The Finite Intersection Property and Computability Theory

Rod Downey Victoria University Wellington New Zealand

Joint with Diamondstone, Greenberg, Turetsky.

Chicago, November 2012

FIP

- One equivalent of the axiom of choice
- A family of sets *F* = {*A_i* |∈ *Q*} has finite intersection property iff for all finite *F* ⊂ *Q*, ∩_{*i*∈*F*}*A_i* ≠ Ø.
- The principal says: Any collection of sets has a maximal subfamily with FIP.
- We investigate the computability of this.
- ► That is computable collections of computable sets.
- First began by Dzharfarov and Mummert.

- The first thing to notice is that it depends on whether you consider the family as set or a sequence
- If as a set then Ø' is easily codable into a sequence and the theorem is equivalent to ACA₀. (Namely, have a set B = B_e such that it is initially empty, and if e ∈ Ø'[s] henceforth intersect it with everything, so it must be included. Ø' can clearly figure things out.)
- ► Interesting if a sequence, so that A₁, A₂, A₃ is different from A₂, A₃, A₁.
- ▶ Similarly \overline{D}_2 IP for for all pairs $A_i \cap A_j \neq \emptyset$. (DM notation)

Definition

Say that **a** is FIP (bounding) iff for all computable collections of sets, **a** can compute a solution to the FIP problem.

Theorem (Dzharfarov and Mummert)

There is a computable collection of sets with no c.e. subfamily with FIP. So **0** is not FIP, or even \overline{D}_2 IP.

- 1. Meet R_e : W_e is not an index for a maximal FIP family.
- 2. In the below I will use A_i, \ldots and X_e, B_i etc. Of course these are all the same and really are $W_{f(j)}$ for a computable f given by the s-m-n theorem, and I am really concerned with the index f(i). Also we will ensure that each nonzero set has a unique idetifier in it, so these are really streams of numbers under consiferderation.
- 3. Use a trap set X_e .
- **4**. Begin with A_0, A_1, \ldots Wait for W_e to respond.
- 5. Start intersecting X_e "in the back". If W_e enumerates it win with finite injury.

Theorem (Dzharfarov and Mummert)

If **a** is \overline{D}_2IP then it is hyperimmune. (i.e. not computably dominated for those under 35, or Bob)

Theorem (Dzharfarov and Mummert)

If $\mathbf{a} \neq \mathbf{0}$ is c.e. then \mathbf{a} is FIP.

Theorem (Dzharfarov and Mummert)

If **a** is \emptyset' -hyperimmune then it is FIP.

- The c.e. noncomputable case below $C \neq_T \emptyset$.
- We are building $A_0, A_1, \ldots A_n$.
- ► We want to put some element B into this family (with truncation), as we have seen B intersect A₀,..., A_j, the first position determined by B's index.
- ► We then place a permitting challenge to C. If later we see C permit j, we change the family to A₀,...A_j, B.
- When B meets $A_{j+1}[s]$ place another challange on B.
- ► The Ø'-hyperimmune is because Ø' knows if we ever want to put things in, and infinitely often the C can decode this.
- It might seem that the c.e. case would also work for Δ⁰₂ C, but it fails for a nonuniform reason.
- ► An earlier promise for a C-configuration might force some D₁ into the sequence which might be disjoint from the B we are attempting to put in. (board)

Theorem (DM)

There is a computable nontrivial family such that every maximal subfamily with \overline{D}_2 IP has hyperimmune degree.

(proof)[DDGT] We will define a computable family of the form

$$\{A_e^i: e \leq i\} \cup \{B_e: e \in \omega\}.$$

We will call sets A_e^i and B_e with subscript e "*e*-sets". We will ensure the following hold.

- Every A_e^i is nonempty.
- B_e is nonempty iff φ_e(e) ↓, and contains only numbers larger than the stage when φ_e(e) converges.
- If $i \neq e$, then every nonempty *e*-set intersects every nonempty *i*-set.
- For all $i, j \ge e$, A_e^i intersects A_e^j .
- Aⁱ_e intersects B_e iff φ_e(x) ↓ for all x ≤ i + 1. Moreover, the intersection only contains elements larger than the least stage s such that φ_e(x) ↓ [s] for all x ≤ i + 1.

We can assume the nonempty sets also code their indices, so that for every subfamily $C = \{C_n \mid n \in \omega\}$ which does not contain the empty set, we can compute from C_n which set A_e^i or B_e is equal to C_n .

Let C be a maximal subfamily with \overline{D}_2 IP, and let C_s denote $\{C_n \mid n \leq s\}$. Since C does not contain the empty set, for each e, if $B_e \notin C$, then $A_e^i \in C$ for every $i \geq e$, since A_e^i intersects every nonempty set in our family, except perhaps B_e .

Now if $\phi_e(x)$ is total, then B_e must be in the family. From the family, we can compute the least number q with $q \in B_e \cap A_i^x$ for $x \ge e$, and this will exceed $\phi_e(x)$. We need to make the function essentially coding this total whether or not ϕ_e is total.

Let g be defined by

$$g(x) = (\mu s) \forall e \leq i \leq x A_e^i \in C_s \lor B_e \in C_s.$$

Let f be defined by

$$f(x) = (\mu n) \forall i, j \leq g(x) \ C_i \cap C_j \cap [0, n] \neq \emptyset.$$

Observe that $f \leq_T C$.

We will show f is not majorized by any computable function. Suppose ϕ_e is total. Then every *e*-set intersects every nonempty set in the family we built, so the maximal subfamily C must contain B_e and every A_e^i . Let $x \ge e$ be minimal such that A_e^x appears after B_e in C. We claim $f(x) > \phi_e(x)$. Notice g(x) bounds the position that B_e appears. If x = e, then $B_e \cap [0, f(x)]$ is nonempty and therefore $f(x) > \phi_e(e)$. If x > e, then g(x) also bounds the position A_e^{x-1} appears, and therefore $B_e \cap A_e^{x-1} \cap [0, f(x)]$ is nonempty. Thus $f(x) > \phi_e(x)$.

Theorem (DDGT)

If a bounds a 1-generic then a is FIP.

The main idea: Think about the proof that if **a** is c.e. then it is FIP. If we want to add some B to A_0, A_1, \ldots , then we put up a permitting challenge to **a**a and if permission occurs slot B in, and truncate the family. If we need to add some B in then it will be dense in the construction so a permission occurs. For a 1-generic construction, for finite partial families, we will see such B occur and challenge generics to include B by the enumeration of a c.e. set of strings (thinking of sequences as strings, and the family as coding the generic). If this is dense then the generic will meet the condition.

In fact:

Call a tree $T \subset \omega^{<\omega}$ set-like if:

1) if $\sigma \in T, \ \sigma$ is injective; and

2) if $\sigma \in T$, then every permutation of σ is in T.

Call A FIP-generic if for every c.e. set-like tree T, A computes a path f through T such that for every n, it is not the case that $(f \upharpoonright j) * n \in T$ for all j.

Then FIP-generic is equivalent to FIP. If we drop the requirement that T is set-like, this is precisely 1-generic.

Actually it is enough to be a path to be FIP since there's a univeral family. (as we see later)

One part of the proof for FIP generic is clear. for 1-generic: You build a tree T and a reduction Γ . At every stage, for every $\sigma \in T$, you enumerate $\sigma * 0$ into T and define $\Gamma^{\sigma*0} = (\Gamma^{\sigma}) * 0$. Whenever you see strings σ and τ with $\sigma \in T, \tau \in W_e$ and $\Gamma^{\sigma} \preceq \tau$, enumerate $\sigma * (e + 1)$ into the tree and define $\Gamma^{\sigma*(e+1)} = \tau$. If Γ^A neither meets nor avoids W_e , then for every $j, (A \upharpoonright j) * (e + 1)$ will be enumerated into the tree. So A will neither meet nor avoid e + 1.

Theorem (DDGT)

If X is Δ_2^0 and of FIP degree, then X computes a 1-generic.

The theorem is aided by the fact that there is a universal family.

Theorem (DDGT)

There is a computable instance of FIP named \mathcal{U} which is universal in the sense that any maximal solution for \mathcal{U} computes a maximal solution for every other computable instance of FIP. Further, this reduction is uniform—if \mathcal{A} is a computable instance of FIP, then from an index for \mathcal{A} , one can effectively obtain an index for a reduction that computes a maximal solution for \mathcal{A} from a maximal solution for \mathcal{U} . Thus FIP for \mathcal{U} is Medvedev-above all other computable FIPs.

The idea for the proof is "intersect a lot, in a recoverable way."

The Δ_2^0 case

- Given Q of FIP degree, we build 1-generic G ≤_T Q, and a family. (NB nonuniformity or use the recursion theorem)
- At some stage have X_0, X_1, \ldots and $G \leq_T Q[s]$.
- Want to make G meet V_e , say. Use a auxilairy set $B = B_e$.
- ► Make it meet, say, X₀,..., X_e (but not the rest) (A permitting challenge). Repeat with X_{e+1} etc.
- ► If at some stage we get permission, then want to have, say, X₀,..., X_j, B_e want to block this from going back (For the principle all families representing the same collections of sets should give the same 1-generic) using bocker Z_{e,j}

Theorem (DDGT)

There is a minimal FIP **a** in Δ_3^0 .

The proof is a tricky full approximation argument.

- ► Image we have so far A₀, A₁,..., A_n and wish to slot in B₂, postion determined by index and "state".
- Presumably we have enumerated some description of Φ^{⟨A₀,A₁,...,A_n⟩(j) for j ≤ p.}
- We can move $A_0A_1B...$ for one step seeking agreeing computations.
- Then we can go back. If B stops intersecting, then who cares? If B intersects more, repeat.
- If we get a split we can change state.
- ► A split must generate equivalent families. A₀A₁B...A_j and A₀A₁...A_jB and this forces lots of pain when interactions are considered.

- Notably, priorities ensure that you need to force many splits before you believe "split", as places for entry of high priority sets.
- ► These are "left hanging" which is why the trees are partial.
- ► That is, we might have A₀A₁B...A_j and A₀A₁...A_jB, being the place where we promise we would introduce C, but this intersection might never occur, so we force another split (at least).
- Matters can be arranged to make sure that the first splits split with the second, arguing about uses.
- ► Then we would work on the second split unless we need to introduce *C*.
- Interactions are intricate.

Finite variations

- Do the same but use only families of finite sets.
- Computably true if given as either canonical finite sets, or with a bound on the number.
- FIP is computably true (look at the big intersection)
- If only finite and weak indices:

Theorem (DDGT)

 $\overline{D}_2 IP_{\text{finite}}$ and Δ_2^0 iff it bounds a 1-generic.

The proof is similar but uses more initialization and priority.

Thank You