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1. Introduction

I work in smooth dynamics with a focus on partially hyperbolic dynamics. I am particularly
interested in questions of classification and rigidity for partially hyperbolic diffeomorphisms.

Partially hyperbolic diffeomorphisms are a rich and widely studied class of dynamical systems.
As a generalization of Anosov diffeomorphisms, they display a mix of the rigid, chaotic behavior of
Anosov systems along with more flexible behavior, which allows for interesting phenomena. My
research focuses on fibered partially hyperbolic systems, which are a class of partially hyperbolic
diffeomorphisms where the interplay between the rigid chaotic behavior and more flexible behavior
can be more easily observed and quantified than in general partially hyperbolic diffeomorphisms.

Classification and rigidity results are an extremely important tool in understanding partially
hyperbolic systems because they give a way to understand the dynamical behavior of general
partially hyperbolic systems by understanding simpler models, for example smooth ones or “linear”
ones. A focus of my research is to expand classification and rigidity results that exist for partially
hyperbolic diffeomorphisms in dimension three to fibered partially hyperbolic diffeomorphisms in
higher dimensions. I am particularly interested in combining tools from dynamics with tools from
Lie theory, topology, and geometry to study these systems.

1.1. Outline. In Section 2, I give some basic definitions and give a broader context for my results.
In Section 3, I discuss the two main results of my thesis. Section 3.1 describes a rigidity result that
gives smooth models for certain fibered partially hyperbolic systems. Section 3.2 discusses homotopy
rigidity of fibered partially hyperbolic diffeomorphisms of Heisenberg nilmanifolds. Finally, in
Section 4, I discuss plans for future research that builds upon my past and current work.

2. Background

A diffeomorphism f : M →M of a closed Riemannian manifold is said to be partially hyperbolic if
there is a continuous Df -invariant splitting TM = Es⊕Ec⊕Eu, constants 0 < λ < γ̂ < 1 < γ < µ,
and constant C > 0 such that for all x ∈ M and all unit vectors vs ∈ Es(x), vc ∈ Ec(x), and
vu ∈ Eu(x), we have that for all n ∈ N,

‖dxfnvs‖ ≤ Cλn,
1

C
γ̂n ≤ ‖dxfnvc‖ ≤ Cγn,

1

C
µn ≤ ‖dxfnvs‖.

In other words, Df is uniformly contracting in the direction of the stable bundle Es, is uniformly
expanding in the direction of the unstable bundle Eu, and is less contracting and/or expanding in
the direction of the center bundle Ec than it is of the other two bundles.

Partially hyperbolic diffeomorphisms are a generalization of Anosov diffeomorphisms, which
are partially hyperbolic diffeomorphisms with Ec = {0}. Up to finite covers, all known Anosov
diffeomorphisms lie on nilmanifolds, which are manifolds of the form N/Γ, where N is a simply-
connected nilpotent Lie group and N < Γ is a uniform lattice.

Anosov diffeomorphisms have been extensively studied and the chaotic behavior they display
exhibits an extraordinary degree of stability and rigidity. For example, Franks and Manning classified
Anosov diffeomorphisms of tori and nilmanifolds by proving that any Anosov diffeomorphism of a
torus or nilmanifold is topologically conjugate to a linear model [6], [12].
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Partially hyperbolic diffeomorphisms are important because they combine the chaotic behavior of
Anosov diffeomorphisms in the directions of the stable and unstable bundles Es and Eu, respectively,
with a more flexible range of behaviors in the direction of the center bundle Ec. Remarkably little
is known about partially hyperbolic diffeomorphisms, making the study of them an exciting and
dynamic field.

My research is focused on a class of partially hyperbolic systems called fibered partially hyperbolic
diffeomorphisms. These are partially hyperbolic diffeomorphisms that have an integrable center
bundle Ec, tangent to a continuous invariant fibration by compact submanifolds. The fibration
here allows us to directly observe the interplay between the distinct behavior in the stable/unstable
directions and in the transverse center direction.

Fibered partially hyperbolic systems form a rich class of dynamical systems. Beyond the relatively
simple examples of skew products on trivial bundles, fibered systems appear as automorphisms of
nilmanifolds and play a role in the construction of exotic partially hyperbolic systems (e.g. [7]) and
in several rigidity contexts [1], [2], [13]. They also have featured in the proofs of several classification
results for partially hyperbolic diffeomorphisms.

A natural notion of equivalence for partially hyperbolic dynamical systems is leaf conjugacy. Two
partially hyperbolic diffeomorphisms f : M →M and g : M ′ →M ′ are said to be leaf conjugate if
there exists a homeomorphism h : M →M ′, a f -invariant foliation W c

f tangent to the center bundle
of f , and a g-invariant foliation W c

g tangent to the center direction of g such that h maps center
leaves of f to center leaves of g (i.e. h(W c

f (x)) = W c
g (h(x)) and h(f(W c

f (x))) = g(h(W c
f (x)))).

The classification of partially hyperbolic diffeomorphisms up to leaf conjugacy (and also of fibered
partially hyperbolic systems) is almost completely open in dimensions greater than three. There are
a number of results in dimension three. For example, Hammerlindl and Potrie showed that every
partially hyperbolic diffeomorphisms on three-dimensional nilmanifolds and tori is leaf conjugate
to the “linear” model in its homotopy class [8], [10]. They also provided a partial classification
up to leaf conjugacy of partially hyperbolic diffeomorphisms on 3-manifolds whose fundamental
group is solvable and has exponential growth [11]. All of these results rely heavily on the topology
of three-manifolds and tools from [3], [4], which only apply in dimension three. As a result, the
methods used in dimension three do not generalize well (if at all) to higher dimension.

While there are a lot of results about classification of partially hyperbolic diffeomorphisms in
dimension three, almost nothing is known in higher dimension. The results that exist typically
require very strong assumptions. For example, Hammerlindl proved that a partially hyperbolic
diffeomorphism of the torus f : Td → Td (d > 3) is leaf conjugate to the linear automorphism of
Td in its homotopy class under the assumption that the center foliation for f is one-dimensional
and the stable and unstable foliations for f are quasi-isometric [8]. Sandfeldt has shown that under
similar assumptions of one-dimensional center and quasi-isometry of stable and unstable foliations, a
partially hyperbolic diffeomorphism of a nilmanifold modeled on the (2n+1)-dimensional Heisenberg
group is leaf conjugate to a nilmanifold automorphism [15].

In order to even conjecture a classification result, one has to find candidates for the “simpler”
system. This limits how general a classification result can be. For example, any diffeomorphism
on a nilmanifold (e.g. a torus) gives rise to a “linear” model. In other words, by considering the
action of a diffeomorphism on the fundamental group of a nilmanifold or torus, one can find a
toral/nilmanifold automorphism in the same homotopy class as the original diffeomorphism. This
observation was used by Hammerlindl, Potrie, and Sandfeldt [8], [10], [15].

Even though these results are about the more general class of partially hyperbolic diffeomorphism,
fibered partially hyperbolic systems do play a role in their proofs– in constructing the leaf conjugacy,
both results show that the original partially hyperbolic systems are fibered. This shows one way in
which classification results for fibered partially hyperbolic systems could be of use in understanding
the more general class of partially hyperbolic systems.
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3. Main Results

A central goal of my research is to classify fibered partially hyperbolic diffeomorphisms up to leaf
conjugacy. One thing that makes this challenging is that the fibration of such a system is typically
only continuous, and its fibers are C1 in general. While fibered partially hyperbolic systems are not
generally smooth, when they are, the induced map on the base of the fibration, which represents
the stable and unstable directions, is Anosov. This allows us to use tools and results about Anosov
diffeomorphisms to study smooth fibered partially hyperbolic systems. It also suggests a natural
subclass of fibered partially hyperbolic systems to consider.

As noted earlier, Anosov diffeomorphisms are classified on nilmanifolds, but a classification on
arbitrary manifolds of does not exist. While all known examples of Anosov diffeomorphisms exist
on nilmanifolds, it is unknown if nilmanifolds are the only manifolds that can support Anosov
diffeomorphisms. In my research, I consider fibered partially hyperbolic systems over nilmanifolds.
This allows for use and modification of existing results about Anosov diffeomorphisms on nilmanifolds.
It also allows us to construct examples of fibered partially hyperbolic systems using existing examples
of Anosov diffeomorphisms on nilmanifolds.

3.1. Smooth models for fibered partially hyperbolic systems. In [5], I showed that under
certain conditions, every fibered partially hyperbolic system over a nilmanifold is leaf conjugate to a
smooth model that is isometric on the fibers and descends to a hyperbolic nilmanifold automorphism
on the base.

Theorem 1 ([5], Theorem A). Let f : M →M be a fibered partially hyperbolic system with quotient
a nilmanifold B and fiber F (where F is a closed manifold). Suppose that the structure group of the
F -bundle M is G ⊂ Diff1(F ) and that there exists a Riemannian metric on F and a subgroup I of
Isom(F ) ∩G such that the inclusion I ↪→ G is a homotopy equivalence.

Then f is leaf conjugate to a C∞-fibered partially hyperbolic system g : M̂ → M̂ (in which both g
and the fibration are C∞) such that

(1) The projection of the leaf conjugacy to B is a map homotopic to the identity;

(2) the F -bundles M and M̂ are isomorphic;

(3) the structure group of M̂ is Isom(F ); and
(4) the projection of g to B is a hyperbolic nilmanifold automorphism.

The general application of Theorem 1 raises a homotopical question about the fiber F : for which
manifolds F and which subgroups G of Diff∞(F ) is there a subgroup H ⊂ Isom(F ) ∩G such that
the inclusion H ↪→ G is a homotopy equivalence? There are numerous examples of manifolds for
which this question can be answered. For example, for the spheres S1, S2, and S3 and for hyperbolic
3-manifolds, the inclusion of their isometry group in their diffeomorphism group is a homotopy
equivalence; this means that Theorem 1 applies to any fibered partially hyperbolic system with
base a nilmanifold and fiber one of these manifolds. Thus, for example, for k ≤ 3 Theorem 1 gives a
complete classification of all fibered partially hyperbolic systems with Sk fibers.

The proof of Theorem 1 only requires the assumption on the structure group G of the bundle
at the very end. Without this assumption, the argument gives that the initial fibered partially
hyperbolic f : M →M is leaf conjugate to an extension over a hyperbolic nilmanifold automorphism.
In other words, without the assumption, we can construct a conjugacy between the map induced
by f on the base B and a hyperbolic nilmanifold automorphism A : B → B, and we can also

construct a smooth F -bundle M̂ over B that is isomorphic to the original F -bundle M . Without the
assumption on the structure group G, we can lift A to a homeomorphism of M̂ that is leaf-conjugate
to the original f , but we cannot guarantee that the lift is smooth or partially hyperbolic. I would
like to explore other situations where A can be lifted to a fibered partially hyperbolic systems in my
future research. I would like to use this setup to further explore the following question.
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Guiding Question 1. Let f : M → M be a fibered partially hyperbolic system with quotient a
nilmanifold B and fiber F (where F is a closed manifold). When can we find a C∞-fibered partially

hyperbolic system g : M̂ → M̂ that is leaf conjugate to f and satisfies conclusions (1), (2), and (4)
of Theorem 1?

In the setup from [5], this question boils down to the question of lifting A : B → B to a partially

hyperbolic diffeomorphism g : M̂ → M̂ . In addition to showing that Question 1 can be answered
affirmatively in the setting of Theorem 1, in [5], I also answered Question 1 when the original bundle
M is trivial:

Theorem 2 ([5], Proposition B). Let f : M → M be a fibered partially hyperbolic system with
quotient a nilmanifold B and fiber F (where F is a closed manifold). Suppose that the F -bundle M
is trivial (i.e. that the F -bundle M is isomorphic to B × F ).

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ such that 1., 2,
and 4. from Theorem 1 hold.

Theorem 2 follows from the setup described above by lifting A : B → B by making the lift the

identity in the fiber direction (which is possible because the bundle M̂ is trivial).
In the proofs of both Theorem 1 and Theorem 2 in [5], the method of lifting A : B → B to

a partially hyperbolic system g : M̂ → M̂ did not use the fact that f : M → M was partially
hyperbolic at all– the existence of f was solely used to guarantee that there was no topological
obstruction to lifting A (and the fact that f was partially hyperbolic was completely irrelevant
to doing this). Once we had that A could be lifted to a homeomorphism, we relied solely on the

topological and geometric structure of the fiber bundle M (and M̂) to get the lift to be partially
hyperbolic with center tangent to the fibers. Asking for such a lift to exist without using the partial
hyperbolicity of f in a general setting amounts to asking the following question:

Guiding Question 2. Given a smooth F -bundle M over a nilmanifold (or torus) B and a hyperbolic
automorphism A : B → B, if A can be lifted to a homeomorphism ĝ : M →M , can A be lifted to a
partially hyperbolic diffeomorphism g : M →M with center direction tangent to the fibers F?

Such a lift g would be required to be smooth, partially hyperbolic, and to have Ec tangent to the
fibers. These requirements can create restrictions on the topology of the bundle M . It therefore
seems unreasonable to expect an affirmative answer to Question 2 without further restrictions on
the bundle. In fact, it does not even seem obvious that A must lift to a diffeomorphism in the
general case described in Question 2.

Thus, the fact that we didn’t use that f was partially hyperbolic at all to lift A in [5] suggests a
major area for improvement. I see two obvious strategies (which can certainly be combined) for
how to use the partial hyperbolicity of f to lift A to a fibered partially hyperbolic system: (1) Use
the existence of f to create restrictions on the topology and geometry of the fiber bundle, and then
use those restrictions to get the desired lift g of A; (2) Directly use the existence of f to construct
the lift g of A.

3.2. Homotopy rigidity of fibered partially hyperbolic diffeomorphisms of Heisenberg
nilmanifolds. Currently I am working on extending the results and methods of Hammerlindl and
Potrie in [9], [10] to higher dimensional Heisenberg nilmanifolds. Hammerlindl and Potrie’s methods
rely heavily on the results of [3], [4], which are extremely rooted in the specifics of three-manifold
topology and geometry. As part of a work in progress, under slightly different assumptions, I have
established results similar to those of Sandfeldt in [15] using the techniques of [10]. The assumptions
used are quite strong, but they are designed to enable limited versions of the 3-manifold results
used by Hammerlindl and Potrie to hold in the necessary higher dimensional situations.

Disregarding the difficulties that arise here from the differences in topology in 3-manifolds and
higher dimensional manifolds, Hammerlindl and Potrie’s strategy fundamentally will not work for
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partially hyperbolic diffeomorphisms of Heisenberg nilmanifolds with Ec of dimension greater than
one. This is because they use the way Ec interacts with the algebraic center of the Heisenberg group,
which is one-dimensional. They use this to show that the original partially hyperbolic diffeomorphism
is fibered with one dimensional fiber. This makes this approach unsuited to classifying partially
hyperbolic diffeomorphisms of Heisenberg nilmanifolds with Ec of dimension greater than one.

4. Future Directions for Research

In general, the fibered partially hyperbolic systems g : M̂ → M̂ found in Theorem 1 and in
Theorem 2 are not in the same homotopy class as the original system f : M →M . While f and g
induce the same action on the base (in terms of homotopy), they do not generally induce the same
action on the fiber (in terms of homotopy).

I want to know whether the smooth model g can be taken to be in the same homotopy class as f .
More generally, I would like to find answers to the following guiding question in the case of fibered
partially hyperbolic systems over nilmanifolds.

Guiding Question 3. When is a fibered partially hyperbolic system f : M →M leaf conjugate to
a smooth model that is in the same homotopy class as the original system?

This question is of interest even when the original bundle M is smooth. For example, even when
the original bundle M is smoothly trivial, it is not obvious how to lift A to a fibered partially
hyperbolic diffeomorphism that doesn’t change the action on fibers.

One idea here is to consider cases where M has additional structure. One way to do this is to
suppose that M is a nilmanifold. It’s easy to see that if M and B are nilmanifolds, then the fiber F
must be topologically a nilmanifold using the long exact sequence of homotopy groups for the fiber
bundle. This allows us to find an algebraic model for f and also for its action on F as seen in [8]
and [10]. Inspired by the approach in these papers, I want to answer the following question:

Question 4. Let f : M →M be a fibered partially hyperbolic system over a nilmanifold, and assume
M is a nilmanifold. Under what circumstances is f leaf-conjugate to the unique automorphism of
M in its homotopy class?

The lack of results in dimension greater than 3 makes any answer to this question extremely
interesting. Additionally, any obstructions or barriers to constructing such a leaf-conjugacy would
indicate potential avenues for creating exotic or pathological fibered partially hyperbolic systems.

The question of whether the linearization of a partially hyperbolic diffeomorphism on a nilmanifold
(or torus) is hyperbolic is answered affirmatively in dimension 3, but is open in higher dimensions
[3],[14]. Thus, finding circumstances where we can answer Question 4 is not sufficient to provide an
answer to Questions 1 and 3. To do this, we need to answer an additional question.

Question 5. Let f : M →M be a fibered partially hyperbolic system over a nilmanifold, and assume
M is a nilmanifold. When is the “linearization” of f partially hyperbolic?

Answering these questions in the context that M is a nilmanifold and g is a nilmanifold automor-
phism poses the question

Question 6. Suppose that f : M →M is a fibered partially hyperbolic system over a nilmanifold B
and that M is a nilmanifold. How does assuming that f is a nilmanifold automorphism restrict the
structure of the bundle M → B?

The algebraic structure of a nilmanifold significantly limits the forms the “linearization” of a
diffeomorphism can take (e.g. see section 2 of [9]). Because the fiber bundle in a fibered partially
hyperbolic system commutes with the diffeomorphism, when the diffeomorphism in the system is an
automorphism, the bundle will have to respect the algebraic structure of the nilmanifold, at least to
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some extent (again this can be seen in [9]). This allows use of tools from Lie theory and algebraic
topology to be more directly used to study the dynamics of these systems.

Because the bundles M and M̂ in Question 1 are isomorphic, requiring that the fibered partially

hyperbolic system g : M̂ → M̂ be the “linearization” of f : M →M restricts the forms f and M
can take. This makes Question 4 much more tractable.
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