.5(iii) and 10.1.5(iv) are properties of the action of

g⊗O on the image of (395). This image is contained in the g⊗O-invariant

subspace (or C[h]-submodule ???)

(400) Γ(Orbχ, (ωOrbχ ⊗O N)λ−1
χ ) = Γ(Orbχ, λ

−1
χ ωOrbχ ⊗O N) .

So to prove 10.1.5(iii) and 10.1.5(iv) it suffices to work on Orbχ. Using (241)

we identify (400) with

(401) dχ ⊗ Γ(Orbχ, N) .

The isomorphism between (400) and (401) is g⊗O-equivariant (the action of

g⊗O on dχ is trivial), because the isomorphism (241) is g⊗O-equivariant.

So 10.1.5(iii) and 10.1.5(iv) are equivalent to the following properties of

*)By the way, ωOrbχ ⊗O N is canonically isomorphic to the pullback of the right Dλhχ -

module ωorbχ ⊗O Dλhχ . Indeed, the image of ωorbχ ⊗O Dλhχ under the usual functor

M 7→ M ⊗O ω−1
orbχ

transforming right Dλhχ -modules into left D
λ−hχ

-modules is freely

generated by 1 ∈ Γ(orbχ, ωorbχ ⊗O Dλhχ ⊗O ω
−1
orbχ

) and therefore is canonically isomorphic

to D
λ−hχ

.
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1I ∈ Γ(Orbχ, N):

(402) (g⊗m)1I = 0 ,

(403) c1I = ϕ(c)1I for c ∈ C .

Recall that C :=the center of Ug, ϕ : C → C[h] denotes the character

corresponding to the Verma module with highest weight −hBχ, and B :

h→ h∗ is the scalar product (18).

So it remains to prove (402) and (403). Recall that N := p†Dλ−hχ ,

1I := p†(1), and p : Orbχ → orbχ is G(O)-equivariant. Therefore (402)

is clear (because the action of g ⊗ m on (orbχ, λχ) is trivial) and (403) is

equivalent to the commutativity of the diagram

(404)

C ↪−→ Ugyϕ y
C[h] ↪−→ Γ(orbχ,Dλ−hχ )

Recall that λχ is the G-equivariant line bundle on orbχ such that λχ =

p∗λχ. Since orbχ = G/P−χ (see 9.1.3) the isomorphism class of λχ is defined

by some l ∈ Hom(P−χ ,Gm) ⊂ Hom(H,Gm) ⊂ h∗. In fact,

(405) l = Bχ .

Indeed, there is a G(O)-equivariant isomorphism λχ = ωOrbχ (see (241)), so

λχ is G-isomorphic to the line bundleMχ from 9.1.12 and (405) is equivalent

to Proposition 9.1.13. The commutativity of (404) follows from (405) (see

???). So we are done.
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