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1. Introduction

Given a homeomorphism f : M → M of a manifold, we want to understand the structure of the orbits of f . A
natural question to ask here is what other homeomorphisms have the same orbit structure as f . This question leads
to the notion of topological conjugacy: two homeomorphisms, f : M → M and g : M → M have the same orbit
structure if they are topologically conjugate, i.e. if there is a homeomorphism h : M →M such that h ◦ f = g ◦ h.
Thus, given a homeomorphism f : M →M , we can study the topological dynamics of f by studying the dynamics of
any other homeomorphism in the same conjugacy class as f . The benefit of this approach is that if we can find a
“simpler” homeomorphism, g, in the same conjugacy class as f , we’ll then be able to understand the orbit structure of
f simply by understanding the orbit structure of g. 1 This prompts us to ask the following question:

Question 1.1. Given a homeomorphism f : M →M , what kinds of ‘simpler’ homeomorphisms exist in the same
conjugacy class as f?

The answer to this question will depend entirely on f . However, for specific types of homeomorphisms, we’ll
be able to provide an answer. In this proposal, we’ll explain how to Question 1.1 for several different types of
homeomorphisms.

First, we’ll give an answer to this questions for Anosov diffeomorphisms on nilmanifolds giving by giving a result
by Franks and Manning that states that an Anosov diffeomorphism on a nilmanifold is topologically conjugate to a

Date: January 2020.
1 By ‘simpler’, we mean a map whose dynamics are more tractable. For example linear as opposed to non-linear.
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algebraic model. We’ll provide a more precise statement of this result, along with the necessary definitions, in Section
2.

The second class of homeomorphisms for which we’ll answer Question 1.1 will be motivated by this first result.
We’ll next study the set of Anosov homeomorphisms. An Anosov homeomorphism is a expansive homeomorphism with
the shadowing property. The definitions of expansiveness and of the shadowing property will both be given in Section
3. These two properties capture much of the essential behavior of Anosov diffeomorphisms, and as a result Anosov
homeomorphisms will share many of the properties of Anosov diffeomorphisms. We’ll see that we can answer Question
1.1 for Anosov homeomorphisms on nilmanifolds analogously to how we answered it for Anosov diffeomorphisms.
The first step in this generalization was done by Hiraide, who proved an analogue of Franks-Manning for Anosov
homeomorphisms on tori. In this proposal, we’ll generalize Hiraide’s result to nilmanifolds, thus proving an analogue
of Franks-Manning for Anosov homeomorphisms. This discussion will take place over the course of Sections 3-4.

Note that these two results only apply on nilmanifolds. This suggests the obvious question of whether these results
can be extended for more general classes of manifolds. The answer to this question is unknown [4]. However, it is
known for a related class of covering maps, namely the set of expanding maps. This topic proposal will conclude with
a brief discussion of the expanding maps conjecture, which will answer Question 1.1 for expanding maps.

2. Global Rigidity for Anosov Diffeomorphisms

We begin this section by recalling the definition of an Anosov diffeomorphism.

Definition 2.1. Let M be a complete Riemannian manifold. A diffeomorphism f : M →M is Anosov if there exists
a continuous splitting of the tangent bundle TM into df -invariant subbundles the following two conditions are satisfied

• There exists a continuous, df -invariant splitting of the tangent bundle TM = Es ⊕ Eu.
• There exists a Riemannian metric on M with respect to which the map df is contracting on Es and is

expanding on Eu. More precisely, there exist constants C > 0, C ′ > 0 and 0 < λ < 1 and a Riemannian
metric on M such that for all n ≥ 0,

‖dfn(v)‖ ≤ Cλn‖v‖ for v ∈ Es

‖df−n(v)‖ ≤ C ′λn‖v‖ for v ∈ Eu

Anosov diffeomorphisms are of great interest in dynamics because they exhibit a great deal of stability and rigidity.
Of particular interest is Question 1.1 for Anosov diffeomorphisms on compact manifolds. This question of classifying
Anosov diffeomorphisms up to topological conjugacy was originally asked by Smale in [19, Problem 3.5]. Franks
provided an answer for Anosov diffeomorphisms on tori by proving

Theorem 2.2 ([6]). An Anosov diffeomorphism of a torus is topologically conjugate to a hyperbolic toral automorphism.

Recall that a map g : Tn → Tn is a hyperbolic toral autoomorphism if it has a lift g̃ : Rn → Rn that is a
hyperbolic linear transformation in GLn(Z). Later, Manning generalized Franks’ result to Anosov diffeomorphisms on
nilmanifolds. Before stating Manning’s generalization of Theorem 2.2, we’ll recall the definition of a nilmanifold and
provide an example of an Anosov diffeomorphism of a nilmanifold.

Definition 2.3. A nilmanifold is a compact homogeneous space of the form N/Γ, where N is a simply connected
nilpotent Lie group and Γ is a cocompact lattice in N . (This definition of Γ is technically redundant. By [17, Theorem
2.1], all lattices in a nilpotent Lie group are cocompact, so we could actually just assume that Γ is a lattice in N .)

As we’ll see Appendix B, nilmanifolds are natural generalizations of tori, which explains why they provide a natural
way to generalize Franks’ result. We’ll now give two examples to illustrate these concepts. First, we’ll give a basic
example of a nilmanifold. This will be an extremely useful example to keep in mind when working with nilmanifolds.

Example 2.4 (The Heisenberg manifold). The Heisenberg group is group of 3× 3 matrices,

H = H3(R) =

A(x,y,z) =

1 x z
0 1 y
0 0 1

 ; x, y, z ∈ R


under matrix multiplication. Note that H is 2-step nilpotent Lie group and is diffeomorphic to Rn. The Lie algebra
of H is given by

Lie(H) =

B(x,y,z) =

0 x z
0 0 y
0 0 0

 ; x, y, z ∈ R
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and is generated by the matrices, X = B(1,0,0), Y = B(0,1,0), and Z = B(0,0,1). The Lie bracket is given by letting
[X,Y ] = Z and letting all other brackets of generators be zero. The Heisenberg group is an extremely useful example
when studying nilpotent Lie groups.

The Heisenberg manifold is obtained by quotienting the Heisenberg group by the latticeH3(Z) =
{
A(x,y,z); x, y, z ∈ Z

}
.

We’ll now give an example of an Anosov diffeomorphism of a nilmanifold. This example originated with Smale [19].
Our presentation of this example is based on that given in [13, Chapter 17.3].

Example 2.5. Let G = H ×H, where H is the Heisenberg group. To begin, we’ll define a hyperbolic automorphism,
F , of G. We’ll then find a F -invariant lattice Γ in G, which will let us conclude that F descends to an Anosov
diffeomorphism of the nilmanifold G/Γ.

First, we construct a hyperbolic automorphism, F , of G. We do this by constructing a hyperbolic Lie algebra
automorphism, F ′ : Lie(G)→ Lie(G), which we’ll then project down to G using the exponential map to obtain F .
Observe that the Lie algebra of G can be viewed as

Lie(G) =

{(
A 0
0 B

)
; A,B ∈ Lie(H)

}
and is generated by two copies, X1, Y1, Z1 and X2, Y2, Z2, of the standard basis for Lie(H). The bracket is given by
[Xi, Yi] = Zi and letting all other brackets of generators be zero.

We begin by letting λ1 = 3+
√

5
2 and λ2 = 3−

√
5

2 . Note that 0 < λ2 < 1 and λ1 = λ−1
2 . Now, we define the

hyperbolic Lie algebra automorphism, F ′ : Lie(G)→ Lie(G) by

X1 7→ λ1X1,

Y1 7→ λ2
1Y1,

Z1 7→ λ3
1Z3,

X2 7→ λ−1
1 X2,

Y2 7→ λ−2
1 Y2,

Z2 7→ λ−3
1 Z2.

We let F = exp ◦F ′, where exp : Lie(G) → G is the Lie exponential map. (Note that the exponential map is a
diffeomorphism since G is a simply-connected nilpotent Lie group.)

We now construct a lattice, Γ, in G that is preserved by F . We’ll construct Γ by finding a lattice Γ′ in Lie(G) that
is preserved by F ′ and then projecting Γ′ down to G using the exponential map. Recall from Galois theory that the
field Q(

√
5) has a single nontrivial automorphism, σ, which is defined by σ(a + b

√
5) = a − b

√
5 for a, b ∈ Q. We

define the lattice Γ′ ⊂ Lie(G) by

Γ′ =

{(
A 0
0 σ(A)

)
; A ∈ Lie(H) with entries algebraic integers in Q(

√
5)

}
Since the subgroup of algebraic integers in Q(

√
5) is generated by

{
1, 1+

√
5

2

}
, we see that Γ′ is a lattice in Lie(G).

Also note that since λ ∈ Z
[

1+
√

5
2

]×
, we get that F ′(Γ′) = Γ′. Thus, the lattice Γ = exp(Γ′) in G is F -invariant.

We’ve now shown that F projects down to an Anosov diffeomorphism of the nilmanifold G/Γ.

An Anosov diffeomorphism of a nilmanifold constructed in the manner of Example 2.5 is known as a hyperbolic
nilmanifold automorphism, which we’ll define now.

Definition 2.6. Let M = N/Γ be a nilmanifold. A smooth map f : N/Γ→ N/Γ is called a nilmanifold endomorphism

if f lifts to an endomorphism f̃ : N → N . If in addition, the derivative of f̃ at the identity, Def̃ is hyperbolic (i.e.
has no eigenvalues of modulus one), then f is called a hyperbolic nilmanifold endomorphism.

Armed with these definitions, we’re now ready to state Manning’s generalization of Theorem 2.2.

Theorem 2.7 ([15, Theorem C], [4, Theorem 5.1]). An Anosov diffeomorphism of a nilmanifold is topologically
conjugate to a hyperbolic nilmanifold automorphism.

Remark 2.8. Manning originally proved this theorem for infra-nilmanifolds, which are a generalization of nilmanifolds.
However, Dekimpe later found that an error the proof for infra-nilmanifolds and produced a counterexample of an
Anosov diffeomorphism on an infra-nilmanifold that was not conjugate to a hyperbolic nilmanifold automorphism
(although Manning’s argument does still works for nilmanifolds) [4, Section 5]. Dekimpe conjectured that a modified
version of Theorem 2.7 holds on infra-nilmanifolds [4, p.133-134].
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3. Anosov Homeomorphims

We now begin the topic that will occupy the majority of this proposal – that is a generalization of the results of
Section 2 to a larger class of homeomorphisms, known as Anosov homeomorphisms. This section will be devoted to a
definition of Anosov homeomorphisms and a discussion of their properties. Our ultimate goal is to prove an analogue
of Theorem 2.7 for these maps, which we’ll do in Section 4.

First, we’ll explain the origins and motivations for the definition of an Anosov homoeomorphism. Anosov
diffeomorphisms are of great interest largely due to their structural stability, which is rooted in the ‘stability’ of orbits
under perturbation [2],[20]. The property of ‘stability’ of orbits under perturbation is made precise in the shadowing
property, which is defined as follows.

Definition 3.1. Let f : X → X be a homeomorphism of a metric space. A sequence of points {xi}i∈Z ⊂ X is
called a δ-pseudo-orbit if d(f(xi), xi+1) < δ for all i ∈ Z. A point z ∈ X ε-shadows a sequence of points, {xi}i∈Z, if
d(f i(z), xi) < ε for all i ∈ Z. We say that f has the shadowing property if for any ε > 0, there exists δ > 0 such that
any δ-pseudo-orbit is ε-shadowed by a point in X.

All Anosov diffeomorphisms exhibit this property. In fact, they have a strengthened version of the shadowing
property: For small ε > 0 and sufficiently small δ > 0, any δ-pseudo-orbit is ε-shadowed by a unique point x. The
uniqueness in this strengthened version of the shadowing property follows from the following property, which holds
for all Anosov diffeomorphisms.

Definition 3.2. We say that a homeomorphism of a metric space f : X → X is expansive if there exists a constant
c > 0 such that d(fn(x), fn(y)) < c for all n ∈ Z implies x = y. c is called the expansive constant for f .

These two properties capture much of the stability of Anosov diffeomorphisms. For example, the following structural
stability theorem for Anosov diffeomorphisms) follows relatively easily from these two properties.

Theorem 3.3. Let M be a closed manifold. If two Anosov diffeomorphisms f : M → M and g : M → M are
sufficently close in the C0-topology, then they are topologically conjugate.

Proof. This follows from the unique shadowing property for Anosov diffeomorphisms via the observation that if
dC0(f, g) < δ, then any orbit of g is a δ-pseudo-orbit for f . For more details, see [2, Chapter 2] and [20, Theorem
4]. �

Note that both the shadowing property and expansiveness are topological properties, we can use them to define a
more general set of maps than Anosov diffeomorphisms. Since these two properties capture much of the stability of
Anosov diffeomorphisms, the hope is that this new set of maps, called Anosov homeomorphisms, will exhibit many of
the same stability properties as Anosov diffeomorphisms.

Definition 3.4. LetX be a compete metric space. A homeomorphism, f : X → X is called an Anosov homeomorphism
if it is expansive and has the shadowing property.

A first stability result for Anosov homeomorphisms is easy. Since the proof of Theorem 3.3 relied only on the
shadowing property and expansiveness, it will hold for Anosov homeomorphisms. Our ultimate goal will be to prove a
global stability theorem, analogous to Theorem 2.7, for Anosov homeomorphisms on nilmanifolds (Theorem 4.2).
This will answer Question 1.1 for Anosov homeomorphisms on nilmanifolds. The proof of Theorem 4.2 will follow a
similar structure to the proof of Theorem 2.7. Manning’s proof of Theorem 2.7 relied on a number of established
properties of Anosov diffeomorphisms. We will therefore need to prove analogues of these properties for Anosov
homeomorphisms before we can proceed with the proof of Theorem 4.2. Throughout these discussions, we’ll let M be
a closed Riemannian manifold. We’ll let d be the distance function on M induced by the Riemannian metric.

3.1. Stable and unstable sets. Given a homeomorphism f : X → X, of a metric space, we begin by defining the
stable and unstable sets of f .

Definition 3.5. For x ∈ X, the stable set, W s(x), and the unstable set, Wu(x), are

W s(x) :=
{
y ∈ X; d(fn(x), fn(y))

n→∞−→ 0
}

Wu(x) :=
{
y ∈ X; d(f−n(x), f−n(y))

n→∞−→ 0
}

As we will see, the stable and unstable sets of an Anosov diffeomorphism, f : M → M , will form transverse
foliations. These will give extra structure to M and will be useful in the study of the dynamical behavior of f . This
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section will begin with a brief overview of the properties of the stable and unstable sets of an Anosov diffeomorphism.
We’ll then explain how these properties can be generalized to Anosov homeomorphisms.

We begin with a discussion of the stable and unstable sets for an Anosov diffeomorphism, f : M →M . Proofs of
all these facts can be found in most textbooks on hyperbolic dynamics, e.g. [21, Chapter 4.4]. For each x ∈M , the
stable and unstable sets, W s(x) and Wu(x) are both immersed smooth submanifolds of M . For this reason the stable
(resp. unstable) sets of an Anosov diffeomorphism are known as stable (resp. unstable) manifolds. The collection of
stable (resp. unstable) manifolds forms a continuous, f -invariant foliation with smooth leaves, known as the stable
(resp. unstable) foliation of f and denoted by F s

f (resp. Fu
f ). (For a very brief review of foliations see Appendix A.1.)

Additionally, the stable and unstable foliations, F s
f and Fu

f , are transverse. This provides a local decomposition of

M (alternatively a local product structure on M).
To explain more precisely what we mean by “local product structure”, we define the local stable and unstable sets

of f .

Definition 3.6. Let f : X → X be a homeomorphism of a metric space. For ε > 0 and x ∈ X, the local stable set,
W s
ε (x), and the local unstable set, Wu

ε (x), are

W s
ε (x) := {y ∈ X; d(fn(x), fn(y)) ≤ ε, ∀n ≥ 0}

Wu
ε (x) := {y ∈ X; d(f−n(x), f−n(y)) ≤ ε, ∀n ≥ 0}

For sufficiently small ε, local stable and unstable sets of an Anosov diffeomorphism are embedded submanifolds of
M . Their relationship to the global stable and unstable manifolds is given by the following proposition.

Proposition 3.7 ([14]). Let f : X → X be an expansive homeomorphism of the compact metric space X with
expansive constant c > 0. Let 0 < ε ≤ c. Then, for x ∈ X, we have

W s(x) =
⋃
n≥0

f−nW s
ε (fn(x)) and Wu(x) =

⋃
n≥0

fnWu
ε (f−n(x))

We can therefore view, for sufficiently small ε, the local stable (resp. unstable) manifold at x, W s
ε (x) (resp. Wu

ε (x)),
as giving a connected neighborhood of x in the global stable (resp. unstable) manifold at x. We can now explain
precisely what we mean by saying that the stable and unstable foliations of the Anosov diffeomorphism f give M a
local product structure.

Proposition 3.8. Let f : M →M be an Anosov diffeomorphism. There exists ε > 0 such that for all x ∈ X, there
exists an embedding φx : W s

ε (x)×Wu
ε (x)→M where φx(x1, x2) is the unique point of intersection of W s

ε (x1) and
Wu
ε (x2).

This proposition follows immediately from the transversality of the stable and unstable foliations for f . This
concludes our discussion of the stable and unstable manifolds for an Anosov diffeomorphism.

We now turn our attention to generalizing these results to Anosov homeomorphisms. In order to do this, we’ll need
the notion of a generalized foliation. A generalized foliation is essentially a foliation where the leaves are homology
manifolds instead of manifolds. For a precise definition of generalized foliations and a discussion of their properties,
see Appendix A.2.

We can now explain how to generalize the above results to Anosov homeomorphisms. These results are all due to
Hiraide [12, Section 2]. Let f : M →M be an Anosov homeomorphism. We begin by observing that the collection of
stable (resp. unstable) sets for f , which we’ll denote by F s

f (resp. Fu
f ), is a f -invariant decomposition of M . These

collections form transverse generalized foliations. 2

Theorem 3.9 ([12, Proposition A]). If f : M →M is an Anosov homeomorphism of the closed manifold M , then
the collections

Fσ
f = {Wσ(x); x ∈M}, σ ∈ {s, u}

are transverse generalized foliations of M .

The rest of this subsection will be dedicated to sketching the proof of this theorem. For more details see [12,
Section 2]. To prove Theorem 3.9, we just need to find canonical coordinate charts and to show that the leaves of F s

f

and Fu
f are path-connected. In the course of doing this, we’ll show how the stable and unstable generalized foliations

give M a local product structure, providing an analogue of Proposition 3.8.
The bulk of this proof will involve finding a canonical coordinate chart about an arbitrary point, x ∈ M (c.f.

Definition A.6). The motivation behind the upcoming construction is that the canonical coordinate chart about x

2 The definition of transverse generalized foliations originated with Hiraide and is given in Appendix A.2.
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should be given by intersecting stable and unstable sets for points near x. Keeping this in mind, the details all involve
finding a domain on which we can define the map and proving that it satisfies the properties in Definition A.6.

We begin by defining a map, α, that takes two points in a subset of M ×M and gives the intersection of their
local stable and unstable sets. To see why we can do this, we observe that for sufficiently small ε0 > 0, if x, y ∈M
are sufficiently close (i.e. within δ0 of each other), then the local stable set at x, W s

ε0(x), and the local unstable
set at y, Wu

ε0(y), will intersect at a single point, which we’ll call α(x, y). Note that α is defined on a neighborhood,
∆(δ0) = {(x, y) ∈M ×M ; d(x, y) < δ0}, of the diagonal in M ×M . We’ve therefore defined a continuous map
α : ∆(δ0)→M that takes a pair of points to the intersection of their local stable and unstable sets [11, Lemmas 1-2].

We’ll now will use α to define a canonical coordinate chart, αx at an arbitrary point x ∈ M . First, we define
the range of α. Take ε0 > 0 as in the last paragraph. For sufficiently small δ > 0 and σ = s, u, we define
Dσ
x to be the connected component of x in the set {y ∈ Wσ

ε0(x); d(x, y) < δ}. By choosing δ small enough,
we have that α is defined on Ds

x × Du
x ⊂ ∆(δ0). We’ll define αx to be the restriction of α to Ds

x × Du
x , i.e.

αx = α|Ds
x×Du

x
: Ds

x ×Du
x → Nx := α(Ds

x ×Du
x). It turns out that Nx ⊂M is a connected, open neighborhood of x

and that αx is a homeomorphism [12, Proposition 2.1]. The rest of the argument involves showing that αx satisfies
the properties given in Definition A.6 and will be omitted.

3.2. Lifts of stable and unstable sets. For analogous reasons to those we’ll discuss in Section 4, much of Franks’
proof of 2.2 and Mannings’ proof of Theorem 2.7 took place using maps lifted to the universal cover. These arguments
exploited the facts that Anosov diffeomorphisms lift to Anosov diffeomorphisms whose stable and unstable sets are
lifts of the original stable and unstable manifolds. We’ll now give versions of these facts for Anosov homeomorphisms,
which will be used in our proof of Theorem 4.2.

We begin with the following set-up. Let M be a closed Riemannian manifold and let p : M̃ → M be a smooth
covering map for M . By lifting the Riemannian metric on M , we see that M̃ is a complete Riemannian manifold.

We can now generalize the previous results about lifts of Anosov diffeomorphisms to Anosov homeomorphims. These
generalizations are due to Hiraide. For more details on them and their proofs, see [12, Section 3]. Let f : M →M be

an Anosov homeomorphism. The map f lifts to a homeomorphism f̃ : M̃ → M̃ . Just as Anosov diffeomorphisms lift
to Anosov diffeomorphism, we observe that an Anosov homeomorphism lifts to an Anosov homeomorphism.

Next, we’ll discuss the relationship between the stable and unstable sets of f and f̃ . For x̃ ∈ M̃ and ε > 0, we
let W̃ s

ε (x̃) and W̃u
ε (x̃) be the local stable and unstable sets of f̃ at x̃. We let W̃ s(x̃) and W̃u(x̃) be the stable and

unstable sets of f̃ at x̃. Just as for an Anosov diffeomorphism, the stable and unstable sets for f̃ project down to the
stable and unstable sets for f . In fact, locally this projection is an isometry.

Lemma 3.10 ([12, Lemma 3.2]). For sufficiently small ε > 0, the projection p : W̃σ(x̃)→Wσ(p(x̃)) is an isometry.

We next claim that the local product structure on M given by αx, from Section 3.1, lifts to give a local product
structure on M̃ . First, we observe that the map α : ∆(δ0)→M from Section 3.1 lifts to a map α̃ : ∆̃(δ0) = {(x̃, ỹ) ∈
M̃ × M̃ ; d̃(x̃, ỹ) < δ0} → M̃ such that α̃(x̃, ỹ) = W̃ s

ε0(x̃) ∩ W̃u
ε0(ỹ). As before, we get canonical coordinate charts

around a point x̃ by restricting α̃ to the appropriate domain. In this case, we define D̃s
x̃ and D̃u

x̃ by intersecting,

respectively, the lifts of Ds
p(x̃) and Du

p(x̃) with a small ball in M̃ centered at x. We obtain the connected neighborhood

Ñx̃ about x̃ similarly. We then get that the map ãx̃ : D̃s
x̃ × D̃u

x̃ → Ñx̃ is a canonical coordinate chart about x̃. This

gives us a local product structure on M̃ .
It then follows that the collection of stable (resp.) unstable sets of f̃ forms a generalized foliation, denoted F s

f̃

(resp. Fu
f̃

), and that the stable and unstable generalized foliations for f̃ are transverse.

3.3. Indices of fixed points. Let f : M → M be an Anosov diffeomorphism. The index of f at any fixed point
x, denoted Indx(f), will be either ±1 since dxf : TxM → TxM is hyperbolic. The sign of Indx(f) will depend on
the orientation of the stable and unstable subspaces, Esx and Eux , at x. Thus, if the unstable bundle, Eu, of f is
orientable (which implies that the unstable foliation for f is orientable), we can make the fixed point index globally
constant, i.e. for all x, x′ ∈ Fix(f), Indx(f) = Indx′(f). This along with the Lefschetz fixed point theorem tells us
that the absolute value of the Lefschetz number of f , denoted L(f), is equal to the number of fixed points of f . This
fact is relied upon in the proofs of Theorems 2.2 and 2.7.

The purpose of this section is to give the following similar result about the fixed point index of an Anosov
homeomorphism, which will allow us to use the Lefschetz number to count fixed points.

Theorem 3.11 ([12], Proposition B). Let f : M →M be an Anosov homeomorphism of the closed manifold M . If
the generalized unstable foliation Fu

f is orientable, then for sufficiently large m, all the fixed points of fm have the
same index, which is either 1 or −1.
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Note that the assumption in this theorem (i.e. that the generalized unstable foliation be orientable) is analogous
to the assumption we made in the Anosov case. For the definition of orientability for a generalized foliation, see
Appendix A.2. The proof of Theorem 3.11 can be found in [12, Section 5].

3.4. The spectral decomposition. A useful approach to studying the dynamics of a map on a larger set is to
break the set up into smaller invariant sets on which the map exhibits simpler behavior. The spectral decomposition
gives us a way to do this for the non-wandering set of an Anosov diffeomorphism. We begin by recalling the definition
of the non-wandering set.

Definition 3.12. Let f : X → X be a homeomorphism of a compact metric space X. A point x ∈ X is called
nonwandering if for any neighborhood U of x, ∃n ≥ 1 such that fn(U) ∩ U 6= ∅. The nonwandering set of f , denoted
Ω(f) is the set of nonwandering points of f .

Note that the non-wandering set of a homeomorphism f is both compact and f -invariant. Also note that the set of
periodic points of an Anosov diffeomorphism, f , denoted Per(f), is dense in the non-wandering set. This fact is used
in the proof of the spectral decomposition. Before we state the spectral decomposition, we recall one more definition.

Definition 3.13. A continuous map f : X → X is topologically mixing if for any open sets U, V ⊂ X, there exists
an integer N such that fn(U) ∩ V 6= ∅ for all n ≥ N .

We now can state the spectral decomposition for an Anosov diffeomorphism: the non-wandering set of an Anosov
diffeomorphism can be broken up as follows.

Theorem 3.14 (Spectral Decomposition). Let f : M →M be an Anosov diffeomorphism of a compact manifold M .
There exist closed, pairwise disjoint sets X1, ..., Xk and a permutation σ ∈ Sk such that

(a) Ω(f) =
⋂k
i=1Xi,

(b) f(Xi) = Xσ(i), and
(c) if for a > 0, σa(i) = i, then fa|Xi

is topologically mixing.

Smale originally proved the spectral decomposition for Axiom A systems, of which Anosov diffeomorphisms are
an example [19, Theorem 6.2]. The form of the spectral decomposition in Theorem 3.14 was proved by Bowen. Its
proof can be found in [3, Section 3.B]. For completeness, we’ll state Smale’s spectral decomposition (in the Anosov
diffeomorphism case) as a corollary. However, before doing so, we recall that a homeomorphism is topologically
transitive if it has a dense periodic orbit. In future, we’ll use the spectral decomposition to refer to both Theorem
3.14 and the following corollary.

Corollary 3.15. Let f be as in Theorem 3.14. Then there exist pairwise disjoint, closed, f -invariant sets, Ω1, ...,Ωs
such that Ω(f) =

⋃s
i=1 Ωi and f |Ωi is topologically transitive.

We now proceed to give a generalization of the spectral decomposition for Anosov homeomorphisms. Before stating
the spectral decomposition for Anosov homeomorphisms, we note that, just as we saw for Anosov diffeomorphisms, the
set of periodic points of an Anosov homeomorphism is dense in the non-wandering set. We now give the generalization
of Theorem 3.14 for Anosov homeomorphisms.

Theorem 3.16 (Spectral Decomposition). Let f : M →M be an Anosov homeomorphism of a compact manifold M .
Then, there exist closed, pairwise disjoint sets X1, ..., Xk and a permutation σ ∈ Sk such that

(a) Ω(f) =
⋂k
i=1Xi,

(b) f(Xi) = Xσ(i), and
(c) if for a > 0, σa(i) = i, then fa|Xi is topologically mixing.

The arguments given by Bowen to prove Theorem 3.14 rely only on the shadowing property and expansiveness.
They therefore apply to Anosov homeomorphisms, as was shown by Aoki [1].

3.5. Growth of periodic orbits. We know from the previous section that the set of periodic points for an Anosov
diffeomorphism (or for an Anosov homeomorphism) is dense in the non-wandering set. The following theorem shows
us that the number of n-periodic orbits of an Anosov diffeomorphism grows exponentially in n. Before stating this
theorem, we give some terminology. For n ∈ N, we let Pn(f) = |Fix(fn)| to be the number of n-periodic points of f .

Theorem 3.17. Let M be a closed topological manifold, and let f : M →M be an Anosov homeomorphism. Then,
there exists k ∈ N and constants c1, c2 > 0 such that for n ∈ N,

c1e
nkhtop(f) ≤ Pkn(f) ≤ c2enkhtop(f)
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The proof of this theorem relies on the spectral decomposition along with the specification property, which is a
stronger type of shadowing property. For details see [13, Chapters 18.3 and 18.5]. This property can be generalized to
Anosov homeomorphisms as follows.

Theorem 3.18. Let M be a closed topological manifold, and let f : M →M be an Anosov homeomorphism. Then
there exists k ∈ N and constants c1, c2 > 0 such that for n ∈ N,

(3.1) c1e
nkhtop(f) ≤ Pkn(f) ≤ c2enkhtop(f)

The proof of this generalization is identical to the proof of Theorem 3.17 once one shows that the specification
property holds for Anosov homeomorphisms. This is not hard to do directly using the shadowing property and
expansiveness.

4. Global Rigidity for Anosov Homeomorphisms

Our goal in this section is to answer Question 1.1 for Anosov homeomorphisms. We begin, just as we did in
Section 2 with Anosov homeomorphisms on tori. Hiraide proved that Franks’ answer to Question 1.1 for Anosov
diffeomorphisms on tori generalizes to Anosov homeomorphisms on tori.

Theorem 4.1 ([12]). An Anosov homeomorphism of a torus is topologically conjugate to a hyperbolic toral automor-
phism.

Just as Manning extended Franks’ proof of Theorem 2.2, we’ll extend Hiraide’s proof of Theorem 4.1 to nilmanifolds.

Theorem 4.2. An Anosov homeomorphism of a nilmanifold is topologically conjugate to a hyperbolic nilmanifold
automorphism.

Section 4 will be devoted to the proof of this theorem.

4.1. Overview of the proof of Theorem 4.2. In this subsection, we’ll give an overview of the proof of Theorem
4.2. Subsections 4.2-4.5 will then be devoted to filling in the details of this overview.

Let f : M → M be an Anosov homeomorphism of the nilmanifold M = N/Γ. We begin by finding a candidate
for the hyperbolic nilmanifold automorphism in Theorem 4.2. In subsection 4.2, we’ll find a hyperbolic nilmanifold
automorphism, A : M →M , that is homotopic to f . As a consequence of the existence of A, we’ll get that f fixes a
point x0Γ ∈M . By conjugating f by a translation, we can assume without loss of generality that x0Γ = eΓ.

The goal of the rest of the proof will be to construct a conjugacy between A and f . To do this, we’ll first construct
a semiconjugacy between A and f . More precisely, we’ll find a continuous map h : M →M that is homotopic to the
identity, that satisfies A ◦ h = h ◦ f , and that fixes eΓ. This will occur in subsection 4.3.

We’ll complete the proof of Theorem 4.2 by proving that the semiconjugacy h is actually a conjugacy. To do this,
we just need to show that h is a homeomorphism. The main ingredient in this argument will be showing that h is a
local homeomorphism. This combined with the facts that h is surjective (since it’s homotopic to the identity) and
is a proper map (since M is compact) will imply that h : (M, eΓ) → (M, eΓ) is a covering map. Then, since h is
homotopic to the identity, we’ll get that the covering spaces h : (M, eΓ)→ (M, eΓ) and id : (M, eΓ)→ (M, eΓ) are
isomorphic, i.e there is a homeomorphism g : M →M such that h = id ◦ g [9, Theorem 1.38]. This will complete the
argument that h is a homeomorphism, and thus gives a conjugacy between A and f .

We’ll then just need to show that the map h is a local homeomorphism. We’ll do this by showing that its lift,
h̃ : (N, e)→ (N, e) 3 is a local homeomorphism. Recall that Brower’s theorem on invariance of domain states that a
locally injective continuous map between two manifolds without boundary is a local homeomorphism. Thus, we’ll be
done if we can show that h̃ is locally injective. In fact, we’ll show that h̃ is injective.

First, we note that f lifts to an Anosov homeomorphism f̃ : (N, e)→ (N, e). We recall from Section 3.2 that the

stable and unstable sets for f̃ are transverse generalized foliations on N . The first step in the argument that h̃ is
injective will be showing that it suffices to prove that h̃ is injective on stable and unstable leaves of f̃ . This will occur
in subsection 4.4. Finally, in subsection 4.5, we’ll show that h̃ is injective on stable and unstable leaves. This will
complete the proof that h̃ is injective, and thus complete the proof of Theorem 4.2.

3 When we take this lift, we lift the point eΓ ∈ M to the point e ∈ N . In the rest of this section, we’ll be lifting eΓ ∈ M to e ∈ N
unless otherwise noted.
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4.2. Linear models of homeomorphisms on nilmanifolds. The purpose of this section is to find a candidate
for the hyperbolic nilmanifold automorphism in Theorem 4.2. We’ll do this by finding a linear model of f , which we’ll
then show is hyperbolic. Our linear model of f will be a nilmanifold endomorphism A that is homotopic to f . To
construct A, we’ll show that the induced action of f on π1(M, eΓ) can be lifted to an automorphism of Γ. We’ll then
extend this automorphism to all of N to get our linear model.

Let f∗ : π1(M, eΓ)→ π1(M,f(eΓ)) be the homomorphism that f induces on the fundamental group of M . We can
view π1(M, eΓ) and π1(M,f(eΓ)) as subgroups of N . To do this, we first identify π1(M, e) with Γ (via the endpoints
of the lifts of the loops in the fundamental group). Recall that changing basepoint in the fundamental group is
the same as conjugating by some path in M . So in the universal cover of M (i.e. N), the identification that takes
π1(M, eΓ) to Γ will take π1(M,f(eΓ)) to x−1Γx for some x ∈ N . By lifting to N , we can view f∗ as a homomorphism
Γ→ x−1Γx.

Since we want a homomorphism Γ→ Γ, we compose f∗ with conjugation by x−1, which gives us our automorphism
of Γ. To summarize, we’ve shown that we can lift f∗ : π1(M, eΓ)→ π1(M,f(eΓ)) to an automorphism of Γ, which is

defined up to an inner automorphism of N . We can uniquely extend f∗ : Γ→ Γ to an automorphism Ã : N → N [17,

Corollary 1 of Theorem 2.11]. Since Ã preserves Γ, it descends to a nilmanifold automorphism, A : M →M . Note
that f is homotopic to A since they induce conjugate maps on π1(M) and M is a K(π, 1).

We now claim that the linearization A is hyperbolic. This will follow immediately from the following proposition.

Proposition 4.3. Let f : M →M be an Anosov homeomorphism of a nilmanifold M = N/Γ. If A : M →M is a
nilmanifold automorphism that is homotopic to f , then A is hyperbolic.

Proof. By passing to a double cover of M , it suffices to consider the case where the unstable generalized foliation of
f , Fu

f , is orientable. The goal of this proof is to show that A is hyperbolic. More formally, we need to show that

DeA has no eigenvalues of absolute value one. Let λ1, ..., λn be the eigenvalues of DeA (counted with multiplicity).
The first step in this proof will be to relate the number of m-periodic points of f , for m ∈ N, to the eigenvalues of

DeA. We’ll do this using the Lefschetz fixed point theorem. First, recall that since fm and Am are homotopic, their
Lefschetz numbers are the same, i.e. L(fm) = L(Am). The Lefschetz fixed point theorem says that the Lefschetz
number of fm is

L(fm) =
∑

x∈Fix(fm)

Indfm(x)

Then, since Fu
f is orientable, we can apply Theorem 3.11 to get that for some ` ∈ N, all fixed points of fm have the same

index (of either ±1), for all m ≥ `. Thus, the homeomorphism fm has N(fm) fixed points, where N(fm) = |L(fm)|.
Now, Theorem B.10 gives another expression for L(fm) = L(Am), namely that L(fm) =

∏n
i=1(1 − λmi ). We’ve

therefore shown that, for m ≥ `, the number of fixed points of fm is given by

(4.1) Pm(f) = N(fm) =

n∏
i=1

|1− λmi | .

The rest of the proof will be devoted to showing that this equation cannot hold if A is not hyperbolic. We do this in
two steps.

First, we’ll show that none of the λi are roots of unity. Suppose wlog that λ1 is a qth root of unity, i.e. λq1 = 1.
We know from the spectral decomposition that Per(f) 6= ∅. So, for some k ∈ N, Pk(f) ≥ 1, which implies that
Pjk(f) ≥ 1 for all j ∈ N. However, for m = qk, the right hand side of (4.1) is 0. We’ve therefore shown that none of
the eigenvalues of DeA are roots of unity.

Now, we show that A is hyperbolic. Recall from Theorem 3.18 that ∃k ∈ N such that Pmk(f) grows exponentially
in m. Combining this with (4.1) tells us that there exists a constant c > 0 such that for all m ∈ N,

(4.2) cekhtop(f) ≤
P(m+1)k(f)

Pmk(f)
=

n∏
i=1

|1− λ(m+1)k
i |

|1− λmki |

Now, suppose that A is not hyperbolic. We’ll show that the lim inf of the right hand side is zero, which will be a
contradiction. Let λ1, ..., λs are the eigenvalues of DeA of modulus 1. We write,

n∏
i=1

|1− λ(m+1)k
i |

|1− λmki |
=

 ∏
|λi|=1

|1− λ(m+1)k
i |

|1− λmki |

 ∏
|λi|>1

|1− λ(m+1)k
i |

|1− λmki |

 ∏
|λi|<1

|1− λ(m+1)k
i |

|1− λmki |
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We consider each of these terms separately. Note that∏
|λi|>1

|1− λ(m+1)k
i |

|1− λmki |
m→∞−→

∏
|λi|>1

|λi|k and
∏
|λi|<1

|1− λ(m+1)k
i |

|1− λmki |
m→∞−→ 1

Thus,

lim inf
m→∞

n∏
i=1

|1− λ(m+1)k
i |

|1− λmki |
=

 ∏
|λi|>1

|λi|k
lim inf

m→∞

∏
|λi|=1

|1− λ(m+1)k
i |

|1− λmki |


We’ll now show that

lim inf
m→∞

∏
|λi|=1

|1− λ(m+1)k
i |

|1− λmki |
= 0

Since λi is of modulus 1 and is not a root of unity, for 1 ≤ i ≤ s, by density of irrational rotations of the circle, we

can find an increasing sequence of natural numbers {mj} such that λ
mjk
i → λ−ki as j →∞ for all 1 ≤ i ≤ s. Thus,

we have that
s∏
i=1

|1− λ(mj+1)k
i | j→∞−→ 0

Also note that
s∏
i=1

|1− λmjk
i | j→∞−→

s∏
i=1

|1− λki | 6= 0

since none of the λi are roots of unity. We therefore get that,

0 ≤ lim inf
m→∞

∏
|λi|=1

|1− λ(m+1)k
i |

|1− λmki |
≤ lim
j→∞

∏
|λi|=1

|1− λ(mj+1)k
i |

|1− λmjk
i |

= 0

This completes the proof that

lim inf
m→∞

n∏
i=1

|1− λ(m+1)k
i |

|1− λmki |
= 0

Taking lim infs on both sides of (4.2) then gives 0 < cekhtop(f) ≤ 0, which is a contradiction. �

Recall that when we defined the linearization A of an Anosov homeomorphism f : M →M of a nilmanifold, we
only were able to define A up to an inner automorphism of N because we didn’t know whether f had any fixed points.
We are now equipped to show that f does indeed have fixed points, which we can assume without loss of generality
include the identity, eΓ.

Corollary 4.4. An Anosov homeomorphism of a nilmanifold has at least one fixed point.

Proof. This follows immediately from the Lefschetz fixed point theorem and Proposition 4.3. �

4.3. Building the semiconjugacy. The goal of this section is to show that if f : N/Γ→ N/Γ is a homeomorphism
whose linearization A is hyperbolic, then f is semiconjugate to A. Combining this with Proposition 4.3 will give the
first step in constructing the conjugacy in Theorem 4.2.

Proposition 4.5. Let M = N/Γ be a nilmanifold, and let f : M → M be a homeomorphism that fixes the point
eΓ ∈M . If f is freely homotopic to a hyperbolic nilmanifold automorphism A : M →M , then there exists a continuous
map h : M →M (freely) homotopic to the identity such that A ◦ h = h ◦ f and h(eΓ) = eΓ. Furthermore, the map h
is unique.

Remark 4.6. Note that the requirement that h(eΓ) = eΓ is necessary for uniqueness of h. Also, note that the map h
from Proposition 4.5 is surjective since it’s homotopic to the identity. Thus, f is semiconjugate to A via h.

The rest of this subsection is dedicated to an overview of the proof of Proposition 4.5. The big idea in this proof is
that because M is a K(π, 1), ”everything” is controlled (up to homotopy) by the fundamental group. To make this
precise, we recall the following two facts from Algebraic Topology:

Fact 4.7 ([16, top of p.423]). Let X be a K(π, 1). Any two maps g and g′ from X → X that preserve a base point,
say x ∈ X, are freely homotopic if and only if they induce conjugate homomorphisms on the fundamental group
π1(X,x) (i.e. there exists α ∈ π1(X,x) such that for all β ∈ π1(X,x), we have that g∗(β) = α−1g′∗(β)α).
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Fact 4.8 ([9, Proposition 1B.9]). Let X be a K(π, 1). Every homomorphism φ : π1(X,x)→ π1(X,x) is induced by a
unique (up to homotopy fixing x) continuous map g : (X,x)→ (X,x).

The proof of Proposition 4.5 breaks down into two major parts/lemmas. First, we use the fact that f and A are
freely homotopic to construct a conjugacy of the induced homomorphisms f∗ and A∗ on the fundamental group,
π1(M, eΓ). We’ll see that this conjugacy is induced by a base point preserving map of M that is freely homotopic
to the identity. This will take place in Lemma 4.9 and will rely on Facts 4.7 and 4.8 along with the fact that A is
hyperbolic. Next, we show that this conjugacy between the induced homomorphisms f∗ and A∗ is induced by an
actual semiconjugacy between A and f . This will take place in Lemma 4.10. This step is the harder of the two and is
where we really use the fact that M is a nilmanifold.

We now give a precise statement of the first step.

Lemma 4.9. Under the same assumptions as Proposition 4.5, there exists a continuous, basepoint preserving map
h0 : (M, eΓ)→ (M, eΓ) that is (freely) homotopic to the identity such that

(4.3)

π1(M, eΓ) π1(M, eΓ)

π1(M, eΓ) π1(M, eΓ)

φ

f∗ A∗

φ

commutes, where φ = (h0)∗.

Proof of Lemma 4.9. By Fact 4.7, Since f and A are (freely) homotopic, they induce maps on π1(M, eΓ) that differ
by an inner automorphism. Then, the hyperbolicity of A allows us to use this conjugacy to define a homomorphism
φ : π1(M, eΓ)→ π1(M, eΓ) that makes (4.3) commute. �

We’ve show that the induced homomorphisms f∗ and A∗ of π1(M, eΓ) are conjugate via a homomorphism, φ, that
is induced by map h0 : (M, eΓ)→ (M, eΓ) that is freely homotopic to the identity. Now, we’ll complete the proof of
the Proposition 4.5 by using the map h0 and the conjugacy it induces between f∗ and A∗ to construct a base point
preserving semiconjugacy between A and f that also induces φ (and thus is homotopic to the identity).

Lemma 4.10. Let M = N/Γ be a nilmanifold, let f : M → M be a homeomorphism with fixed point eΓ ∈ M ,
and let A : M → M be a hyperbolic nilmanifold automorphism. Suppose that there exists a continuous map
h0 : (M, eΓ)→ (M, eΓ) such that (4.3) commutes, where φ = (h0)∗. Then, there exists a continuous map h : M →M
that is homotopic to h0, that fixes eΓ and such that A ◦ h = h ◦ f . Further, the map h is unique.

Proof of Lemma 4.10. This proof is based on the proof of Theorem 2.2. in [7]. Since M is a K(π, 1), it suffices to find
a continuous map h : (M, eΓ)→ (M, eΓ) that satisfies the equation A ◦h = h ◦ f and that induces the homomorphism

φ on π1(M, eΓ). We’ll find this map by constructing its lift h̃ : (N, e)→ (N, e).
The advantage of working with the lifted maps is that the requirement that h induces the homomorphism φ on

π1(M, eΓ) has a more concrete interpretation when working with the lifted maps. To see this, recall that a map
g̃ : (N, e) → (N, e) is the lift of a map g : (M, eΓ) → (M, eΓ) if and only if for all x ∈ N, γ ∈ Γ, we have that

g̃(xγ) = g̃(x)g∗(γ) 4. Thus, our goal is to find a map h̃ : (N, e)→ (N, e) that will satisfy the equation

(4.4) Ã ◦ h̃ = h̃ ◦ f̃ ,

where Ã is the hyperbolic automorphism of N that descends to A, and the equation

(4.5) h̃(xγ) = h̃(x)φ(γ).

The second equation ensures that h̃ descends to a map h : M →M that is homotopic to h0.
Our strategy will be to obtain h̃ by multiplying the lift, h̃0 : (N, e)→ (N, e), of h0 by a “correction”. More precisely,

we want h̃ to be a function of the form h̃ = ĥh̃0, 5 where ĥ : (N, e)→ (N, e) is Γ-periodic (i.e. ĥ(xγ) = ĥ(x)). Note if

we can find a function h̃ of this form that satisfies (4.4), we’ll be done since (4.5) holds for all functions of the form

ĥh̃0. The rest of this proof will be dedicated to finding the function ĥ.

4 The map g∗ : π1(M, eΓ) → π1(M, eΓ) is the homomorphism induced by g on the fundamental group. Recall that since N is

the universal cover of M = N/Γ, we can identify π1(M, eΓ) with Γ as follows: Each loop α in M based at eΓ lifts to a unique path
α̃ : [0, 1] → N with α̃(0) = e. Note that α̃(1) ∈ Γ = p−1(eΓ) (where p : N → M = N/Γ is the usual projection) depends only on the

homotopy class of α in the fundamental group. Then, we identify [α] ∈ π1(M, eΓ) with α̃(1) ∈ Γ. This identification allows us to view the

map f∗ : π1(M, eΓ)→ π1(M, eΓ) as a homomorphism Γ→ Γ and shows that f̃ |Γ = f∗ as a map from Γ→ Γ.
5 The function ĥh̃0 is given by pointwise multiplication, i.e.

(
ĥh̃0

)
(x) = ĥ(x)h̃0(x).
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Note that any function h̃ that satisfies (4.4) will be a fixed point of the function F0 : C(N,N)→ C(N,N) given

by F0(k) = Ã ◦ k ◦ f̃−1. The fixed points of F0 are precisely the points mapped to the identity by the function
T : C(N,N)→ C(N,N) given by T (k)(x) = k(x)−1F0(k)(x). Solving the equation T (k) ≡ e, rather than (4.4), will

allow us to use the fact that h̃ is of the form ĥh̃0 to get an equation for ĥ in terms of h̃0. We’ll show that T maps a

function of the form h̃ = ĥh̃0 to the identity if and only if the equation

(4.6) T (h̃−1
0 ) = T (ĥ)

holds, where h̃−1
0 (x) = h̃0(x)−1. Thus, we’ll be done if we find a Γ-periodic function ĥ ∈ C(N,N) that fixes e and

that solves the equation T (h̃−1
0 ) = T (ĥ). We’ll now formalize this.

We will solve (4.6) using the following spaces of functions.

• The space Q0 := C(N,N) of continuous functions from N to N with the compact-open topology, and
• its subset Q := {k ∈ Q0; k(e) = e and k is Γ− periodic} of continuous, Γ-periodic functions from N to itself

that fix e ∈ N . Note that Q is a closed subgroup of Q0. In fact, Q is a nilpotent Banach Lie group. 6

Recall that our goal is to find a function ĥ ∈ Q such that the function T : Q0 → Q0 sends the map h̃ := ĥh̃0 to the
identity in Q0, which is just the map that sends everything to the identity. (For this reason, we’ll denote the identity

in Q0 as e, the same as the identity in N .) We claim that T maps a function, h̃, of this form, to the identity iff (4.6)

holds. This follows immediately from the fact that T (ĥh̃0) = h̃−1
0 ĥ−1F0(ĥ)F0(h̃−1

0 ).

Thus, our goal is to find a function ĥ ∈ Q such that T
(
h̃−1

0

)
= T

(
ĥ
)

. To do this, first observe T
(
h̃−1

0

)
∈ Q.

Now, all that remains is to show that the the image of T restricted to Q is all of Q. This will prove the existence of a

map ĥ with the desired properties.
We’ll see that T (Q) = Q in the following two steps, which we’ll just sketch. For full details see [7, Theorem 2.2].

First, we note that T (Q) contains an neighborhood of the identity via an application of the inverse function theorem
to T |Q : Q→ Q at the identity. We then can use induction on the nilpotency class of Q to see that the image of T is
closed under multiplication. These two facts along with the fact that Q is a connected Lie group show that T (Q) = Q.

�

4.4. Global Product Structure. Before jumping into this section, let’s summarize where we are in the proof of
Theorem 4.2. Let f : M →M be an Anosov homeomorphism of the nilmanifold N = M/Γ. Assume without loss of
generality that eΓ ∈M is a fixed point for f . We’ve found a hyperbolic nilmanifold automorphism, A : M →M , that
is homotopic to f , and we’ve constructed a map h : M →M that is homotopic to the identity, that fixes eΓ, and that
satisfies the equation, A ◦ h = h ◦ f .

Now, we just need to show that h is a semiconjugacy, in other words, that h is a homeomorphism. Recall from
subsection 4.1 that, to do this, we just need to show that h̃ is injective, where h̃ : (N, e)→ (N, e) is the lift of h. (As
usual, we lift as in 3.)

Recall from Section 3.2 that the stable and unstable sets for f̃ form transverse generalized foliations, which we call
the stable and unstable foliations of f̃ and denote by F s

f̃
and Fu

f̃
. In this subsection, we’ll prove to show that h̃ is

injective, it suffices to show that h̃ is injective on leaves of the stable and unstable foliations. This will follow by
proving that the stable and unstable generalized foliations establish a global product structure on N . More precisely
that,

Proposition 4.11. For any points x, y ∈ N the stable leaf through x and the unstable leaf through y intersect at
exactly one point, i.e. the set W̃ s(x) ∩ W̃u(y) contains exactly one point.

Before going through the proof of Proposition 4.11, we’ll show how this proposition implies that injectivity of h̃
follows from injectivity on stable and unstable leaves. Take x, y ∈ N such that h̃(x) = h̃(y). By Proposition 4.11,

we can define a point z := W̃ s(x) ∩ W̃u(y) to be the intersection of the stable leaf through x and the unstable leaf

through y. If we show that h̃(x) = h̃(y) = h̃(z), then injectivity of h̃ will follow from injectivity of the stable and

unstable leaves. Thus, it suffices to show that h̃(y) = h̃(z).

To prove h̃(y) = h̃(z), recall that since Ã is a hyperbolic automorphism of N , for arbitrary M1 > 0, the map Ã

is expansive with expansive constant M1. Thus, to show that h̃(y) = h̃(z), it suffices to show that there exists a

6 To see that Q is a Banach Lie group, let ∆ := {k′ ∈ ∆0; k′(e) = 0 and k is Γ− periodic} be the set of continuous, Γ-periodic functions

from N to its Lie algebra n that send e ∈ N to 0 ∈ n. Note that ∆ is a vector space with norm, ‖ · ‖, given by ‖k′‖ := supx∈N |k′(x)|,
where | · | is the norm on n. This norm makes ∆ into a Banach space. We can then define a chart Exp : ∆→ Q by composition with the
Lie exponential map from n→ N . This chart along with the group structure inherited from Q0 makes Q into a Banach Lie group [8, Book

I, Chapter 4.3.1].The fact that Q is nilpotent follows from the fact that N is nilpotent.
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constant M1 > 0 such that for all n ∈ Z,

(4.7) d
(
Ãn ◦ h̃(z), Ãn ◦ h̃(y)

)
≤M1.

To see this, first recall that since Ã ◦ h̃ = h̃ ◦ f̃ and h̃(x) = h̃(y), we have that for all n ∈ Z,

d
(
Ãn ◦ h̃(z), Ãn ◦ h̃(y)

)
= d

(
h̃ ◦ f̃n(z), h̃ ◦ f̃n(y)

)
= d

(
h̃ ◦ f̃n(z), h̃ ◦ f̃n(x)

)
In light of these two equations, to prove 4.7, it’ll be sufficient to prove that there exists a constant M1 > 0 such that
for all n ≥ 0, the following two inequalities hold.

d
(
h̃ ◦ f̃−n(z), h̃ ◦ f̃−n(y)

)
≤M1

d
(
h̃ ◦ f̃n(z), h̃ ◦ f̃n(x)

)
≤M1

These inequalities follow immediately from the following two observations,

• Since h is homotopic to the identity, the map h̃ is a bounded distance away from the identity, i.e. there exists

a constant M0 > 0 such that ∀w ∈ N , d
(
h̃(w), w

)
≤M0.

• The facts that z ∈ W̃ s(x) and z ∈ W̃u(y) imply that there exists a constant C > 0 such that for all n ≥ 0,

d
(
f̃n(x), f̃n(z)

)
≤ C and d

(
f̃−n(y), f̃−n(z)

)
≤ C

Now, all that remains is to prove that the stable and unstable generalized foliations give a global product structure
on N , i.e. Proposition 4.11. We’ll do this in four steps:

First, we claim that the map f̃ has exactly one fixed point.

Lemma 4.12. Let f : M →M be an Anosov homeomorphism of the nilmanifold M = N/Γ. Let f̃ : N → N be a lift

of f to N , and let Ã : N → N be a hyperbolic automorphism of N . If the C0-distance between Ã and f̃ is bounded,
then f̃ has exactly one fixed point.

Proof. This proof is a slight modification of the proof given in [12, Lemma 6.5]. The main ingredients in this proof
are the Lefschetz fixed point theorem and the homotopy invariance of the Lefschetz number. Since we’re working
in a space that isn’t compact, we need to be careful when applying these properties. 7 Since Ã is a hyperbolic
automorphism, we know that its Lefschetz number is L(Ã) = ±1. The Lefschetz number of f̃ is defined because it is

a bounded distance away from Ã.
Next, we observe that since N is contractible, we can construct a homotopy between f̃ and Ã that does not

introduce fixed points outside of a compact set. Thus, L(f̃) = L(Ã) = ±1, which implies that f̃ has at least one fixed
point.

To see that f̃ has at most one fixed point, we show that for some m ≥ 1, f̃m has at most one fixed point. Since
all fixed points of f̃ are fixed points of f̃m, this will show that f̃ has at most one fixed point. Since we know that
L(f̃m) = L(Ãm) = 1 for all m, it suffices to show that for some m ≥ 1, the number of fixed points of f̃m, N(f̃m), is

equal to the Lefschetz number of f̃m. To prove this, we just need to show that there exists m such that all fixed
points of f̃m have the same fixed point index of ±1, which follows from Theorem 3.11. �

We now prove that the non-wandering set of f is the whole nilmanifold.

Lemma 4.13. The nonwandering set of an Anosov homeomorphism f : M →M of a nilmanifold M = N/Γ is the
entire nilmanifold, i.e. Ω(f) = M .

Proof. This follows from the same argument given by Hiraide in [12, Proposition 6.6]. �

We now can begin showing that the stable and unstable generalized foliations of f̃ give a global product structure
on N .

Lemma 4.14. Given the set up from the beginning of this subsection, for x, y ∈ N , the stable manifold of f̃ at x,
W̃ s(x), and the unstable manifold of f̃ at y, W̃u(y), intersect at at most one point.

Proof. This follows from the previous two lemmas along with the spectral decomposition. The details are exactly the
same as those in [12, Lemma 6.7]. �

7 Recall that the Lefschetz number of a map g : X → X is only defined if the set of fixed points Fix(g) is compact. Two maps have

the same Lefschetz number if they are homotopic via a map that does not introduce fixed points out of a compact set. [5]



14 MEG DOUCETTE DISCUSSED WITH AMIE WILKINSON

We can now finally complete the proof of Proposition 4.11, i.e. that the stable and unstable generalized foliations
of f̃ give a global product structure on N . All that remains is to prove that W̃ s(x) and W̃u(y) actually intersect for
each x, y ∈ N . This follows from using fact that F s

f̃
and Fu

f̃
endow N with a local product structure and gluing

local product neighborhoods together using the arguments given in [6, Lemma 1.6].

4.5. Distance in the stable and unstable leaves. All that remains in the proof of Theorem 4.2 is to show that h̃
is injective on the stable and unstable leaves of f̃ . We begin by sketching the idea of the proof that h̃ is injective on
unstable leaves. 8 Using the fact that h̃ is homotopic to the identity, we can show that if z ∈ W̃u(y) and h̃(y) = h̃(z),

then the ‘distance’ in the unstable leaf W̃u(y) between y and z must be hounded independently of y and z. This
along with expansiveness of f will imply that y = z. Note that since we don’t know that the unstable leaves are
manifolds, we don’t have an intrinsic notion of distance on the unstable leaves. We therefore need to define a new
notion of distance to make this argument work.

To define our new notion of distance, fix ε0 = c
4 , where c is an expansive constant for f̃ . We define,

for z ∈W s(x), d(x, z; W̃ s(x)) = min
{
m ≥ 0; f̃m(z) ∈ W̃ s

ε0(f̃m(x))
}
, and

for z ∈Wu(y), d(y, z; W̃u(y)) = min
{
m ≥ 0; f̃−m(z) ∈ W̃u

ε0(f̃−m(y))
}
.

(4.8)

Note that d(x, z; W̃ s(x)) <∞ and d(y, z; W̃u(y)) <∞ follows from an analogue of Proposition 3.7 [12, Lemma 3.5].
This notion of distance satisfies the requirement that for all y ∈ N , there exists a constant M2 ∈ N such that if
z ∈ W̃σ(y) and h̃(y) = h̃(z), then d(y, z; W̃σ(y)) ≤M2 [12, p.386-388]. It therefore can be used as described at the

beginning of the subsection, to prove that h̃ is injective on stable and unstable leaves.

Appendix A. Foliations and Generalized Foliations

This appendix is intended to give a brief overview of generalized foliations. It will begin with a review of topological
foliations and will then proceed with a discussion of generalized foliations. The intent here is to show the parallels
between topological foliations and generalized foliations.

A.1. Topological Foliations. In this section, we’ll provide a brief review of topological foliations. For more details
about foliations, see [10, Chapter II].

Definition A.1. A continuous map F : X → Y is a topological immersion if ∀x ∈ X, there exists a neighborhood U
of x such that F |U is a topological embedding (i.e. a homeomorphism onto its image).

Let M be an n-dimensional topological manifolds. We now define a topological foliation on M .

Definition A.2. A collection F of subsets of M is a (codimension q) topological foliation of M if the following
properties hold:

(1) F is a decomposition of M , i.e. F is a collection of pairwise disjoint sets whose union is M .
(2) Each L ∈ F (called a leaf ) is a connected, topologically immersed submanifold of dimension n− q.
(3) For each x ∈M , there exists

• a connected, open neighborhood Nx ⊂M of x, and
• a homeomorphism, φx : Nx → Bx,τ ×Bx,t ⊂ Rn−q × Rq

such that for any L ∈ F , L ∩Nx is a (countable) union of sets of the form φ−1
x (Bx,τ × {y}) (called plaques).

Example A.3. As we saw in Section 3.1, the collections of stable and unstable manifolds for an Anosov diffeomor-
phisms are transverse topological foliations with smooth leaves.

A.2. Generalized Foliations. In this section, we’ll discuss a way to generalize the concept of a foliation. To the
best of my knowledge, this concept originated with Hiriade in [12]. Our discussion is based on that given in [12].
We begin with the definition of a generalized foliation. In this section, let M be a connected, topological manifold
without boundary, and let n be the dimension of M .

Definition A.4. A collection, F , of subsets of M is a generalized foliation of M if the following properties hold:

(1) F is a decomposition of M .
(2) Each L ∈ F (called a leaf ) is path-connected.
(3) For each x ∈M , there exist

• nontrivial, connected subsets Dx,Kx ⊂M with Dx ∩Kx = {x},

8 The idea behind the proof of injectivity on stable leaves is identical.
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• a connected, open neighborhood Nx ⊂M of x,
• a homeomorphism φx : Dx ×Kx → Nx (called local coordinates around x)

such that
(a) φx(x, x) = x,
(b) φx(y, x) = y ∀y ∈ Dx and φx(x, z) = z ∀z ∈ Kx,
(c) For any L ∈ F , there is at most a countable set B ⊂ Kx such that Nx ∩ L = φx(Dx ×B).

It’s clear that all foliations are generalized foliations, however the reverse may not be true. The sole difference
between the definitions of a foliation and of a generalized foliation is we don’t require the sets Dx and Kx to be
manifolds in the definition of a generalized foliation. (If Dx and Kx are manifolds for all x ∈M , then a generalized
foliation F is, in fact, a topological foliation of M .) While the sets Dx and Kx may fail to be manifolds, the fact that
their product, Dx ×Kx, is a manifold significantly restricts the ways in which Dx and Kx can fail to be manifolds. In
other words, Dx and Kx (and therefore the leaves of F ), while not necessarily manifolds themselves, will behave
like manifolds in many ways. In fact, the leaves of a generalized foliations are homology manifolds (also known as
generalized manifolds). A homology manifolds is a topological space that looks like a manifold under homology. This
is stated precisely in the following proposition.

Proposition A.5 ([12, Lemma 4.2]). Let F be a generalized foliation on a connected manifold without boundary.
There exists 0 < p < dim(M) such that any leaf L ∈ F and x ∈ L, the relative homology groups, H∗(L,L \ {x}) are
given by

Hi(L,L \ {x}) =

{
Z, if i = p

0, if i 6= p

This proposition allows us to define a notion of dimension for generalized foliation. If F is a generalized foliation
of M , then the integer p from Proposition A.5 is called the dimension of f .

We now give the definition of transverse generalized foliations.

Definition A.6. Two generalized foliations F and F ′ on M are transverse if, for each x ∈M , there exist

• nontrivial, connected subsets Dx, D
′
x ⊂M with Dx ∩D′x = {x},

• a connected, open neighborhood Nx of x (called a coordinate domain),
• a homeomorphism φx : Dx ×D′x → Nx (called a canonical coordinate chart (around x)),

such that

(a) φx(x, x) = x,
(b) φx(y, x) = y ∀y ∈ Dx and φx(x, z) = z ∀z ∈ D′x,
(c) for any L ∈ F , there is at most a countable set B′ ⊂ D′x such that Nx ∩ L = φx(Dx ×B′),
(d) for any L′ ∈ F ′, there is at most a countable set B ⊂ Dx such that Nx ∩ L′ = φx(B ×D′x).

Observe that the canonical coordinate charts satisfy the conditions for local coordinate charts for F and F ′

from the definition of a generalized foliation. Also note that if F and F ′ are transverse generalized foliations, then
dim(F ) + dim(F ′) = dim(M).

Now, we give an idea of how to define orientability for generalized foliations. For the sake of brevity, we’ll refrain
from giving a precise, formal definition, and will just give an overview of the idea behind the definition. A precise
definition of orientability for generalized foliations can be found in [12, Section 4]. To motivate this definition, we
recall the definition of orientability for a p-dimensional topological manifold [9, Chapter 3.3]. To do this we recall
that for each x ∈M . the relative homology groups H∗(M,M \ {x}) are given by

(A.1) Hi(M,M \ {x}) =

{
Z, if i = p

0, if i 6= p

An orientation on M is a choice for each x ∈ M of a generator µx for the groups Hp(M,M \ {x}), called a local
orientation of M at x, that is locally consistent (for more details on what we mean by locally consistent, see [9,
p.234]). Since this definition only relies on the relative homology groups of the leaves having the form (A.1), by
Proposition A.5, we can define orientability for generalized foliations in the same way.

Appendix B. Nilmanifolds

Two of the main theorems in this proposal (Theorem 2.7 and Theorem 4.2) are generalizations to nilmanifolds
of analogous theorems (Theorem 2.2 and Theorem 4.1) on tori. In this appendix, we’ll see why a nilmanifold is a
natural generalization of a torus, which will give us a way to extend proofs from tori to nilmanifolds.

We begin by reviewing the concept of a nilpotent group.



16 MEG DOUCETTE DISCUSSED WITH AMIE WILKINSON

B.1. Nilpotent Lie groups and algebras. The idea behind this section is that many of the nice properties of
abelian Lie groups and algebras hold for central extensions of abelian Lie groups and algebras. To make this precise,
we’ll define the notions of nilpotent Lie groups and algebras. Before we can do this, we’ll define central series of a
group, which gives a way to quantify how far from abelian a group is.

Definition B.1. Let G be an abstract group.

(a) The lower central series of G is G = G0 ≥ G1 ≥ ... where Gs+1 = [Gs, G]. (Note that this implies that Gs CG.)
(b) The upper central series of G is G0 = {e} ≤ G1 ≤ ... where Gs+1 = π−1 (Z(G/Gs)), where π : G→ G/Gs is the

quotient homomorphism. (Note that this implies that Gs CG.)
(c) A series of subgroups {e} = G0 ≤ G1 ≤ ... is called a central series for G if one of the following two equivalent

conditions hold:
(i) Gs CG and Gs+1/Gs ≤ Z(G/Gs)

(ii) [Gs+1, G] ≤ Gs.
Alternatively, we can define a central series for G to be a series of subgroups G0 = G ≥ G1 ≥ . . . such that one
of the following two equivalent conditions hold,

(i) Gs CG and Gs/Gs+1 ≤ Z(G/Gs+1)
(ii) [Gs, G] ≤ Gs+1.

See [18, Chapter 11.1] for proof of the equivalence of the conditions in (c).

Definition B.2. A group G is nilpotent if it has a central series G0 = {e} ≤ G1 ≤ · · · ≤ Gc = G. If Gc−1 6= G, we
say that c is the length of the central series G0 ≤ G1 ≤ · · · ≤ Gc.

If G is nilpotent, all of its central series have the same (finite) length, which we call the nilpotency class of G. In
fact, we get the following relationship between the upper and lower central series: If

• G = γ0G ≥ γ1G ≥ · · · ≥ γcG = {e} is the lower central series of G,
• {e} = ζ0G ≤ ζ1G ≤ · · · ≤ ζcG = G is the upper central series of G, and
• {e} = G0 ≤ G1 ≤ · · · ≤ Gc = G is a central series for G,

then, γc−sG ≤ Gs ≤ ζsG.
Now, we turn our attention to nilpotent Lie groups. When discussing central series of nilpotent Lie groups, we’ll

usually restrict our attention to central series made up of closed subgroups of G. The advantage of doing this is that
it implies that all the subgroups in that central series are embedded Lie subgroups and that Gs+1/Gs and G/Gs are
Lie groups. This means that we preserve the Lie group structure when working with central series. We’ll now see that
these remarks apply to the upper central series of a nilpotent Lie group:

Proposition B.3. Let G be a Lie group, and let {e} = G0 ≤ G1 ≤ . . . be the upper central series for G. Then Gs is
closed in G for each s ∈ Z+.

The situation with the lower central series is a bit more complicated; the subgroups in the lower central series of a
nilpotent Lie group are not necessarily closed. However, they will be closed in the special case of a simply-connected
lie group.

Proposition B.4. Let G be a simply-connected Lie group, and let G = G0 ≥ G1 ≥ . . . be the lower central series for
G. Then Gs is closed in G for all s ∈ Z+.

Thus, nilpotent Lie group, G, we can view a nilpotent Lie group, G, as a finite series of central extensions using
the upper central series. If in addition, G is simply-connected, we can do this using the lower central series.

When studying nilmanifolds, simply-connected nilpotent Lie groups are of particular interest. We’ve already
seen that the groups in both the upper and lower central series for a simply-connected Lie group are closed. In
this special case (i.e. for a simply-connected Lie group), the groups in both the upper and lower central series are
simply-connected Lie subgroups. This follows from a corollary of the following theorem.

Theorem B.5. If N is a simply-connected nilpotent Lie group with Lie algebra n, then the exponential map
exp : n→ N is surjective.

Corollary B.6. Let G be a connected, simply-connected, nilpotent Lie group with Lie algebra g. For every subalgebra
h of g, there is a closed, simply-connected Lie subgroup H of G with Lie algebra h.
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B.2. Nilmanifolds as generalizations of tori. We just saw that nilpotent groups were generalizations of abelian
groups by viewing a nilpotent group as a finite series of central group extensions. In this subsection, we’ll see that we
can view nilmanifolds as generalizations of tori in a similar way. We’ll see that a nilmanifold can be written as a finite
sequence of torus bundles. This structure often makes it possible to extend proofs and constructions from tori to
nilmanifolds using induction. Before doing this, we recall the definition of a nilmanifold:

Definition 2.3. A nilmanifold is a compact homogeneous space of the form N/Γ, where N is a simply connected
nilpotent Lie group and Γ is a cocompact lattice in N .

A couple of remarks on this definition:

(1) Saying Γ is a cocompact lattice in N is technically redundant. By Theorem 2.1 in [17, Theorem 2.1], all
lattices in a nilpotent Lie group are cocompact, so we could actually just assume that Γ is a lattice in N .

(2) We’ll be viewing N/Γ as the set of left cosets, {nΓ; n ∈ N}, of Γ in N . Everything works the same way if
you use right cosets instead, but, for no particular reason, I like left cosets better.

(3) In this section, unless otherwise noted, we’ll assume that N is a simply-connected nilpotent Lie group of
nilpotency class c and that Γ is a cocompact lattice in N . When we say ”Let M = N/Γ be a nilmanifold”,
these assumptions hold.

We now will see how a nilmanifold can be written as a finite sequence of torus bundles. This kind of result should
be expected from the fact that a nilmanifold is a K(π, 1), and thus its topology is controlled by its fundamental group
π1(M, eΓ) ∼= Γ. Since Γ is nilpotent, it can be written as a sequence of central extensions, which correspond to the
fundamental groups of the desired tori.

As stated above, the we can write M as a finite sequence of torus extensions of a one point space. By this we
mean that there is a finite sequence of tori, T1, ..., Td, and a finite sequence of manifolds M0, ...,Md, with M0 = M
and Mc = {∗}, such that Ms−1 is a smooth Ts-bundle over Ms. This can be done according to the following theorem:

Theorem B.7. Let M = N/Γ be a nilmanifold. Let {e} = N0 ≤ ... ≤ Nc = N be a central series for N such that Ns
is closed and connected. Let Γs = Ns ∩ Γ. Then, we can define the following:

• the compact, connected, abelian Lie groups (i.e. a tori), Ts = Ns/(ΓsNs−1), for 1 ≤ s ≤ c, and
• the manifolds Ms = N/(ΓNs) for 0 ≤ s ≤ c, where M0 = M and Mc = {∗}.

Then, we can define a free, smooth, proper action of Ts on Ms−1 given by left multiplication, which gives us the
following principal Ts-bundle:

Ts Ms−1

Ms

πs

where πs : Ms−1 →Ms is the natural projection map, nΓNs−1 7→ nΓNs.

This tells us that M looks like a twisted product of tori. In other words, locally, M looks like a finite product of
tori, T1 × ...× Tc. Globally, M will differ from T1 × ...× Tc by twists in how the fibers are glued together.

Our goal in writing a nilmanifold as a sequence of torus bundles was to generalize properties of tori to nilmanifolds
via induction. We’ll now give an alternative (equivalent) ways of writing the bundles in Theorem B.7 which makes
this task a bit easier.

Corollary B.8. Let M = N/Γ be a nilmanifold, and let Ns and Γs for 0 ≤ s ≤ c be as in Theorem B.7. Define

• the compact, connected, abelian Lie groups (i.e. tori), T ′s = (Ns/Ns−1)/(ΓsNs−1/Ns−1) = (Ns/Ns−1)/(Γs/Γs−1)
for 1 ≤ s ≤ c, and

• the manifolds M ′s = (N/Ns)/(ΓNs/Ns) = (N/Ns)/(Γ/Γs) for 0 ≤ s ≤ c. Note that M ′0 = M and M ′c = {∗}
Then, T ′s acts on M ′s−1 via left multiplication, which gives us the following principal T ′s-bundle:

T ′s M ′s−1

M ′s

π′s

where π′s : M ′s−1 → M ′s is the natural projection map, given by sending the equivalence class of n in M ′s−1 to the
equivalence class of n in M ′s.
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We’ve shown that if M = N/Γ is a nilmanifold, and N is c-step nilpotent, then M is a principal torus bundle over
a nilmanifold M1 = (N/N1)/(Γ/Γ1). Since N/N1 is simply-connected and (c− 1)-step nilpotent, this gives a way to
generalize properties of tori to nilmanifolds via induction on c.

B.2.1. Application: the Lefschetz number of an endomorphism of a nilmanifold. As stated at the beginning of the
section, the fact that a nilmanifold can be written as a finite sequence of torus extensions allows us to generalize
many results from tori to nilmanifolds. In this subsection, we’ll use this strategy to generalize the following result
from tori to nilmanifolds.

Proposition B.9 ([13]). Let A : Tn → Tn be an automorphism of an n-torus. Then the Lefschetz number of A is
L(A) = det(Id−A) =

∏n
i=1(1− λi), where λ1, ..., λn are the eigenvalues of A.

The goal of this subsection is to prove the following generalization by following the argument in [15].

Theorem B.10 ([16]). Let M = N/Γ be a nilmanifold, and let A : N/Γ → N/Γ be a nilmanifold automorphism.
Let λ1, ..., λn be the eigenvalues (counted with multiplicity) of DeΓA. Then, the Lefschetz number of A is L(A) =∏n
i=1(1− λi).
This generalization was integral to Manning’s extension of Franks’ proof of Theorem 2.2 to nilmanifolds. It will

similarly necessary to our generalization of Theorem 4.1 in Section 4. We now proceed to its proof.

Proof. This proof is taken from [15]. Suppose that N is c-step nilpotent. We’ll prove Theorem B.10 by induction
on c. If c = 1, then N is abelian. Since all subgroups of an abelian group are normal, we get that M = N/Γ is a
compact, connected, abelian Lie group, in other words, a torus. The conclusion of Theorem B.10 thus holds. Now, we
suppose that the conclusion of the theorem holds when N is c-step nilpotent for some c ≥ 1. Suppose N is (c+ 1)-step
nilpotent.

In the last section, we showed that M = N/Γ can be written as a principal torus bundle over a nilmanifold,
M ′ = N ′/Γ′, where N ′ is c-step nilpotent. We now recall how to do that. Let N0 ≤ N1 ≤ ... ≤ Nc+1 be the upper
central series for N . The upper central series for Γ is Γ0 ≤ Γ1 ≤ ... ≤ Γc+1 where Γs = Ns ∩ Γ. 9 As in Corollary B.8,
we define T1 = N1/Γ1 and M1 = (N/N1)/(Γ/Γ1). Then, M is the principal T1-bundle,

T1 M

M1

π

where π : M →M1 takes nΓ ∈M to the equivalence class of n in M1. This means that M is a “twisted product” of
the torus, T1 and the nilmanifold M1.

The strategy of the proof will be to “break down” the nilmanifold automorphism, A : M → M , into a toral
automorphism A1 : T1 → T1 and a nilmanifold automorphism B : M1 →M1. We can do this because the induced
map A∗ : Γ→ Γ on the fundamental group π1(M, eΓ) ∼= Γ preserves the upper central series of Γ. Proposition B.9
along with the induction hypothesis will then tell us that the Lefschetz number of A1 × B : T1 ×M1 → T1 ×M1

will be given by the expression in Theorem B.10. Since A will differ from A1 ×B by a twist in the fiber, we’ll then
conclude by showing that this twist doesn’t affect the Lefschetz number. This is an immediate consequence of the
following lemma.

Lemma B.11 ([15]). Let π : (X, ∗) → (B, ∗) is a fiber bundle with fiber F = π−1(∗) such that F or B is compact
and such that the fundamental group π1(B, ∗) acts trivially on the homology of F . Then, if (ψ, χ) is a bundle map
and ω = ψ|F , then the Lefschetz numbers L(ψ) = L(χ× ω) are equal.

�
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