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SUMMARY

The Torelli group of Sg, a closed, orientable, connected surface of genus g, is the sub-

group of the mapping class group Mod(Sg) that acts trivially on H1(Sg;Z). The Torelli

group is denoted Ig. We show that the second rational homology of the Torelli group is

finitely generated for all closed, oriented surfaces of sufficiently high genus. This repre-

sents the most significant progress towards determining for which g, if any, Ig is finitely

presentable.

xi



CHAPTER 1

INTRODUCTION

Let Sb
g be a compact, orientable surface of genus g with b boundary components. The

mapping class group Mod(Sg) is π0(Diff+(Sg)). The action of Mod(Sg) on H1(Sg;Z) in-

duces a representation Mod(Sg) → Sp(2g,Z) called the symplectic representation, where

Sp(2g,Z) is the group of invertible linear transformations of H1(Sg;Z) that respect the al-

gebraic intersection form ⟨·, ·⟩. The kernel of this representation is called the Torelli group

and is denoted Ig. There is a short exact sequence

1→ Ig → Mod(Sg)→ Sp(2g,Z)→ 1.

By the work of McCullough–Miller [29], Mess [30] and Johnson [20], Ig finitely generated

if and only if g ̸= 2. Birman posed the following question [6, Problem 29]:

Question 1. Is Ig finitely presented for any sufficiently large g?

Similar questions were asked by Mess [25, Page 90] and Morita [32, Problem 2.1].

Obstructions to finite presentability. If G is a finitely generated group with H2(G;Q)

infinite dimensional, then G is not finitely presentable. The main result of this thesis is

Theorem A.

Theorem A. Let g ≥ 33. The vector space H2(Ig;Q) is finite dimensional.

In particular, Theorem A means that for g ≥ 33, we cannot use H2(Ig;Q) to obstruct the

finite presentability of Ig. Theorem A partially answers the following question of Bestv-

ina [11, Page 5]. Margalit also asked a similar question [28, Question 5.12]).

Question 2. For which choices of k, g, and commutative Noetherian ring R is Hk(Ig;R)

finitely generated as an R–module?
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Prior partial answers to Question 2. Mess showed that I2 is an infinitely generated free

group [30], which implies that H1(I2) is infinitely generated and Hi(I2) = 0 for i ≥ 2.

Johnson [19] constructed a map

τg : Ig ∧3 H1(Sg;Q)/H1(Sg;Q).

now called the Johnson homomorphism, and showed that (τg)∗ induces an isomorphism

in first rational homology [22]. Akita showed that H∗(Ig;Z) is infinitely generated as an

abelian group for g ≥ 7 [1]. Hain showed that H3(I3;Z) is infinitely generated [15].

Bestvina, Bux, and Margalit showed that the cohomological dimension of Ig is 3g − 5 [4,

Theorem A], which implies thatHk(Ig;Z) = 0 for k ≥ 3g−4. Bestvina, Bux, and Margalit

also proved in this same paper that H3g−5(Ig;Z) is infinitely generated for g ≥ 2 [4,

Theorem C]. Gaifullin later showed that Hk(Ig;Z) is infinitely generated for 2g−3 ≤ k ≤

3g − 5 [13], confirming a conjecture of Bestvina–Bux–Margalit [4].

The proof of Theorem A proceeds in three steps.

1.1 Step 1 of the proof of Theorem A: The complex of homologous curves

For the remainder of this thesis, a curve on Sg will be a homotopy class of oriented es-

sential embedded circles S1 → Sg. A multicurve M will be a set of curves in Sg with

pairwise disjoint representatives. A curve c ⊆ Sg is nonseparating if c has a nonseparating

representative. Likewise, a multicurve M ⊆ Sg is nonseparating if every curve in M can

be simultaneously represented by embedded S1’s whose union is nonseparating in Sg. We

let C(Sg) denote the curve complex of Sg. The k–cells of this complex are multicurves

M ⊆ Sg containing k + 1 curves.

Complex of homologous curves. If c ⊆ Sg is a curve, we let [c] ∈ H1(Sg;Z) denote the

homology class represented by c. Let x⃗ ∈ H1(Sg;Z) be a primitive homology class. The

complex of homologous curves Cx⃗(Sg), defined by Putman [33], is the subcomplex of C(Sg)
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generated by curves c with [c] = x⃗. Putman used the work of Johnson [21] to show that

when g ≥ 3, the complex Cx⃗(Sg) is connected [36]. The first step in the proof of Theorem

A is the following result.

Theorem B. Let g ≥ 2. The integral homology H̃k(Cx⃗(Sg);Z) vanishes for k ≤ g − 3.

If we set x⃗ = 0, then the resulting complex is called the complex of separating curves, and

is denoted Csep(Sg). Looijenga has proven that Csep(Sg) is (g − 3)–connected [27, Theorem

1.1], which implies that H̃k(Csep(Sg);Z) = 0 for k ≤ g − 3.

Prior uses of Cx⃗(Sg) to study the Torelli group. The Torelli group Ig acts naturally on

Cx⃗(Sg) for any choice of primitive nonzero x⃗ ∈ H1(Sg;Z). The complex Cx⃗(Sg) has

been used by Hatcher and Margalit to give a new proof that Ig is generated by bounding

pair maps [18]. Gaster, Greene and Vlamis also connected colorings of Cx⃗(Sg) with the

Chillingworth homomorphism [14].

1.1.1 The strategy of the proof of Theorem B

Let g ≥ 2 and let x⃗ ∈ H1(Sg;Z) be a nonzero primitive homology class. Bestvina, Bux

and Margalit defined a complex called the complex of minimizing cycles, denoted Bx⃗(Sg)

[4]. We will make use of the following two properties of the complex of minimizing cycles:

• Cx⃗(Sg) is a subcomplex of Bx⃗(Sg), and

• Bx⃗(Sg) is contractible [4, Theorem E].

Hatcher and Margalit [18] use PL–Morse theory to prove that H1(Bx⃗(Sg), Cx⃗(Sg);Z) = 0

when g ≥ 3. Along with the contractibility of Bx⃗(Sg), H1(Bx⃗(Sg), Cx⃗(Sg);Z) = 0 implies

that Cx⃗(Sg) is connected when g ≥ 3. In Section 3.3.3, we will use Hatcher and Margalit’s

PL–Morse function to prove Hk(Bx⃗(Sg)/Cx⃗(Sg);Z) = 0 for k ≤ g − 2. This and the long

exact sequence in homology complete the proof of Theorem B.
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1.1.2 The complex of splitting curves

As part of the proof that Hk(Bx⃗(Sg)/Cx⃗(Sg);Z) = 0 for k ≤ g − 2, we will also prove a

result about the complex of splitting curves. Putman [34] defined the notion of a partitioned

surface, which is a pair Σ = (S, P ) where S is a compact, oriented surface and P is

a partition of the set of boundary components of S. The complex of separating curves

Csep(Σ) is the full subcomplex of the curve complex C(S) generated by curves δ such that

each p ∈ P is contained entirely in one connected component of S \ δ. Suppose now that

|P | = 2, and the blocks of P are labeled B+ and B−. The complex of splitting curves

Csplit(Σ) is the full subcomplex of Csep(Σ) generated by curves δ such that each connected

component of S \ δ contains a block in P . Looijenga [27, Theorem 1.5] has shown that for

such Σ, the complex Csep(Σ) is (g − 2)–connected. We will prove in Proposition 3.1.1 that

Csplit(Σ) is at least (g − 3 + 1|B+|≥2 + 1|B−|≥2)–acyclic. For the remainder of this thesis,

we will use 1 to denote the indicator function.

1.1.3 Comparing Csplit(Σ) to Csep(Σ)

Note that for Σ = (S, {B+, B−}) with g(S) ≥ 1, we have Csplit(Σ) ̸= Csep(Σ). To see this,

observe that the curve δ in Figure 1.1 is not a vertex of Csplit(Σ), but is a vertex of Csep(Σ).

B+ δ B−

Figure 1.1: The curve δ is a vertex of Csep(Σ) but not of Csplit(Σ)

Looijenga’s theorem [27, Theorem 1.5] yields a stronger property for Csep(Σ) than Propo-

sition 3.1.1 does for Csplit(Σ) when either |B+| or |B−| (or both) are equal to 1. However, if

|B+|, |B−| ≥ 2, Looijenga’s theorem says that Csep(Σ) is (g − 2)–connected, while Propo-

sition 3.1.1 says Csplit(Σ) is (g − 1)–acyclic. This suggests the following possible method
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of proof for showing that Csep(Σ) is (g − 1)–connected when |B+|, |B−| ≥ 2.

Step 1. Upgrade Proposition 3.1.1 to show that Csplit(Σ) is (g − 1)–connected.

Step 2. Show that πk(Csep(Σ), Csplit(Σ)) = 0 for k ≤ g − 1.

Then Csep(Σ) would be (g−1)–connected via the long exact sequence in relative homotopy

groups. However, (g−1) may not necessarily be the best possible bound on the connectivity

of Csep(Σ). Looijenga asked the following question.

Question 3 (Looijenga [27, pg 4]). For Σ = (S, P ) a partitioned surface, let s(P ) denote

the number of blocks of P with at least two elements. Assume that g(S) ≥ 1. Is it true that

Csep(Σ) is (g − 4 + |P |+ s(P ))–connected?

If the answer to Question 3 is affirmative, then we might expect the connectivity of Csep(Σ)

to be strictly higher than the connectivity of Csplit(Σ). Indeed, for Σ = (S, {B+, B−}) with

|B+|, |B−| ≥ 2, we see that g− 4+ |P |+ s(P ) = g, while Proposition 3.1.1 only says that

Csplit(Σ) is (g− 1)–acyclic. This suggests that the sketch that Csep(Σ) is (g− 1)–connected

for |B+|, |B−| ≥ 2 might not yield a sharp bound on the connectivity of Csep(Σ).

1.2 Step 2 of the proof of Theorem A: A criterion for Sp(2g,Z)–representations to

be finite dimensional

We now describe the main technical tool used in the proof of Theorem A.

Notation. Throughout this thesis, Stab will be taken to mean the pointwise stabilizer, as

opposed to the setwise stabilizer. If V is a G–module and f ∈ G, let V f = Stabf V.

Proposition 4.1.1. Let g ≥ 1, and let N ⊆ Sg be a nonseparating multicurve such that

|N | < g. Let G ⊆ Sp(2g,Z) be the image of the map StabMod(Sg)(N)→ Sp(2g,Z). Let V

be a G–representation over Q. Suppose that there is a constant 0 ≤ d ≤ g − |N | such that

the following hold:

1. For any multicurve M ⊆ Sg such that:

5



• |M | ≥ d,

• M is disjoint from N , and

• M ⊔N is nonseparating,

the cokernel of the map
⊕

c∈M V Tc → V is finite dimensional.

2. For any multicurve M ⊆ Sg such that:

• |M | < d,

• M is disjoint from N , and

• M ⊔N is nonseparating,

the coinvariants module VStabG(M) is finite dimensional.

Then V is finite dimensional.

In practice, we will often show that the first hypothesis is satisfied by showing that the

natural map
⊕

c∈M V Tc → V is surjective. We will prove Proposition 4.1.1 in Section 4.1.

1.3 Step 3 of the proof of Theorem A: Finite dimensionality of cokernels

The bulk of the work of proving Theorem A will be proving the following result.

Theorem C. Let g ≥ 33. Let a ⊆ Sg be a nonseparating simple closed curve. The cokernel

of the pushforward map ι∗ : H2(StabIg(a);Q)→ H2(Ig;Q) is finite dimensional.

We will use Theorem C along with Proposition 4.1.1 to prove Theorem A. Setting d = 1,

Theorem C will be used to verify the first hypothesis of Proposition 4.1.1, while the second

hypothesis will be verified in Lemma 7.1.1.

The proof of Theorem C proceeds by considering the action of Ig on the complex of

homologous curves, and then studying the equivariant homology spectral sequence for this

group action.
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The equivariant homology spectral sequences. We consider the equivariant homology

spectral sequence E∗∗,∗ for the action of Ig on C[a](Sg) (see [8, Section VII] for an ex-

pository account of this spectral sequence). Let a ⊆ Sg be a nonseparating curve and let

Xg = C[a](Sg)/Ig. We will use the notation Xg throughout this thesis to refer to this quo-

tient. If σ is a cell of Xg, let (Ig)σ denote the stabilizer StabIg(σ̂) for some arbitrary lift

of σ to C[a](Sg). It is known that if x and y are nonseparating homologous curves in Sg,

then there is an f ∈ Ig such that fx = y (see, e.g., [34, Lemma 6.2]). Hence the set X0
g of

vertices of Xg is a singleton. It follows that page 1 of E∗∗,∗ is as in Figure 1.2.

0 1 2 3

0

1

2 H2((Ig)a)

H1((Ig)a)

⊕
e∈X(1)

H2((Ig)e)⊕
e∈X(1)

H1((Ig)e)
⊕

σ∈X(2)

H1((Ig)σ)⊕
e∈X(1)

H0((Ig)e)
⊕

σ∈X(2)

H0((Ig)σ)
⊕

ρ∈X(3)

H0((Ig)ρ)

Figure 1.2: Page 1 of E∗∗,∗ for the action of Ig on C[a](Sg). All coefficients are in Q.

Since C[a](Sg) is 2–acyclic for g ≥ 5 by Theorem B, the spectral sequence E∗∗,∗ converges

to H2(Ig;Q) [8, Section VII]. Examining Figure 1.2, we see that the cokernel of the map

ι∗ : H2(StabIg(a);Q)→ H2(Ig;Q)

is isomorphic to the direct sum

E∞1,1 ⊕ E∞2,0.

Hence the cokernel of ι∗ is isomorphic to a subquotient of

E2
1,1 ⊕ E2

2,0.

The proof of Theorem C will proceed in two steps:

I. the vector space E2
2,0 is finite dimensional, and
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II. the vector space E2
1,1 is finite dimensional.

By definition, E2
2,0 is canonically identified with H2(Xg;Q). Step I is recorded as the

following proposition.

Proposition 1.3.1. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let

x⃗ = [a]. Let Xg = Cx⃗(Sg)/Ig. The vector space H2(Xg;Q) is finite dimensional.

Proposition 1.3.1 will be proven in Sections 4.2–5.3. Step II of the proof of Theorem C is

recorded as the following result.

Proposition 1.3.2. Let g ≥ 33 and let a ⊆ Sg be a nonseparating simple closed curve. Let

x⃗[a]. Let E∗∗,∗ denote the equivariant homology spectral sequence in rational coefficients

for the action of Ig on Cx⃗(Sg). The vector space E2
1,1 is finite dimensional.

Proposition 1.3.2 will be proven in Sections 6.1–6.2. We now summarize the purpose of

each section.

1.4 The outline of the thesis

This thesis is organized into the following chunks.

• Sections 2.1–2.3, consisting of general connectivity and acyclicity results.

• Section 3.1, where we prove that the complex of splitting curves is sufficiently acyclic,

Proof of Proposition 3.1.1.

• Sections 3.2 and 3.3, where we show that the complex of homologous curves is

(g − 3)–acyclic. This result is recorded as Theorem B.

• Section 4.1, where we Proposition 4.1.1. This is the main tool we will use to verify

finite–dimensionality.

• Sections 4.2 – 5.3, where we verify that H2(Cx⃗(Sg)/Ig;Q) is finite dimensional.
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• Sections 6.1 and 6.2, where we verify that the vector space E2
1,1(Cx⃗(Sg), Ig;Q) is

finite dimensional. Additionally, Section 6.2 contains the proof of Theorem C.

• Section 7.1, which contains the proof of Theorem A.

We now explain the organization of some of the chunks in more detail.

Section 2.1. We discuss some general facts about connectivity and acyclicity of simplicial

complexes. We then prove Lemma 2.1.3, which says that the relative homology of a pair

of simplicial complexes A ⊆ B can be computed using PL–Morse theory. Specifically,

suppose that there is a function W : B(0) → Z≥0 such that W−1({0}) = A(0). We will

show that if the function W satisfies certain local acyclicity properties, then the relative

homology Hk(B,A;Z) vanishes in a range depending on W .

Section 2.2. We prove Proposition 2.2.1. This is a packaging of some standard results about

the Čech-to-singular spectral sequence. We will assume that we have some simplicial com-

plex A and a simplicial cover U of A with U indexed by the vertices of another simplicial

complex B. We will show that if H̃k(B;Z) vanishes in a range and the elements of the

cover U also satisfy some acyclicity properties, then H̃k(A;Z) also vanishes in a range.

Section 2.3. We prove Lemma 2.3.1. This is a result based on the work of Brendle, Broad-

dus and Putman [7] that allows us to compute the acyclicity of certain subcomplexes of the

curve complex of surfaces with boundary.

Section 3.1: The proof of Proposition 3.1.1. We will use Lemma 2.1.3 to prove that a

variant of the arc complex on surfaces with certain decoration on the boundary are acyclic

in a range. We then use Proposition 2.2.1 to prove that a more general version of the

complex of splitting curves is acyclic in a range. This will imply Proposition 3.1.1.

Section 3.2. We will revisit some of the ideas from Section 2.1 in a slightly different con-

text. In particular, the results in Section 2.1 apply only to simplicial complexes. However,

the complex of minimizing cycles Bx⃗(Sg) is not a simplicial complex. We will resolve
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this issue in Lemma 3.2.6 by showing that Lemma 2.1.3 can be applied to CW–complexes

equipped with some convex structure.

Section 3.3: The proof of Theorem B. We will apply a variant of Lemma 2.1.3. The required

local acyclicity properties will be verified by inductively applying Proposition 2.3.1. The

base case of this argument uses Proposition 3.1.1.

Sections 4.2 – 5.3, which prove Proposition 1.3.1. Recall that this result said that for g ≥ 33

and for a ⊆ Sg, the vector space H2(Xg;Q) is finite dimensional. Here Xg = Cx⃗(Sg)/Ig,

with x⃗ = [a]. Our goal is to prove Proposition 1.3.1 by applying Proposition 4.1.1 withG =

StabSp(2g,Z)(x⃗), d = 1, and V = H2(Xg;Q). In particular we will prove the following:

1. For any nonseparating curve c disjoint from and not homologous to a, the cokernel

of the map H2(Xg;Q)T[c] → H2(Xg;Q) is finite dimensional. Here, T[c] denotes the

transvection along [c], defined in Section 4.1.

2. The coinvariants module H2(Xg;Q)G is finite dimensional.

The latter property is verified in the proof of Proposition 1.3.1, while verifying the former

property is the bulk of the work of Sections 4.2– 5.3. The verification of the first hypothesis

proceeds in the following steps:

1. Construct a subspace spanned by fundamental classes of tori T ⊆ Xg called Bestvina–

Margalit tori. These tori are constructed in Section 4.2, and the subspace spanned by

their fundamental classes is denoted BM2(Xg;Q).

2. Show that for any nonseparating c ⊆ Sg disjoint from and not homologous to a,

the cokernel BM2(Xg;Q)T[c] → BM2(Xg;Q) is spanned by classes in BM2(Xg;Q).

This is the bulk of the work of Section 4.2, and is recored as Lemma 5.3.1.

3. Use Proposition 4.1.1 with G = StabSp(2g,Z)(x⃗, [c]), d = 9, and V the cokernel of the

map H2(Xg;Q)T[c] → H2(Xg;Q). This is carried out in two substeps, which each

verify a hypothesis of Proposition 4.1.1.
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(a) The subspace BM2(Xg;Q) is the image under the mapH2(Ig;Q)→ H2(Xg;Q)

of a certain subspace Hab,bp
2 (Ig;Q) ⊆ H2(Ig;Q) generated by abelian cycles

consisting of bounding pair maps. The main work of Section 5.1 is Proposition

5.1.1, which says that for a nonseparating multicurve M ⊆ Sg containing at

least 9 curves, the map

⊕
d∈M

(
Hab,bp

2 (Ig;Q)
)Td

→ Hab,bp
2 (Ig;Q)

is surjective. Since V = H2(Xg;Q)/H2(Xg;Q)T[c] is a quotient of BM2(Xg;Q)

by Lemma 5.3.1 and BM2(Xg;Q) is a quotient of Hab,bp
2 (Ig;Q), the map

ρ :
⊕
d∈M

V T[d] → V

is surjective. In particular, this implies that cok(ρ) is finite dimensional, so

hypothesis (1) of Proposition 4.1.1 is satisfied forG = StabSp(2g,Z)(x⃗, [c]), V =

H2(Xg;Q)/H2(Xg;Q)T[c] and d = 9.

(b) We now show that for M a multicurve with |M | ≤ 8 such that M is disjoint

from a and c and a ⊔ c ⊔M is nonseparating, the coinvariants module

VStab[M ] G

is finite dimensional, where [M ] denotes the set of homology classes repre-

sented by elements ofM . Since V is a quotient of BM2(Xg;Q) by Lemma 5.3.1,

it suffices to show that BM2(Xg;Q)Stab[M ] G is finite dimensional. This is the

content of Lemma 5.2.1 and is the main work of Section 5.2.

Statements (a) and (b) are the hypotheses of Proposition 4.1.1 for the group G =

StabSp(2g,Z)(x⃗, [c]), d = 9, and V the cokernel of the mapH2(Xg;Q)T[c] → H2(Xg;Q).
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Hence V is finite dimensional by Proposition 4.1.1.

Hence for any primitive c disjoint from and not homologous to a, the cokernel of the map

H2(Xg;Q)T[c] → H2(Xg;Q) is finite dimensional. If G = StabSp(2g,Z)(x⃗) then it is not

too difficult to show that H2(Xg;Q)G is finite dimensional. Hence by applying Proposition

4.1.1 with G = StabSp(2g,Z)(x⃗), d = 1, and V = H2(Xg;Q), we conclude that H2(Xg;Q)

is finite dimensional, which is the statement of Proposition 1.3.1.

Sections 6.1 and 6.2, which prove Proposition 1.3.2. The approach is to apply Proposition

4.1.1 with G = StabSp(2g,Z)(x⃗), d = 8, and V = E2
1,1. We verify each hypothesis of

Proposition 4.1.1 in turn.

1. Hypothesis (1) is stated as Lemma 6.2.1, and is the main content of Section 6.2.1.

2. Hypothesis (2) is stated as Lemma 6.1.1 and is the main content of Section 6.2.

Given these two results, we prove Proposition 1.3.2 by applying Proposition 4.1.1. Addi-

tionally, Section 6.2 contains the proof of Theorem C.
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CHAPTER 2

PRELIMINARY WORK FOR THE PROOF OF THEOREM B

2.1 Connectivity and PL–Morse theory

In this section, we explain some basic algebraic topology facts. We then explain some of

the basic ideas of PL-Morse theory, namely:

• PL–Morse functions and

• descending links.

For more background, see Bestvina’s survey [3]. We begin with Section 2.1.1, which in-

cludes some basic definitions and results about connectivity and acyclicity. In Section 2.1.2,

we prove Lemma 2.1.2, which is a slight reformulation of Bestvina’s results. We then use

Lemma 2.1.2 to prove Lemma 2.1.3, which is a basic application of PL-Morse theory that

allows us to compute the relative acyclicity and connectivity of certain pairs of complexes.

The latter result is the main PL–Morse theory result used throughout the paper.

2.1.1 Some terminology and algebraic topology facts

Let X be a topological space with a basepoint x ∈ X and let Y ⊆ X be a subspace with

x ∈ Y . Let n ≥ 0 be a non–negative integer. We say thatX is n–connected if πk(X, x) = 0

for every k ≤ n. We say that X is n–acyclic if H̃k(X;Z) = 0 for every k ≤ n. We say that

the pair (X, Y ) is relatively n–connected if πk(X, Y ) = 0 for every k ≤ n. We say that the

pair (X, Y ) is relatively n–acyclic if Hk(X, Y ) = 0 for every k ≤ n.

Notation. We will use c(X) and a(X) to denote the connectivity and acyclicity respectively

of the space X .

We require the following fact from algebraic topology (see [27, Lemma 2.1]).
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Lemma 2.1.1. Let X1, . . . , Xn be a collection of topological spaces.

(a) If each Xi is ki–connected, then the join

X1 ∗ . . . ∗Xn

is (−2 +
∑n

i=1 (ki + 2))–connected.

(b) If each Xi is ki–acyclic, then the join

X1 ∗ . . . ∗Xn

is (−2 +
∑n

i=1 (ki + 2))–acyclic.

2.1.2 PL–Morse theory

We now discuss the basics of PL–Morse theory and prove Lemma 2.1.3.

PL-Morse functions. Let X be a simplicial complex and Y a subcomplex of X . A PL-

Morse function on X is a function W : X(0) → Z≥0. We define the min-set of W to be

M(W ) = W−1({0}).

Remark. In Bestvina’s formulation of PL-Morse theory, it is assumed that two vertices in

X with the same weight and positive weight are not adjacent. For our purposes it is not

necessary to assume this, so it is not part of our definition.

Descending links. Let X be a simplicial complex equipped with a PL–Morse function W .

Let σ ⊆ X be a cell, and let lk(σ) denote the link of σ in X . If σ is a cell of X such that

W is positive and constant on the vertices of σ, then we say that σ is a W–constant cell. If

σ is a W–constant cell of X , then the descending link dW (σ) is the subcomplex of lk(σ)

generated by vertices w ∈ X such that W (w) < W (v) for all vertices v of σ. Similarly,

the descending star sW (σ) is the join σ ∗ dW (σ).
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Connectivity and acyclicity of PL-Morse functions. Let W be a PL-Morse function on a

simplicial complex X . Suppose there is a positive integer n such that for every positive

weight W–constant k-cell σ, the descending link dW (σ) is (n−k)–connected. In this case,

we will say that W is an n–connected PL-Morse function. Similarly, if there is a positive

integer n such that for W–constant k–cell σ, the descending link dW (σ) is (n−k)–acyclic,

we say that W is an n–acyclic PL-Morse function.

We have the following general result about PL–Morse functions due to Bestvina [3]. We

will assume that all simplicial complexes are finite dimensional and countable.

Lemma 2.1.2. Let X be a finite–dimensional, countable simplicial complex equipped with

a PL-Morse function W . Let Y =M(W ).

(a) If W is n–connected, then the pair (X, Y ) is relatively (n+ 1)–connected.

(b) If W is n–acyclic, then the pair (X, Y ) is relatively (n+ 1)–acyclic.

Proof. We will begin by constructing a double–indexed filtration of X . If σ is a k-cell, we

let W (σ) = max{W (v) : v ∈ σ0}. For integers k ≥ 0 and m ≥ 1, we set

Xk,m = W−1 ([0,m))
⋃
{σ : W (σ) ≤ m, dim(σ) ≤ k}.

We will use the notation W∞,m to mean the full subcomplex of X generated by vertices of

weight ≤ m. The set

{Xk,m}k∈Z≥0,m∈Z≥1

is a filtration of X with Xk,m ⊆ Xk′,m′ if either m′ > m or m′ = m and k′ ≥ k. We will

prove part (a) of the lemma. The proof of (b) follows from a similar argument.

The proof of (a). Since the filtration

X0,0 ⊆ X0,1 ⊆ . . .
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is well-founded, it suffices to prove that for every k ≤ n+ 1, the following hold:

1. The pair (Xk,m, Xk−1,m) is relatively (n+1)–connected for every k > 0 and m > 0.

2. The pair (X0,m, X∞,m−1) is relatively (n+ 1)–connected for every m > 0.

Since (1) and (2) follow by similar reasoning, we only prove (1).

The proof of (1). Fix integers k ≥ 1 and m ≥ 1. Let T k,m be the set of W–constant

k-cells of weight m. The complex Xk,m is constructed from Xk−1,m by attaching, for each

σ ∈ T k,m, the complex σ ∗ dW (σ) to ∂σ ∗ dW (σ) in the natural way. over dW (σ). See

Figure 2.1 for an example of this filtration. By hypothesis, dW (σ) is (n − k)–connected.

e

f

v

Figure 2.1: The filtrationXk,m. The edge e ⊆ X1,1, the vertex v ∈ X0,2, the edge f ⊆ X0,2.

By Lemma 2.1.1, the join ∂σ ∗ dW (σ) is ((k − 2) + (n− k) + 2)–connected and hence

n–connected. There is a countable filtration of Xk,m given by arbitrarily indexing the cells

of T k,m by the natural numbers N, and then attaching them one at a time to Xk−1,m. We

will notated the jth term of this filtration by Xj
k−1,m. If τ is the cell added between Xj−1

k−1,m

and Xj
k−1,m, then the pair

(
Xj−1

k−1,m ⊔∂τ∗dW (τ) τ ∗ dW (τ), Xj−1
k−1,m

)
is relatively (n+1)–connected. Therefore (Xj

k−1,m, X
j−1
k−1,m) is relatively (n+1)–connected

for every j ≥ 1, so the pair (Xk,m, Xk−1,m) is relatively (n+ 1)–connected.

We have the following consequence of Lemma 2.1.2.
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Lemma 2.1.3. Let X be a finite–dimensional, countable simplicial complex with a PL-

Morse function W and let Y =M(W ). Let n ≥ 0 be an integer.

(a) If W is n–connected and Y is (n+ 1)–connected, then X is (n+ 1)–connected.

(b) If W is n–connected and X is n–connected, then Y is n–connected.

(c) If W is n–acyclic and Y is (n+ 1)–acyclic, then X is (n+ 1)–acyclic.

(d) If W is n–acyclic and X is n–acyclic, then Y is n–acyclic.

Proof of Lemma 2.1.3. We prove (a). The others follows by a similar argument. It is

enough to prove that for i ≤ n, we have πi(Y ) = 0. Fix some i ≤ n. We have the

long exact sequence in relative homotopy associated to the pair (X, Y ), a part of which is

given by

. . .→ πi+1(X, Y )→ πi(Y )→ πi(X)→ . . .

Then πi+1(X, Y ) = 0 by Lemma 2.1.2 and πi(X) = 0 by hypothesis, so πi(Y ) = 0.

2.2 Covers indexed by simplicial complexes

The main output of this section is Proposition 2.2.1, which is a technical result about the

acyclicity of complexes covered by simplicial subcomplexes that are indexed by the cells

of another complex. Proposition 2.2.1 is a homological version of a result of Mirzaii and

van der Kallen [31]. Proposition 2.2.1 can also be viewed as a specific application of the

homotopy colimit spectral sequence [10].

Bi-cellular covers. Let X and Y be two simplicial complexes. Let LX be a function taking

a vertex y ∈ Y (0) to a subcomplex of X . If σ is a k-cell of Y with vertices y0, . . . , yk, we

denote

LX(σ) = LX(y0) ∩ . . . ∩ LX(yk).
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If the set {LX(y)}y∈Y (0) covers X , we will call such an LX a Y -indexed cover of X . If

LX is a Y -indexed cover of X , then there is an associated X-indexed cover of Y given by

setting LY (x) to be the full subcomplex of Y generated by vertices y such that x ∈ LX(y)

for x a vertex of X . We say that a Y -indexed cover of X is cellularly n–acyclic if for each

k-cell σ of Y , the complex LX(σ) is (n−k)–acyclic. We say LX is bi-cellularly n–acyclic

if LX and LY are both cellularly n–acyclic.

Proposition 2.2.1. Let X and Y be finite–dimensional, countable simplicial complexes.

Let LX be a Y -indexed cover of X . Suppose there is an integer n such that the following

hold:

• LX is bi-cellularly n–acyclic and

• Y is n–acyclic.

Then X is n–acyclic.

We will now introduce the main algebraic object that we use to prove Proposition 2.2.1.

Bi–cellular spectral sequence. Let X and Y be simplicial complexes, and let LX be a Y –

indexed cover of X . We have a bi-graded double complex called the bi-cellular complex

given by

Cp,q =
⊕

σ∈Y (p)

Cq(LX(σ))

where C∗ denotes the complex of integral chains on a simplicial complex. Let E∗,←∗,∗ and

E∗,↓∗,∗ denote the leftward and downward spectral sequences associated to C∗,∗ associated

to LX and LY . We refer to these respectively as the leftward and downward bi-cellular

spectral sequences.

The leftward versus downward strategy. Let Cp,q be a double complex. There are two spec-

tral sequences associated to Cp,q, which are the leftward and downward spectral sequences.

We denote these E∗,←∗,∗ and E∗,↓∗,∗. These two spectral sequences are each constructed from
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Cp,q by two different filtrations of the total complex Cp+q. The key point is that both E∗,←∗,∗

and E∗,↓∗,∗ converge to filtrations of the total homology of Cp,q. Denote the total homology

by Hp+q(C∗,∗). Suppose that we want to compute some of the groups E2,←
p,q . The strategy is

as follows:

1. Show that E∗,↓p,q converges to 0 in a range 0 < p+q < n. This implies that Hp+q(C∗,∗)

converges to 0 for 0 < p+ q < n.

2. Use the fact that E∗,←p,q must also converge to 0 for 0 < p + q < n to say something

about the groups E2,↓
p,q .

This is a standard technique, used for example to show that the G–equivariant homology

of a contractible CW–complex X converges to the group homology of G when G acts on

X without rotations [8, Section VII].

Proof of Proposition 2.2.1. We will apply the leftward versus downward strategy discussed

above. In particular, we will show that the downward bi-cellular spectral sequence con-

verges to Z for p + q = 0 and converges to 0 for 0 < p + q ≤ n, and that the leftward

bi-cellular spectral sequence converges to Hp+q(X;Z) for 0 ≤ p+ q ≤ n. This completes

the proof since the leftward and downward sequence both converge to Hp+q(C∗,∗).

The downward sequence. On page 1 of E∗,↓∗,∗, we have

E1,↓
p,q =

⊕
σ∈Y (p)

Hq(LX(σ);Z).

By hypothesis, for 0 ≤ p+ q ≤ n and q > 0 we have

E1,↓
p,q = 0.

Then for q = 0 in this range we have

E1,↓
p,∗ = Cp(Y ).
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Hence E∗,↓p,q converges to Hp+q(Y ;Z), which by hypothesis is Z when p + q = 0 and 0 for

0 < p+ q ≤ n.

The leftward sequence. By construction, there is a canonical isomorphism

C∗,∗ ∼=
⊕

σ∈X(q)

Cp(LY (σ)).

Then by the same argument as the downward case, E∗,←∗,∗ converges to Hp+q(X;Z) for

p+ q ≤ n. Hence H0(X;Z) ∼= Z and Hp+q(X;Z) = 0 for 0 < p+ q < n.

2.3 Brendle–Broaddus–Putman flow

Our goal in this section is to prove Proposition 2.3.1, which is a technical result about how

adding boundary components to a surface increases the acyclicity of certain subcomplexes

of the curve complex. Let S = Sb
g be a surface with b ≥ 1. Let p0 be a boundary component

of S. Let S ′ be a surface and let ι : S → S ′ be an embedding such that S ′ \ ι(S) is a disk

bounded by ι(p0). Let C(S) denote the curve complex of S. Let C ′(S) be the subcomplex

of C(S) generated by curves δ such ι(δ) is essential. Let K(S) ⊆ C(S) be the subcomplex

generated by vertices δ such that ι(δ) is inessential. There is a pushforward map

ι∗ : C ′(S)→ C(S ′).

Assuming that S has one boundary component, Kent, Leininger and Schleimer proved that

ι∗ is a homotopy equivalence [24, Theorem 7.2]. Brendle, Broaddus and Putman [4] use a

flow argument to show that the map ι∗ is a homotopy equivalence assuming that b ≥ 2. This

is a similar technique to methods used by Hatcher [17], Looijenga [27], and Bell–Margalit

[2]. We describe technique of Brendle–Broaddus–Putman here.

Hatcher flow. Associated to each vertex δ ∈ K(S), there is an oriented arc α connecting

a boundary component p1 to p0 as in Figure 2.2. Let lk(δ) denote the link of δ in C(S). If
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p0 p1
α

δ

Figure 2.2: The arc α associated to the curve δ ∈ K. α is oriented from p1 to p0.

δ ∈ K, then lk(δ) ⊆ C ′(S). Then C ′(S) is homotopy equivalent to lk(δ). The homotopy

equivalence is given iteratively surgering β along the arc α. An example of this surgery is

given in Figure 2.3. The full definition is given below.

β
α

p0

β0

Figure 2.3: Surgering on boundary components [7].

Brendle, Broaddus and Putman show that there is a homotopy equivalence

K(S) ∗ C(S ′) ≃ C(S).

We will say that a complex X ⊆ C(S) is Brendle–Broaddus–Putman-compatible with a

boundary component p ∈ π0(∂S) if for every δ ∈ K(S)∩X and every β ∈ X(0) \(K(S)∩

X), the surgery of β along an arc α as in Figure 2.2 is also in X .

Remark. Since curves are defined only up to homotopy, this definition of surgery is not a

priori well–defined. We will more precisely state the surgery construction and prove that it

is well defined in Lemma 2.3.2.

The main goal of the section is to prove the following result.

Proposition 2.3.1. Let S = Sb
g with b ≥ 2 and χ(S) ≤ −1. Let p0 be a boundary

component of X . Let X ⊆ C(S) be Brendle–Broaddus–Putman compatible relative to

p0. Let ι : S → S ′ be the inclusion map from S to the surface S ′ with p0 filled in by a
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disk. Let C ′(S) denote the subcomplex of the curve complex generated by curves δ such

that δ remains essential when p0 is filled in with a disk, and let K(S) denote the remaining

vertices of C ′(S). Then

(a) For every δ ∈ K(S), the inclusion X ∩ C ′(S) ↪→ lk(δ) is a homotopy equivalence.

(b) (X ∩K(S)) ∗ (X ∩ C ′(S)) ≃ X.

Before we prove this proposition, we will precisely define surgery along arcs.

Surgery along arcs. We now explicitly construct the surgery of a curve β along an arc δ. Let

S = Sb
g be a compact oriented surface with b ≥ 2. Let p0, p1 be two boundary components

of S, and let C(S), C ′(S) andK(S) be as above. Let δ ∈ K(S) be a curve and let β ∈ C ′(S)

be another curve. We will define the surgery of β along δ, which we denote surgδ(β). Let

δ̂ be a smooth representative of δ, and let α̂ be an oriented arc connecting p1 to p0 such

that α is disjoint from δ̂. Choose a representative β̂ of β such that the intersection number∣∣∣β̂ ∩ α̂∣∣∣ is minimal. If β̂ is disjoint from α̂, then we say Surgδ(β) = β. Otherwise, let q

be the point of intersection of β̂ with α̂ that is closest along α̂ to the boundary component

p0. Let U be an annulus with p0 ⊆ ∂U . Let α̂q,p0 denote the embedded interval given by

restricting α̂ to the sub–interval connecting q to p0. Let V be an embedded copy of I × I

such that I × 1
2
= αq,p0 . Define

Surgδ(β) = the isotopy class of β̂∆(∂(I ∪ U))

where ∆ denotes symmetric difference. We have the following result.

Lemma 2.3.2. Let S, S ′, p0, p1, δ, β be as above. The curve Surgδ(β) is well–defined.

Proof. In the construction of Surgδ(β), there are six choices made, namely δ̂, α̂, β̂, U , and

I . Only the choice of α̂ is still a choice up to isotopy, since two arcs α̂ and α̂′ need not

be isotopic. Since we are working up to isotopy, we may assume that α̂ and α̂′ have the

same endpoints. Let α and α′ denote the isotopy classes of the arcs α̂ and α̂′. There are
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integers m,n ∈ Z such that Tm
p0
T n
p1
α = α′, where Tpi denotes the Dehn twist along a curve

cobounding an annulus with pi. But then if γ denotes the surgery of β along α up to isotopy

and γ′ for β along α′ up to isotopy, we see that Tm
p0
T n
p1
γ = γ′. But Tp0 and Tp1 act trivially

on C(S), so Surgδ(β) is well–defined.

We now describe our extension of the construction of Brendle–Broaddus–Putman [7]. Let

S = Sb
g with b ≥ 2. Let X ⊆ C(S) be a subcomplex of the curve complex. Let p0 be a

boundary component of S. Let S ′, C ′(S) and K(S) be as above. We say that X is Brendle–

Broaddus–Putman compatible relative to p0 if for every curve δ ∈ X ∩ K(S) and every

β ∈ X ∩ C ′(S), we have Surgδ(β) ∈ X . We say that X is Brendle–Broaddus–Putman

compatible if it is Brendle–Broaddus–Putman compatible relative to every boundary com-

ponent of S. We have following result.

Our argument is essentially the same as the argument of Brendle, Broaddus and Putman

[7, pg 13-16]. We require the following lemma from their paper [7, Lemma 4.1].

Lemma 2.3.3. Let X be a simplicial complex, let I be a discrete set of points, and let

Y ⊆ I ∗X be a subcomplex such that I,X ⊆ Y . Suppose that, for any i ∈ I , the inclusion

lkY (i) ↪→ X is a homotopy equivalence. Then the inclusion Y ↪→ I ∗ X is a homotopy

equivalence.

Proof of Proposition 2.3.1. Part (b) of the lemma follows from part (a) and Lemma 2.3.3,

so it suffices to prove part (a). Let δ ∈ K(S). Since X ∩ C ′(S) and X ∩ lk(δ) both have

the homotopy type of CW–complexes, it suffices to show that the inclusion map

κ : X ∩ lk(δ)→ X ∩ C ′(S)

induces an isomorphism on homotopy groups. Equivalently, it suffices to show that πk(X∩

C ′(S), X ∩ lk(δ)) = 0 for all k ≥ 0.

Choose a hyperbolic metric on S with geodesic boundary. Then for each β ∈ X∩C ′(S),

let β̂ be the geodesic representative. Let α̂ be an oriented geodesic arc connecting p1
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to p0 and disjoint from δ. Since these are geodesics representatives, any pair of chosen

representatives intersects minimally [12]. By perturbing the β̂ slightly, we may additionally

assume that:

• each β̂ intersects α̂ in a different point than any other β̂, and

• β̂ minimally intersects β̂′ for any β, β′ ∈ C(S).

Let W (β) denote the distance along α between p1 and q, where q is the closest point of

intersection of β and α with p0. Let ψ : Sk → X ∩ C ′(S) be a simplicial representative of

a class in πk(X ∩C ′(S), X ∩ lk(δ)), where Sk is a simplicial decomposition of a k–sphere.

Let β ∈ ψ(Sk) be a vertex with W (β) maximal. If W (β) = 0 then we are done, so assume

otherwise. Note that dW (β) is a cone with cone point Surgδ(β). Hence ψ is homotopic to

a map ψ′ : Sk → X ∩ C ′(S) such that the maximal intersection number of any vertex in

ψ′(Sk) is not larger than for ψ(Sk). Since iteratively applying Surgδ to a curve β eventually

stabilizes in a curve β with W (β)) = 0, the above process eventually terminates in ψ with

both ψ ≃ ψ′′ and ψ′′ : Sk → X ∩ lk(δ), so the lemma holds.
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CHAPTER 3

THE PROOF OF THEOREM B

3.1 The complex of splitting curves

Our main goal in this section is to prove Proposition 3.1.1, which bounds the acyclicity

of the complex of splitting curves. We begin with a sequence of definitions, and then

we state Proposition 3.1.1. In Section 3.1.1, we will prove Lemma 3.1.2, which is an

acyclicity result about a complex called the nonseparating arc complex. We conclude with

Section 3.1.2, where we prove Proposition 3.1.1.

Cutting curves on surfaces. Let S be a surface and M a multicurve on S. The notation

S % M denotes Farb and Margalit’s notion of cutting curves on surfaces [12].

Partitioned surface. Following Putman [34], a partitioned surface Σ = (S, P ) is a pair

consisting of a compact, connected, oriented surface S and a partition P of the set of

boundary components of S. A block of a partition is one set in the partition. There is

a poset TSur of partitioned surfaces where (S, P ) ≤ (S ′, P ′) if there is an embedding

ι : S → S ′ such that:

• for each block B ∈ P ′, there is a connected component SB ⊆ S ′ % ι(S) with

B ⊆ SB, and

• for each connected component Ŝ ⊆ S ′ % ι(S), we have ∂Ŝ ∩ ι(S) ∈ P .

Complex of separating curves. The complex of separating curves Csep(Σ) is the full sub-

complex of C(S) generated by separating curves δ such that each blockB ∈ P is contained

entirely in one connected component of S % δ. A theorem of Looijenga [27, Theorem 1.3]

tells us that this complex is (g − 2)–connected when |π0(∂S)| ≥ 2.
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Vertex complement. Following Hatcher and Margalit [18], a vertex complement is a parti-

tioned surface Σ = (S, P ) such that:

• |P | ≥ 2, and

• two blocks of P come equipped with labels. One is labeled B+, the other is B−.

We will denote a vertex complement by

(S, P,B+, B−).

The terminology “vertex complement” refers to Σ sometimes being the complement of a

vertex of a certain complex called the complex of minimizing cycles, which we discuss in

Section 3.3. We will say that Σ is a vertex complement on a surface S if the underlying

surface of Σ is S. The set of vertex complements is a poset which we will denote VerCom.

We have Σ ≤ Σ′ if:

• Σ ≤ Σ′ in TSur, and

• there is an inclusion ι : S → S ′ that realizes Σ ≤ Σ′ in TSur such that there are two

connected components of S ′ % ι(S) called S+ and S− that satisfy ∂S+ = B+ ∪ B′+

and ∂S− = B− ∪B′−.

We will denote the genus of the underlying surface S in Σ = (S, P,B+, B−) by g(Σ).

The complex of splitting curves. Let Σ = (Sb
g, P, B+, B−) be a vertex complement. The

complex of splitting cycles Csplit(S, P ) is the full subcomplex of Csep(S, P ) generated by

curves δ such that B+ and B− are contained in separate connected components of S % δ.

The remainder of this section will be devoted to the proof of the following proposition.

Proposition 3.1.1. Let Σ = (Sb
g, P, B+, B−) be a vertex complement. The acyclicity of the

complex Csplit(Σ) satisfies

a(Csplit(Σ)) ≥ g − 3 + 1|B+|≥2 + 1|B−|≥2.
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B+ δ B−

Figure 3.1: A splitting curve.

3.1.1 The nonseparating arc complex

The goal of this section is to prove Lemma 3.1.2, which is a result about the acyclicity of a

certain subcomplex of the arc complex called the nonseparating arc complex. We begin by

defining a poset of compact surfaces with marked compact intervals on the boundary of the

surface. We then prove Lemma 3.1.3, which is an auxiliary result about the contractibility

of another subcomplex of the arc complex. We conclude by leveraging Lemma 3.1.3 and

Proposition 2.2.1 to prove Lemma 3.1.2.

Marked vertex complements. The poset MarkSur has elements consisting of vertex com-

plements Σ = (S, P,B+, B−) equipped with a set of compact intervals Q on the boundary

components in B+ such that:

• |Q| ≥ 2, and

• each p ∈ B+ contains an interval of Q.

If p ∈ B+ is a boundary component, we let Q(p) denote the set of intervals contained in p.

We say that (Σ, Q) ≤ (Σ′, Q′) if Σ ≤ Σ′ in VerCom.

The nonseparating arc complex. Let (Σ, Q) ∈ MarkSur. The nonseparating arc com-

plex Anosep(Σ, Q) is the subcomplex of the arc complex [40] of S consisting of cells σ

satisfying:

1. S % σ is connected, and

2. every arc of σ has endpoints in distinct intervals of Q.
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Note that the arc complex is a complex of arcs up to isotopy. We will allow isotopies that

move endpoints as long as the endpoints of the arcs remain in the intervals in Q. The goal

of Section 3.1.1 is to prove the following lemma.

Lemma 3.1.2. Let S = Sb
g be a compact surface and let (Σ, Q) ∈MarkSur with underly-

ing surface S. The complex Anosep(Σ, Q) is (g + |B+| − 3)–acyclic.

The proof proceeds by applying Proposition 2.2.1 to the complex Anosep(Σ, Q) and the

complex of Q–arcs A(Σ, Q), which is the complex of arcs with endpoints in distinct inter-

vals in Q. For A(Σ, Q), we will allow isotopies of arcs to change the endpoints of α, but

the endpoints must remain inside the intervals of Q throughout the isotopy.

The outline of Section 3.1.1. We will first discuss the process of cutting open an arc α in

(Σ, Q) ∈ VerCom. We will use the method of “Hatcher flow” [17] to prove Lemma 3.1.3

that A(Σ, Q) is contractible, and then use Proposition 2.2.1 to prove Lemma 3.1.2.

Cutting open arcs in (Σ, Q). Let (Σ, Q) ∈ MarkSur and let α ∈ A(Σ, Q) be a vertex.

We will define (Σ, Q) % α ∈ MarkSur. Let Σ = (S, P,B+, B−). The object Σ % α ∈

VerCom is given by the unique vertex complement structure on S % α such that:

• Σ % α < Σ, and

• the inclusion ι : Σ % α→ Σ that realizes Σ % α < Σ is the inclusion S % α→ S.

We will denote Σ % α = (S % α, Pα, Bα
+, B

α
−). Let (Σ % α,Qα) = (Σ, Q) % α. The set

of intervals Qα is defined as follows. Let ι : S % α → S denote the natural inclusion. If

p ∈ Bα
+ is a boundary component with ι(p) isotopic to a boundary component p′ ∈ B+,

then we will define Qα to have |Qα(p)| = |Qα(p
′)|. If ι(p) is not isotopic to a boundary

component of S, we have two cases.

• Case 1: there is an embedded S0,3 ↪→ S with ∂S0,3 = ι(p)∪p0∪p1 with p0, p1 ⊆ ∂S.

In this case, α has endpoints in p0 and p1. Let f : p→ p0 ∪ α ∪ p1 be a smooth map

28



that extends to a smooth map F : S % α→ S which is homotopic to ι. We define

Qα(p) = π0

f−1(α) ⋃
I∈Q(p0)∪Q(p1)

f−1(I)

 .

• Case 2: there is no such S0,3 ⊆ S. In this case, the endpoints of α are in the same

boundary component q ∈ B+. There is a unique boundary component p′ ∈ Bα
+ such

that ι(p′), ι(p) and q cobound an embedded S0,3 ⊆ S. Let f : p ∪ p′ → q ∪ α be a

smooth map that extends to a smooth map F : S % α→ S such that F is homotopic

to ι. We define

Qα(p) = π0

 ⋃
I∈Q(q)

f−1(I)

 .

The motivation behind this definition is that for σ a cell of Anosep(Σ, Q), we have

lkAnosep(Σ,Q)(σ) = Anosep((Σ, Q) % σ)

and similarly for σ ⊆ A(Σ, Q).

We will prove the following lemma about the complex of Q–arcs A(Σ, Q). This proof

follows a method of Hatcher [17], which is sometimes referred to as Hatcher flow. This

strategy is also used in the proof of Lemma 2.3.1.

Lemma 3.1.3. Let (Σ, Q) ∈MarkSur. The complex A(Σ, Q) is contractible.

Proof. Since the join of contractible spaces is contractible, we may assume that the under-

lying surface of Σ is connected. Fix an arc β ∈ A(Σ, Q). Let q0, q1 ∈ Q be the endpoints

of β and orient β from q0 to q1. We will define a surgery function Surgβ on A(Σ, Q).

We begin by defining Surgβ(α) for α a vertex of A(Σ, Q). Assume that α is isotoped

to be in minimal position with β. If α is disjoint from β, then Surgα(β) = α. Otherwise,

suppose that p is the point of intersection of α and β closest along β to the point q1. Cut

α at the point p and paste in the subsegment of β connecting p to q1, and then homotope
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slightly to get 2 arcs α′ and α′′ with α′ disjoint from α and β, and α′′ disjoint from α and

minimally intersecting β. Refer to Figure 3.2 for a picture of the construction.

α

α′

α′′β

Figure 3.2: Surgery on arcs.

Now, one of α′ or α′′ must have endpoints in distinct intervals in Q since both α and

β both have endpoints in distinct intervals of Q. Hence, the function Surgβ is defined on

vertices by:

Surgβ(α) =


α′ if α′′ is not a vertex of A(Σ, Q)

α′′ if α′ is not a vertex of A(Σ, Q)

1
2
α′ + 1

2
α′′ otherwise

We now extend Surgβ to a homotopy A′(Σ, Q) → st(β) using the same strategy as in the

proof of Lemma 2.3.3. Choose geodesic representatives for every arc, and perturb them so

that no two arcs α, α′ intersect β at the same point. Then there is a weight function given

by the distance along β from this point of intersection to q1. The descending link of this

weight function is a cone with cone point Surgβ(α), so A′(Σ, Q) ≃ st(β). Since st(β) is

contractible, the proof is complete.

We are now almost ready to prove Lemma 3.1.2, which we recall says that Anosep(Σ, Q) is

(g+ |B+| − 3)–acyclic. We first must extend the notion of cutting open curves and arcs on

surfaces to the poset MarkSur.
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Proof of Lemma 3.1.2. We will induct on the poset MarkSur.

Base cases. The base cases are given by elements (Σ, Q) ∈MarkSur such that g+ |B+|−

3 ≤ −1, or equivalently that g + |B+| ≤ 2. Since Q has at least two intervals, |B+| is

non–empty. Hence the two cases to consider are:

• S = Sb
1 with |B+| = 1, and

• S = Sb
0 with |B+| = 2.

In both cases, for any choice ofQ such that (Σ, Q) ∈MarkSur, the complexAnosep(Σ, Q)

is non–empty.

Inductive step. Let Σ = (S, P,B+, B−) ∈ VerCom and Q ⊆ ∂Σ with (Σ, Q) ∈MarkSur

such that for every (Σ′, Q′) ∈ MarkSur with (Σ′, Q′) < (Σ, Q), the lemma holds for

(Σ′, Q′). We will then show that the lemma holds for (Σ, Q) as well.

We will apply Proposition 2.2.1 with the complexesAnosep(Σ, Q) andA(Σ, Q). The set

LA(Σ,Q)(σ) is the simplicial star in A(Σ, Q) of the cell σ ⊆ Anosep(Σ, Q) ⊆ A(Σ, Q). For

any k–cell σ ofAnosep(Σ, Q), the subcomplex LA(Σ,Q)(σ) is contractible. SinceA(Σ, Q) is

contractible by Lemma 3.1.3, it suffices to show that for any k–cell τ of A(Σ, Q), we have

a(LAnosep(Σ,Q)(τ)) = dim(Anosep(Σ, Q))− k − 1

In this case, LA(Σ,Q) is bi-cellularly (g(Σ) + |B+| − 3)–acyclic. Since A(Σ, Q) is con-

tractible, Proposition 2.2.1 implies that Anosep(Σ, Q) is (g(Σ) + |B+| − 3)–acyclic, as

desired.

Observe that if α is an arc on Σ with endpoints in distinct intervals in Q, then cutting Σ

along α does one of three things:

1. decreases |B+| by 1 if α joins two distinct boundary components,

2. decreases g by 1 and increases |B+| by 1 if α has endpoints in the same boundary

component, or
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3. splits Σ into two surfaces Σ′ and Σ′′ with

g(Σ′) + g(Σ′′) = g(Σ) and |B′+|+ |B′′+| = |B+|+ 1.

We will refer to arcs in the first collection as Type (1) arcs, and similarly for Type (2) and

Type (3). Let σ ⊆ A(Σ,Q) be a k–cell. Let (Σ1, Q1), . . . , (Σm, Qm) ∈ MarkSur be the

connected components of (Σ, Q) % σ. If m = 1, then σ ⊆ Anosep(Σ, Q), so LAnosep(Σ,Q)(σ)

is contractible. Otherwise, let τ ⊆ σ be a cell of maximal dimension with the property

that (Σ, Q) % τ is connected. Let τ ′ ⊆ σ be the unique sub-cell with τ ∗ τ ′ = σ. Let

(Σ, Q) % τ = (Στ , Qτ ), with Στ = (S % τ, P τ , Bτ
+, B

τ
−). Note that dim(τ) = k + 1−m.

Since every arc in τ must be either type (1) or type (2), we have

g(Στ ) + |Bτ
+| ≥ g(Σ) + |B+| − (k −m+ 2).

Then by construction, every arc of τ ′ is of Type (3) when restricted to (Στ , Qτ ). Therefore

m∑
j=1

g(Σj) + |Bj
+| = g(Στ ) + |Bτ

+|+m− 1.

Putting this together and applying Lemma 2.1.1 (our fact about joins) along with the induc-

tive hypothesis, we see that

a(LAnosep(Σ,Q)(σ) = −2 +
m∑
j=1

(
g(Σj) + |B+

j | − 3 + 2
)

= −2 +
m∑
j=1

(
g(Σj) + |B+

j |
)
−m

= −2 + g(Στ ) + |Bτ
+|+m− 1−m

= +g(Στ ) + |Bτ
+| − 3

≥ g(Σ) + |B+| − k +m− 5.

32



We have assumed that m ≥ 2, so this last expression is bounded below by g(Σ) + |B+| −

k − 3. Hence LA(Σ,Q) is bi–cellularly (g(Σ) + |B+| − 3)–acyclic, so the proof is complete

by applying Proposition 2.2.1.

3.1.2 The proof of Proposition 3.1.1

We now show prove Proposition 3.1.1, which we recall says

a (Csplit(Σ)) ≥ g(Σ) + 1|B+|≥2 + 1|B−|≥2 − 3.

We will begin by describing the outline of the proof of Proposition 3.1.1. We will then carry

out some of the steps in the outline in a pair of lemmas. We will conclude Section 3.1.2,

and Section 3.1, by proving Proposition 3.1.1.

The setup of the proof of Proposition 3.1.1. As in the proof of Lemma 3.1.2, the proof fol-

lows by induction on the poset VerCom. Let Σ = (S, P,B+, B−) be a vertex complement

such that Proposition 3.1.1 holds for all T < Σ. Suppose without loss of generality that

|B+| ≥ |B−|. Choose a set Q of compact subintervals of ∂Σ with |Q| minimal such that

(S,Q) ∈MarkSur. Let A = Anosep(Σ, Q). If σ is a cell of Csplit(Σ), let LA(σ) be the full

subcomplex of A generated by arcs disjoint from σ. Similarly, for cells τ ∈ A, let LC(τ)

denote the subcomplex of Csplit(Σ) generated by cells σ with σ disjoint from τ . Let Cp,q be

the bi-cellular complex ⊕
σ∈A(p)

Cq(LC(σ)).

Let E∗,↓∗,∗ and E∗,←∗,∗ be the downward and leftward bi-cellular spectral sequences respectively.

The goal is to prove the following two facts:

1. the downward sequence converges to Z for p + q = 0 and converges to 0 for 0 <

p+ q ≤ g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2, and

2. the leftward sequence converges to Hp+q(Csplit(Σ)) for 0 ≤ p + q ≤ g(Σ) − 3 +
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1|B+|≥2 + 1|B−|≥2.

Given these two facts, H̃p+q(Csplit(Σ)) = 0 for 0 ≤ p + q < dim(Csplit(Σ)). Fact (1)

follows from essentially the same argument as in the proof of Proposition 2.2.1 and will

be handled in the proof of Proposition 3.1.1. The bulk of Section 3.1.2 will be devoted to

proving Fact (2), which we will record as the following result.

Lemma 3.1.4. Let Σ ∈ VerCom such that for every T < Σ, the complex Csplit(T ) satisfies

the conclusion of Proposition 3.1.1. Let E1,←
p,q be the leftward spectral sequence discussed

above. Then

E1,←
p,q ⇒ Hp+q(Csplit(Σ);Z)

for p+ q ≤ g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2.

We need the following auxiliary lemma.

Lemma 3.1.5. Let Σ ∈ VerCom be as in Lemma 3.1.4. Let p, q ≥ 0 be integers with p > 0

and p + q < dim(Csplit(Σ)). Let δ ∈ Csplit(Σ). Label the connected components of Σ % δ

by Σ+ and Σ− where B+ ⊆ Σ+ and B− ⊆ Σ−. Suppose that g(Σ+) + |B+| − 3 < p. Then

Csplit(Σ−) is at least (q − 1)–acyclic.

Note that the assumption on δ in Lemma 3.1.5 says that if (Σ, Q) ∈ MarkSur, then

Lemma 3.1.2 does not tell us that the homology groupHp(LA(δ);Z) vanishes. The content

of Lemma 3.1.5 is that for these δ, the acyclicity of Csplit(Σ−) is high enough to allow us

to carry out something resembling PL–Morse theory inside the spectral sequence E1,←
p,q .

Proof of Lemma 3.1.5. Let p′ = g(Σ+) + |B+| − 3. Observe that dim(Csplit(Σ)) = g(Σ)+

1|B+|≥2 + 1|B−|≥2 − 3. Then p′ < p by hypothesis, so

g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2 − p′ ≥ q + 1.

34



We also have g(Σ+) + g(Σ−) = g(Σ). Therefore, we have

g(Σ−)− 2 + 1|B−|≥2 = g(Σ)− g(Σ+) + 1|B−|≥2 − 2

≥ g(Σ)− p′ − 5 + |B+|+ 1|B−|≥2

≥ q − 1 + |B+| − 1|B+|≥2

≥ q.

In particular, we have g(Σ−) − 3 + 1|B−|≥2 ≥ q − 1. Then Σ− < Σ, so by hypothesis we

have a(Csplit(Σ−)) ≥ q − 1.

We are now ready to prove Lemma 3.1.4. Recall that this said that

E1,←
p,q ⇒ Hp+q(Csplit(Σ);Z)

for p+ q ≤ g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2.

Proof of Lemma 3.1.4. On page 1, the sequence E1,←
p,q is given by

E1,←
p,q =

⊕
τ∈Csplit(Σ)(q)

Hp(LA(τ)).

Observe that in the column p = 0, the chain complex E1,←
0,q is identified with C∗(Csplit(Σ)),

since Lemma 3.1.2 implies that each cell τ ∈ Csplit(Σ) with dim(τ) ≤ g(Σ)− 3 + 1|B+| +

1|B−| has LA(τ) connected. Indeed, if the connected component Σ′ of Σ % τ containing

B+ has g(Σ′) ≥ 1, then Lemma 3.1.2 implies Anosep(Σ
′, Q) is connected. Otherwise,

Anosep(Σ, Q) ∼= A(Σ, Q), the latter of which is contractible by Lemma 3.1.3. Hence it is

enough to show that E2,←
p,q = 0 for p > 0 and 0 < p+ q ≤ g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2.

Pick a pair p, q with p > 0 and p + q ≤ g(Σ) − 3 + 1|B+|≥2 + 1|B−|≥2. We will show

that E2,←
p,q = 0. For a vertex δ ∈ Csplit(Σ), let W (δ) = g(Σ+) + |B+| − 3, where Σ+ is

the connected component of Σ % γ that contains B+. Let Σ− be the connected component
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of the vertex complement on the connected component of Σ % δ that contains B−. An

example of δ, Σ+ and Σ− can be seen in Figure 3.3.

δ

Σ−

Σ+

B+

B−

Figure 3.3: A curve δ with minimal dim(LA(δ)).

Let E1,←
p,∗ denote the chain complex in the pth column of the spectral sequence E1,←

∗,∗ .

We will show that E2,←
p,q = Hq

(
E1,←

p,∗ ;Z
)
= 0. There is a filtration Xk of Csplit(Σ) given by

Xk =
⋃

τ∈Fk
τ , where

Fk =

{
τ ⊆ Csplit(Σ) : min

δ∈τ (0)
W (δ) ≥ p− k

}

This filtration starts at k = 0 and runs to k = p. Each Xk induces a subcomplex of E1,←
p,∗ by

E1,←
p,q (Xk) =

⊕
τ∈Csplit(Σ)(q):τ⊆Xk

Hp(LA(τ)).

By construction, these E1,←
p,∗ (Xk) are a filtration of E1,←

p,∗ . It therefore suffices to prove the

following two facts:

• Hq(E1,←
p,∗ (X1)) = 0, and

• Hq(E1,←
p,∗ (Xk),E1,←

p,∗ (Xk−1)) = 0 for 1 ≤ k ≤ p.
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We will prove each of these in turn.

Hq(E1,←
p,∗ (X0);Z) = 0. Each τ ∈ X0 has a(LA(τ)) ≥ p by Lemma 3.1.2. Hence E1,←

p,∗ (X0)

is identically 0.

Hq(E1,←
p,∗ (Xk),E1,←

p,∗ (Xk−1);Z) = 0 for 1 ≤ k ≤ p. Let

∆k = {δ ∈ Csplit(Σ) : W (δ) = p− k}.

Note that ∆k is a discrete set, i.e., no two vertices in ∆k are adjacent. Assume that ∆k is

ordered arbitrarily, which induces a filtration Y j
k of Xk, where Y j

k is given by attaching to

Xk−1 the first j elements in the order on ∆k. Each Y j
k induces a subcomplex of E1,←

p,∗ (Xk),

which we denote E1,←
p,∗ (Y

j
k ). We have the following claim.

Claim: For any j ≥ 1, the relative homology Hq(E1,←
p,∗ (Y

j
k ),E1,←

p,∗ (Y
j−1
k )) vanishes.

Proof of claim. Let δ be the unique vertex in Y j
k \ Y

j−1
k . If δ ∈ Csplit(Σ) is a vertex, let

aW (δ) denote the subcomplex of Csplit(Σ) generated by all δ′ ∈ lk(δ) with W (δ′) > W (δ).

Note that if τ ⊆ aW (δ) is a cell, the inclusion map LA(τ ∗ δ) ↪→ LA(δ) is an isomorphism.

Hence, there is short exact sequence of chain complexes

0→ C∗(aW (δ))⊗Hp(LA(δ);Z)→ E1,←
p,∗ (Y

j−1
k )⊕C∗ (δ ∗ aW (δ))⊗Hp(LA(δ);Z)→ E1,←

p,∗ (Y
j
k )→ 0.

Now, by Lemma 3.1.5, we have H̃k(aW (δ)) = 0 for k ≤ q − 1, and thus we have

• Hk(C∗(aW (δ))⊗Hp(LA(δ);Z) = 0 for 1 ≤ k ≤ q − 1, and

• H0(C∗(aW (δ))⊗Hp(LA(δ);Z)) = Hp(LA(δ);Z).

The complex δ ∗ aW (δ) is contractible, so we have

• Hk(C∗ (δ ∗ aW (δ))⊗Hp(LA(δ);Z) = 0 for 1 ≤ k, and

• H0(C∗ (δ ∗ aW (δ))⊗Hp(LA(δ);Z) = Hp(LcA(δ);Z).
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Therefore the pushforward map

Hk(E1,←
p,∗ (Y

j
k ))→ Hk(E1,←

p,∗ (Y
j−1
k );Z))

is surjective for k = q and bijective for k = q − 1, so the claim holds.

Given the claim, we now have Hq(E1,←
p,∗ (Xk),E1,←

p,∗ (Xk−1)) = 0 for 1 ≤ k ≤ p. Since

Hq(E1,←
p,∗ (X0)) = 0, we have Hq(E1,←

p,∗ (Xp)) = Hq(E1,←
p,∗ ) = 0, as desired.

We are now ready to show that a(Csplit(Σ)) ≥ g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2.

Proof of Proposition 3.1.1. We will induct on the poset VerCom. Namely, if Σ is a vertex

complement, we will assume that Proposition 3.1.1 holds for all T ∈ VerCom with T < Σ,

and show that it holds for Σ as well.

Base cases. Our base cases are given by any choice of g, |B+| and |B−| such that

g − 3 + 1|B+|≥2 + 1|B−|≥2 ≥ −1.

This is equivalent to

g + 1|B+|≥2 + 1|B−|≥2 ≥ 2.

All such choices of g, |B+|, |B−| satisfying this condition are as follows:

• g ≥ 2,

• g ≥ 1, |B+| ≥ 2 or |B−| ≥ 2, or

• |B+|, |B−| ≥ 2.

In all these cases Csplit(Σ) is non–empty by inspection, so the result holds.

Induction on VerCom. Let Σ = (S, P,B+, B−) be a vertex complement such that the

proposition holds for all T < Σ. Suppose without loss of generality that |B+| ≥ |B−|.
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Let Cp,q, E∗,←p,q and E∗,↓p,q be as discussed in the beginning of Section 3.1.2. It suffices to

prove that the downward sequence converges to Z for p + q = 0 and converges to 0 for

0 < p + q < dim(Csplit(Σ)), and that the leftward sequence converges to Hp+q(Csplit(Σ))

for 0 < p+ q < dim(Csplit(Σ)).

The downward spectral sequence converges to 0 for 0 < p+q < dim(Csplit(Σ)). On page 1,

the downward spectral sequence E∗,↓∗,∗ is given by

E1,↓
p,q =

⊕
σ∈A(p)

Hq(LC(σ)).

If |B+| = 2 and σ is a vertex, then LC(σ) is contractible. For all other situations, the

inductive hypothesis says that the groups H̃q(LC(σ)) are trivial for σ a p-cell and 0 ≤ q ≤

g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2 − p. Therefore we have

E∗,↓p,q ⇒ Hp+q(Anosep(Σ, Q))

for p + q ≤ g(Σ) − 3 + 1|B+|≥2 + 1|B−|≥2. By Lemma 3.1.2, E∗,↓p,q ⇒ 0 for 0 < p + q ≤

g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2 and Z for p+ q = 0.

The leftward spectral sequence converges toHp+q(Csplit(Σ)). This is the content of Lemma 3.1.4.

Since both E1,←
p,q and E1,↓

p,q converge to the total homology ofCp,q, we have H̃p+q(Csplit(Σ)) =

0 for p+ q ≤ g(Σ)− 3 + 1|B+|≥2 + 1|B−|≥2, as desired.

3.2 PL–Morse theory for cell complexes

Recall from the introduction that the proof of Theorem B proceeds by using PL–Morse the-

ory on the complex of minimizing cycles Bx⃗(Sg) [4]. As defined, Bx⃗(Sg) is not a simplicial

complex and as such the results of Section 2.1 do not directly apply.

Remark. Hatcher showed that Bx⃗(Sg) could be turned into a simplicial complex by trian-

gulating cells [16].
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We will address this issue here, by explaining how to use PL–Morse theory on certain

types of non–simplicial complexes. The main goal is to prove Lemma 3.2.6, which is a

version of Lemma 2.1.3 that applies for CW–complexes equipped with some additional

linear structure.

Locally linear cell complex. Let RN =
⊕

n∈NR. Let S1, S2 ⊆ RN be two subsets. The

convex hull of S1, denoted Hull(S1), is the set

{t0s0 + . . .+ tnsn : n ∈ Z≥0, s0, . . . , sn ∈ S,
n∑

i=0

ti = 1, ti ≥ 0 for all 0 ≤ i ≤ n}.

The convex join of S1 and S2, denoted ConvJoin(S1, S2), is the set

{t1s1 + t2s2 : si ∈ Si, t1 + t2 = 1, ti ≥ 0}.

For notational convenience, we set ConvJoin(S, ∅) = S.

Locally linear cell complex. A finite-dimensional cell complex X is locally linear if there

is an inclusion ι : X ↪→ RN such that ι(σ) is the convex hull of its vertices and ι(∂σ) is the

union of the faces of σ for every cell σ ⊆ X . We conflate X with its image under this map.

Let W : X(0) → N be a PL–Morse funtion. We say that W is a linear PL–Morse function

if W is the restriction of some linear function RN → R, which by abuse of notation we will

refer to by W as well. Linear PL–Morse functions have the following property.

Lemma 3.2.1. Let σ be a cell of a locally linear cell complex X and let W be a linear

PL–Morse function on X . The set of all points x ∈ σ with W (x) of maximal weight among

the points of σ is a face of σ, and is the convex hull of the vertices of σ of maximal weight.

We will say that a functionW : X(0) → N is a quasi–linear PL–Morse function if, for every

cell σ ⊆ X , the convex hull of the set of all vertices v ∈ σ(0) with W (v) maximal over all

vertices of σ(0) is a face of σ. We say that a cell σ ⊆ X isW–constant ifW (v) = W (w) for

every v, w ∈ σ(0). We say that W is sharp if the only W–constant cells of X are vertices.
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Descending links in locally linear cell complexes. Let X be a locally linear cell complex

and let W be a quasi–linear PL–Morse function on X . Let σ ⊆ X be a W–constant cell.

We will define three different versions of the descending link dW (σ), and then show that

all threare homotopy equivalent. LetRσ denote the set of all cells ρ ⊆ X such that

• σ is a face of ρ, and

• W (r) ≤ W (σ) for all r ∈ ρ(0), with equality if and only if r ∈ σ.

The variants of the descending link are as follows.

• The facial descending link dfaceW (σ). Let ρ ∈ Rσ be a cell and let T (ρ) be the set of

all faces τ ⊆ ρ such that τ ∩ σ = ∅. We define

dfaceW (σ) =
⋃

ρ∈Rσ

T (ρ).

• The adjacent descending link dadjW (σ). For all ρ ∈ Rσ, define V (ρ) to be the set of all

vertices v ∈ ρ(0) with v ̸∈ σ such that vw is an edge of X for some w ∈ σ. We define

dadjW (σ) =
⋃

ρ∈Rσ

Hull(V (ρ)).

• The total descending link dtotW (σ). This is given by

dtotW (σ) = ConvJoin(dfaceW (σ), dadjW (σ)).

Note that there are two inclusions

dfaceW (σ) ↪→ dtotW (σ)←↩ dadjW (σ).

We have the following lemma that describes the relationships between the three types of

descending links.
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Lemma 3.2.2. LetW be a quasi–linear PL–Morse function on a locally linear cell complex

X . Let σ ⊆ X be a W–constant cell. Then each inclusion

dfaceW (σ) ↪→ dtotW (σ)←↩ dadjW (σ)

induces an isomorphism in homology.

Proof. LetRσ be as above. LetRmax
σ denote the set of maximal cells inRσ, i.e., the set of

all ρ such that there is no ρ′ ∈ Rσ with ρ ⊊ ρ′. For each † ∈ {face, tot, adj} and for each

ρ ∈ Rmax let

U †ρ = ρ ∩ d†W (σ).

For † ∈ {tot, adj}, U †ρ is contractible for any ρ ∈ Rmax since convex hulls of nonempty

sets are contractible. Since W is quasi–linear, U face
ρ is contractible for every ρ ∈ Rmax as

well, since ∂ρ is homotopy equivalent to a sphere, and U †ρ is homotopy equivalent to ∂ρ\σ,

which is homotopy equivalent to a sphere with a point removed, and hence is contractible.

Furthermore, let ρ0, . . . , ρk ∈ Rmax
σ . Suppose that U †ρ0∩ . . .∩U

†
ρk
̸= ∅. Then for any choice

of †′ ∈ {tot, face, adj},

U †
′

ρ0
∩ . . . ∩ U †′ρk ≃ ∗.

Indeed, since ρ0, . . . , ρk are cells of a locally linear complex X , their intersection ρ =

ρ0 ∩ . . . ∩ ρk must be a cell of X . Then by assumption, there must be a vertex v ∈ ρ with

v ̸∈ σ. Hence the complex V (ρ) in the definition of dadjW must be non–empty, and thus

Hull(V (ρ)) = ρ ∩ dadjW (σ) is contractible. Likewise, T (ρ) as in the definition of dfaceW must

be non–empty, since V (ρ) ⊆ T (ρ), so dfaceW (σ) ∩ ρ is non–empty. The cell σ is a face of

ρ because W is quasi–linear. Therefore, the subcomplex dfaceW (σ) ∩ ρ is given by taking ρ

and removing a contractible subspace glued over a contractible subspace, so we conclude

that dfaceW (σ)∩ρ is contractible. Finally, if dfaceW (σ)∩ρ and ρ∩dadjW (σ) are both contractible,

then ρ ∩ dtotW (σ) is contractible as well.
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Now, let † ∈ {adj, face, tot}. Let N (U †ρ) denote the nerve of the set {U †ρ}ρ∈Rmax
σ

. The

nerve lemma implies that we have isomorphisms in homology

H∗(N (U †ρ);Z) ∼= H∗(d
†
W (σ);Z).

It now remains to show that for a choice of † = {adj, face}, the induced map of chain

complexes

C∗(N (U †ρ);Z)→ C∗(N (U tot
ρ );Z)

induces an isomorphism in homology. In fact, we will show that the above map induces an

isomorphism of chain complexes. It is clear that the induced map is an injection for either

choice of †, so it remains to prove that the natural map is a surjection.

Let ρ0, . . . , ρn ∈ Rmax
σ be a collection of cells with U tot

ρ0
∩ . . . ∩ U tot

ρn ̸= ∅. Let ρ =

ρ0 ∩ . . . ∩ ρn. This ρ is a cell of X and σ ̸= ρ, so there is a vertex τ ∈ X with τ ∩ σ = ∅

and τ ⊆ U tot
ρ . Now, τ must contain a vertex adjacent to σ, since ρ is a cell. Therefore Uadj

ρ

and U face
ρ are both nonempty, so the induced map of chain complexes is surjective.

We will need one more auxiliary result.

Lemma 3.2.3. Let W be a linear PL–Morse function on a locally linear complex X , let

σ be a W–constant cell, and let k = dim(σ). If dtotW (σ) is n–acyclic for some n, then

ConvJoin(∂σ, dadjW (σ)) is (n+ k)–acyclic.

Proof. By Lemma 3.2.2, dadjW (σ) is n–acyclic. We will show that ConvJoin(∂σ, dadjW ) has

the same homology groups as ∂σ ∗ dadjW . Applying Lemma 2.1.1 completes the proof.

Recall the set Rσ and Rmax
σ from Lemma 3.2.2. For each ρ ∈ Rmax

σ , let Uρ =

ConvJoin(∂σ, ρ ∩ dadjW ). Then the set

U = {Uρ}ρ∈Rmax
σ

is a cellular cover of ConvJoin(∂σ, dadjW ). Furthermore, for any ρ1, . . . , ρn ∈ Rmax
σ , there is
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a natural map

ι : ∂σ ∗ (ρ1 ∩ . . . ∩ ρn ∩ dadjW ) ↪→ Uρ1 ∩ . . . ∩ Uρn .

Since the set
{
∂σ ∗

(
ρ ∩ dadjW

)}
ρ∈Rmax

σ

is a cover of ∂σ ∗ dadjW (σ) by contractible sets, it

suffices to show that ι is a homotopy equivalence for any ρ1, . . . , ρn ∈ Rmax
σ .

Let ρ1, . . . , ρn ∈ Rmax
σ . Let x ∈ Uρ1 ∩ . . . ∩ Uρn . Since each Uρi is contained in ρi,

we have x ∈ ρ1 ∩ . . . ∩ ρn. Hence Uρ1 ∩ . . . ∩ Uρn contains the minimal dimensional

cell τ with x ∈ τ and τ ⊆ ρ1 ∩ . . . ∩ ρn. Furthermore, if τ is such cell and τ ′ ⊆ τ

is a maximal dimensional subcell with τ ∩ σ = ∅, we have ∂σ ∗ τ ′ ⊆ Uρ1 ∩ . . . ∩ Uρn .

Then we must have τ ′ ⊆ dadjW (σ) by our assumption on x. Therefore, Uρ1 ∩ . . . ∩ Uρn =

ConvJoin(∂σ, ρ1∩ . . .∩ρn). Thus ι is a homotopy equivalence, since the source and target

of ι are both either empty or contractible, and so the natural map of chain complexes

C∗(N (∂σ ∗ (ρ1 ∩ dadjW (σ));Z)→ C∗(N (Uρ);Z)

is an isomorphism of chain complexes. Since each intersection is contractible or empty, an

application of the nerve lemma followed by Lemma 2.1.1 completes the proof.

We will say that a linear PL–Morse function W on a locally linear complex X is n–acyclic

if dtotW (σ) is (n − dim(σ))–acyclic for every W–constant cell σ ⊆ X . The min–set of W ,

denoted M(W ), is the union of all cells σ ⊆ X with

max{W (v) : v ∈ σ0} = min{W (w) : w ∈ X0}.

We now have the following lemma, which is similar to Lemma 2.1.2. Recall that Lemma 2.1.2

allowed us to use PL–Morse theory for simplicial complexes. This is similar, except it al-

lows us to use PL–Morse theory for locally linear cell complexes.

Lemma 3.2.4. Let X be a finite dimensional locally linear cell complex and let W be a

linear PL–Morse function. Suppose that W is n–acyclic. Then the pair (X,M(X)) is
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(n+ 1)–acyclic.

Proof. The proof proceeds by the same strategy as Lemma 2.1.2. Let

Xm,k = W−1([0,m))
⋃
{σ a cell of X : max{W |σ} ≤ m, dim(σ) ≤ k}.

If m > 0, then Xm,k is built out of Xm−1,k iteratively by attaching, for each cell σ ⊆ Xm,k

with σ ̸⊆ Xm−1,k, the following spaces in order:

• dtotW (σ) over dfaceW (σ), then

• ConvJoin(∂σ, dadjW (σ)) over Xm−1,k, and

• a convex neighborhood of the cell σ.

By Lemma 3.2.2, the inclusion dfaceW (σ) ↪→ dtotW (σ) is a homotopy equivalence, so the

first attachment does not change homotopy type. The second is given by gluing in con-

tractible subspaces over contractible subspaces, which also induces a homotopy equiva-

lence. The third is attaching a contractible space over an n–acyclic space by Lemma 3.2.3,

so H∗(Xm,k) ∼= H∗(Xm−1,k) for ∗ ≤ n+ 1.

We have the following lemma, which is similar to Lemma 3.2.4 except it deals with the

case that W is sharp. This also follows from argument similar to the proof of Lemma 2.1.2.

Lemma 3.2.5. Let X be a finite dimensional locally linear cell complex and let W be

a sharp, quasi–linear PL–Morse function. Suppose that W is n–acyclic. Then the pair

(X,M(X)) is (n+ 1)–acyclic.

Proof. Let Xk denote the subcomplex of X generated by vertices v such that W (v) ≤ k.

Then since W is sharp, the complex Xk is constructed from Xk−1 by attaching each v ∈

X(0) with W (v) = k over the complex dfaceW (v). By hypothesis dfaceW (v) is n–acyclic, so
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the Mayer–Vietoris sequence implies that (Xk, Xk−1) is relatively (n + 1)–acyclic. Since

X =
⋃

k≥0Xk, we have that (X,M(W )) is relatively (n+ 1)–acyclic, as desired.

We now have the following lemma, which follows from an argument similar to the proof

of Lemma 2.1.3.

Lemma 3.2.6. Let X be an (n+1)–acyclic, finite-dimensional, locally linear cell complex

and letW be an n–acyclic quasi–linear PL–Morse function onX . Assume thatW is either

sharp or linear. Then M(W ) is n–acyclic.

Proof. By the long exact sequence in relative homology for the pair (X,M(W )) and the

fact that H̃k(X;Z) = 0 for k ≤ n+ 1, the connecting homomorphism

H̃k+1(X,M(W );Z)→ H̃k(M(W );Z)

is an isomorphism for 0 ≤ k ≤ n. Hence applications of Lemmas 3.2.4 and 3.2.5 complete

the proof.

3.3 The complex of homologous curves

We now move on to the study of the complex of homologous curves Cx⃗(Sg). Our goal is to

prove our main theorem (Theorem B), which says that Cx⃗(Sg) is (g−3)–acyclic for g ≥ 2.

Outline of the proof of Theorem B. In Section 3.3.1, we discuss the complex of minimizing

cycles defined by Bestvina–Bux–Margalit [4]. We also discuss a PL-Morse function W (in

the sense of Section 3.2) on the complex of minimizing cycles. This function is originally

due to Hatcher and Margalit [18]. The min-set of this function W will be Cx⃗(Sg). We show

in Lemma 3.3.1 that an auxiliary complex called the complex of draining cycles is highly

acyclic. Instances of this complex will turn out to be the descending links of the PL–Morse

function W . We complete the proof of Theorem B in Section 3.3.3 using the PL–Morse

function W and the results of Section 3.2.
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Figure 3.4: A 2-cell in Cx⃗(Sg).

3.3.1 The complex of minimizing cycles

We first define the complex of minimizing cycles, and then discuss Hatcher and Margalit’s

PL–Morse function on the complex of minimizing cycles.

Let S = Sg and let x⃗ a primitive class in H1(S;Z). A basic cycle for x⃗ is a nonsep-

arating oriented multicurve M = a1 ⊔ . . . ⊔ ak such that there is a collection of positive

integers λ1, . . . , λk with

x⃗ =
k∑

i=1

λi[ai].

We will say that a multicurve M = a1 ⊔ . . . ⊔ am is a cycle if

1. each ai is a member of a basic cycle M ′ ⊆M , and

2. any non–trivial linear combination of the [ai] with nonnegative integer coefficients is

nonzero.

Remark. Condition (2) is not present in Bestvina, Bux, and Margalit’s original definition.

Gaifullin demonstrated that condition (2) needed to be included in the definition [13]. All

of Bestvina, Bux and Margalit’s [4] results still hold, since they implicitly assumed that

condition (2) followed from (1).

Let S be the set of isotopy classes of nonseparating simple closed curves in S and let RS
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be the real vector space spanned by S. If M is a cycle, denote by PM ⊆ RS the convex

hull of the set of points

{λici : ci ∈M ′,M ′ ⊆M is a basic cycle}.

LetM denote the set of all cycles in Sg. The complex of minimizing cycles Bx⃗(Sg) is the

union ⋃
M∈M

PM .

Observe that Bx⃗(Sg) is a CW-complex where the k–cells correspond to cycles M ∈ M

with dim(PM) = k. Bestvina, Bux and Margalit proved that the complex Bx⃗(S) is con-

tractible [4]. We will prove Theorem B by constructing a sharp, quasi-linear PL-Morse

function W on Bx⃗(Sg) that is (g − 3)–acyclic and has min-set equal to Cx⃗(S).

The PL-Morse function. We will use the PL-Morse function on Bx⃗(Sg) originally defined

by Hatcher and Margalit [18]. Let v be a vertex in Bx⃗(S) represented by a basic cycle

M = a0 ⊔ . . . ⊔ am. By definition, x⃗ =
∑

i≤m λi[ai] for some unique positive integers λi.

We define

W (v) =
∑
i≤m

λi.

The min-set M(W ). There are no vertices v ∈ Bx⃗(Sg) with W (v) = 0. In fact, the lowest

weight vertices are given by all v with W (v) = 1. The subcomplex of Bx⃗(S) generated by

v with W (v) = 1 is precisely the complex of homologous curves Cx⃗(S), so M(W ) is the

subcomplex of Bx⃗(S) generated by vertices v with W (v) = 1.

3.3.2 The complex of draining cycles

Our goal in this section is to prove Lemma 3.3.1, which says that a certain complex called

the complex of draining cycles is highly acyclic. This complex is a generalization of the

complex of splitting curves introduced in Section 3.1. It is also inspired by Hatcher–
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Margalit’s proof of the connectivity of Cx⃗(Sg) [18]. We will leverage Lemma 3.3.1 to

prove that the PL-Morse function W is (g − 3)–acyclic.

The complex of draining cycles. We begin by defining a certain class of labeled surfaces.

Let S = Sb
g. We say that S is a partial cobordism if it:

• comes equipped with an orientation of some of the boundary components of S and

• a partition of the oriented boundary components into two disjoint sets B+ and B−

such that the surface S ′ given by gluing a disk to each nonoriented boundary compo-

nent of S is a cobordism from B+ to B−.

We will denote a partial cobordism by Σ = (S,B+, B−, B0), where B0 = π0(∂S) \ (B+ ∪

B−). We will say that a partial cobordism is:

• draining if |B+| > |B−|,

• balanced if |B+| = |B−|, and

• flooding if |B+| < |B−|.

Let S = Sb
g and let Σ = (S,B+, B−, B0) be a partial cobordism. A vertex of Cdr(Σ) is an

oriented multicurve M ⊆ S such that:

• |π0(S % M)| = 2,

• one connected component of S % M is a partial cobordism ΣM from a subset of B+

to a union of M and a subset of B−, and

• the partial cobordism ΣM is draining.

The partial cobordism ΣM is unique. Two examples of vertices in this complex can be

found in Figure 3.5. We now define the higher-dimensional cells in the complex Cdr(Σ).

Let SΣ be set of oriented isotopy classes of essential simple closed curves on Σ. We say

that an oriented multicurve M ⊆ S is representative if:
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B+

B−

M

N

Figure 3.5: Two vertices M and N in the complex of draining cycles.

• each curve in M is contained in a vertex of Cdr(Σ) supported on M ,

• if N ⊆ M is a multicurve such that |π0(S % N)| = 2 and at least one connected

component ΣN of S % N is a partial cobordism from a subset of B+ to a union of N

and a subset of B−, then ΣN is draining, and

• any non–trivial linear combination of the homology classes represented by curves

in M with non–negative integer coefficients is nonzero in H1(S;Z), where S is the

underlying surface of Σ.

Let SΣ denote the set of all oriented simple closed curves in S. LetM denote the set of

representative multicurves in Σ. Each vertex M ∈ M corresponds to the point a1 + . . . +

ak ∈ RS with M = a1 ⊔ . . . ⊔ ak. We will henceforth identify a vertex M ∈ M with this

point in RS . For an arbitrary M ∈ M, let PM ⊆ RSΣ be the convex hull of the vertices

supported in M . The complex Cdr(Σ) is the union

⋃
M∈M

PM .

Observe that Cdr(Σ) is naturally a locally linear cell complex. We will prove the following.
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Lemma 3.3.1. Let Σ = (Sb
g, B+, B−, B0) be a partial cobordism with |B+|, |B−| ≥ 2 and

|B+| ≤ |B−|+ 1. The complex Cdr(Σ) is (g − 3 + |B+|)–acyclic.

In order to prove Lemma 3.3.1, we will need the following auxiliary result.

Lemma 3.3.2. Let Σ = (Sb
g, B+, B−, B0) be a partial cobordism with |B+|, |B−| ≥ 2,

|B0| ≥ 1. Let b ∈ B0 be a boundary component and let Σ′ be the partial cobordism given

by gluing a disk along p. The map Cdr(Σ)→ Cdr(Σ′) is a homotopy equivalence.

Proof. Surgering a curve surrounding b onto any vertex M along any arc α yields a vertex

M ′. Hence the lemma follows by Proposition 2.3.1.

We now prove Lemma 3.3.1. The proof proceeds by induction on the poset of partial

cobordisms, denoted ParCob. The elements of ParCob are partial cobordisms, and Σ <

Σ′ if either g(Σ) < g(Σ′), or g(Σ) = g(Σ′) and |B+| < |B′+|

Proof of Lemma 3.3.1. We will induct on the poset of partial cobordism ParCob.

Base cases. The base cases are given by partial cobordisms with |B+| = 2 and |B0| = 0.

In this case, Cdr(Σ) is identified with the complex of splitting curves. Lemma 3.1.1 says

that when |B+| = 2 and |B−| ≥ 2, the complex of splitting curves is (g − 1)–acyclic, so

the base case holds.

Induction on ParCob. Let Σ = (Sb
g, B+, B−, B0) ∈ ParCob with |B+| ≥ 3, |B−| ≥ 2 and

|B+| ≤ |B−|+ 1. Assume by the inductive hypothesis that the lemma holds for all T < Σ

satisfying the hypotheses of the lemma.

Lemma 3.3.2 says that we can fill in boundary components of B0 with disks with-

out changing the homotopy type of Cdr(Σ), so we may assume that |B0| = 0. Let Σ′ =

(Sb
g, B

′
+, B−, B0) be the partial cobordism given by relabeling a boundary component b ∈

B+ to be a boundary component of B0 and let Σ′′ = (Sb−1
g , B′+, B−) be the partial cobor-

dism given by filling in b with a disk. By Lemma 3.3.2, there is a homotopy equivalence

Cdr(Σ′) ≃ Cdr(Σ′′).
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By the inductive hypothesis, Cdr(Σ′) is (g − 4 + |B+|)–acyclic. Hence it suffices to show

that a(Cdr(Σ′)) + 1 ≤ a(Cdr(Σ)). We will prove this statement in three steps:

1. We add to Cdr(Σ′) any verticesM ∈ Cdr(Σ) that become inessential when b is capped

with a disk, and show that this strictly increases acyclicity by 1.

2. We add vertices M ∈ Cdr(Σ) such that M is a single simple closed curve, and show

that this does not decrease acyclicity.

3. We add in the remaining vertices and show again that acyclicity does not decrease.

Adding curves that become inessential when b is filled in with a disk. Let K be the set of

vertices in Cdr(Σ) such that at least one curve becomes inessential when b is filled in with

a disk. The set K is a discrete set, and every element of K is a single curve γ such that

γ surrounds b and one other boundary component in B+. Let Cdr(Σ′, K) denote the full

subcomplex of Cdr(Σ) generated by Cdr(Σ′) and K. An example of a curve in K can be

found in Figure 3.6.

b

M

B+

B−

Figure 3.6: M is a vertex in in K
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By Lemma 3.3.2 and Lemma 2.3.3, there is a homotopy equivalence

Cdr(Σ′, K) ≃ Cdr(Σ′) ∗K.

Hence a(Cdr(Σ′, K)) ≥ (g − 3 + |B+|) by Lemma 2.1.1 and the inductive hypothesis.

Adding in single curves. Let C1
dr(Σ

′, K) denote the subcomplex of Cdr(Σ) consisting of

multicurves M such that every vertex N ⊆ M either has N ∈ Cdr(Σ′, K) or N connected.

Let M be a vertex of C1
dr(Σ

′, K) and let ΣM denote the associated cobordism from the

definition of the complex of draining cycles. Let TM denote the other connected component

of Sb
g % M , which is naturally a cobordism. An example of such a vertex M can be found

in Figure 3.7.

B+

B−

b

ΣM

M

TM

Figure 3.7: A curveM ∈ C1
dr(Σ

′, K). The top boundary components are inB−, the bottom
components are in B+.

For M a vertex of C1dr(Σ′, K), let

W (M) =


0 if M ∈ Cdr(Σ′, K)

g(ΣM) otherwise.
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We will show that W is a (g − 4 + |B+|)–acyclic PL–Morse function. Since Cdr(Σ′, K) is

at least (g− 3+ |B+|)–acyclic and W is sharp (as in Section 3.2), Lemma 3.2.6 will imply

that C1dr(Σ′, K) is (g − 3 + |B+|)–acyclic.

Let M ∈ C1dr(Σ′, K) be a positive-weight vertex and let N ∈ dadjW (M) be a vertex.

Observe that N is supported on either TM or ΣM . If N is supported on TM , then N lies in

Cdr(TM). Otherwise, N lies in Cdr(ΣM), which implies that N is connected. Hence there is

a canonical isomorphism

dW (M) ∼= Csplit(ΣM) ∗ Cdr(TM).

By Proposition 3.1.1, we have a(Csplit(ΣM)) = g(ΣM)− 2. Then by the inductive hypoth-

esis, we have

a(Cdr(TM)) = g(TM)− 3 + |B+| − 1 = g(TM)− 4 + |B+|.

Hence by Lemma 2.1.1, we have

a(dW (M)) = g(ΣM)− 2 + g(TM)− 4 + |B+|+ 2 = g(Σ)− 4 + |B+|

so this step is complete.

Adding other vertices. We will now add in vertices of Cdr(Σ) \ C1dr(Σ′, K). Let M be a

vertex of Cdr(Σ) and let ΣM be the associated partial cobordism. Let

W (M) =


0 if M ∈ C1dr(Σ′, K)

|χ(ΣM)| otherwise.

We will show that W is a (g − 4 − |B+|)–acyclic PL–Morse function. Since W is sharp,

an application of Lemma 3.2.6 will complete the proof. Let M be a vertex in Cdr(Σ) of
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positive weight. Observe that the cobordism ΣM = (SM , B
M
+ , B

M
− ) satisfies the following

two properties:

• |BM
+ | = |BM

− |+ 1 and

• p ∈ BM
+ .

Indeed, otherwiseM would be a vertex of Cdr(Σ′, K). Let TM be the connected component

of Σ % M that is not ΣM . An example of such a vertex M can be found in Figure 3.8.

b

ΣM

TM

B+

B−

Figure 3.8: A vertex M ∈ C1
dr(Σ

′, K). The top boundary components are in B−, the
bottom components are in B+.

The surface TM is naturally a cobordism from a union of M and a subset of B+ to a

subset of B−. We will show that dadjW (M) ∼= Cdr(ΣM) ∗ Cdr(TM). Let N ∈ dadjW (M) be a

vertex. Let P = M ∪ N . By definition N and M are adjacent, so N is either supported

on ΣM or TM . If N ⊆ ΣM , then N ∈ Cdr(ΣM). Any vertex P ∈ Cdr(ΣM) must have

W (P ) < W (M), so dadjW (M) ∩ Cdr(ΣM) = Cdr(ΣM). Otherwise, if N ⊆ TM , then

W (N) = 0. Therefore the partial cobordism ΣN realizing N as draining is still draining

even if p is filled in with a disk. Then since ΣN ⊇ ΣM , we have N ∈ Cdr(TM).

Hence dW (M) is at least (g(ΣM)−3+ |B+(ΣM)|+g(TM)−3+ |M |+ |TM ∩B+|+2)–

acyclic by the inductive hypothesis and Lemma 2.1.1. But then g(TM)+g(ΣM)+ |M | = g
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and |BM
+ |+|TM∩B+| = |B+|, so dW (M) is at least (g−4+|B+|)–acyclic. Therefore since

C1dr(Σ′, K) is (g − 3 + |B+|)–acyclic, Lemma 3.2.6 implies that Cdr(Σ) is (g − 3 + |B+|)–

acyclic, which completes the proof.

3.3.3 Completing the proof

We now show that Cx⃗(Sg) is (g − 3)–acyclic. We will prove in Lemma 3.3.3 that the PL–

Morse function W defined in Section 3.3.1 is a linear PL–Morse function. We then prove

in Lemma 3.3.5 that the descending links of W–constant k–cells are given by joins of the

complex of draining cycles. We conclude by proving Theorem B.

Lemma 3.3.3. The PL–Morse function W is a linear PL–Morse function.

Proof. Let σ ⊆ Bx⃗(Sg) be a cell corresponding to a multicurve M . By definition, σ is the

convex hull of its vertices v0, . . . , vm. Hence every point v ∈ σ is a linear combination

v =
m∑
i=0

tivi

with
∑m

i=0 ti = 1. Set

W σ(v) =
m∑
i=0

tiW (vi).

It suffices to show that W is well-defined on points in RS, i.e., independent of the choice

of cell σ. To see this, suppose that

v =
m∑
i=0

t′ivi

is another linear combination with
∑m

i=0 t
′
i = 1. If a0, . . . , an are the underlying simple

closed curves in the multicurve M corresponding to σ, then each vi is by definition a

formal sum
n∑

j=0

λi,jaj
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such that

x⃗ =
n∑

j=0

λi,j[aj]

in H1(Sg;Z). Since
m∑
i=0

tivi =
m∑
i=0

t′ivi

there is a relation for each aj given by

m∑
i=0

tiλi,j =
m∑
i=0

t′iλi,j.

Hence we have
n∑

j=0

m∑
i=0

tiλi,j =
n∑

j=0

m∑
i=0

t′iλi,j.

But by the definition of W , this is precisely

m∑
i=0

tiW (vi) =
m∑
i=0

t′iW (vi)

so the claim holds.

We now describe the W–constant cells of Bx⃗(Sg). If σ ⊆ Bx⃗(Sg) is a cell, we denote by

σmax the convex hull of the vertices in σ of maximal weight.

Lemma 3.3.4. Let σ be a W–constant cell of Bx⃗(Sg). Let M be the oriented multicurve

corresponding to σ and let Σ0 ⊔ . . . ⊔ Σk be the connected components of Sg % M . Each

cobordism Σi is balanced.

Proof. Suppose otherwise. Then some cobordism Σi is not balanced. Σi is a cobordism

between vertices v and w of σ. If Σi is unbalanced, then W (v) ̸= W (w) which contradicts

the assumption that σ is W–constant.

We now explicitly compute dW (M) in the case that M is a W–constant k–cell.
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Lemma 3.3.5. Let M ⊆ Bx⃗(Sg) be a W–constant k–cell. Let Σ0, . . . ,Σk be the connected

components of Sg % M . Then the natural inclusion

Cdr(Σ0) ∗ . . . ∗ Cdr(Σk)→ dadjW (M)

is an isomorphism.

Proof. Let N be a vertex in dadjW (M). Then N % M is contained in some connected

component Σ of Sg % M , which is naturally a balanced cobordism. Let T ⊆ Σ be the

cobordism between a subset of B+(Σ) and a union of N \M and a subset of B−(Σ). Let

P ⊆M be a vertex containing B+(Σ), so N is adjacent to P . Then the cobordism T must

be draining. Indeed, suppose that ∑
p∈P

λp[p] = x⃗

is the linear relation corresponding to P . Suppose that T realizes a relation in H1(Sg;Z)

of the form ∑
p∈P ′

[p] =
∑
n∈N ′

[n]

for subsets P ′ ⊆ P , N ′ ⊆ N . Then there is a linear relation in H1(Sg;Z) supported on N

given by ∑
p∈P

λp[P ]−min
p∈P ′

λp

(∑
p∈P ′

[p]

)
+min

p∈P ′
λp

(∑
n∈N ′

[n]

)
= x⃗

Note that this relation is a nonnegative linear combination of curves in N . Indeed, this

relation is another nonnegative integral relation on curves contained in N ∪ P and N and

P are the endpoints of an edge. Then since W (N) < W (P ), we have

W (N) = W (P )−min
p∈P ′

λp|P ′|+min
p∈P ′

λp|N ′| = W (P )−min
p∈P ′

(|P | − |N ′|).

Hence |N ′| < |P ′|, so T is draining as desired.

We now conclude Section 3.3 by proving that Cx⃗(Sg) is (g − 3)–acyclic.
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Proof of Theorem B. Let M be a multicurve that represents a W–constant k-cell σ. Label

the connected components of S % M by Σ0 ⊔ . . . ⊔ Σk. By Lemma 3.3.5, we have

dadjW (M) = Cdr(Σ0) ∗ . . . ∗ Cdr(Σk),

where Σ0, . . . ,Σk are the connected components of Sg % M . Hence dW (σ) is at least

(g − 3 − k)–acyclic by Lemma 3.3.1 and Lemma 2.1.1. Now, W is a linear PL–Morse

function by Lemma 3.3.3. Hence W is a (g − 3)–acyclic linear PL-Morse function, so

Theorem B follows by Lemma 3.2.6 and Bestvina, Bux and Margalit’s theorem that Bx⃗(Sg)

is contractible [4, Theorem E].
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CHAPTER 4

PRELIMINARY REPRESENTATION THEORY RESULTS

4.1 A finiteness result about groups acting on vector spaces

The goal in this section is to prove Proposition 4.1.1, which is a result that we will apply re-

peatedly to determine that certain representations of subgroups of the symplectic group are

finite dimensional. Recall that we have assumed that curves and multicurves are oriented.

The statement is as follows.

Proposition 4.1.1. Let g ≥ 1, and let N ⊆ Sg be a nonseparating multicurve such that

|N | < g. Let G ⊆ Sp(2g,Z) be the image of the map StabMod(Sg)(N)→ Sp(2g,Z). Let V

be a G–representation over Q. Suppose that there is a constant 0 ≤ d ≤ g − |N | such that

the following hold.

1. For any M ⊆ Sg such that:

• |M | ≥ d,

• M is disjoint from N , and

• M ⊔N is nonseparating,

the cokernel of the map
⊕

c∈M V Tc → V is finite dimensional.

2. For any M ⊆ Sg such that:

• |M | < d,

• M is disjoint from N , and

• M ⊔N is nonseparating,

the coinvariants module VStabG(M) is finite dimensional.
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Then V is finite dimensional.

Before proving the proposition, we will need a result about generating sets of subgroups of

the symplectic group, which is Lemma 4.1.2. We will also standardize some terminology

that we will use throughout this thesis.

Terminology on symplectic lattices. A quasi-unimodular lattice is a finitely generated free

abelian group L equipped with an alternating form ⟨·, ·⟩ : L × L → Z. The lattice L is

unimodular if the form ⟨·, ·⟩ is nondegenerate. The genus of L, denoted g(L), is 1
2
rk(W ),

where W ⊆ L is a maximal free abelian subgroup of L such that the restriction of ⟨·, ·⟩ to

W is nondegenerate. If v ∈ L is some element, then v is primitive if there is no integer

m ≥ 2 and nonzero w ∈ L with mw = v. For any v ∈ L, the transvection along v is the

homomorphism Tv : L→ L given by

Tv(w) = w + ⟨v, w⟩v.

We will say that the transvection Tv is primitive if v is primitive. We will say that a subgroup

L′ ⊆ L is primitive if L is generated by primitive elements. The set of degenerate elements

in L, i.e., elements v ∈ L such that ⟨v, ·⟩ : L→ Z is the zero map, will be denoted Ldegen.

If V ⊆ L is a set of elements, we will denote by V⊥ the subgroup {w ∈ L : ⟨w, v⟩ =

0 for all v ∈ V}. We let

Sp(L,Z) = {g ∈ GL(L,Z) : ⟨gv, gw⟩ = ⟨v, w⟩ for all v, w ∈ L}.

If L′ ⊆ L is a primitive, unimodular subgroup, let projL′ : L → L′ denote the projection

map induced by the form ⟨·, ·⟩.

Mapping class groups of cut open surfaces. Let M ⊆ Sg be a nonseparating multicurve.

There is a natural inclusion Sg % M ↪→M that induces a map Mod(Sg % M)→ Mod(Sg)

given by extending φ ∈ Mod(Sg % M) by the identity along Sg \ im(Sg % M → Sg).
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We are now ready to state and prove the following lemma, after which we will conclude

Section 4.1 by proving Proposition 4.1.1.

Lemma 4.1.2. Let g ≥ 2 and b ≥ 0, and let S = Sb
g. Let M ⊆ S be a nonseparating

multicurve such that g(S % M) ≥ 1. Let G be the image of the composition

Mod(S % M)→ Mod(S)→ Aut(H1(S
b
g;Z)).

Then G has a finite generating set consisting of transvections along classes v represented

by nonseparating curves c ⊆ Sg % M .

Proof. Korkmaz [26, Theorem 3.1] has shown that if Sb′

g′ is a compact, oriented surface

with genus g′ ≥ 1, then Mod(Sb′

g′) has a finite generating set D ⊆ Mod(Sb′

g′) consisting

of Dehn twists along nonseparating curves. Then S % M is a compact, oriented surface

with g(S % M) ≥ 1 by hypothesis. Hence there is a finite set of Dehn twists along

nonseparating curves D ⊆ Mod(S % M) such that D generates Mod(S % M). Then

the image of Td ∈ D under the symplectic representation is the transvection T[d]. Hence

G has a finite generating set consisting of transvections along elements represented by

nonseparating curves, as desired.

We are now ready to conclude Section 4.1.

Proof of Proposition 4.1.1. The proof proceeds by induction on d.

Base case: d = 0. In this case, the first hypothesis says that if M is the empty multicurve,

then the cokernel
⊕

c∈∅ V
Tc → V is finite dimensional. This is just saying that the cokernel

of the zero map is finite dimensional, so in particular V is finite dimensional.

Inductive step: d ≥ 1. Assume that the proposition holds for all d′ < d. We will show

that it holds for d as well. Our aim is to show that if G and V satisfy the hypotheses of the

proposition for d, then they satisfy the hypotheses of the proposition for d− 1 as well. The

inductive hypothesis would then imply that V is finite dimensional. The second hypothesis,
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namely that the coinvariants module VStabG(M) is finite dimensional for |M | < d also holds

for |M | < d−1, so it suffices to prove the first hypothesis for d−1. Let M be a multicurve

such that:

• |M | ≥ d− 1,

• M is disjoint from N , and

• M ⊔N is nonseparating.

It suffices to show that the cokernel of the map
⊕

c∈M V Tc → V is finite dimensional. This

holds for |M | ≥ d by hypothesis, so it suffices to show that the result holds for |M | = d−1.

Let M ⊆ Sg % N be a nonseparating multicurve with |M | = d − 1. Let G′ =

im(Mod(Sg % (M ⊔ N) → Sp(2g,Z)). By Lemma 4.1.2, G′ is generated by a finite

set of transvections F along a set of primitive elements V such that each v ∈ V has a

nonseparating representative c ⊆ Sg % (M ⊔ N). Let R be a set of such representatives,

one for each element of V . For c ∈ R, let Mc =M ⊔ c. The multicurve Mc satisfies:

• |Mc| = 1 + |M | = d,

• Mc is disjoint from N , and

• Mc ⊔N is nonseparating.

The first part is trivial, while the second follows since c is disjoint from N , and the third

follows because we have chosen c to be nonseparating in Sg % (M ⊔ N). Therefore, the

first hypothesis in the proposition applied to V as a G representation tells us that

cok

(⊕
d∈Mc

V T[d] → V

)

is finite dimensional. In particular, this implies that, if we let VM = cok(
⊕

d∈M V Td → V ),

then V Tv
M has finite codimension in VM for any v ∈ V . Now, consider the filtration of
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VM given by choosing an ordering V = {v1, . . . , vn} and setting WM,i =
⋂i

j=1 V
Tvi
M .

Since V Tvi
M has finite codimension in VM , each VM,i has finite codimension in VM,i−1. In

particular, this implies that WM,n has finite codimension in VM . Thus, it suffices to show

that WM,n is finite dimensional.

WM,n is finite dimensional. Consider the long exact sequence in G′–homology associated

to the short exact sequence

0→ WM,n → VM → VM/WM,n → 0.

Part of this sequence is given by

H1(G
′;VM/WM,n)→ H0(G

′;WM,n)→ H0(G
′;VM).

The group G′ is finitely presented by Lemma 4.1.2 and VM/WM,n is finite dimensional

by hypothesis, so H1(G
′;VM/WM,n) is finite dimensional. Furthermore, H0(G

′;VM) is a

quotient of H0(G
′;V ). This last vector space is finite dimensional by applying the second

hypothesis of the proposition to the multicurve M , since we know |M | = d − 1 < d.

Therefore, the vector space H0(G
′;WM,n) is finite dimensional. But now, WM,n is the

intersection
⋂

v∈V V
Tv
M . Since the set F = {Tv : v ∈ V} generates G′ by assumption, we

conclude that WM,n is a trivial G′–representation, so H0(G
′;WM,n) = WM,n. Hence WM,n

is finite dimensional and has finite codimension in VM , so VM is finite dimensional as well.

The proof is now complete by the inductive hypothesis.

4.2 Bestvina–Margalit tori

For the remainder of this section, fix a g ≥ 3 and an a ⊆ Sg a nonseparating curve. Let

[a] = x⃗. Let Xg = Cx⃗(Sg)/Ig. A Bestvina–Margalit torus (defined below), is a certain

type of 2–torus embedded in Xg. Let BM2(Xg;Q) ⊆ H2(Xg;Q) denote the subspace of
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H2(Xg;Q) generated by the fundamental classes of the Bestvina–Margalit tori. The goal

in this section is to prove basic structural results about Xg and Bestvina–Margalit tori.

Bestvina–Margalit tori, by example. In unpublished work [5], Bestvina and Margalit as-

sociate to each 2-cell σ in Xg a corresponding dual cell. The cells σ and σ′ form a torus

which we refer to as a Bestvina–Margalit torus. The idea is that σ and σ′ have the same

edges, except the edges are in a different cyclic order. Let x, y, z, w ∈ Cx⃗(Sg) be as in

Figure 4.1. Let σ ⊆ Xg be the 2-cell such that there is a lift σ̂ ⊆ Cx⃗(Sg) with vertices x, y,

and w, and let σ′ ⊆ Xg be the 2–cell with a lift σ̂′ with vertices x, z, and w. Then the edges

ex,y and ey,w are in the same orbit under the action of Ig to ez,w and ex,z, respectively [38,

Proposition 3.29]. However, the cells σ̂ and σ̂′ are not in the same orbit under the action

of Ig, since they induce decompositions of H1(Sg;Z) with different cyclic orders (defined

precisely in a moment). Hence the cells σ and σ′ form a torus in Xg. We will denote this

x

y

wz

Figure 4.1: The construction of dual cells.

torus BMσ and its fundamental class by [BMσ]. In general, a Bestvina–Margalit torus is

any subcomplex of Xg given by the union of a pair of 2–cells σ and σ′ such that each edge

of σ is in the same Ig–orbit as an edge of σ′, but σ ̸= σ′. Let BM2(Xg;Q) denote the

subspace of H2(Xg;Q) spanned by the set of fundamental classes {[BMσ]}σ∈X(2)
g

. This

subspace plays a crucial role in the proof of Proposition 1.3.1.

65



4.2.1 Structural results about Cx̃ (Sg)/Ig

In this section we prove Lemma 4.2.1, which will tell us when two k–cells σ, σ′ ⊆ Cx⃗(Sg)

are in the same Ig–orbit for the action of Ig on Cx⃗(Sg). Johnson showed that two nonsepa-

rating curves c and d in Sg are in the same orbit under the action of the Torelli group if and

only if c and d are homologous (see, e.g., Putman [34, Lemma 6.2]). Hence the complex

Xg has one vertex. Therefore each edge x ∈ Xg is a loop in Xg, and we will let [x] denote

the element of π1(Xg) induced by x. If y and z are two edges of a 2–cell σ ⊆ Xg, we will

let yz denote the third edge of σ, with the appropriate orientation so that

[yz] = [y][z]

in π1(Xg). If e ⊆ Cx⃗(Sg) is an edge, there is a bounding pair Tc,c′ taking one endpoint of

e to the other endpoint. See Figure 4.2 for an example. Lemma 4.2.1 describes the cells of

v

w

c c′

Figure 4.2: The bounding pair map TcT−1c′ and edge e = ev,w.

the complex Xg. Before stating and proving the lemma, we introduce some notation.

Cyclic decompositions induced by cells of Xg. Let σ ⊆ Xg be a k–cell with a lift σ̂ ⊂

Cx⃗(Sg), where σ̂ corresponds to a multicurve a0⊔ . . .⊔ak. Let S0, . . . , Sk be the connected

components of Sg % σ̂. Assume that S0, . . . , Sk are indexed so that Si ∩ Sj ̸= ∅ if and only

if |i − j| = 1 or k. For each Si, let Hσ
i denote the image in H1(Sg;Z) of the pushforward
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map H1(Si;Z)→ H1(Sg;Z). Let H(σ) denote the set of free abelian groups Hσ
0 , . . . ,Hσ

k .

Associated toH(σ) is a directed cycle C. The vertices of C are the connected components

Si and there is a directed edge Si → Sj if the following hold:

• aℓ ⊆ Si ∩ Sj for some 0 ≤ ℓ ≤ k, and

• aℓ is oriented so that Si is on the left of aℓ.

This directed cycle induces a cyclic ordering on the set H(σ). For convenience, we will

index the Hi so that the cyclic order is H0 < H1 < . . . < Hk < H0. We will refer

to this cyclically ordered set H(σ) as the cyclic decomposition of H1(Sg;Z) induced by σ̂.

We will say that the genus of σ is the cyclically ordered tuple (g(H0), . . . , g(Hk)), and we

will denote this tuple by g(σ̂). We will prove the following result.

Lemma 4.2.1. Let σ and σ′ be two k–cells of Cx⃗(Sg). Then there is an f ∈ Ig such that

fσ = σ′ if and only if σ and σ′ induce the same decomposition of H1(Sg;Z).

Proof. We prove each implication in turn.

The forward implication. Let σ, σ′ ⊆ Cx⃗(Sg) be 2–cells in the same Ig orbit. Let f ∈ Ig

be an element with fσ = σ′. Since f ∈ Mod(Sg), f takes each H ∈ H(σ) to some

H′ ∈ H(σ′), and since f ∈ Ig, we must have H = H′. Therefore H(σ) = H(σ′) as

unordered sets, so it remains to show that f preserves the cyclic order onH(σ) andH(σ′).

Let b ⊆ Sg be an oriented curve such that for any vertex d ∈ σ, b intersects d once with

signed intersection −1. Then since f(σ) = σ′, the image f(b) satisfies the property that

for any d′ ∈ σ′, f(b) intersects d′ once with signed intersection number −1. Now, for

each Hi ∈ H(σ), let ci be a nonseparating simple closed curve disjoint from σ and not

homologous to [c] such that ci intersects b once with signed intersection −1. An example

with σ a 2–cell of the curves σ, b, and ci can be found in Figure 4.3, if we denote the vertices

of σ by d0, d1, d2.
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d0 c0 d1 c1 d2

c1
b

Figure 4.3: The curves a0, a1, a2, b, and ci

Let c′i = f(ci). Then [c′i] = [ci] since f ∈ Ig, and [c′i] ∈ Hi(σ
′). Then the cyclic order

of the elements of H(σ) is the same as the cyclic order of the intersections of ci with b,

where the cyclic order on the ci is induced by the orientation of b, so the lemma follows.

The backwards implication. Suppose now that σ and σ′ induce the same decomposition

of H1(Sg;Z). Reindex H(σ′) so that Hσ
i = Hσ′

i for all 0 ≤ i ≤ dim(σ), and let Sσ
i ,

Sσ′
i denote the connected components of Sg % σ and Sg % σ′. Let α1, β1, . . . , αg, βg be a

symplectic basis for H1(Sg;Z) such that:

• x⃗ = α1 and

• there is a partition ν ⊢ {2, . . . , g} where ν has k + 1 blocks such that, for each

Pi ∈ ν, the set {αj, βj}j∈Pi
is a symplectic basis for a maximal unimodular subgroup

ofHσ
i ∈ H(σ).

For each Hσ
i and Hσ′

i , let {aj, bj}j∈Pi
and {a′j, b′j}Pi

be representatives in Sσ
i and Sσ′

i re-

spectively for {αj, βj}j∈Pi
such that |ai ∩ bj| = |a′i ∩ b′j| = |⟨αi, βj⟩| for any 1 ≤ i, j ≤ g.

By the change of coordinates principle, there is an f ∈ Mod(Sg) taking σ to σ′ that also

takes aj → a′j, bj → b′j for all 2 ≤ j ≤ g. Then f∗(αi) = αi and f∗(βi) = βi for

2 ≤ i ≤ g. Then f takes a vertex of σ to a vertex of σ′, so f∗(α1) = α1. This implies

that ⟨f∗(β1), αi⟩ = ⟨f∗(β1), f∗(βi)⟩ = 0 for any 2 ≤ i ≤ g, and ⟨α1, f∗(β1)⟩ = 1. Hence
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f(β1) = β1 + nα1 for some n ∈ Z, so f is not a priori in the Torelli group, since it may

act nontrivially on β1. We now find another element h ∈ Mod(Sg) such that hfσ = σ′ and

hf ∈ Ig.

Let a′ ∈ σ′ be a curve in the k–cell σ′. Then T−na′ fσ = T−na′ σ
′ = σ′ since fσ = σ′ and

Ta′ acts trivially on σ′ by construction. Furthermore, for any m ∈ Z, we have

T[a′](β1 +mα1) = β1 +mα1 + ⟨[a′], β1 +mα1⟩[a′].

Since [a′] = α1, we have T[a′](β1 +mα1) = β1 +mα1 + α1 = β1 + (m + 1)α1. Hence

T−n[a′] (β1 +mα1) = β1 + (m− n)α1, so we have we have T−n[a′] f∗(β1) = T−n[a′] (β1 + nα1) =

β1 + nα1 − nα1 = β1. Then Ta′ acts trivially on the set {α1, α2, β2, . . . , αg, βg} since

[a′] = α1 has trivial algebraic intersection every element in this set. Hence (T−na f)∗ fixes

the set {α1, β1, . . . , αg, βg}, so T−na f ∈ Ig, and so T−na f is an element of the Torelli group

taking σ to σ′, as desired.

Given Lemma 4.2.1, if σ ⊆ Xg is a cell, the cyclically ordered decomposition H(σ̂) for

σ̂ a lift of σ to Cx⃗(Sg) depends only on σ. We will use the notation H(σ) to refer to

the decomposition of H1(Sg;Z) induced by σ̂, and refer to H(σ) as the decomposition of

H1(Sg;Z) induced by σ.

4.2.2 Bestvina–Margalit tori

We will now give a formal definition of a Bestvina–Margalit torus and prove a collection

of results about fundamental classes of Bestvina–Margalit tori.

Bestvina–Margalit tori. Let σ ⊆ Xg be a 2–cell. There is a unique cell σ′ called the dual

cell to σ such that H(σ) = H(σ′) as unordered sets, but with H(σ) ̸= H(σ′) as cyclically

ordered sets. This σ′ is unique by Lemma 4.2.1 since there are exactly two cyclic orders on

the set of three elements. The Bestvina–Margalit torus BMσ is the union σ ∪ σ′. Assuming

that σ is oriented, the fundamental class of BMσ is denoted [BMσ]. We have the following
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lemma that allows us to add fundamental classes of Bestvina–Margalit tori.

Lemma 4.2.2. Let x, y, z be three edges in Xg such that BMx,y, BMx,z and BMy,z are all

Bestvina–Margalit tori. Let yz denote the third edge of a 2–cell σ with y, z ⊆ σ oriented so

that [y][z] = [yz] in π1(Xg). A lift of a 3–cell τ ⊆ Xg containing these edges can be seen

in Figure 4.4. Then in H2(Xg;Q), the relation [BMx,y] + [BMx,z] = [BMx,yz] is satisfied.

a a1 a2
a3

Figure 4.4: A 3–cell containing lifts of the edges x, y, z, yz as in Lemma 4.2.2. x lifts to
(a, a1), y lifts to (a1, a2), z lifts to (a2, a3) and yz lifts to (a1, a3).

Before proving the lemma, we will explain how to compute differentials in Xg. If τ ⊆

Cx⃗(Sg) is a k–cell with vertices {c0, . . . , ck}, then the differential ∂τ is given by

∂τ =
k∑

i=0

(−1)i(c0, . . . , ĉi, . . . , ck)

where (c0, . . . , ĉi, . . . , ck) denotes the (k − 1)–cell with vertices c0, . . . , ci−1, ci+1, . . . , ck.

This differential descends to Xg by definition. Now, if τ ⊆ Xg is a k–cell, Lemma 4.2.1

tells us that τ is determined by the decomposition

H(τ) = {H0, . . . ,Hk}.

Then, if τ is a lift of τ to Cx⃗(Sg), forgetting a vertex c ⊆ τ corresponds to replacing
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Hi,Hi+1 inH(τ) withHi +Hi+1. Therefore the differential ∂τ is given by

∂τ =
k∑

i=0

(−1)iσi

where for 0 ≤ i ≤ k − 1, each σi satisfies

H(σi) = {H0, . . . ,Hi−1,Hi +Hi+1,Hi+2, . . . ,Hk}.

We have thatH(σk) = {H1, . . . ,Hk−1,Hk +H0}.

Proof of Lemma 4.2.2. We will find 3–dimensional subcomplex L ⊆ Xg such that the

boundary realizes the relation in the lemma. Let τ be a 3–cell withH(τ) = {H0,H1,H2,H3}

such that H0 ∈ H(x), H1 ∈ H(x), and H2 ∈ H(x). The space L is given as the union of

the following 3–cells:

• τ0 = τ ,

• τ1 that satisfiesH(τ1) = {H1,H0,H2,H3}, and

• τ2 that satisfiesH(τ2) = {H1,H2,H0,H3}.

We can compute the differentials of each 3–cell above as follows, signed appropriately to

yield the desired relation in the lemma. For notational convenience, we will conflate σ and

H(σ) for σ ⊆ Xg.

• ∂τ0 = {H0 +H1,H2,H3} − {H0,H1 +H2,H3} + {H0,H1,H2 +H3} − {H0 +

H3,H1,H2},

• −∂τ1 = −{H0+H1,H2,H3}+{H1,H0+H2,H3}−{H1,H0,H2+H3}+{H1+

H3,H0,H2}, and

• ∂τ2 = {H1 +H2,H0,H3} − {H1,H2 +H0,H3} + {H1,H2,H0 +H3} − {H1 +

H3,H2,H0}.
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Now, we see that in the sum ∂τ0 − ∂τ1 + ∂τ2, the term {H0 +H1,H2,H3} in ∂τ0 cancels

with −{H0 + H1,H2,H3} in −∂τ1, the term −{H0 + H3,H1,H2} in ∂τ0 cancels with

{H1,H2,H0 + H3} in ∂τ2, and {H1,H0 + H2,H3} in −∂τ1 cancels with −{H1,H2 +

H0,H3} in ∂τ2. This means that

∂τ0 − ∂τ1 + ∂τ2 =− {H0,H1 +H2,H3}+ {H0,H1,H2 +H3}

− {H1,H0,H2 +H3}+ {H1 +H3,H0,H2}

+ {H1 +H2,H0,H3} − {H1 +H3,H2,H0}.

Now, by rearranging terms, we have

∂τ0 − ∂τ1 + ∂τ2 =− {H0,H1 +H2,H3}+ {H1 +H2,H0,H3}

+ {H0,H1,H2 +H3} − {H1,H0,H2 +H3}

+ {H1 +H3,H0,H2} − {H1 +H3,H2,H0}.

Then each pair of two cells term on the right side of the above equation is a Bestvina–

Margalit torus, so we have

∂τ0 − ∂τ1 + ∂τ2 = −[BMx,yz] + [BMx,y] + [BMx,z]

and therefore the relationship given in the lemma holds.

We now prove Lemma 4.2.3, which says when two Bestvina–Margalit tori are equal in Xg.

Lemma 4.2.3. Let BMσ and BMτ be two Bestvina–Margalit tori. Then BMσ = BMτ if

and only ifH(σ) = H(τ) as unordered sets.

Proof. We prove the two directions in turn.
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Backwards direction. If BMσ ̸= BMτ , then σ ̸= τ since every cell σ has a unique dual 2–

cell σ′ such that σ ∪ σ′ is a Bestvina–Margalit torus. This implies thatH(σ) is not equal to

H(τ) as decompositions of x⃗⊥, which implies in particular thatH(σ) ̸= H(τ) as unordered

sets.

Forwards direction. Suppose that BMσ = BMτ . By Lemma 4.2.1, σ and τ are identified

under the action of Ig if and only if H(σ) = H(τ) as decompositions of x⃗⊥. But then if

H(σ) ̸= H(τ), we must have H(σ) = H(τ ′), where τ ′ is the 2–cell dual to τ , since there

are only two cyclic orders on a set of three elements.

If BMσ is a Bestvina–Margalit torus, we will use the notation H(BMσ) to denote the de-

composition H(σ) without the cyclic order, and we will refer to this decomposition as the

decomposition of H1(Sg;Z) induced by BMσ. If σ is a 2–cell with edges x and y, we will

denote the splittingH(BMσ) byH(BMx,y). We describe howH interacts with the addition

of tori in the following lemma. The idea is that if we have a 3–cell τ as in Figure 4.4, then

we can describe the splitting induced by one torus corresponding to a 2–cell σ ⊆ τ in terms

of the splitting induced by tori corresponding to other 2–cells contained in τ .

Lemma 4.2.4. Let g ≥ 5 and let a ⊆ Sg be a nonseparating simple closed curve. Let

x⃗ = [a] and Xg = Cx⃗(Sg)/Ig. Let x, y, z ⊆ Xg be three edges such that BMx,y, BMx,z and

BMy,z are all Bestvina–Margalit tori. Suppose that we have

H(BMx,y) = {H0,H1,H2} andH(BMx,z) = {H0,H′1,H′2}

with H1 ∩ H′1 = Zx⃗. Suppose additionally that we have H0 ∈ H(x), H1 ∈ H(y) and

H′1 ∈ H(z). Let yz denote the third edge of a 2–cell σ with y, z ⊆ σ with yz oriented so

that y ∗ z = yz in the group generated by edges of Xg. Then we have

H(BMx,yz) = {H0,H1 +H′1,H2 ∩H′2}.

73



Proof. We first want to compute the decomposition H(yz). The 2–cell σ containing y, z

and yz has H1,H′1 ∈ H(σ). This implies that the third element of H(σ) is H⊥1 ∩ (H′1)⊥.

Hence

H(yz) = {H⊥1 ∩ (H′1)⊥, (H⊥1 ∩ (H′1)⊥)⊥} = {H⊥1 ∩ (H′1)⊥,H1 +H′1}

and in particular, we have H1 +H′1 ∈ H(yz). Now, the splitting H(BMx,yz) contains H0

andH1 +H′1, so the third element ofH(BMx,yz) is given by

H⊥0 ∩ (H1 +H′1)⊥ = (H0 +H1)
⊥ ∩ (H0 +H′1)⊥ = H2 ∩H′2,

so the lemma holds.

Before moving forward, we will briefly discuss a notation for cells in Xg, as well as the

action of subgroups of Sp(2g,Z) on Xg.

Graphical representations for Bestvina–Margalit tori. Let x, y, z, yz ⊆ Xg be a set of

edges as in Lemma 4.2.4. Let Ĥ = {H0,H1,H′1,H2 ∩ H′2} be an unordered set. Then Ĥ

corresponds to the labeled graph as in Figure 4.5.

H0

H1

H′1

H2 ∩H′2

Figure 4.5: The graphical representation of Ĥ

The advantage of this notation is that the decompositions corresponding to H(x, y),

H(x, z) and H(x, yz) can be read off from the graph. Each of these Bestvina–Margalit

tori corresponds to the decomposition given by taking the span of the union of two sub-

groups not equal to H0. We will use this notation in Section 5.2 to keep track of certain
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decompositions of x⃗⊥ ⊆ H1(Sg;Z).

The action of Sp(x⃗⊥,Z) on Xg. Throughout the rest of this thesis, we will consider the

action of Sp(x⃗⊥,Z) on Xg. The subgroup Γx⃗ ⊆ Mod(Sg) consisting of all elements that

act trivially on the class x⃗ ∈ H1(Sg;Z) acts on Cx⃗(Sg). We have Ig ⊆ Γa by definition, and

so the quotient Γa/Ig = Sp(x⃗⊥,Z) acts on Xg.
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CHAPTER 5

THE PROOF THAT H2(Xg;Q) IS FINITE DIMENSIONAL

5.1 Abelian cycles in H2(Ig;Z)

The goal of this section is to prove Proposition 5.1.1, which says that certain subspaces of

H2(Ig;Q) generated by abelian cycles of bounding pair maps can be generated by abelian

cycles supported on finitely many subsurfaces.

Abelian cycles. LetG be a group and c1, . . . , ck ⊆ G be a collection of pairwise commuting

elements of infinite order. Let A = ⟨c1, . . . , ck⟩ ⊆ G. We have H∗(A;Z) ∼=
∧∗A as

graded rings. The abelian cycle ab(c1, . . . , ck) ∈ Hk(G;Q) is the image of the class [c1] ∧

. . . ∧ [ck] ∈ Hk(A;Q) under the pushforward map Hk(A;Q) → Hk(G;Q). If k = 2, we

will denote the abelian cycle ab(c1, c2) by [c1, c2]. Let Hab
k (G;Q) denote the subspace of

Hk(G;Q) generated by abelian cycles.

Torelli group of a subsurface. Let S be a compact surface and ι : S ↪→ Sg an embedding.

We will denote the genus of S by g(S). We say that ι is clean if no connected component

of Sg \ ι(S) is a disk. Let I(S, Sg) denote the intersection ι∗(Mod(S)) ∩ Ig, where the

pushforward map ι∗ is given by extending φ ∈ Mod(S) by the identity over Sg \ ι(S). Let

I(ι) denote the inclusion map I(S, Sg)→ Ig.

Bounding pair maps. We will say that two curves c, c′ ⊆ Sg are a bounding pair if c and c′

are disjoinat and homologous. We say that f ∈ Ig is a bounding pair map if f = TcT
−1
c′

for c and c′ a bounding pair. We will denote the bounding pair map TcT−1c′ by Tc,c′ . Let

Hab,bp
2 (I(S, Sg);Q) denote the subspace of H2(I(S, Sg);Q) generated by abelian cycles

[Tc,c′ , Td,d′ ] such that the bounding pairs c ∪ c′ and d ∪ d′ are disjoint.

The main goal of the section is to prove the following result.
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Proposition 5.1.1. Let g ≥ 33 and let M ⊆ Sg be a nonseparating multicurve with |M | =

9. Let V = {[c] : c ∈M}. The natural map

⊕
v∈V

Hab,bp
2 (Ig;Q)Tv → Hab,bp

2 (Ig;Q)

is surjective.

The idea of Proposition 5.1.1 is that if there is a large enough nonseparating multicurve

M ⊆ Sg, then any abelian cycle of bounding pairs is a linear combination of abelian cycles

that are each algebraically disjoint from at least one of the curves.

Outline of the proof of Proposition 5.1.1. If G is a group acting on a vector space V and

F ⊆ G is a subset, we let V F denote the subspace of V fixed by all elements of F . If

W ⊆ H1(Sg;Z), let TW denote the set of transvections along elements ofW . If F ∈ Ig,

let [F ] denote the corresponding class in H1(Ig;Q). Let [Td,d′ , Te,e′ ] ∈ Hab,bp
2 (Ig;Q) be an

abelian cycle. The proof of the proposition proceeds in two steps.

1. There is a relation

[Td,d′ , Te,e′ ] =
k∑

i=1

λi[Td,d′ , Tfi,f ′
i
]

for λi ∈ Q, with [Tfi,f ′
i
] ∈ H1(Ig;Q)TV′ for some V ′ ⊆ V and |V ′| = 4 and for all

1 ≤ i ≤ k.

2. If [Td,d′ , Tfi,f ′
i
] is an abelian cycle with Tfi,f ′

i
∈ H1(Ig;Q)TV′ for some V ′ ⊆ V and

|V ′| = 4, then there is a relation

[Td,d′ , Tfi,f ′
i
] =

m∑
j=1

λj[Thj ,h′
j
, Tfi,f ′

i
]

for λj ∈ Q, with each [Thj ,h′
j
] ∈ H1(Ig;Q)Tv for some v ∈ V ′.

Step (1) is the content of Lemma 5.1.11 and Step (2) is the content of Lemma 5.1.9.
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Outline of the section. We will begin by describing the Johnson homomorphism. We will

then prove Lemma 5.1.5, which describes the vector space H1(I(S, Sg);Q) for S ↪→ Sg

a clean embedding with g(S) ≥ 3. We then prove Lemma 5.1.8 which is a result about

generating sets of exterior powers of quasi–unimodular lattices, and then use Lemma 5.1.8

to prove Lemma 5.1.9. We also use Lemma 5.1.8 to prove Lemma 5.1.10, which is another

result about generating sets of exterior products of vector spaces. We use Lemma 5.1.10 to

prove Lemma 5.1.11. We then combine these lemmas to prove Proposition 5.1.1.

The Johnson homomorphism. Let a1, b1, . . . , ag, bg be a symplectic basis for H1(Sg;Z) and

let ω = a1 ∧ b1 + . . . + ag ∧ bg ∈ ∧2H1(Sg;Z). There is an inclusion H1(Sg;Z) ↪→

∧3H1(Sg;Z) given by [c]→ [c] ∧ ω. Johnson [19] constructed a map

τg : Ig → ∧3H1(Sg;Z)/H1(Sg;Z)

and showed that the pushforward map

(τg)∗ : H1(Ig;Q)→ ∧3H1(Sg;Q)/H1(Sg;Q)

is an isomorphism [22]. We will make use of Lemma 5.1.2, which describes τg(Tc,c′) for

Tc,c′ a bounding pair map. The lemma is due to Johnson [19, Lemma 4B].

Lemma 5.1.2. Let g ≥ 3. Let Tc,c′ be a bounding pair map and let S be the connected

component of Sg % (c ∪ c′) such that S is on the left side of c. Let a1, b1, . . . , ah, bh be a

symplectic basis for a maximal nondegenerate subspace of H1(S;Z). We have

τg(Tc,c′) = [c] ∧

(
h∑

i=1

ai ∧ bi

)
.

We use Lemma 5.1.2 to prove Lemma 5.1.5, which describes H1(I(S;Sg);Z) for clean

embeddings S ↪→ Sg. We first prove an auxiliary lemma, which is essentially a corollary

of a result of Putman [34, Theorem 1.3].
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Lemma 5.1.3. Let g ≥ 4 and let ι : S ↪→ Sg be a clean embedding such that g(S) ≥ 3.

Then I(S, Sg) is generated by bounding pair maps.

Proof. A result of Putman [34, Theorem 1.3] tells us that I(S, Sg) is generated by bounding

pair maps and Dehn twists along separating curves. Hence it suffices to show that if δ ⊆

ι(S) is a separating curve in Sg, then Tδ is a product of bounding pair maps. Since g(S) ≥

3, there is an embedded copy of S2
1 ⊆ S such that the image of one boundary component

of S2
1 is the curve δ. Then by embedding a copy of S4

0 ↪→ S2
1 , the lantern relation says that

Tδ is a product of three bounding pair maps [12, Section 5.1], so the lemma follows.

We also need one more fact about quasi–unimodular lattices.

Lemma 5.1.4. Let L be a quasi–unimodular lattice such that g(L) ≥ 1. The free abelian

group ∧2L is spanned by elements of the form γ ∧ δ with γ, δ primitive and ⟨γ, δ⟩ = 1.

Proof. Let S ⊆ ∧2L be the set of all elements γ ∧ δ as in the statement of the lemma. Let

B = {γ1, δ1, γ2, δ2, . . . , γg(L), δg(L), γg(L)+1, γg(L)+2, . . . , γℓ}

be a partial symplectic basis for L. The group ∧2L is generated by all elements of the form

r ∧ s for r, s ∈ B, so it suffices to show that any element r ∧ s with r, s ∈ B is a Z–linear

combination of elements as in the statement of the lemma.

We begin by proving this in the case r = γi, s = δj . We have γi ∧ δj = (γi + γj) ∧

δj− (γj ∧ δj). Each of these latter elements is a wedge of primitive elements with algebraic

intersection number one, so r ∧ s is in the subgroup of ∧2L generated by S.

Now, suppose that r ∈ B, s = δi with r ̸= γi. We have r ∧ s = (r + γi) ∧ δi − γi ∧ δi,

and each of these latter elements are in S, since the only element of B that δi intersects

nontrivially is γi.

Finally, suppose that r = γi, s = γj . If i or j is less than g(L), then without loss of

generality we have j ≤ g(L). Then we have r ∧ s = γi + δj ∧ γj − δj ∧ γj , and these latter

79



elements are all in S. Otherwise, i, j > g(L). In this case, we have

r ∧ s = (γi + δg(L)) ∧ (γj + γg(L))− δg(L) ∧ γj − δg(L) ∧ γj − δg(L) − γg(L).

The first and last elements are in S, and the middle two elements are Z–linear combinations

of elements in S by the previous cases, so r∧s ∈ SpanZ(S) and thus the lemma holds.

We now describe H(I(S, Sg);Q) for certain clean embeddings ι : S ↪→ Sg.

Lemma 5.1.5. Let S = Sb
g be a compact surface with b ∈ {1, 2}. Let ι : S ↪→ Sg be a

clean embedding such that Sg % S is connected. Suppose additionally that g(Sg % S) ≥ 1.

Then there is a surjection

f : H1(Ig(S, Sg);Q) ↠ ∧3H1(S;Q)

such that the following diagram commutes:

H1(I(S, Sg);Q) ∧3H1(S;Q)

H1(Ig;Q) ∧3H1(Sg;Q)/H1(Sg;Q).

f

I(ι)∗ ∧3ι∗
τg⊗Q

Furthermore, suppose that g(S) ≥ 3. Then f is an isomorphism, and the map ∧3ι∗ ◦ f is

injective.

Proof. We begin with the first part of the lemma. We show that the image of the composi-

tion the composition

H1(Ig(S, Sg);Q)
I(ι)∗−−−→ H1(Ig;Q)

τg⊗Q−−−→ ∧3H1(Sg;Q)/H1(Sg;Q)

is im(∧3ι∗), and that ∧3ι∗ is an injection. If these two statements hold, then f is given by

f = (∧3ι∗)−1|im(τg⊗Q◦I(ι)∗) ◦ τg ⊗Q ◦ I(ι)∗.
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We prove each containment in turn, and then prove injectivity.

Showing that im(τg ⊗ Q ◦ I(ι)∗) ⊆ im(∧3H1(S;Q) → ∧3H1(Sg;Q)/H1(Sg;Q)). The

group Ig(S, Sg) is generated by bounding pair maps by Lemma 5.1.3, so it suffices to

show that if Tc,c′ ∈ Ig(S, Sg) is a bounding pair map, then τg ⊗ Q ◦ I(ι)∗(Tc,c′) ∈

im(∧3H1(S;Q) → ∧3H1(Sg;Q)/H1(Sg;Q)). Since the bounding pair c ∪ c′ is con-

tained in S, we have [c] ∈ ∧3H1(S;Q). Then there must be a connected component S ′

of Sg % (c ∪ c′) such that S ′ ⊆ S. Let α1, β1, . . . , αh, βh be a symplectic basis for a

maximal unimodular subgroup of H1(S
′;Z). Lemma 5.1.2 says that τg ◦ I(ι)∗([Tc,c′ ]) =

[c] ∧ (α1 ∧ β1 + . . .+ αh ∧ βh) ∈ im(∧3H1(S;Q)→ ∧3H1(Sg;Q)/H1(Sg;Q)), so the ⊆

containment holds.

Showing that im(τg ◦I(ι)∗) ⊇ im(∧3H1(S;Q)→ ∧3H1(Sg;Q)/H1(Sg;Q)). Observe that

if v1, v2, v3 ∈ H1(S;Z) are primitive classes with ⟨v1, v2⟩ = 1 and ⟨v1, v3⟩ = ⟨v2, v3⟩ = 0,

then Lemma 5.1.2 says that if c, c′ is a bounding pair with [c] = v3 and v1, v2 a symplectic

basis for a maximal nondegenerate subgroup of the first homology of a connected com-

ponent of S % (c ∪ c′), then τg(Tc,c′) = v1 ∧ v2 ∧ v3 ∈ im(τg ◦ I(ι)∗). Since the set of

such triples of elements spans ∧3H1(S;Z) by Lemma 5.1.4, we have im(τg ◦ I(ι)∗) ⊇

im(∧3H1(S;Q)→ ∧3H1(Sg;Q)/H1(Sg;Q)).

Showing that ∧3H1(S;Q) injects into ∧3H1(Sg;Q)/H1(Sg;Q). We first show that the

exterior power of pushforwards ∧3H1(S;Q) → ∧3H1(Sg;Q) is injective. Since Sg % S

is connected, the pushforward H1(S;Q) → H1(Sg;Q) is injective, so ∧3H1(S;Q) →

∧3H1(Sg;Q) is injective as well. Hence it suffices to show that

im(∧3H1(S;Q)→ ∧3H1(Sg;Q)) ∩H1(Sg;Q) ∧ ω = 0,

where ω ∈ ∧2H1(Sg;Q) is the characteristic element. Suppose otherwise, so there is

some nonzero α ∧ ω ∈ im(∧3H1(S;Q) → ∧3H1(Sg;Q)). Since ω does not depend on

the choice of symplectic basis, we can choose a symplectic basis α1, β1, . . . , αg, βg with
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α∧ω = m ·α1 ∧ (α1 ∧ β1 +α2 ∧ β2 + . . .+αg ∧ βg) = m ·α1 ∧ (α2 ∧ β2 + . . .+αg ∧ βg)

for m some positive integer. But this implies that there are (2g − 1) linearly independent

elements α1, α2, β2, . . . , αg, βg ∈ im(H1(S;Q) → H1(Sg;Q)). We have assumed that

g(Sg % S) ≥ 1, so dim(H1(S;Q)) ≤ 2g − 2, which is a contradiction.

We now prove the second part of the lemma, where we assume that g(S) ≥ 3. In

this case, since g(S) ≥ 3 and ι : S ↪→ Sg is clean, a theorem of Putman [37, Theo-

rem B] states that the pushforward map I(ι)∗ is an injection. Therefore the composition

(∧3ι∗)
−1|im(τg⊗Q◦I(ι)∗ ◦τg⊗Q◦I(ι)∗ is an injection. By definition this is f , so f is injective

as well, and is therefore an isomorphism.

We will prove Lemma 5.1.7, which is a result that describes how stabilizers of transvections

interact with the abelianization of certain I(S, Sg). We first prove the following result.

Lemma 5.1.6. Let g ≥ 3 and let w ∈ H1(Sg;Z) be a nonzero primitive element. The fixed

space H1(Ig;Q)Tw is sent to im(∧3[w]⊥ → ∧3H1(Sg;Q)/H1(Sg;Q)) under the Johnson

homomorphism.

Proof. Since the Johnson homomorphism is Sp(2g,Z)–equivariant, it suffices to show that

(∧3H1(Sg;Q)/H1(Sg;Q))
Tw = im(∧3[w]⊥ → ∧3H1(Sg;Q)/H1(Sg;Q)). Since Tw acts

trivially on [w]⊥ by the definition of transvection, the transvection Tw acts trivially on

im(∧3[w]⊥ → ∧3H1(Sg;Q)/H1(Sg;Q)), and thus

τg(H1(Ig;Q)Tw) ⊇ im(∧3[w]⊥ → ∧3H1(Sg;Q)/H1(Sg;Q)).

It therefore remains to prove the other containment.

Let B = {α1, β1, . . . , αg, βg} ∈ H1(Sg;Z) be a symplectic basis so that α1 = w. The

vector space ∧3H1(Sg;Q) has a basis consisting of all pure wedge products of elements in

B. Then after modding out by H1(Sg;Q) → ∧3H1(Sg;Q), we see that any pure tensor of

82



the form α1 ∧ β1 ∧ γ is a linear combination

α2 ∧ β2 ∧ γ + . . .+ αg ∧ βg ∧ γ.

Hence ∧3H1(Sg;Q)/H1(Sg;Q) has a basis consisting of all pure tensors of elements in B

except those containing α1 ∧ β1. This set spans ∧3H1(Sg;Q)/H1(Sg;Q), and is therefore

a basis by counting dimensions. Now, Tw acts trivially on any such wedge products except

for those containing β1. For such a basis element β1 ∧ γ ∧ δ for γ, δ ∈ B \ {α1}, we have

Tw(β1 ∧ γ ∧ δ) = β1 ∧ γ ∧ δ+α1 ∧ γ ∧ δ. Now, if we have a Q–linear combination of such

elements
n∑

i=1

λiβ1 ∧ γi ∧ δi,

then we have

Tw

(
n∑

i=1

λiβ1 ∧ γi ∧ δi

)
=

n∑
i=1

λi(β1 + α1) ∧ γi ∧ δi = (β1 + α1) ∧
n∑

i=1

λiγi ∧ δi.

Then to have
∑n

i=1 λiβ1 ∧ γi ∧ δi fixed by Tw, we must have

n∑
i=1

λiβ1 ∧ γi ∧ δi = (β1 + α1) ∧
n∑

i=1

λiγi ∧ δi,

or equivalently we must have

α1 ∧
n∑

i=1

λiγi ∧ δi = 0

Since the span of the set {γi, δi : 1 ≤ i ≤ n} does not contain α1, we conclude that∑n
i=1 λiγi ∧ δi = 0. In particular, this implies that only elements of the form ∧3[w]⊥ →

∧3H1(Sg;Q)/H1(Sg;Q) are fixed by Tw, as desired.

We apply Lemma 5.1.6 in the following context.
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Lemma 5.1.7. Let g ≥ 4, and let ι : S ↪→ Sg be a clean embedding satisfying the hypothe-

ses of Lemma 5.1.5. Let M ⊆ Sg be a nonseparating multicurve, and letW ⊆ H1(Sg;Z)

be given by W = {[c] : c ∈ M}. Then, after passing to Q–coefficients, the Johnson

homomorphism τg restricts to an isomorphism

im (H1(I(S, Sg);Q)→ H1(Ig;Q)) ∩H1(Ig;Q)TW →

∧3 im(H1(S;Q)→ H1(Sg;Q))
⋂
∧3(W⊥).

Proof. By Lemma 5.1.5, we have

im (H1(I(S, Sg);Q)→ H1(Ig;Q)) ∼= im(∧3ι∗) ∼= ∧3H1(S;Q).

Now, the Johnson homomorphism is Sp(2g,Z)–equivariant, so if w ∈ W , the fixed set

H1(Ig;Q)Tw is isomorphic to im(τg ⊗Q)Tw . Then by Lemma 5.1.6, we have

τg(H1(Ig;Q)Tw) = im(∧3[w]⊥ → ∧3H1(Sg;Q)/H1(Sg;Q)).

Then we have H1(Ig;Q)TW =
⋂

w∈W H1(Ig;Q)Tw and ∧3W⊥ =
⋂

w∈W ∧3[w]⊥. There-

fore we have τg(H1(Ig;Q)TW ) = im(∧3W⊥ → ∧3H1(Sg;Q)/H1(Sg;Q)). Hence the

intersection

im (H1(I(S, Sg);Q)→ H1(Ig;Q)) ∩H1(Ig;Q)TW

is sent to im(∧3H1(S;Q) → im(τg)) ∩ im(∧3W⊥ → im(τg)) by the Johnson homomor-

phism, and this last intersection is equal to

∧3(im(H1(S;Q)→ H1(Sg;Q))) ∩ ∧3W⊥

as desired.

The remaining steps to do before proving Proposition 5.1.1 are to prove Lemma 5.1.9 and
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Lemma 5.1.11, which will allow us to rewrite classes [Td,d′ , Te,e′ ] as linear combinations

of abelian cycles of bounding pairs maps contained in H2(Ig;Q)Tv for various primitive

v ∈ H1(Sg;Z).

5.1.1 The proof of Lemma 5.1.9

We now recall a basic fact from linear algebra.

Lemma 5.1.8. Let (L, ⟨·, ·⟩) be quasi–unimodular lattice. LetW = {w1, . . . , w4} ⊆ L be a

set of primitive elements such that the image ofW under the adjoint map L→ HomZ(L,Z)

is a linearly independent set. Then the natural map

φ :
⊕
w∈W

∧3
(
w⊥ ⊗Q

)
→ ∧3 (L⊗Q)

is surjective.

Proof. Choose a basis B = {a1, . . . , an} for L ⊗ Q such that ⟨wi, aj⟩ = δij . Then the

set Bi = {a1, . . . , âi, . . . , an} is a basis for w⊥ ⊗ Q for each w ∈ W . Now, the vector

space ∧3(L⊗Q) has a basis consisting of triples of elements in B. Since |W| ≥ 4, each of

these triples lies in some Bi. Therefore im(φ) contains a basis for ∧3(L⊗Q) and hence is

surjective.

For our purpose, the important takeaway from Lemma 5.1.8 is the following result.

Lemma 5.1.9. Let M ′ ⊆ Sg be a nonseparating multicurve with |M ′| ≥ 4, and let V ′ =

{[c] : c ∈ M ′}. Let d, d′ ⊆ Sg be a bounding pair such that [Td,d′ ] ∈ H1(Ig;Q)TV′ . Let

[Td,d′ , Tf,f ′ ] ∈ Hab,bp
2 (Ig;Q) be an abelian cycle. There is a Q–linear relation

[Td,d′ , Tf,f ′ ] =
m∑
ℓ=1

λℓ[Td,d′ , Tfℓ,f ′
ℓ
]

in Hab,bp
2 (Ig;Q) such that, for each 1 ≤ ℓ ≤ m, there is a v ∈ V ′ such that [Tfℓ,f ′

ℓ
] ∈

H1(Ig;Q)Tv .
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Proof. Let S ′ and S ′′ be the two connected components of Sg % (d ∪ d′). Without loss

of generality, we may assume that f, f ′ ⊆ S ′. Indeed, if f, f ′ are in distinct connected

components of Sg % (d ∪ d′), then f and f ′ are homologous to d, so we have a relation

[Td,d′ , Tf,f ′ ] = [Td,d′ , Tf,d] + [Td,d′ , Td,f ′ ]

We now have two cases.

Case 1: V ′ ̸⊆ im(H1(S
′;Z) → H1(Sg;Z)). In this case, there is a v ∈ V ′ such that

v ∈ im(H1(S
′′;Z)→ H1(Sg;Z)). Then Tf,f ′ ∈ H1(Ig;Z)Tv , so we are done.

Case 2: V ′ ⊆ im(H1(S
′;Q)). We see that since V ′ is linearly independent and the elements

of V ′ have pairwise trivial algebraic intersection, we have g(S ′) ≥ 4. Lemma 5.1.5 says

that H1(I(S ′, Sg);Q) ∼= ∧3H1(S
′;Q). Lemma 5.1.8 implies that there is a surjection

⊕
v∈V ′

∧3v⊥ ∩ ∧3H1(S
′;Q)→ ∧3H1(S

′;Q).

Then Lemma 5.1.7 applied to each term on the summand on the left implies there is a

surjection ⊕
v∈V ′

H1(Ig;Q)Tv ∩H1(I(S ′, Sg);Q)→ H1(I(S ′, Sg);Q).

Hence there is a relation in H1(I(S ′, Sg);Q) given by

[Tf,f ′ ] =
n∑

r=1

λr[Fr]

where each Fr ∈ H1(I(S ′, Sg);Q)Tv for some v ∈ V ′. Then each Fr is supported on S ′, so

each Fr commutes with Td,d′ . Therefore, there is a relation in H2(Ig;Q) given by

[Td,d′ , Tf,f ′ ] =
n∑

r=1

λr[Td,d′ , Fr]
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where each [Fr] ∈ H1(I(S ′, Sg);Q)Tv for some v ∈ V ′.

We now show that each [Fr] can be written as a sum of classes represented by bounding

pair maps. Choose an r with 1 ≤ r ≤ n and let v ∈ V ′ such that [Fr] ∈ H1(S
′;Q)Tv .

Lemma 5.1.7 says that∧3H1(I(S ′, Sg);Q)Tv ∼= ∧3v⊥∩∧3H1(S
′;Q), and this isomorphism

is induced by restricting the Johnson homomorphism. Then Lemma 5.1.2 and Lemma

5.1.4 combine to tell us that H1(I(S ′ % c, Sg);Q)Tv is generated by classes represented

by bounding pair maps, since each element in the basis for ∧3v⊥ ∩ H1(S
′;Q) in Lemma

5.1.4 is the image under τg of a bounding pair map. Therefore we may rewrite [Fr] as a

linear combination of classes [Tf1,r,f ′
1,r
], . . . , [Tfℓr,r,f ′

mr,r
] ∈ H1(I(S ′, Sg);Q)Tv . Since each

Tfℓ,r,f ′
ℓ,r

is supported on S ′, each Tfℓ,r,f ′
ℓ,r

commutes with Td,d′ . Therefore we have a relation

[Td,d′ , Tf,f ′ ] =
n∑

r=1

λr

mr∑
ℓ=1

[Td,d′ , Tfℓ,r,f ′
ℓ,r
]

which by forgetting the r index yields a relation

[Td,d′ , Tf,f ′ ] =
m∑
ℓ=1

λℓ[Td,d′ , Tfℓ,f ′
ℓ
].

Now, since each Tfℓ,f ′
ℓ

is stabilized by some Tv ∈ TV ′ , we have each [Tfℓ,f ′
ℓ
] ∈ H1(Ig;Q)Tv

for some v ∈ V ′, as desired.

5.1.2 The proof of Lemma 5.1.11

We begin by extending Lemma 5.1.8 to the following.

Lemma 5.1.10. Let L be a quasi–unimodular lattice. LetW = {w1, . . . , w7} be a set of

primitive elements in L such that the image ofW under the adjoint map L→ HomZ(L,Z)

is Q–linearly independent. Then the natural map

φ :
⊕

W ′⊆W:|W ′|=4

∧3
(
(W ′)⊥ ⊗Q

)
→ ∧3 (L⊗Q)
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is surjective.

Proof. We will prove inductively that the natural maps

φk :
⊕

W ′⊆W:|W ′|=k

∧3
(
(W ′)⊥ ⊗Q

)
→ ∧3 (L⊗Q)

are surjective for k ≤ 4.

Base case: k = 1. This follows by applying Lemma 5.1.8 with any subsetW ′ ⊆ W with

|W ′| = 4.

Inductive step: 2 ≤ k ≤ 4. Assume that the map φk′ is surjective for all 1 ≤ k′ < k. We

will show that φk is surjective as well. Since φk′ is surjective, it suffices to show that, for

anyW ′′ ⊆ W with |W ′′| = k − 1, we have

im(φk) ⊇ im
(
∧3 (W ′′)⊥ ⊗Q→ ∧3L⊗Q

)
.

Since k ≤ 4 and |W ′′| < k, we have |W \W ′′| ≥ 7 − k > 7 − 4 = 3, so |W \W ′′| ≥ 4.

Hence the natural map

φW ′′ :
⊕

w∈W\W ′′

∧3 (W ′′ ∪ {w})⊥ ⊗Q→ ∧3 (W ′′)⊥ ⊗Q

is surjective by Lemma 5.1.8. But then im(φk′ ◦ φW ′′) ⊆ im(φk) for any W ′′ ⊆ W , so

im(φk′) ⊆ im(φk). Since im(φk′) = ∧3L ⊗ Q by the inductive hypothesis, the proof is

complete.

We use Lemma 5.1.10 to prove the following result about Hab,bp
2 (Ig;Q).

Lemma 5.1.11. Let g ≥ 33 and let [Td,d′ , Te,e′ ] ∈ Hab,bp
2 (Ig;Q) be an abelian cycle.

Assume that one connected component of Sg % (d ∪ d′) has genus one. Let M ⊆ Sg be a

nonseparating multicurve with |M | = 9 and let V = {[c] : c ∈ M}. Then there is a linear
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relation

[Td,d′ , Te,e′ ] =
k∑

i=1

λi[Td,d′ , Tfi,f ′
i
]

with each Tfi,f ′
i
∈ H1(Ig;Q)TV′ for some V ′ ⊆ V and |V ′| = 4.

Proof. The proof follows the same approach as that of Lemma 5.1.9. Let S ⊔ S ′ = Sg %

(d ∪ d′) with g(S) = 1. Since e ∪ e′ is disjoint from d ∪ d′, we have e, e′ ⊆ S ′. Since

g(S) = 1, we must have e, e′ ⊆ S ′. Now, choose a primitive element [b] ∈ H1(Sg;Z)

such that [b] ∈ [e]⊥ and ⟨[b], [d]⟩ = 1. Since g(S) = 1 and ⟨[b], [d]⟩ = 1, we have

g(H1(S
′;Z) ∩ [b]⊥) = g − 2. Then since the elements of V have pairwise trivial algebraic

intersection, the projection of V to H1(S
′;Z)∩ [b]⊥ must contain a set of at least 7 elements

whose image under the adjoint map H1(S
′;Z)∩ [b]⊥ → HomZ(H1(S

′;Z),Z) is Q–linearly

independent. Let V be the image of the projection of V to H1(S
′;Z) ∩ [b]⊥. Let B ⊆ V be

a set of at least 7 linearly independent elements. By applying Lemma 5.1.10 to H1(S
′;Q)

and B, there is a surjection

⊕
B′⊆B:|B′|=4

∧3 (B′)⊥ → ∧3H1(S
′;Q).

Let VB be the preimage of B under the projection map V → V . Since for any v ∈ V , we

have v⊥ ∩H1(S
′;Q) =

(
projH1(S′;Q)∩[b]⊥ v

)⊥ ∩H1(S
′;Q), we therefore have a surjection

⊕
V ′⊆VB:|V ′|=4

∧3 (V ′)⊥ ∩H1(S
′;Q)→ ∧3H1(S

′;Q).

By construction, the complement Sg % S ′ is connected and has g(Sg % S ′) ≥ 1. Hence

by Lemma 5.1.5, there is an isomorphism H1(I(S ′, Sg);Q) ∼= ∧3H1(S
′;Q). Furthermore,

by applying Lemma 5.1.7, we have ∧3 (V ′)⊥ ∩H1(S
′;Q) ∼= ∧3H1(S

′;Q)TV′ . Then, since

Te,e′ ∈ I(S ′, Sg), we have a relation in H1(I(S ′, Sg);Q) given by

[Te,e′ ] =
k∑

i=1

λi[Fi]
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where each [Fi] ∈ H1(Ig;Q)TV′ for some V ′ ⊆ VB with |V ′| = 4. Since any f ∈ I(S ′, Sg)

commutes with Td,d′ , we have a relation in H2(Ig;Q) given by

[Td,d′ , Te,e′ ] =
k∑

i=1

λi[Td,d′ , Fi]

where each [Fi] ∈ H1(I(S ′, Sg);Q)TV′ for some V ′ ⊆ B with |V ′| = 4. By Lemma 5.1.7,

we have an isomorphismH1(I(S ′, Sg);Q)TV′ ∼= ∧3 im(H1(S
′;Q)→ H1(Sg;Q))∩∧3(V ′)⊥.

Then Lemma 5.1.4 gives us a spanning set for the vector space

∧3 im(H1(S
′;Q)→ H1(Sg;Q)) ∩ ∧3(V ′)⊥,

and by Lemma 5.1.2 each element of this spanning set is given by applying τg to a bounding

pair map supported on a bounding pair f ∪ f ′ ⊆ S ′. Hence there is a relation in H2(Ig;Q)

given by

[Td,d′ , Te,e′ ] =
k∑

i=1

λi[Td,d′ , Tfi,f ′
i
]

such that each Tfi,f ′
i
∈ H1(Ig;Q)TV′ for some V ′ ⊆ V with |V ′| = 4, so the lemma

holds.

We will need one more auxiliary result, which well help us apply Lemma 5.1.11.

Lemma 5.1.12. Let g ≥ 33 and let [Td,d′ , Te,e′ ] ∈ Hab,bp
2 (Ig;Q). Then there is a linear

relation

[Td,d′ , Te,e′ ] =
r∑

j=1

[Tdj ,d′j , Te,e′ ]

in Hab,bp
2 (Ig;Q) such that, for each 1 ≤ j ≤ r, at least one connected component of

Sg %
(
dj ∪ d′j

)
has genus one.

Proof. Let S ∪ S ′ be the connected components of Sg % (d ∪ d′). If e, e′ are contained

in different connected components of Sg % (d ∪ d′), we have a relation Te,e′ = Te,dTd,e′ .
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Hence there is a relation

[Td,d′ , Te,e′ ] = [Td,d′ , Te,d] + [Td,d′ , Td,e′ ]

inHab,bp
2 (Ig;Q). Therefore without loss of generality, we may assume that e, e′ ⊆ S. Now,

let d0, . . . , dk ⊆ S ′ be curves such that the following hold:

• d0 = d,

• dk = d′,

• di and dj are disjoint for all 0 ≤ i < j ≤ k,

• di is homologous to d for all 0 ≤ i ≤ k, and

• the connected components of S ′ %
(⋃

0≤i≤k di
)

all have genus one.

By construction, we have Td,d′ =
∏

0≤i≤k−1 Tdi,di+1
. Furthermore, each bounding pair

di ∪ di+1 is contained in S ′, and hence each Tdi,di+1
commutes with Te,e′ . Therefore there

is a relation in Hab,bp
2 (Ig;Q) given by

[Td,d′ , Te,e′ ] =
k−1∑
i=0

[Tdi,di+1
, Te,e′ ],

so the lemma holds.

We now conclude Section 5.1.

Proof of Proposition 5.1.1. Let [Td,d′ , Te,e′ ] ∈ Hab,bp
2 (Ig;Q)) be an abelian cycle. The

proof of the proposition proceeds in two steps.

1. There is a relation

[Td,d′ , Te,e′ ] =
k∑

i=1

λi[Td,d′ , Tfi,f ′
i
]

with each [Tfi,f ′
i
] ∈ H1(Ig;Q)TV′ with V ′ ⊆ V and |V ′| = 4.
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2. If [Td,d′ , Tfi,f ′
i
] is an abelian cycle with Tfi,f ′

i
∈ H1(Ig;Q)TV′ with V ′ ⊆ V and

|V ′| = 4, then there is a relation

[Td,d′ , Tfi,f ′
i
] =

m∑
j=1

λj[Thj ,h′
j
, Tfi,f ′

i
]

with each [Thj ,h′
j
] ∈ H1(Ig;Q)Tv for some v ∈ V ′.

Lemma 5.1.12 says that we may assume without loss of generality that at least one con-

nected component of Sg % (d ∪ d′) has genus one. Then Step (1) is the content of

Lemma 5.1.11 and Step (2) is the content of Lemma 5.1.9.

5.2 Finiteness of coinvariants in BM2(Xg;Q)

The main goal of this section is to prove the following result.

Lemma 5.2.1. Let g ≥ 33 and a, b ⊆ Sg nonseparating curves with |a ∩ b| = 1. Let

M ⊆ Sg % (a ∪ b) be a nonseparating multicurve with |M | = 9. Let x⃗[a] and let Xg =

Cx⃗(Sg)/Ig. Let G be the image of the map Mod(Sg % (a ∪ b ∪M)) → Sp(2g,Z). The

vector space

H0(G; BM2(Xg;Q))

is finite dimensional.

Outline of Section 5.2. Let g ≥ 33 and a, b,M be as in the statement of Lemma 5.2.1 and

let V = {[c] : c ∈M}. We will begin by describing some algebraic invariants of Bestvina–

Margalit tori, which record how the elements in V project onto the different subgroups

in H(BMσ). We will then prove Lemma 5.2.2, which allows us to use these algebraic

invariants to determine when two Bestvina–Margalit tori BMσ and BMτ are in the same

G–orbit for certain subgroups G ⊆ Sp(2g,Z). We will then prove Lemma 5.2.3, which

describes how these algebraic invariants interact with addition of fundamental classes. We

will then prove Lemma 5.2.5 and Lemma 5.2.7. These two results will allow decompose
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a class [BMσ] into “simpler” classes, where “simpler” means roughly that the algebraic

invariants of the torus BMσ are bounded. These latter two lemmas make up the main work

of the section.

Algebraic invariants of Bestvina–Margalit tori. We begin by describing the invariants of

Bestvina–Margalit tori that we will use to prove Lemma 5.2.1. LetH(BMσ) = {Hσ
0 ,Hσ

1 ,Hσ
2}

as in Section 4.2. For each vi ∈ V , let rkV(vσi,k) denote the maximal m ∈ Z such that that

projHσ
k∩[b]⊥

(vi) = mw for some nonzero w ∈ Hσ
k . For each vi, vj ∈ V , let

θ(V)i,j,k(σ) = ⟨projHσ
k∩[b]⊥

(vi), projHσ
k∩[b]⊥

(vj)⟩.

We now prove a result that describes the orbits of Bestvina–Margalit tori under the action

of stabilizer subgroups of Sp(2g,Z).

Lemma 5.2.2. Let g ≥ 33, and let a, b ⊆ Sg with |a ∩ b| = 1. Let x⃗ = [a]. Let M ⊆

Sg be a nonseparating multicurve disjoint from a and b. Let V = {[c] : c ∈ M}, and

assume that the elements of V are indexed as V = {v1, . . . , vn}. Let G be the group

im(Mod(Sg % (a ∪ b ∪M)) → Sp(2g,Z)). Let σ, τ ⊆ Xg be 2–cells and let BMσ,BMτ

be the corresponding Bestvina–Margalit tori. The tori BMσ and BMτ are in the same

G–orbit if, after possibly reindexingH(BMτ ), we have:

• g(σ) = g(τ),

• rkV(vσi,k) = rkV(vτi,k) for 1 ≤ i ≤ n, 0 ≤ k ≤ 2, and

• θ(V)i,j,k(σ) = θ(V)i,j,k(τ) for 1 ≤ i, j ≤ n, 0 ≤ k ≤ 2.

Proof. Let BMσ,BMτ be two Bestvina–Margalit tori that satisfy the hypotheses of the

lemma. Because g(σ) = g(τ), there is an f ∈ StabSp(2g,Z)(x⃗, [b]) satisfying f BMσ =

BMτ . Therefore, after possibly reindexing, we have f(Hσ
k) = Hτ

k for every 0 ≤ k ≤ 2.

We claim that this f sends projHσ
k∩[b]⊥

(vi) to projHτ
k∩[b]⊥

(vi) for every i, k. Indeed, such

an element exists since g(H(σ)) = g(H(τ)) and BMσ and BMτ have rkV(vσi,k) = rkV(vτi,k)
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and θ(V)i,j,k(σ) = θ(V)i,j,k(τ). Hence for each Hk(τ) there is an fk ∈ StabSp(2g,Z)(x⃗, [b])

which is the identity on Hk′(τ) for k′ ̸= k and which takes f(vσi,k) to vτi,k. Then we can

replace f with f0f1f2f , which satisfies f projHσ
k∩[b]⊥

(vi) = projHτ
k∩[b]⊥

(vi). But then this

new f fixes every vi, since

f(vi) =
∑

k∈{1,2,3}

f(projHσ
k∩[b]⊥

(vi)) =
∑

k∈{1,2,3}

projHτ
k∩[b]⊥

(vi) = vi.

It now remains to show that f ∈ G, i.e., that there is some F ∈ Mod(Sg % (a ∪ b ∪M))

such that the image of F under the symplectic representation is f . Since the symplectic

representation Mod(Sg) → Sp(2g,Z) is surjective, there is some F ′ ∈ Mod(Sg) such

that F ′ is sent to f by the symplectic representation. There is a multicurve M ⊆ Sg %

(a ∪ b) with [M ] = V . Thus, we can extend V ∪ {x⃗, [b]} to a symplectic basis B =

{α1, β1, . . . , αg, βg}. Choose a set of curves B̂ such that:

• M, {a, b} ⊆ B̂,

• B = {[c] : c ∈ B̂}, and

• |c ∩ c′| = |⟨[c], [c′]⟩| for all c, c′ ∈ B̂.

Let B̂′ be another set of representatives for B satisfying the above conditions, except we

have

F ′(M), {F ′(a), F ′(b)} ⊆ B̂′.

But now by the change of coordinates principle, there is some F ′′ ∈ Mod(Sg) taking

B̂′ → B̂ in such a way that F ′′∗ acts trivially on B. But then F ′′ ∈ Ig, so the image of

F ′′ · F ′ under the symplectic representation is the same as F ′, which is f . Then we have

F ′′·F ′(M) =M , F ′′·F ′(a) = a, and F ′′·F ′(b) = b. Hence F ′′·F ′ ∈ Mod(Sg % (M∪a∪b))

and F ′′ · F ′ maps to f under the symplectic representation, so f ∈ G, as desired.

We now prove a lemma that describes how the θ(V) and rkV interact with the Bestvina–

Margalit tori
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Lemma 5.2.3. Let g ≥ 33, a, b,M ⊆ Sg, x⃗ ∈ H1(Sg;Z) and V ⊆ H1(Sg;Z) be as in

Lemma 5.2.2. Let x, y, z ⊆ Xg and H0,H1,H2,H′1,H′2 be as in Lemma 4.2.4. For any

choice of ∗ = {y, z, yz}, let σ∗ denote the 2–cell containing x and ∗. Let v∗i,k denote

projHi∈H(σ∗)∩[b]⊥(vi), and let θ(V)i,j,k(∗) denote θ(V)i,j,k(σ∗). Then the following equali-

ties hold for all 1 ≤ i, j ≤ 9:

1. rkV(vyi,0) = rkV(vzi,0) = rkV(vyzi,0),

2. rkV(vyzi,1) = gcd(rkV(vyi,1), rk
V(vzi,1)),

3. rkV(vyi,2) = gcd(rkV(vzi,1), rk
V(vyzi,2)),

4. rkV(vzi,2) = gcd(rkV(vyi,1), rk
V(vyzi,2)),

5. θ(V)i,j,0(y) = θ(V)i,j,0(z) = θ(V)i,j,0(yz) ,

6. θ(V)i,j,1(y) + θ(V)i,j,1(z) = θ(V)i,j,1(yz),

7. θ(V)i,j,1(z) + θ(V)i,j,2(yz) = θ(V)i,j,2(y), and

8. θ(V)i,j,1(y) + θ(V)i,j,2(yz) = θ(V)i,j,2(z).

Proof. Since we have chosen the multicurve M to be disjoint from a and b, we have V ⊆

[b]⊥. Then, if X, Y ⊆ x⃗⊥ are two quasi–unimodular lattices with X ∩ Y = Zx⃗ and

rkV(X) = 2g(X) + 1, rkV(Y ) = 2g(Y ) + 1, we see that for any v ∈ x⃗⊥ ∩ [b]⊥, we have

proj(X+Y )∩[b]⊥(v) = projX∩[b]⊥(v) + projY ∩[b]⊥(v).

Now, Lemma 4.2.4 says that the following hold:

1. Hy
0 = Hz

0 = H
yz
0 ,

2. Hy
1 +Hz

1 = H
yz
1 ,

3. Hy
1 +H

yz
2 = Hz

2, and
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4. Hz
1 +H

yz
2 = Hy

2.

Hence the above observation about projections tells us that the following equalities among

vyi,k, vzi,k and vyzi,k hold for all 1 ≤ i ≤ 9:

(a) vyi,0 = vzi,0 = vyzi,0,

(b) vyi,1 + vzi,1 = vyzi,1,

(c) vyi,1 + vyzi,2 = vzi,2, and

(d) vzi,1 + vyzi,2 = vyi,2.

The relations in the statement of the lemma are derived as follows.

Relations (1) and (5). Since vyi,0 = vzi,0 = vyzi,0 by equality (a), we must have rkV(vyi,0) =

rkV(vzi,0) = rkV(vyzi,0), and similarly for θ(V)i,j,0(y) = θ(V)i,j,0(z) = θ(V)i,j,0(yz).

Relation (2) and (6). We have vyi,1 + vzi,1 = vyzi,1 by relation (b). If w∗i,1 is a primitive class

with rkV(v∗i,1)w
∗
i,1 = v∗i,1 for some choice of ∗ = y, z, yz, then by relation (b) we have

rkV(vyi,1)w
y
i,1 + rkV(vzi,1)w

z
i,1 = vyzi,1. By Lemma 4.2.4, the group Hx,yz

1 ∈ H(σyz) is given

by Hx,y
1 +Hx,z

1 with Hx,y
1 ∩ H

x,z
1 = Zx⃗, so we may represent wy

i,1 and wz
i,1 using disjoint

curves cy, cz ⊆ Sg. Then the homology class

rkV(vyi,1)/ gcd(rk
V(vyi,1), rk

V(vzi,1)) · [cy] + rkV(vzi,1)/ gcd(rk
V(vyi,1), rk

V(vzi,1)) · [cz]

is primitive, since

rkV(vyi,1)/ gcd(rk
V(vyi,1), rk

V(vzi,1)) and rkV(vzi,1)/ gcd(rk
V(vyi,1), rk

V(vzi,1))

are relatively prime. Therefore rkV(vyzi,1) = gcd(rkV(vyi,1), rk
V(vzi,1)). For relation (6),

relation (b) implies that

θ(V)yzi,j,1 = ⟨v
y
i,1 + vzi,1, v

y
j,1 + vzj,1⟩.

As above, vyi,1 and vzj,1, can be represented by multiples of disjoint curves, and similarly for
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vzj,1 and vyi,1. Therefore we have

θ(V)yzi,j,1 = ⟨v
y
i,1, v

y
j,1⟩+ ⟨v

y
i,1, v

z
j,1⟩+ ⟨vzi,1, v

y
j,1⟩+ ⟨vzi,1, vzj,1⟩

= ⟨vyi,1, v
y
j,1⟩+ ⟨vzi,1, vzj,1⟩

= θ(V)i,j,1(y) + θ(V)i,j,1(z).

Relations (3) and (7). These two relations follow from relation (c) using an argument

similar to that for relations (2) and (6).

Relations (4) and (8). These two relations follow from relation (d) using an argument to

that for relations (2) and (6).

5.2.1 The proof of Lemma 5.2.5

We begin by proving an auxiliary result, which we will need to prove Lemma 5.2.5 and

Lemma 5.2.7.

Lemma 5.2.4. Let g ≥ 33, a, b,M ⊆ Sg, x⃗ ∈ H1(Sg;Z) and V ⊆ H1(Sg;Z) be as in

Lemma 5.2.2. Let σ ⊆ Xg be a 2–cell. Suppose that there is a 1 ≤ m ≤ 9 such that the

following hold:

• rkV(vσi,k) ≤ 1 for all 1 ≤ i < m and 0 ≤ k ≤ 2,

• rkV(vσm,2) ≥ 2,

• rkV(vσm,2) = max{rkV(vσm,k) : 0 ≤ k ≤ 2}, and

• rkV(vσm,1) ̸= 0, rkV(vσm,2).

Then there is a relation in BM2(Xg;Q) given by

[BMσ] =

q∑
ι=1

λι[BMσι ]

such that, for all 1 ≤ ι ≤ q:
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1. we have rkV(vσι
i,k) ≤ 1 for all 1 ≤ i < m and 0 ≤ k ≤ 2,

2. the set {rkV(vσι
m,k) : 0 ≤ k ≤ 2} is bounded above rkV(vσm,2),

3. the set {rkV(vσι
m,k) : 0 ≤ k ≤ 2} has no more elements equal to rkV(vσι

m,2) than

{rkV(vσm,k) : 0 ≤ k ≤ 2},

4. if max0≤k≤2{rkV(vσι
m,k)} = rkV(vσm,2), we have 0 < rkV(vσι

m,1) < max{rkV(vσι
m,k) :

0 ≤ k ≤ 2}, and

5. we have g(Hσι
1 ) ≥ 10.

Proof. If g(Hσ
1 ) ≥ 10, then we are done by taking q = 1, λ1 = 1 and [BMσ1 ] = [BMσ].

Otherwise, since g ≥ 33, there is a κ = 0, 2 such that g(Hσ
κ) ≥ 19. Then since |V| = 9,

the fact that g(Hσ
κ) ≥ 19 implies that there is a primitive H ⊆ Hσ

κ such that the following

hold:

• a ∈ H,

• vσi,κ ∈ H⊥ for all 1 ≤ i ≤ 9,

• g(H) = 9,

• g(H) + g(Hσ
1 ) ≥ 10, and

• 2 ∗ g(H) + 1 = rkV(H).

Let Ĥ = {Hσ
0 ,H,H⊥ ∩ Hσ

1 ,Hσ
2}. We can describe Ĥ using the graphical notation of

Section 4.2 as in Figure 5.1.

Hσ
0

H

H⊥ ∩Hσ
1

Hσ
2

Figure 5.1: The graphical representation of Ĥ

Let z ⊆ Xg be the edge with H ∈ H(z). Let y ⊆ Xg the edge with H⊥ ∩ Hσ
1 ∈ H(y).

Let x ⊆ Xg be the edge withHσ
κ′ ∈ H(y), where 0 ≤ κ′ ≤ 2 and κ′ ̸= 1, κ. After orienting
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y and z correctly, we let yz denote the third edge of a 2–cell in Xg containing y and z. We

have H + H⊥ ∩ Hσ
1 = Hσ

1 ∈ H(yz), so x and yz are two edges of the 2–cell σ. Now,

Lemma 4.2.2 says that there is a relation

[BMx,yz] = [BMx,y] + [BMx,z].

Now, let σy, σz ⊆ Xg be 2–cells containing x and then y and z respectively. We will now

show that σz and σy desired properties for σι.

The 2–cell σz satisfies the desired properties of σι. Assume that H(σz) is indexed so that

H = Hσz
κ , Hσz

1 = H⊥ ∩Hσ
κ +Hσ

1 , and Hσz

κ′ = Hσ
κ′ . By our assumption that vσi,κ ∈ H⊥ for

all 1 ≤ i ≤ 9, the following hold:

1. vσz
i,κ = 0 for all 1 ≤ i ≤ 9,

2. vσz
i,1 = vσi,κ + vσi,1 for all 1 ≤ i ≤ 9, and

3. vσz

i,κ′ = vσi,κ′ for all 1 ≤ i ≤ 9.

Then we can compute rkV(vσz
i,κ) as follows.

1. For 1 ≤ i < m and 0 ≤ k ≤ 2, we have vσz
i,k primitive. The class vσi,k is primitive for

all 1 ≤ i < m and 0 ≤ k ≤ 2 by hypothesis, so vσz

i,κ′ is primitive. Additionally, for

each 1 ≤ i < m, the class vσi,κ can be represented by a simple closed curve disjoint

from a representative for the class vσi,1, so vσz
i,1 is primitive. Hence rkV(vσz

i,k) ≤ 1 for

1 ≤ i < m and 0 ≤ k ≤ 2.

2. For i = m, we have the following:

• rkV(vσz
i,κ) = 0,

• rkV(vσz

i,κ′) = rkV(vσz

i,κ′), and

• rkV(vσz
i,1) = gcd(rkV(vσi,κ), rk

V(vσi,1)).

The computation of rkV(vσz
i,k) above implies that σz satisfies property (1) of σι. Then the

computation of rkV(vσz
m,k) implies that σz satisfies properties (2)–(4) of σι. Indeed, prop-
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erties (2) and (3) follow from the fact that gcd(rkV(vσi,κ), rk
V(vσi,1)) ≤ rkV(vσi,κ), rk

V(vσi,1).

Property (4) follows from the fact that rkV(vσz
i,1) = gcd(rkV(vσi,κ), rk

V(vσi,1)) ≤ rkV(vσi,1) <

rkV(vσi,2). Finally, property (5) follows from the fact that g(Hσz
1 ) = g(Hσ

1 )+g(Hσ
κ)−g(H).

Indeed, we have assumed that g(Hσ
κ) ≥ 19, so g(Hσz

1 ) ≥ 19− g(H). Then since g(H) = 9

by hypothesis, we have g(Hσz
1 ) ≥ 19− 9 ≥ 10, so σz satisfies property (5) of σι.

The 2–cell σy satisfies the desired properties of σι. Assume that H(σy) is indexed so that

Hσy

1 = Hσ
1 + H, Hσy

κ′ = Hσ
κ, and Hσy

κ = H⊥ ∩ Hσy
κ . The assumption that vσi,1 ∈ H⊥ for

all 1 ≤ i ≤ 9 implies that vσi,k = v
σy

i,k for all 1 ≤ i ≤ 9, 0 ≤ k ≤ 2. Therefore since

σ satisfies properties (1)–(4) of σι by hypothesis, then σι does as well. Then g(Hσy

1 ) =

g(Hσ
1 ) + g(H) ≥ 1 + 9 = 10 by assumption, so σy satisfies property (5) of σι.

Now, we have shown that [BMx,yz] = [BMx,y] + [BMx,z]. By our choice of x and y, we

have BMx,yz = BMσ. Therefore we have a relation

[BMx,y] = [BMx,z]− [BMx,yz].

By taking s = 2, τ1 = σz, τ2 = σyz, λ1 = 1, and λ2 = −1, the proof is complete.

We now prove Lemma 5.2.5, which says that any fundamental class [BMσ] is a linear

combination of classes [BMτℓ ] with rkV(vτℓi,k) ≤ 1.

Lemma 5.2.5. Let g ≥ 33, a, b,M ⊆ Sg, x⃗ ∈ H1(Sg;Z), and V ⊆ H1(Sg;Z) be as in

Lemma 5.2.2. Let BMσ be a Bestvina–Margalit torus. Then there is a collection of 2–cells

τ1, . . . , τp ⊆ Xg that satisfy

[BMσ] =

p∑
ℓ=1

λℓ[BMτℓ ]

and such that rkV(vτℓi,k) ≤ 1 for every 1 ≤ ℓ ≤ p, 1 ≤ i ≤ 9 and k = 0, 1, 2.

Proof. We induct on the number m with 0 ≤ m ≤ 9 such that we can write [BMσ] as

a linear combination of classes [BMτℓ ] that satisfy, for 1 ≤ ℓ ≤ p and 1 ≤ i ≤ m, the

inequality rkV(vτsi,k) ≤ 1.
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Base case: m = 0. In this case, the result holds trivially, since there are no i with 1 ≤ i

and i ≤ m.

Inductive step: m ≥ 1. Inductively, assume that [BMσ] can be written as a linear com-

bination of classes [BMτℓ ] that satisfy, for 1 ≤ ℓ ≤ p and 1 ≤ i ≤ m, the inequal-

ity rkV(vτsi,k) ≤ 1. Hence without loss of generality, we may assume that BMσ satisfies

rkV(vσi,k) ≤ 1 for 1 ≤ i < m. We will show that [BMσ] is a linear combination of funda-

mental classes [BMτ ], each of which has rkV(vτi,k) ≤ 1 for all 1 ≤ i ≤ m and 0 ≤ k ≤ 2.

We will perform a double induction on two quantities associated to σ:

• maxrkm(σ) = max0≤k≤2{rkV(vσm,k)}, and

• nummaxrkm(σ) =
∣∣{k : 0 ≤ k ≤ 2, rkV(vσm,k) = maxrkm(σ)}

∣∣.
In particular, we suppose that σ is a 2–cell with rkV(vσi,k) ≤ 1 for all 1 ≤ i < m and

0 ≤ k ≤ 2. We suppose that for each 2–cell τ with:

• rkV(vτi,k) ≤ 1 for 1 ≤ i < m and 0 ≤ k ≤ 2, and either:

– maxrkm(τ) < maxrkm(σ), or

– maxrkm(τ) ≤ maxrkm(σ) and nummaxrkm(τ) < nummaxrkm(σ),

we know that [BMτ ] is a Q–linear combination of classes [BMτℓ ] such that rkV(vτℓi,k) ≤ 1

for all 1 ≤ i ≤ m and 0 ≤ k ≤ 2. We will show that this implies that the same holds for

[BMσ].

Base case: maxrkm(σ) = 1. In this case, BMσ satisfies rkV(vσi,k) ≤ 1 for all 1 ≤ i ≤ m

and 0 ≤ k ≤ 2, so the inductive step for the induction on m is complete.

Inductive step for maxrkm(σ) and nummaxrkm(σ): The inductive hypothesis for the in-

duction on m holds for all τ ⊆ Xg with:

• either maxrkm(τ) < maxrkm(σ) or
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• both maxrkm(τ) ≤ maxrkm(σ) and nummaxrkm(τ) < nummaxrkm(σ).

We will show that

[BMσ] =

p∑
ℓ=1

λℓ[BMτℓ ]

such that the following hold:

• at least one of the following holds:

– maxrkm(σι) < maxrkm(σ) or

– maxrkm(σι) ≤ maxrkm(σ) and nummaxrkm(σι) < nummaxrkm(σ),

• λℓ ∈ Q, and

• rkV(vτℓi,k) ≤ 1 for all1 ≤ i < m and k = 0, 1, 2.

This completes the proof, since every τℓ as above satisfies the inductive hypothesis for the

induction on m by the inductive hypothesis for the double induction on maxrkm(σ) and

nummaxrkm(σ).

If rkV(vσm,k) = 0 for two distinct choices of k, then rkV(vσm,k) = 1 for the third choice

of k, since vm = vσm,0 + vσm,1 + vσm,2 and vm is primitive by assumption. Otherwise, reindex

H(BMσ) such that rkV(vσm,2) is maximal among all rkV(vσm,k). Note that at least one re-

maining rkV(vσm,i) must have rkV(vσm,i) ̸= 0, ̸= rkV(vσm,2) since vm is primitive by assump-

tion. Hence, we may further reindex so that rkV(vσm,1) ̸= 0, rkV(vσm,2). Then σ satisfies the

hypothesis of Lemma 5.2.4, so the conclusion of Lemma 5.2.4 implies that we may rewrite

[BMσ] as a linear combination of fundamental classes of Bestvina–Margalit tori such that

each torus BMσι satisfies the following:

1. rkV(vσι
i,k) ≤ 1 for all 1 ≤ i < m and 0 ≤ k ≤ 2,

2. maxrkm(σι) ≤ maxrkm(σ),

3. if maxrkm(σι) = maxrkm(σ), then nummaxrkm(σι) ≤ nummaxrkm(σ),
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4. if maxrkm(σι) = rkV(vσm,2), then 0 < rkV(vσι
m,1) < rkV(vσι

m,2), and

5. g(Hσι
1 ) ≥ 10.

Therefore we may assume without loss of generality that g(Hσ
1 ) ≥ 10.

Now, since g(Hσ
1 ) ≥ 10 and |V| ≤ 9, there must be some nonzero primitive h ∈ Hσ

1 ∩

[b]⊥ such that there is a multicurve M1 ⊆ Sg where {[c] : c ∈ M1} = {h,wσ
1,1, . . . , w

σ
9,1},

where wσ
i,1 is a primitive element with vσi,1 = λwσ

i,1 for some λ ∈ Z. For 1 ≤ i ≤ 9, let

hi = vσi,1 − h. Since g(Hσ
1 ) ≥ 10, there is a primitive subgroup H ⊆ Hσ

1 such that the

following hold:

• a ∈ H,

• 2g(H) + 1 = rk(H),

• hi ∈ H for all 1 ≤ i ≤ 9, and

• h ∈ H⊥.

Let Ĥ = {Hσ
0 ,H,Hσ

1 ∩H⊥,Hσ
2}, which can be graphically represented as in Figure 5.2.

Hσ
0

H

H⊥ ∩Hσ
1

Hσ
2

Figure 5.2: The graphical representation of Ĥ

Let y ⊆ Xg be the unique edge such that H ∈ H(y). Let x be the edge of σ with

Hσ
0 ∈ H(x). There is a unique edge z ⊆ Xg such that:

• y and z are two edges in a 2–cell τ and

• the third edge of τ , denoted yz, is the unique edge withHσ
1 ∈ H(yz).
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Let σy and σz denote 2–cells with x, y ⊆ σy, x, z ⊆ σz. Assume that H(σy) is indexed

so that Hσy

0 = Hσ
0 , Hσy

1 = H, and Hσy

2 = H⊥ ∩ Hσ
1 +Hσ

2 . Our choice of H implies that

projHσy
1 ∩[b]⊥

(vi) = hi for all 1 ≤ i ≤ 9. Since h is nonzero and primitive by assumption,

the element hi is nonzero and primitive as well for an 1 ≤ i ≤ 9, so rkV(v
σy

i,1) = 1 for all

1 ≤ i ≤ 9. Assume now thatH(σz) is indexed such thatHσz
0 = Hσ

0 ,Hσz
1 = H⊥ ∩Hσ

1 , and

Hσz
2 = H +Hσ

2 . This means that projHz
1∩[b]⊥(vi) = h for all 1 ≤ i ≤ 9, so rkV(vσz

i,1) = 1

for all 1 ≤ i ≤ 9, since h is primitive by assumption. Furthermore, for such y and z, after

possibly reorienting σy and σz, we have

[BMσ] = [BMσy ] + [BMσz ].

We have assumed that H(σy) and H(σz) are indexed so that Hσy

0 = Hσz
0 = Hσ

0 . Relations

(1)–(4) of Lemma 5.2.3 and the above computations of rkV(vσy

i,1) and rkV(vσz
i,1) imply that

the following hold for all 1 ≤ i ≤ 9:

1. rkV(v
σy

i,0) = rkV(vσz
i,0) = rkV(vσi,0),

2. rkV(vσi,1) = gcd(rkV(v
σy

i,1), rk
V(vσz

i,1)) = 1,

3. rkV(v
σy

i,2) = gcd(rkV(vσz
i,1), rk

V(vσi,2)) = gcd(1, rkV(vσi,2)) = 1, and

4. rkV(vσz
i,2) = gcd(rkV(v

σy

i,1), rk
V(vσi,2)) = gcd(1, rkV(vσi,2)) = 1.

We have assumed that 1 ≤ rkV(vσm,1) < rkV(vσm,2), so we must have:

• 1 = rkV(v
σy

m,2) < rkV(vσm,2) and

• 1 = rkV(vσz
m,2) < rkV(vσm,2).

Then relations (1)–(4) together imply the following:

• For any pair i, k with 1 ≤ i ≤ 9 and 0 ≤ k ≤ 2 with rkV(vσi,k) ≤ 1, we have

rkV(v
σy

i,k), rk
V(vσz

i,k) ≤ 1, and
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• for any pair i, k with 1 ≤ i ≤ 9 and 0 ≤ k ≤ 2 with rkV(vσi,k ≥ 1, we have

rkV(v
σy

i,k), rk
V(vσz

i,k) ≤ rkV(vσi,k).

Therefore, since we have assumed that rkV(vσm,2) was maximal over all rkV(vσm,k), we see

that the two sets {rkV(vσy

i,k)}1≤i≤m,k=0,1,2 and {rkV(vσz
i,k)}1≤i≤m,k=0,1,2 each have strictly

fewer elements equal to or exceeding rkV(vσm,2) than does the set {rkV(vσi,k)}1≤i≤m,k=0,1,2.

Hence for y, we have:

• rkV(v
σy

i,k) ≤ 1 for all 1 ≤ i < m and 0 ≤ k ≤ 2, and

• either:

– maxrkm(σy) < maxrkm(σ), or

– maxrkm(σy) ≤ maxrkm(σ) and nummaxrkm(σy) < nummaxrkm(σ)

and similarly for z. Therefore we have

[BMσ] = [BMσy ] + [BMσz ]

such that σy and σz satisfy the inductive hypothesis for the induction on maxrkm and

nummaxrkm. The inductive hypothesis for maxrkm and nummaxrkm says that there are

relations

[BMσy ] =

py∑
ℓy=1

λℓy [BMτℓy
] and [BMσz ] =

pz∑
ℓz=1

λℓz [BMτℓz
]

such that for each 1 ≤ ℓy ≤ py and for each 1 ≤ i ≤ m, 0 ≤ k ≤ 2, we have rkV(v
τℓy
i,k ) ≤ 1,

and similarly for z. By combining these two relations, we have

[BMσ] =

py∑
ℓy=1

λℓy [BMτℓy
] +

pz∑
ℓz=1

λℓz [BMτℓz
] =

p∑
ℓ=1

λℓ[BMτℓ ]

where for each 1 ≤ ℓ ≤ p and 1 ≤ i ≤ m and 0 ≤ k ≤ 2, we have rkV(vτℓi,k) ≤ 1, so the

inductive step is complete.
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5.2.2 The proof of Lemma 5.2.7

We are now almost ready to show that fundamental classes [BMσ] with
∣∣rkV(vσi,k)∣∣ ≤ 1 can

be written as linear combinations of classes [BMτs ] with |θ(V)i,j,k(τs)| ≤ 1. We first prove

the following lemma.

Lemma 5.2.6. Let g ≥ 33, a, b,M ⊆ Sg, x⃗ ∈ H1(Sg;Z) and V ⊆ H1(Sg;Z) be as

in Lemma 5.2.2. Let BMσ ⊆ Xg be a Bestvina–Margalit torus such that rkV(vσi,k) ≤ 1

for every 1 ≤ i ≤ 9 and 0 ≤ k ≤ 2. Assume that not all pairs 1 ≤ i, j ≤ 9 satisfy

|θ(V)i,j,k(σ)| ≤ 1. Choose a pair (i′, j′) with 1 ≤ i′ < j′ ≤ 9 such that, after pos-

sibly reindexing H(BMσ), |θ(V)i′,j′,1(σ)| ≥ 2 and |θ(V)i′,j′,1(σ)| is maximal in the set

{|θ(V)i′,j′,k(σ)| : 0 ≤ k ≤ 2}. Then BMσ is a Q–linear combination of classes [BMσι ] for

1 ≤ ι ≤ s such that the following hold for all 1 ≤ ι ≤ s:

1. rkV(vσι
i,k) ≤ 1 for all 1 ≤ i ≤ 9 and 0 ≤ k ≤ 2,

2. the set {|θ(V)i′,j′,k(σι)| : 0 ≤ k ≤ 2} is bounded above by |θ(V)i′,j′,1(σ)| and has no

more elements equal to |θ(V)i′,j′,1(σ)| than does the set {|θ(V)i′,j′,k(σ)| : 0 ≤ k ≤ 2},

3. if the set {|θ(V)i′,j′,k(σι)| : 0 ≤ k ≤ 2} has as many elements equal to |θ(V)i′,j′,1(σ)|

as does the set {|θ(V)i′,j′,k(σ)| : 0 ≤ k ≤ 2}, then |θ(V)i′,j′,1(σι)| = |θ(V)i′,j′,1(σ)|,

4. for every pair 1 ≤ i < j ≤ 9 with |θ(V)i,j,k(σ)| ≤ 1 for every 0 ≤ k ≤ 2, we have

|θ(V)i,j,k(σι)| ≤ 1 for all 0 ≤ k ≤ 2, and

5. g(Hσι
1 ) ≥ 11.

Proof. If g(Hσ
1 ) ≥ 11, then the lemma is trivially true by taking s = 1 and BMσ1 = BMσ.

Otherwise, since g ≥ 33 there is a k = 0, 2 with g(Hσ
k) ≥ 21. Without loss of generality,

assume that g(Hσ
0 ) ≥ 21. Since g(Hσ

0 ) ≥ 21 and |V| = 9, there is a primitive subgroup

H ⊆ Hσ
0 such that the following hold:
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• a ∈ H,

• vσi,k ∈ H⊥ for all 1 ≤ i ≤ 8,

• g(H)− g(Hσ
1 ) ≥ 9,

• g(H) ≥ 11, and

• 2 ∗ g(H) + 1 = rkV(H).

Let Ĥ = {Hσ
0 ,H,H⊥ ∩ Hσ

1 ,Hσ
2}. We can describe Ĥ using the graphical notation of

Section 4.2 as in Figure 5.3.

Hσ
0

H

H⊥ ∩Hσ
1

Hσ
2

Figure 5.3: The graphical representation of Ĥ

Now, let z ⊆ Xg be the unique edge with H ∈ H(z). Let y ⊆ Xg be the unique edge

with H⊥ ∩ Hσ
0 ∈ H(y). Reorient y and z so that yz is the unique edge with Hσ

0 ∈ H(yz).

Let x ⊆ Xg be the unique edge with Hσ
2 ∈ H(x). For ∗ = y, z, let σ∗ ⊆ Xg be a 2–cell

containing x and ∗. By Lemma 4.2.2, there is a relation

[BMσ] = [BMσy ] + [BMσz ].

We now show that BMσy and BMσz have the desired properties of the tori BMσι .

BMσz satisfies properties (1) through (5) of σι. Assume that H(σz) is indexed so that

H = Hσz
0 , H⊥ ∩ Hσ

0 + Hσ
1 = Hσz

1 , and Hσ
2 = Hσz

2 . Now, we have chosen H such that

projH∩[b]⊥(vi) = 0 for all 1 ≤ i ≤ 9. Furthermore, for k = 1, we have projHσz
1 ∩[b]⊥(vi) =

vσi,0 + vσi,1. For k = 2, we have projHσz
2 ∩[b]⊥(vi) = vσi,2. Each vσi,k is primitive by our

hypothesis that rkV(vσi,k) ≤ 1, so each vσz
i,k is primitive as well. Therefore BMσz satisfies

property (1) of σι. Furthermore, the following hold for σz:

1. θ(V)i,j,0(σz) = 0 for all 1 ≤ i, j ≤ 9,
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2. |θ(V)i,j,1(σz)| = |θ(V)i,j,1(σ) + θ(V)i,j,0(σ)| for all 1 ≤ i, j ≤ 9,

3. θ(V)i,j,2(σz) = θ(V)i,j,2(σ) for all 1 ≤ i, j ≤ 9, and

4. g(Hσz
1 ) = g(Hσ

1 ) + g(Hσ
0 )− g(H).

Now, observe that since ⟨vi, vj⟩ = 0, if 1 ≤ i < j ≤ 9 is a pair such that θ(V)i,j,k(σ) ∈

{−1, 0, 1} for every 0 ≤ k ≤ 2, then either θ(V)i,j,k(σ) = 0 for 0 ≤ k ≤ 2, or

{θ(V)i,j,k(σ) : 0 ≤ k ≤ 2} = {−1, 0, 1}. Therefore, relations (1), (2) and (3) in the

above list for relations among θ(V)i,j,k(σz) imply that BMσz satisfies property (4) of the

lemma. For property (2), observe that the fact that ⟨vi′ , vj′⟩ = 0 implies that

θ(V)i′,j′,0(σ) + θ(V)i′,j′,1(σ) + θ(V)i′,j′,2(σ) = 0

Since |θ(V)i′,j′,1(σ)| is maximal among |θ(V)i′,j′,k(σ)|, we see that the integers θ(V)i′,j′,1(σ)

and θ(V)i′,j′,0(σ) must have opposite signs. Therefore

|θ(V)i′,j′,1(σz)| = |θ(V)i′,j′,1(σ) + θ(V)i′,j′,1(σ)| ≤ |θ(V)i′,j′,1(σ)| ,

so relations (1), (2), and (3) imply that BMσz satisfies property (2) of σι. For property (3),

relations (1)-(3) imply that the only way for the set

{|θ(V)i′,j′,k(σz)| : 0 ≤ k ≤ 2}

to have as many elements equal to |θ(V)i′,j′,1(σ)| as does {|θ(V)i′,j′,k(σ)| : 0 ≤ k ≤ 2} is

for θ(V)i′,j′,1(σz) = θ(V)i′,j′,1(σ), so property (3) must hold. Then since g(Hσ
0 )− g(H) ≥

21−11 = 10 by assumption, relation (4) in the list of relations above implies that g(Hσz
1 ) =

g(Hσ
0 )− g(H) + g(Hσ

1 ) ≥ 10 + 1 ≥ 11, so σz satisfies property (5) of σι.

BMσy satisfies hypothesis (1)-(5) of σι. Assume that H(σy) is indexed so that H⊥ ∩Hσ
0 =

Hσy

0 , H + Hσ
1 = Hσy

1 , and Hσy

2 = Hσ
2 . We have projH⊥∩H0(σ)∩[b]⊥(vi) = vσi,0 for all
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1 ≤ i ≤ 9 by our choice ofH. Since we haveHσy

1 = H+Hσ
1 , our choice ofH implies that

projHσy
1 ∩[b]⊥

(vi) = vσi,1. Then we also have Hσy

2 = Hσ
2 by construction, so the following

hold:

1. θ(V)i,j,k(σ) = θ(V)i,j,k(σy) for all 1 ≤ i ≤ 9 and 0 ≤ k ≤ 2, and

2. g(Hσy

1 ) = g(Hσ
1 ) + g(H).

Relation (1) implies that σy satisfies hypotheses (1), (2), (3), and (4) of σι. Then since we

have assumed that g(H) ≥ 10 and we must have g(Hσ
1 ) ≥ 1, we have g(Hσy

1 ) ≥ 1 + 10 =

11, so BMσy satisfies property (4) of BMσι .

Now, we have shown that [BMσ] = [BMx,y] + [BMx,z]. The lemma now follows by taking

s = 2 and τ1 = σy, τ2 = σz.

We now show that we can rewrite [BMσ] as a linear combination of classes [BMτ ] with

|θ(V)i,j,k(τ)| bounded.

Lemma 5.2.7. Let g ≥ 33, a, b,M ⊆ Sg and V ⊆ H1(Sg;Z) be as in Lemma 5.2.2. Let

BMσ ⊆ Xg be a Bestvina–Margalit torus such that rkV(vσi,k) ≤ 1 for every 1 ≤ i ≤ 9 and

0 ≤ k ≤ 2. Then BMσ is a linear combination of classes [BMτs ] for 1 ≤ s ≤ m such that

|θ(V)i,j,k(τs)| ≤ 1 and rkV(vτsi,k) ≤ 1

for every 1 ≤ i ≤ j ≤ 9, 0 ≤ k ≤ 2 and 1 ≤ s ≤ m.

Proof. The proof follows by double induction on i and j. In particular, for some (i, j), we

assume that BMσ has the property that

|θ(V)i′,j′,k(τs)| ≤ 1

for every 0 ≤ k ≤ 2 and for every (i′, j′) < (i, j), where < is the dictionary ordering. We

will show that [BMσ] is a linear combination of fundamental classes [BMτ1 ], . . . , [BMτm ]
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such that

|θ(V)i′,j′,k(τs)| ≤ 1

for all 0 ≤ k ≤ 2, for all 1 ≤ s ≤ m and for all (i′, j′) ≤ (i, j), and rkV(vτsi′,k) ≤ 1 for all

1 ≤ i′ ≤ 9 and 0 ≤ k ≤ 2.

Base case: (i, j) = (1, 1). We have |θ(V)1,1,k(σ)| = 0.

Inductive step: (i, j) > (1, 1). If j = i then we have θ(V)i,j,k(σ) = 0 for 0 ≤ k ≤ 2, so

assume i < j. We will perform a double induction on the following quantities:

1. maxalgi,j(σ) = max0≤k≤2 {|θ(V)i,j,k(σ)|} ,

2. nummaxalgi,j(σ) =
∣∣{0 ≤ k ≤ 2 : |θ(V)i,j,k(σ)| = maxalgi,j(σ)

}∣∣.
Reindex H(σ) so that |θ(V)i,j,1(σ)| is maximal in the set {|θ(V)i,j,k(σ)| : 0 ≤ k ≤ 2}. If

|θ(V)i,j,1(σ)| ≤ 1 we are done, so assume |θ(V)i,j,1(σ)| ≥ 2. Lemma 5.2.6 says that we

can rewrite [BMσ] as a linear combination of fundamental classes [BMσι ], where:

• hypothesis (1) implies that rkVi′,k(σι) ≤ 1 for 1 ≤ i′ ≤ 9,

• hypothesis (2) implies that θ(V)i′,j′,k(σι) ≤ 1 for all (i′, j′) < (i, j) and 0 ≤ k ≤ 2,

• hypothesis (3) implies that maxalgi,j(σι) ≤ maxalgi,j(σ),

• hypothesis (3) implies that nummaxalgi,j(σι) ≤ nummaxalgi,j(σι),

• hypothesis (4) implies that if both:

– maxalgi,j(σ) = maxalgi,j(σι) and

– nummaxalgi,j(σ) = nummaxalgi,j(σι),

then |θ(V)i,j,1(σι)| is maximal among the set {|θ(V)i,j,k(σι)| 0 ≤ k ≤ 2}, and

• hypothesis (4) implies g(Hσι
1 ) ≥ 11.
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Hence we may assume without loss of generality that g(Hσ
1 ) ≥ 10. Choose elements

v′i,1, v
′′
i,1, v

′
j,1, v

′′
j,1 ∈ H1 such that the following hold:

1. vi,1 = v′i,1 + v′′i,1,

2. vj,1 = v′j,1 + v′′j,1,

3. for all (i, ℓ) and (ℓ, j) with (i, ℓ), (ℓ, j) < (i, j), we have

θ(V)i,ℓ,1(σ) = ⟨v′i,1, vℓ,1⟩ and θ(V)ℓ,j,1(σ) = ⟨vℓ,1, v′j,1⟩.

4.
∣∣⟨v′i,1, v′j,1⟩∣∣ = |θ(V)i,j,1(σ)| − 1,

5. ⟨v′′i,1, v′j,1⟩ = ⟨v′′j,1, v′i,1⟩ = ⟨v′′i,1, v′i,1⟩ = ⟨v′′j,1, v′j,1⟩ = 0,

6. ⟨v′′i,1, vℓ,1⟩ = ⟨v′′j,1, vℓ,1⟩ = 0 for all ℓ ̸= i, j, and

7.
∣∣⟨v′′i,1, v′′j,1⟩∣∣ = 1

Such elements exist since g(H) ≥ 11 and |V| = 9, so we can find v′′i,1, v
′′
j,1 with their desired

algebraic intersections, and then v′i,1 = vi,1 − v′′i,1, v′j,1 = vj,1 − v′′j,1. Since g(H1) ≥ 11 and

vi,1, vj,1 are primitive by hypothesis, we may choose primitive subgroups H′1,H′′1 ⊆ H1

such that the following hold:

1. for any x ∈ H′1 and y ∈ H′′1 , we have ⟨x, y⟩ = 0,

2. H′′1 = (H′1)⊥ ∩H1,

3. H′1 +H′′1 = H1,

4. H′1 ∩H′′1 = Zx⃗,

5. v′i,1, v
′
j,1, vℓ,1 ∈ H′1 for all ℓ ̸= i, j and

6. v′′i,1, v
′′
j,1 ∈ H′′1 .
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Let Ĥ = {Hσ
0 ,H′1,H′′1,H2}. We can describe Ĥ using the graphical notation of Section 4.2

as in Figure 5.4.

Hσ
0

H′1

H′′1

Hσ
2

Figure 5.4: The graphical representation of Ĥ

Let BMσ′ denote the Bestvina–Margalit torus corresponding to {H0,H′1,H′′1+H2} and

let BMσ′′ denote the Bestvina–Margalit torus corresponding to {H0,H′′1,H′1 + H2}. We

will compute θ(V)i′,j′,k(σ′) and θ(V)i′,j′,k(σ′′) as follows.

Computing θ(V)i′,j′,k(σ′). By our choice ofH′1, we have

1. vσ′

ℓ,0 = vσℓ,0 for all 1 ≤ ℓ ≤ 9,

2. vσ′

ℓ,1 = vσℓ,1 for all ℓ ̸= i, j,

3. vσ′

ℓ,1 = v′ℓ,1 for ℓ = 1, j,

4. vσ′

ℓ,2 = vσℓ,2 for all ℓ ̸= i, j, and

5. vσ′

ℓ,2 = vℓ,2 + v′′ℓ,1 for ℓ = 1, j.

Now, computation (1) implies that θ(V)i,j,0(σ′) = θ(V)i,j,0(σ) for all 1 ≤ i, j ≤ 9. Compu-

tations (2) and (3) and the fact that ⟨v′i,1, vσℓ,1⟩ = ⟨vi,1, vσℓ,1⟩ and ⟨vσℓ,1, v′j,1⟩ = ⟨vσℓ,1, vj,1⟩ for

ℓ ̸= i, j tell us that θ(V)i′,j′,1(σ′) = θ(V)i′,j′,1(σ) for all pairs (i′, j′) ̸= (i, j). Computation

(3), our assumption that θ(V)i,j,1(σ) ≥ 1, and the fact that ⟨v′i,1, v′j,1⟩ = θ(V)i,j,1(σ) − 1

implies that |θ(V)i,j,1(σ′)| < |θ(V)i,j,1(σ)|. For k = 2, computations (4) and (5) say that

θ(V)i′,j′,2(σ′) = θ(V)i′,j′,2(σ) for all 1 ≤ i′, j′ ≤ 9. Finally, we see that |θ(V)i,j,2(σ′)| <
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|θ(V)i,j,2(σ)| if |θ(V)i,j,2(σ)| ≥ 1. Indeed, since θ(V)i,j,1(σ) is positive and has

|θ(V)i,j,1(σ)| ≥ |θ(V)i,j,2(σ)| ,

the fact that ⟨vi, vj⟩ = 0 allows us to conclude that θ(V)i,j,2(σ) ≤ 0. Then ⟨v′′i,1, v′′j,1⟩ = 1,

so |θ(V)i,j,2(σ′)| = |θ(V)i,j,2(σ) + 1| < |θ(V)i,j,2(σ)| if |θ(V)i,j,2(σ)| ≤ 1 by computa-

tion (5). Hence σ′ has either maxalg(σ′) < maxalg(σ) or maxalg(σ′) = maxalg(σ) and

nummaxalg(σ′) < nummaxalg(σ), so σ′ satisfies the inductive hypothesis for the induc-

tion on maxalg and nummaxalg.

Computing θ(V)i′,j′,k(σ′′). By our choice ofH′′1 , we have

1. vσ′′

ℓ,0 = vσℓ,0 for all 1 ≤ ℓ ≤ 9,

2. vσ′′

ℓ,1 = 0 for all ℓ ̸= i, j,

3. vσ′′

ℓ,1 = v′′ℓ,1 for ℓ = 1, j,

4. vσ′′

ℓ,2 = vσℓ,2 + vσℓ,1 for all ℓ ̸= i, j, and

5. vσ′′

ℓ,2 = vℓ,2 + v′ℓ,1 for ℓ = 1, j.

Then we have θ(V)i′,j′,0(σ′′) = θ(V)i′,j′,0(σ) for all 1 ≤ i′, j′ ≤ 9 by computation

(1), θ(V)i′,j′,0(σ′′) = 0 for (i′, j′) ̸= (i, j) by computation (2), and θ(V)i,j,1(σ′′) = 1

by computation (3). Then as in the previous paragraph, we see that θ(V)i′,j′,1(σ) and

θ(V)i′,j′,2(σ) have opposite signs, so for any 1 ≤ i′, j′ ≤ 9 we have either |θ(V)i′,j′,1(σ′′)| <

|θ(V)i′,j′,1(σ)| or |θ(V)i′,j′,1(σ′′)| ≤ 1. Hence σ′′ satisfies the inductive hypothesis as well.

Since [BMσ] = [BMσ′ ] + [BMσ′′ ] by Lemma 4.2.4, the inductive hypothesis applied to

BMσ′ and BMσ′′ completes the proof.

We now complete the section.

Proof of Lemma 5.2.1. By Lemmas 5.2.5 and 5.2.7, any fundamental class [BMτ ] is a lin-

ear combination of fundamental classes of Bestvina–Margalit tori BMσ with
∣∣rkV(vσi,k)∣∣ ≤
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1 and |θ(V)i,j,k(σ)| ≤ 1 for every 1 ≤ i, j ≤ 8 and 0 ≤ k ≤ 2. Hence by Lemma 5.2.2, the

vector space H0(G; BM2(Xg;Q)) is finite dimensional.

5.3 Finite dimensionality of H2(Cx⃗(Sg)/Ig;Q)

In this section, we will finish the proof of Proposition 1.3.1. If w ∈ x⃗⊥, let Xw
g denote

the full subcomplex of Xg generated by edges e such that the decomposition H(e) is com-

patible with w, i.e., w ∈ He
i for some He

i ∈ H(e). The bulk of Section 5.3 is devoted to

proving the following lemma.

Lemma 5.3.1. Let g ≥ 33 and a ⊆ Sg a nonseparating simple closed curve. Let x⃗ = [a]

and let Xg = Cx⃗(Sg)/Ig. Let c ⊆ Sg % a be a nonseparating simple closed curve, and let

w = [c]. The cokernel of the pushforward map H2(X
w
g ;Q)→ H2(Xg;Q) is a subquotient

of BM2(Xg;Q).

For the remainder of this section, fix g, a, and c as in Lemma 5.3.1. Let Xw,2
g ⊆ Xg be

the subcomplex given by the union of all cells σ such that dim(σ ∩ Xw
g ) ≥ dim(σ) − 1.

Lemma 5.3.1 will proceed in two steps.

Step (1). We show that cok(H2(X
w,2
g ;Q) → H2(Xg;Q)) is generated by the images of

fundamental classes of Bestvina–Margalit tori.

Step (2). We show that cok(H2(X
w
g ;Q) → H2(X

w,2
g ;Q)) is generated by the images of

fundamental classes of Bestvina–Margalit tori.

Outline of the proof of Lemma 5.3.10. Step (1) is recorded as Lemma 5.3.2, and Step (2) is

recorded as Lemma 5.3.7. We will prove Lemma 5.3.2 in Section 5.3.1 and Lemma 5.3.7

on Section 5.3.2. Additionally in Section 5.3.2, we will assemble Lemmas 5.3.2 and 5.3.7

into the proof of Lemma 5.3.1. We will conclude with Section 5.3.3, where we prove

Lemma 5.3.10 and Proposition 1.3.1.
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5.3.1 Step (1) of the proof of Lemma 5.3.1

This step is recorded as the following lemma.

Lemma 5.3.2. Let g ≥ 33 and a ⊆ Sg a nonseparating curve. Let x⃗ = [a]. Let w ∈ x⃗⊥

be a nonzero primitive homology class such that the image of w under the adjoint map

x⃗⊥ → HomZ(x⃗
⊥,Z) is nontrivial. The cokernel of the pushforward map

H2(X
w,2
g ;Q)→ H2(Xg;Q)

is generated by images of fundamental classes of Bestvina–Margalit tori.

Before proving Lemma 5.3.2, we will prove a collection of auxiliary lemmas. The main

goal is to prove Lemma 5.3.3, which describes the cokernel of the H2–pushforward of

certain subcomplexes of Xg. Let g, a, x⃗, and w be as in the statement of Lemma 5.3.2. If

e ⊆ Xg is an edge with w incompatible with H(e), let Ûe denote the union of all 3-cells

τ ⊆ Xg such that:

• e ⊆ τ ,

• there isH0 ∈ H(e) such thatH0 ∈ H(τ),

• there is aH′ ∈ H(τ) with {H′, (H′)⊥} compatible with w, and

• dim(τ ∩Xw
g ) = 1.

Let Ue denote the union of all 2–cells σ ⊆ Ûe such that the following hold:

• dim(σ ∩ e) = 0 and

• dim(σ ∩Xw
g ) ≥ 1.

We will prove the following lemma.
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Lemma 5.3.3. Let g ≥ 33, a ⊆ Sg, x⃗ = [a], and w ∈ x⃗⊥ be as in Lemma 5.3.1. Let

e, f ⊆ Xg be two edges such that H(e) and H(f) are incompatible with w. Furthermore,

assume that g(e) = g(f) = {1, g − 2}. Then the following hold:

1. the cokernel of the pushforward map

H2(Ue;Q)→ H2(Ûe;Q)

is generated by the images of fundamental classes of Bestvina–Margalit tori,

2. the pushforward

H1(Ue;Q)→ H1(Ûe;Q)

is an isomorphism, and

3. the pushforward H1(Ue ∩ Uf ;Q)→ H1(Ûe ∩ Ûf ;Q) is surjective.

We begin by recording the following result.

Lemma 5.3.4. Let τ ⊆ Xg be a 3–cell. Let T denote the union of all τ ′ ⊆ Xg such that

H(τ) = H(τ ′) as unordered sets. Then T is a 3–torus.

Proof. This is the 3–dimensional analogue of the standard description of the 2–torus as a

union of two 2–cells.

If T is a torus as in the statement of Lemma 5.3.4, we will useH(T ) to denote the decom-

position H(τ), except with the order forgotten. In order to prove Lemma 5.3.3, we will

prove the following result.

Lemma 5.3.5. Let g ≥ 33, a ⊆ Sg be a nonseparating simple closed curve, x⃗ = [a], and

w ∈ x⃗⊥ as in Lemma 5.3.1. Let e ⊆ Xg be an edge with H(e) not compatible with w.

Let τ, τ ′ ⊆ Ûe be two 3–cells. Let T denote the union of all 3–cells τ ′′ ⊆ Ûe such that

H(τ) = H(τ ′′) as unordered sets, and similarly T ′ and τ ′. Then the following hold:
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1. the pushforward H1(T ∩ Ue;Q) → H1(T ;Q) is an isomorphism, and the cokernel

of the map H2(T ∩ Ue;Q) → H2(T ;Q) is generated by fundamental classes of

Bestvina–Margalit tori,

2. if T ∩ T ′ contains an edge f such that f ̸= e and f ̸⊆ Xw
g , then pushforward

H1(T ∩ T ′ ∩ Ue;Q)→ H1(T ∩ T ′;Q) is a surjection, and

3. if T ∩ T ′ does not contain an f as above, then the cokernel of the pushforward

H1(T ∩ T ′ ∩ Ue;Q)→ H1(T ∩ T ′;Q) is generated by the image of the class [e].

Proof. We prove each statement in turn.

Statement (1) . Let H(τ) = {H0,H1,H2,H3} such that H0 ∈ H(e). Since T is in-

dependent of the cyclic ordering on H(τ) by definition, we may assume without loss of

generality that the decomposition of x⃗⊥ given by {H2,H⊥2 } is compatible with w. Note

that if dim(τ ∩ Xw
g ) = 2, then this may not be the only edge of τ compatible with

w. Given that {H2,H⊥2 } is compatible with w, the intersection T ∩ Ue is given by 2–

cells in Xg with the following decompositions: {H0 +H1,H2,H3}, {H0 +H3,H1,H2},

{H2,H0 +H1,H3}, and {H0 +H3,H2,H1}. This is a pair of Bestvina–Margalit tori cor-

responding to the unordered decompositions {H0 +H1,H2,H3} and {H1,H2,H0 +H3}

that intersect in the edge {H2,H⊥2 }. In particular, the Mayer–Vietoris sequence implies that

H1(T∩Ue;Q) ∼= Q3 andH2(T∩Ue;Q) ∼= Q2. Hence the mapH1(T∩Ue;Q)→ H1(T ;Q)

is an isomorphism and the cokernel of H2(T ∩Ue;Q)→ H2(T ;Q) is generated by the im-

age of the fundamental class [BMσ] withH(σ) = {H0,H1 +H2,H3}.

Statement (2). Reuse the indexing of the elements ofH(τ). LetH(τ ′) = {H0,H1,H′2,H′3}

where H(f) = {H1,H⊥1 }. We have H(T ∩ T ′) = {H0,H1,H⊥0 ∩ H⊥1 }. In particular,

H1(T ∩T ′;Q) is generated by the class [f ] and the class [h], withH(h) = {H0+H1,H⊥0 ∩

H⊥1 }. Then the edge f is contained in 2–cell corresponding to {H1,H2,H1 ∩H⊥2 }, which

has an edge fixed by Tw and hence lies in Ue. Similarly h is contained in the 2–cell {H0 +
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H1,H2,H3} ⊆ Ue. There [f ], [h] ∈ H1(T ∩T ′∩Ue;Q), and hence H1(T ∩T ′∩Ue;Q)→

H1(T ∩ T ′;Q) is surjective.

Statement (3). Reuse the indexing of H(τ) from the previous case. If H2 ∈ H(τ ′), then

T ∩ T ∩ Ue is the single edge corresponding to {H2,H⊥2 }, while the intersection T ∩ T

is the Bestvina–Margalit torus containing this edge and e. Otherwise, T ∩ T ′ = e and so

T ∩ T ′ ∩ Ue is the unique vertex of Xg. In either case the lemma holds.

Proof of Lemma 5.3.3. If σ ⊆ Ue is a 2–cell with e, σ ⊆ τ ⊆ Ûe for some 3–cell τ , then

the union ⋃
τ ′⊆Ûe:H(τ ′)=τ

τ ′

is a 3–torus. Let R̂e denote the set of such 3–tori. This set is a simplicial cover of Ûe by

construction. Let

Re = {T ∩ Ue : T ∈ R̂e}.

By the definition of Ue, Re is a cover of Ue. Let Er
p,q(Re;Q) and Er

p,q(R̂e;Q) denote the

Čech–to–singular spectral sequences for Re covering Ue and R̂e covering Ûe respectively.

Then, for k = 1, 2 the cokernel of Hk(Ue;Q) → Hk(Ûe;Q) is noncanonically isomorphic

to ⊕
p+q=k

cok(E∞p,q(Re;Q)→ E∞p,q(R̂e;Q)).

Hence to prove the first statements in the lemma, it suffices to prove the following.

1. The vector space cok(E∞0,2(Re;Q) → E∞0,2(R̂e;Q)) is generated by fundamental

classes of Bestvina–Margalit tori, and the maps E∞p,q(Re;Q)→ Ep,q(R̂e;Q) are sur-

jective for p > 0 and p+ q = 2.

The proof of statement (1). We first show that cok(E∞0,2(Re;Q) → E∞0,2(R̂e;Q) is gen-

erated by the images of fundamental classes of Bestvina–Margalit tori. Since the differ-

entials out of Er
0,2(Re;Q) and Er

0,2(R̂e;Q) vanish for all r ≥ 1, it suffices to show that
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cok(E1
0,2(Re;Q) → E1

0,2(R̂e;Q)) is generated by the images of fundamental classes of

Bestvina–Margalit tori. Hence it is enough to show that for any T ∈ R̂e, the coker-

nel H2(T ∩ Ue;Q) → H2(T ;Q) is generated by the images of fundamental classes of

Bestvina–Margalit tori. This follows from case (1) of Lemma 5.3.3.

We now show that E∞p,q(Re;Q) → E∞p,q(R̂e;Q) is surjective for p > 0 and p + q = 2.

Consider the map of chain complexes

E1
∗,1(Re;Q)→ E1

∗,1(R̂e;Q).

By Lemma 5.3.3, the map E1
0,1(Re;Q) → E1

∗,1(R̂e;Q) is injective. Hence it suffices to

show that the vector space H1(E1
∗,1(R̂e;Q),E1

∗,1(R̂e;Q)) is trivial. Let C∗ denote the quo-

tient complex E1
∗,1(R̂e;Q)/E1

∗,1(Re;Q). By Lemma 5.3.3, if T ∩ T ′ ∩Ue contains an edge

f ̸⊆ Xw
g , then the image of a class in E1

∗,1(R̂e;Q) supported on the index T ∩ T ′ is 0 in

C∗. Then if no such f exists, Lemma 5.3.3 says that the cokernel H1(T ∩ T ′ ∩ Ue;Q) →

H1(T ∩ T ′;Q) is generated by the image of the class [e]. Therefore it suffices to show

that if T, T ′ ∈ R̂e, then there is a sequence T0, . . . , Tn ∈ R̂e such that T = T0, T ′ = Tn,

and Ti ∩ Ti+1 contains an edge fi ̸= e and f ̸⊆ Xw
g . This will imply that the element

in C∗ given by [e] supported on T ∩ T ′ is homologous to the element [e] supported on

T0 ∩ T1 + . . . + Tn−1 ∩ Tn, since the edge connecting T to T ′ is homologous to the path

T0 → T1 → . . . → Tn in the clique complex on the set R̂e. Since the latter classes are all

trivial in C∗, this implies that T ∩ T ′ is trivial in H1(C∗) as well.

Let H(e) = {H0,H⊥0 } such that g(H0) = g − 2. Let H(T ) = {H0,H1,H2,H3} such

that {H3,H⊥3 } is compatible with w. ChooseH′1 ⊆ H1 such that g(H′1) = 1, {H′1, (H′1)⊥}

is incompatible with w, and w⊥ ⊇ (H′1)⊥ ∩ H1. Let H(T1) = {H0,H′1,H2,H3 + (H1 ∩

(H′1)⊥)}. Note that T1 ∩ T0 contains the edge {H2,H⊥2 } which is not e and is not in

Xw
g . Now, since g(H′1) = 1 and g ≥ 33, there is some H′′1 ∈ H(T ′) such that there is

an edge h ⊆ Ue with h ̸⊆ Xw
g such that for some Hh ∈ H, we have Hh ⊇ H′1,H′′1 ,
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Hh ⊆ H⊥0 , and w ∈ H⊥h ∩ H⊥0 . Let T2 = {H0,H′1,Hh,H⊥h ∩ H⊥0 ∩ (H′1)⊥} and T3 =

{H0,H′′1,Hh,H⊥h ∩H⊥0 ∩ (H′′1)⊥}. Then T1 ∩ T2 contains the edge {H′1, (H′1)⊥}, T2 ∩ T3

contains the edge {Hh,H⊥h }, and T3∩T ′ contains the edge {H′′1, (H′′1)⊥}. Hence the desired

path between T and T ′ exists, so H1(C∗) = 0 and thus statement (1) holds.

For p = 2, q = 0, note that any intersection T0 ∩ . . . ∩ Tk of T0, . . . , Tk ∈ R̂e contains

the unique vertex ofXg, and in particular any such intersection is nonempty and connected.

The same holds for Re, so we have E2
2,0(Re;Q) = E2

2,0(R̂e;Q) = 0, so the pushforward

on the r =∞ page is surjective.

The proof of statement (2). As a consequence of Lemma 5.3.3, the map E1
0,1(Re;Q) →

E1
0,1(R̂e;Q) is an isomorphism. The argument given in the previous case for p = 1, q = 1

implies that any equivalence induced by the differential d̂11,1 is also induced by d11,1 by

replacing the image of the differential d̂11,1 on some H1(T1 ∩ T2;Q) with H1(T1 ∩ T2 ∩

Ue;Q) → H1(T1 ∩ T2;Q) not surjective with a path between T1 and T2 consisting of

tori T, T ′ with H1(T ∩ T ′ ∩ Ue;Q) → H1(T ∩ T ′;Q) surjective. Therefore the map

E2
0,1(Re;Q) → E2

0,1(R̂e;Q) is an isomorphism. Then E2
2,0(Re;Q) = E2

2,0(R̂e;Q) by the

argument in the previous statement with p = 2 and q = 0, so E∞0,1(Re;Q) → E∞0,1(R̂e;Q)

is an isomorphism. The case p = 1 and q = 0 follows by the same argument as p = 2 and

q = 0 from the previous statement, except with 2 replaced by 1.

The proof of statement (3). The vector space H1(Ûe ∩ Ûf ;Q) is generated by classes rep-

resented by edges, so it suffices to show that any class in H1(Ûe ∩ Ûf ;Q) represented by

an edge is in the image of the pushforward H1(Ue ∩ Uf ;Q) → H1(Ûe ∩ Ûf ;Q). Now, by

construction we have U (1)
e ∪ e = Û

(1)
e , and similarly for f . Hence if h ⊆ Ûe∩ Ûf is an edge

with h ̸= e, f , the class [h] is in the image of H1(Ue ∩ Uf ;Q) → H1(Ûe ∩ Ûf ;Q). Hence

it suffices to show that [e], [f ] ∈ H1(Ue ∩ Uf ;Q)→ H1(Ûe ∩ Ûf ;Q) if e, f ⊆ Ûe ∩ Ûf . If

e ⊆ Ûe ∩ Ûf , this implies that there is a 3–cell τ containing both e and f . But now every

edge in τ besides e and f lies in both Ue and Uf by the above argument, so [e] is a linear

combination of classes in Ue ∩ Uf , and the lemma holds.
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We need one more auxiliary result before proving Lemma 5.3.2.

Lemma 5.3.6. Let g ≥ 33, a ⊆ Sg be a nonseparating simple closed curve, x⃗ = [a], and

w ∈ x⃗⊥ such that w is not sent to zero under the adjoint map x⃗⊥ → HomZ(x⃗
⊥,Z). Let

σ ⊆ Xg be a 2–cell such that σ ̸⊆ Xw,2
g . Then σ is homologous to a linear combination of

2–cells σ1, . . . , σn such that each σi ̸⊆ Xw,2
g , and each σi contains an edge ei ⊆ σi such

thatH(ei) is not compatible with w and g(ei) = {1, g − 2}.

Proof. Inductively, it suffices to show that σ is homologous to σ1 + σ2 + σ3 such that each

σi contains some edge ei ⊆ σi with min g(ei) < g(H), whereH ∈ H(σ) is minimal among

H′ ∈ H(σ) such that {H′, (H′)⊥} is not compatible with w. Choose such an H ⊆ H(σ).

Let H = H1 +H2 such that there are edges ei ̸⊆ Xw
g with H(ei) = {Hi,H⊥i }. Let τ be

the 3–cell containing σ, e1 and e2. Then every other 2–cell in ∂τ besides σ contains either

e1 or e2. We have min g(ei) < g(H) and ei ̸⊆ Xw
g , so the lemma holds.

We are now ready to move forward with Step (1) of the proof of Lemma 5.3.1.

Proof of Lemma 5.3.2. Let

Ew = {e ⊆ Xg : H(e) is incompatible with w and g(e) = {1, g − 2}}.

For each e ∈ Ew, let Ue and Ûe be as above. Let

U = {Ue}e∈E and Û = {Ûe}e∈E .

Let U+ = U ∪ {Xw
g } and Û+ = Û ∪ {Xw

g }. The pushforward H2(
⋃

Û∈Û Û ∪ Xw
g ) →

H2(Xg;Q)) is a surjection as a consequence of Lemma 5.3.6. For either of the covers

∗ = U+, Û+, let Er
p,q(∗;Q) denote the Čech–to–singular spectral sequence corresponding

to the cover ∗. By construction, each U ∈ U+ has U ⊆ Xw,2
g . In particular, this implies that

the cokernel of the pushforward H2(X
w,2
g ;Q) → H2(Xg;Q) is noncanonically a quotient

121



of direct sum ⊕
p+q=2

cok(E∞p,q(U+;Q)→ E∞p,q(Û+;Q)).

Therefore, it suffices to prove the following three facts:

1. The cokernel of the map E1
0,2(U+;Q) → E1

0,2(Û+,Q) is generated by the images of

fundamental classes of Bestvina–Margalit tori,

2. the cokernel of the map E2
1,1(U+;Q)→ E2

1,1(Û+;Q) is trivial, and

3. the cokernel of the map E3
2,0(U+;Q)→ E3

2,0(Û+;Q) is trivial.

We prove each of these in turn.

Proof of Fact (1). This follows from (1) of Lemma 5.3.3.

Proof of Fact (2). By statements (2) and (3) respectively of Lemma 5.3.3, the maps

E1
0,1(U+;Q) → E1

0,1(Û+;Q) and E1
1,1(U+;Q) → E1

1,1(Û+;Q) are an isomorphism and

a surjection respectively. Hence the map E2
1,1(U+;Q)→ E2

1,1(Û+;Q) is surjective.

Proof of Fact (3). For any choice of e0, . . . , ek ∈ Ew, both Ue0∩ . . .∩Uek and Ûe0∩ . . .∩Ûek

contain the unique vertex of Xg, and hence are connected. The same applies if we include

Xw
g , so E2

2,0(U+;Q) = E2
2,0(Û+;Q) = 0.

Completing the proof. Given the above three statements, cok(H2(X
w,2
g ;Q)→ H2(Xg;Q))

is generated by a quotient of the image E1
0,2(Û+;Q)→ E1

0,2(U
+
;Q), and the image of this

map is generated by the images of the fundamental classes of Bestvina–Margalit tori, so

the lemma holds.

5.3.2 Step (2) of the proof of Lemma 5.3.1

We now prove Lemma 5.3.7. This will complete the proof of Lemma 5.3.1. We will also

prove Lemma 5.3.8, which is an auxiliary result about the acyclicity of a complex where

the vertices are edges e ⊆ Xw,2
g .
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Lemma 5.3.7. Let g ≥ 33 and a ⊆ Sg a nonseparating simple closed curve. Let x⃗ = [a]

and let w ∈ x⃗⊥ be a nonzero primitive homology class such that the image of w under the

adjoint map HomZ(x⃗
⊥,Z) is nontrivial. The vector space

cok(H2(X
w
g ;Q)→ H2(X

w,2
g ;Q))

is generated by the images of fundamental classes of Bestvina–Margalit tori.

We begin by defining an auxiliary complex. Let e ⊆ Xg be an edge with g(e) = {1, g−2}.

Let Ae ⊆ H1(Xg;Q) be the affine space given by

Ae =
{
[f ] ∈ H1(Xg;Q) : [f ]− [e] ∈ H1(X

w
g ;Q)

}
.

Let Y (e) denote the connected component containing the edge e of the complex C(e),

where a k–cell of C(e) is a set of ordered (k + 1) edges e0, . . . , ek ⊆ Xg such that:

• g(ei) = {1, g − 2} for every 0 ≤ i ≤ k,

• [ei] ∈ Ae for every 0 ≤ i ≤ k, and

• there is an edge e′ such that [e′] ∈ Ae and such that e′ shares a 2–cell σi ⊆ Xw,2
g with

each ei.

Remark. Note that the cells of Y (e) are ordered collections of vertices. This is to avoid

certain technical complications later in the section.

We will prove the following auxiliary result.

Lemma 5.3.8. Let g ≥ 33 and a ⊆ Sg a nonseparating simple closed curve. Let w ∈ x⃗⊥

be a primitive nonzero class such that w is not in the kernel of the adjoint map x⃗⊥ →

HomZ(x⃗
⊥,Z). Let e ⊆ Xg be an edge with e ̸⊆ Xw

g and g(e) = {1, g − 2}. The complex

Y (e) is 1–acylic.
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Proof. Let H(e) = {V0, V1}. Let w0, w1 be two nonzero elements in x⃗⊥ such that wi ∈ Vi

and w0 + w1 = w. We will prove the following.

Claim. Let f ⊆ Xg be an edge with f a vertex of Y (e) and let H(f) =
{
V f
0 , V

f
1

}
. Then

after possibly reindexing, we have wi ∈ V f
i for i = 0, 1.

Proof of claim. For any 2–cell σ ⊆ Xg such that w0, w1 compatible with H(σ), there is

some H ∈ H(σ) with w0, w1 ∈ H or H⊥, so such a σ is contained in Xw,2
g . Likewise,

if σ ⊆ Xw,2
g is a 2–cell containing e, then there is H ∈ H(σ) compatible with w, so in

particular we have w0, w1 both compatible withH(σ). Hence if e0, . . . , ek is a cell in Y (e)

with e′ as in the definition of Y (e), then e0, . . . , ek and e′ are all compatible with v0 and v1,

so the claim holds.

Now, given the claim, we see that since g ≥ 33, any triple of edges e0, e1, e2 ∈ Y (e) are

the vertices of a 2–cell in Y (e). Indeed, for any three e0, e1, e2 ⊆ Xg with e0, e1, e2 ∈ Y (e),

we have w0 and w1 compatible with H(e0), H(e1) and H(e2) by the claim. Since g ≥ 33

and g(ek) = (1, g − 2) for k = 0, 1, 2, we see that there is some primitive H ⊆ x⃗⊥ with

H⊥ ∩ H = Zx⃗, H⊥ +H = x⃗⊥, where w0 ∈ H, w1 ∈ H⊥, and H compatible with H(ek)

for k = 0, 1, 2. Let e′ ⊆ Xg be the unique edge with H ∈ H(e′). For each ek, let σk be a

2–cell containing ek and e′. We see that since w0, w1 both compatible with ek and e′, then

the third edge zk of σk must have w0, w1 ∈ Hzk
0 or Hzk

1 . Hence σk ∈ Xw,2
g , so [e′] ∈ Ae

since [e′]+ [zk] = [ek] and [zk] ∈ H1(X
w
g ;Q). Therefore by the definition of Y (e), we have

that e0, e1, e2 is a 2–cell. This implies that Y (e) is the 2–skeleton of a flag complex on the

complete graph of the vertices of Y (e), so in particular we have H1(Y (e);Q) = 0.

We are now ready to complete Step 2 of the proof of Lemma 5.3.1.

Proof of Lemma 5.3.7. Let Ew1 = {e ⊆ Xg : e is incompatible with w, g(e) = {1, g − 2}}.

Let Ue ⊆ Xw
g be the subcomplex generated by all 2–cells σ ⊆ Xw

g such that e and σ are

both faces of a 3–cell τ . Let Ûe consist of the union of all 3 cells τ as in the previous

sentence. For any such τ ⊆ Ûe, the union of τ with all τi that H(τi) = H(τ) as unordered
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sets forms a k + 1–torus, and this torus is naturally isomorphic to the product of e and the

minimal k–torus in Xg containing σ. Hence, there is a natural isomorphism Ûe
∼= e × Ue.

By construction, the collection

U = {Ûe/Ue}e∈Ew1

covers the 2–skeleton of Xw,2
g /Xw. For any cover ∗ = U , Û , or U , let Er

p,q(∗;Q) denote

the Čech–to–singular spectral sequence corresponding to the cover ∗. Since U covers the

2–skeleton of Xw,2
g /Xw

g , we have

⊕
p+q=2

E∞p,q(U ;Q) ↠ H2(X
w,2
g /Xw

g ;Q).

From the long exact sequence in homology for the pair (Xw,2
g , Xw

g ), we have an inclusion

cok(H2(X
w
g ;Q)→ H2(X

w,2
g ;Q)) ↪→ H2(X

w,2
g , Xw

g ;Q).

Then we have H2(X
w,2
g , Xw

g ;Q) = H2(X
w,2
g /Xw

g ;Q). Since Er
p,q(U ;Q) = 0 for p < 0 or

q < 0, the vector space E∞0,2(U ;Q) is a quotient of E1
0,2(U ;Q). Therefore it is enough to

prove the following three facts:

1. The image of E1
0,2(Û ;Q)→ E1

0,2(U ,Q) is generated by Bestvina–Margalit tori,

2. the vector space E2
1,1(U ;Q) is the 0–space, and

3. the vector space E2
2,0(U ;Q) is the 0–space.

We prove each of these in turn.

The proof of Fact (1). Since Ûe
∼= e × Ue, the cokernel cok(H2(Ue;Q) → H2(Ûe;Q)) is

isomorphic toH1(Ue;Q)⊗H1(e;Q) by the Künneth formula. The tensor product of a class

represented by an edge f ⊆ Ue with e is the Bestvina–Margalit torus containing e and f ,

so Fact (1) holds.
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The proof of Fact (2). Let e0, . . . , ek ∈ Ew. By construction, we have

dim
(
H1

((
Ûe0 ∩ . . . ∩ Ûek

)
/ (Ue0 ∩ . . . ∩ Uek) ;Q

))
≤ 1

so E1
∗,1(U ;Q) is the cellular chain complex of a simplicial complex Z, where the k–cells of

Z are sets of k + 1 edges e0, . . . , ek ∈ Ew1 with

dim
(
H1

(
Ûe0 ∩ . . . ∩ Ûek/Ue0 ∩ . . . ∩ Uek ;Q

))
= 1.

Now, note that if Ue0 , . . . , Uek form a k–cell in Z, then there is an edge f ⊆ Xg with

[f ] ̸∈ H1(X
w
g ;Q) such that f and ei are two edges of a 2–cell σi ⊆ Xg with the third

edge in Xw
g . Hence if e ∈ Ew1 , the path component Pe of Z containing Ûe/Ue has 2–

skeleton canonically identified with the 2–skeleton of Y (e). Therefore H1(Pe;Q) = 0 by

Lemma 5.3.8. Therefore H1(Z;Q) = 0, so E2
1,1(U ;Q) = 0 as desired.

The proof of Fact (3). For any choice of e0, . . . , ek ∈ Ew, both Ue0 ∩ . . . ∩ Uek and Ûe0 ∩

. . . ∩ Ûek contain the unique vertex of Xg, and hence are connected. Therefore E2
2,0(U ;Q)

is trivial, as desired.

We now prove Lemma 5.3.1.

Proof of Lemma 5.3.1. There is a noncanonical surjection

cok(H2(X
w
g ;Q)→ H2(X

w,2
g ;Q))

⊕
cok(H2(X

w,2
g ;Q)→ H2(Xg;Q))

↠ cok(H2(X
w
g ;Q)→ H2(Xg;Q)).

Hence the lemma follows by Lemmas 5.3.2 and 5.3.7.

5.3.3 The proof of Proposition 1.3.1

We now conclude Section 5.3. We first connect the results of Section 5.1 with Lemma 5.3.1.
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Lemma 5.3.9. Let g ≥ 33 and a ⊆ Sg a nonseparating simple closed curve. Let w ∈ x⃗⊥

be a nonzero primitive element such that w is not in the kernel of the adjoint map x⃗⊥ →

HomZ(x⃗
⊥,Z). Let φ be the composition

Hab,bp
2 (Ig;Q)→ H2(Xg;Q)→ H2(Xg;Q))/H2(X

w
g ;Q)

where the first map is the map in the five term exact sequence for the equivariant homology

spectral sequence given by the action of Ig on Cx⃗(Sg). Then the map φ is surjective.

Proof. By Lemma 5.3.1, the quotient space H2(Xg;Q)/H2(X
w
g ;Q) is generated by the

images of fundamental classes of Bestvina–Margalit tori. Hence it suffices to show that

any [BMσ] ∈ H2(Xg;Q) is the image of some [Tc,c′ , Td,d′ ] ∈ Hab,bp
2 (Ig;Q) under the map

Hab,bp
2 (Ig;Q) → H2(Xg;Q). Let BMσ be a Bestvina–Margalit torus, and let σ̂ be a lift

of σ to Cx⃗(Sg) such that a ∈ σ̂. Let a1, a2 be the other two vertices of σ̂. Choose a curve

b ⊆ Sg such that the geometric intersections |a ∩ b| = |a1 ∩ b| = |a2 ∩ b| are all equal

to 1. Now, there are curves b1, b2 such that b ∪ b1 and b ∪ b2 are bounding pairs, and the

corresponding bounding pair maps Tb,b1 and Tb,b2 both commute and take a to a1 and a to

a2 respectively. The construction of such bounding pairs can be seen in Figure 5.5. Let

bb1
b2

a2

a

a1

Figure 5.5: The curves a, a1, a2 and bounding pairs b ∪ b1 and b ∪ b2

γi ∈ π1(Xg) be the image of the edge in Cx⃗(Sg) connecting a to ai. The bounding pair

map Tb,bi is sent to the loop γi under the natural map Ig → π1(Xg) for i = 1, 2. Hence
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the image of the abelian cycle [Tb,b1 , Tb,b2 ] under the map H2(Ig;Q) → H2(Xg;Q) is the

abelian cycle [γ1, γ2] ∈ H2(Xg;Q), which is [BMσ].

We now prove Lemma 5.3.10, which verifies that the first hypothesis of Proposition 4.1.1

holds for Sp(x⃗⊥,Z), H2(Xg;Q), and d = 1.

Lemma 5.3.10. Let g ≥ 33 and let w ∈ x⃗⊥ be a primitive element such that the im-

age of w under the adjoint map x⃗⊥ → HomZ(x⃗
⊥,Z) is nonzero. Then the vector space

cok(H2(X
w
g ;Q)→ H2(Xg;Q)) is finite dimensional.

Proof of 5.3.10. Let d be a representative of w disjoint from a, and let G = im(Mod(Sg %

(a ∪ d)) → Sp(2g,Z)). We will show that the G–representation V = cok(H2(X
w
g ;Q) →

H2(Xg;Q)) satisfies the hypotheses of Proposition 4.1.1 for δ = 9, namely:

1. for M ⊆ Sg % (a ∪ d) a nonseparating multicurve with |M | ≥ 9, the map

⊕
c∈M

V Tc → V

is surjective, and

2. for M ⊆ Sg % (a ∪ d) a nonseparating multicurve with |M | ≤ 8, and GM =

StabG(M), the coinvariants module

H0(GM ;V )

is finite dimensional.

Then V is finite dimensional by Proposition 4.1.1.

Hypothesis (1). Lemma 5.3.9 tells us that the map

Hab,bp
2 (Ig;Q)→ V
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is surjective. Now Proposition 5.1.1 tells us that, if M ⊆ Sg % (a ∪ d) is a nonseparating

multicurve with |M | ≥ 9, the map

⊕
c∈M

Hab,bp
2 (Ig;Q)Tc → Hab,bp

2 (Ig;Q)

is surjective. Then the image Hab,bp
2 (Ig;Q)Tc → V is contained in V Tc , so the map

⊕
c∈M

V Tc → V

is surjective, as desired.

Hypothesis (2). Let M ⊆ Sg % (a % d) be a multicurve with |M | ≤ 8. The coinvariants

module BM2(Xg;Q)GM
is finite dimensional by Lemma 5.2.1 applied to M ′ = M ∪ d.

Now by Lemma 5.3.1, there is a surjection BM2(Xg;Q) → V , so there is a surjection

BM2(Xg;Q)GM
→ VGM

, so in particular VGM
is surjective.

Proof of Proposition 1.3.1. Let G = im(Mod(Sg % a) → Sp(2g,Z)). We will use Propo-

sition 4.1.1 applied to the G–representation H2(Xg;Q) with d = 1 to show that H2(Xg;Q)

is finite dimensional. In particular, we will show that:

1. for any nonseparating c ⊆ Sg % a, we have cok(H2(Xg;Q)Tc → H2(Xg;Q)) finite

dimensional, and

2. the coinvariants module H2(Xg;Q)G is finite dimensional.

Hypothesis (1). This is exactly the content of Lemma 5.3.10.

Hypothesis (2). Let I(x⃗) ⊆ Mod(Sg) denote the partial Torelli group defined by Putman

[35], which is the subgroup of Mod(Sg) acting trivially on the homology class x⃗. Now,

I(x⃗) fits into a short exact sequence

1→ Ig → I(x⃗)→ G→ 1.
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For g ≥ 3, we know that H1(Ig;Q) is finite dimensional by the work of Johnson [22].

Therefore by the Lyndon–Hochschild–Serre [8] spectral sequence and the fact that there

is a K(G, 1) with finite 3–skeleton [39], we see that the vector space H2(Ig;Q)G is finite

dimensional if and only ifH2(I(x⃗);Q) is finite dimensional. We now consider the equivari-

ant homology spectral sequence for the action of I(x⃗) on Cx⃗(Sg). This action is cocompact

on Cx⃗(Sg). Furthermore, the stabilizers of vertices and edges are finitely presented and

finitely generated respectively, since these are mapping class groups of surfaces, which are

finitely presented [12]. Then Cx⃗(Sg) is (g − 3)–acyclic by Theorem B, so H2(I(x⃗);Q) is

finite dimensional, and thus the second hypothesis is satisfied.
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CHAPTER 6

THE PROOF OF THEOREM C

6.1 Finite-dimensionality of coinvariants in E2
1,1(Ig, Cx⃗(Sg))

The main work of this section is to prove the following result.

Lemma 6.1.1. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let x⃗ = [a].

Let M ⊆ Sg % a be a nonseparating multicurve with |M | = 8. Let

G = im(Mod(Sg % M)→ Sp(2g,Z)).

Let Er
p,q denote the equivariant homology spectral sequence for the action of Ig on Cx⃗(Sg).

Then the vector space

H0(G;E2
1,1)

is finite dimensional.

Notation. For the remainder of this section, we will fix g ≥ 33 and a ⊆ Sg a nonseparating

simple closed curve. We will also fix M ⊆ Sg % a as in the statement of Lemma 6.1.1. We

will use Er
p,q to denote the equivariant homology spectral sequence given by the action of

Ig on Cx⃗(Sg). Additionally, for the remainder of the section, we will let V = {[c] : c ∈M}.

The outline of the proof of Lemma 6.1.1. The strategy used is similar to that used in the

proof of Lemma 5.2.1. In particular, we will associate to each edge e ⊆ Xg certain invari-

ants that record how the elements of V project onto the elements of H(e). We will show

in Lemma 6.1.2 that these numbers are preserved under the action of G. We then prove

Lemma 6.1.4, which describes an intermediate quotient between E1
1,1 and E2

1,1 We then

describe in Lemmas 6.1.5 and 6.1.7 how these invariants change under addition of edges.

With these results in hand, we will prove Lemma 6.1.1.
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Algebraic invariants of edges. Let [b] ∈ H1(Sg;Z) be a nonzero primitive class such that

⟨x⃗, [b]⟩ = 1 and [b] intersects any element of V trivially. Let x ⊆ Xg be an edge and let

H(x) = {Hx
0 ,Hx

1}. For each 1 ≤ i ≤ 8, 0 ≤ k ≤ 1, let vxi,k = projx⃗⊥∩[b]⊥ vi. We define the

following two invariants of the edge x:

1. rkVi,k(x) is the maximal n such that vxi,k = nv for some v ∈ Hx
k and

2. θ(V)i,j,k(x) = ⟨vxi,k, vxj,k⟩.

We have the following result about these algebraic invariants, which parallels Lemma 5.2.2.

Lemma 6.1.2. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let

M ⊆ Sg % a be a nonseparating multicurve with |M | = 8. Let b ⊆ Sg be a nonseparating

simple closed curve such that b has geometric intersection number with a, and such that b

intersects M trivially. Let G = im(Mod(Sg % M)→ Sp(2g,Z)). Let V = {[c] : c ∈ M}.

After possibly relabelingHy
0 andHy

1, suppose the following hold:

1. g(Hx
0) = g(Hy

0),

2. rkVi,k(x) = rkVi,k(y) for all 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1 and

3. θ(V)i,j,k(x) = θ(V)i,j,k(y) for all 1 ≤ i, j ≤ 8 and 0 ≤ k ≤ 1.

Then there exists g ∈ G such that gx = y.

This follows by a similar argument to Lemma 5.2.2, except with 2–cells replaced by

edges. The rkV here is the same as the rkV in Lemma 5.2.2, and similarly for θ(V) and

θ(V).

Before proving Lemmas 6.1.5 and 6.1.7, we will prove Lemma 6.1.4, which describes

an intermediate quotient between E1
1,1 → E2

1,1. We begin by showing that E2
1,1 is a quotient

of E1
1,1.

Lemma 6.1.3. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let x⃗ = [a].

Let Er
p,q denote the equivariant homology spectral sequence for the action of Ig on Cx⃗(Sg).

The inclusion map E2
1,1 ↪→ E1

1,1/d
1
2,1(E1

2,1) is an isomorphism.
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Proof. The lemma is equivalent to the statement that the differential d11,1 is the zero map.

Since g ≥ 33 ≥ 4, Theorem B says that we have H1(Cx⃗(Sg);Z) = 0. Hence

Er
p,q ⇒ H1(Ig;Q) for p+ q = 1

by the properties of the equivariant homology spectral sequence [8, Section VII]. Therefore

there is an exact sequence

E1
1,1

d11,1−−→ E1
0,1 → H1(Ig;Q).

Since E1
0,1
∼= H1(StabIg(a);Q), the exact sequence is

E1
1,1

d11,1−−→ H1(StabIg(a);Q)→ H1(Ig;Q).

A theorem of Putman [37, Theorem B] says that the map H1(StabIg(a);Q) → H1(Ig;Q)

is an injection, so d11,1 = 0.

As in Section 5.1, let τg : Ig → ∧3H1(Sg;Z)/H1(Sg;Z) denote the Johnson homomor-

phism [19]. If σ ⊆ Xg is a cell, let Aσ denote the vector space

im

 ⊕
H∈H(σ)

∧3H → ∧3H1(Sg;Z)/H1(Sg;Z)

⊗Q.

We have the following result about E2
1,1.

Lemma 6.1.4. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let x⃗ = [a].

Let Er
p,q denote the equivariant homology spectral sequence for the action of Ig on Cx⃗(Sg).

The quotient map φ : E1
1,1 → E2

1,1 factors through the natural projection

ρ : E1
1,1 →

⊕
x∈X(1)

g

Ax.
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Proof. Let φ : E1
1,1 → E1

1,1/d
1
2,1(E1

2,1) = E2
1,1 denote the quotient map, which exists by

Lemma 6.1.3. For each x ⊆ Xg, let x̂ ⊆ Cx⃗(Sg) be a lift of x such that a is a vertex of x̂.

Let

Ax̂ = im
(
H1(StabIg(x̂);Q)→ H1(Ig;Q)

)
.

Let S and S ′ be the connected components of Sg % x̂. Lemma 5.1.5 implies that

im(H1(I(S, Sg);Q)→ H1(Ig;Q))

is sent to im(∧3H1(S;Q)→ im(τg)⊗Q) under the Johnson homomorphism, and similarly

for S ′. Therefore we have Ax̂ = Ax by the definition of Ax. Hence it suffices to show that

φ factors through the quotient map

ρ : E1
1,1 =

⊕
x∈X(1)

g

H1(StabIg(x̂);Q)→
⊕

x∈X(1)
g

Ax.

Showing that φ factors through ρ is equivalent to showing that ker(ρ) ⊆ ker(φ), so it

suffices to show that

⊕
x∈X(1)

g

ker
(
H1(StabIg(x̂);Q)→ H1(Ig;Q)

)
⊆ ker(φ).

The idea of the proof is to rewrite any class in ker(ρ) as a linear combination of classes,

where the edges in these classes have sufficiently large genus. If x ⊆ Xg is an edge and

f ∈ H1(StabIg(x̂);Q) is a class, we use the notation (x, f) ∈
⊕

x∈X(1)
g
H1(StabIg(x̂);Q)

to denote the class in E2
1,1 equal to f in the index x and equal to zero in every other index.

Now, we have

ker(ρ) =
⊕

x∈X(1)
g

ker
(
H1(StabIg(x̂);Q)→ H1(Ig;Q)

)
,

134



and the latter space is spanned by elements of the form (x, f). Hence it suffices to show

that (x, f) ∈ ker(φ) for any x ∈ X(1)
g and f ∈ ker(H1(StabIg(x̂);Q) → H1(Ig;Q)). Let

S ′, S ′′ be the connected components of Sg % x̂. We have a surjection H1(I(S ′, Sg);Q) ⊕

H1(I(S ′′, Sg);Q) → H1(StabIg(x̂);Q by applying the Künneth formula to the product

I(S ′, Sg)×I(S ′′, Sg), so we may assume that f is supported on one connected component

Sg % x̂. Without loss of generality, we will assume that f ∈ H1(I(S ′, Sg);Q). If g(S ′) ≥ 3,

then Lemma 5.1.5 says that the map H1(I(S ′, Sg);Q) → H1(Ig;Q) is injective. Since f

is in the kernel of the map H1(I(S ′, Sg);Q) → H1(Ig;Q), this implies that f = 0, so

(x, f) = 0 ∈ E1
1,1 and thus (x, f) ∈ ker(φ). Otherwise, g(S ′) ≤ 2, which implies in

particular that g(S ′′) ≥ 4. Let σ ⊆ Cx⃗(Sg) be a 2–cell such that:

• x̂ ⊆ σ

• for the other two edges y, z of σ, the connected components S ′y, S
′
z of Sg % y and

Sg % z respectively that contain S ′ have g(S ′y), g(S
′
z) ≥ 3.

Now, let σ denote the image of σ in Xg and similarly for y and z. We have chosen σ so that

f has a representative F ∈ StabIg(σ). Therefore, after possibly reorienting σ, x and y, we

have a relation in E2
1,1 given by d12,1(σ, [F ]), which tells us in particular that

0 = (y, [F ]) + (z, [F ])− (x, f)

in E2
1,1. We have F supported on S ′y and S ′z, both of which have genus at least 3. Then

by Lemma 5.1.5, the map H1(I(S ′y, Sg);Q) → H1(Ig;Q) is injective, and similarly for

S ′z. But now, we have assumed that f ∈ ker(H1(StabIg(x̂);Q) → H1(Ig;Q)). There-

fore [F ] ∈ H1(I(S ′y, Sg);Q) and [F ] ∈ H1(I(S ′z, Sg);Q) are both zero, so (y, [F ]) =

(z, [F ]) = 0. Since d12,1(σ, [F ]) ∈ ker(φ) by the definition of E2
1,1, we have (x, f) ∈ ker(φ),

as desired.

Notation. For the remainder of this thesis, if x ⊆ Xg is an edge and f ∈ Ax is a class,

135



we will denote the corresponding element in E2
1,1 under the image of the quotient map⊕

x∈X(1)
g
Ax → E2

1,1 by (x, f).

6.1.1 The proof of Lemma 6.1.6

We now continue with the definitions. Let x ⊆ Xg be an edge. Let y ⊆ Xg be another

edge such that x, y are two edges of a 2–cell σ, and let z denote the third edge of σ. We say

that such a y is rank V–shrinking relative to x if, after possibly relabelingH(x),H(y) and

H(z), the following hold:

1. rkVi,k(x) ≥ rkVi,k(y) and rkVi,k(z) for all 1 ≤ i ≤ 8, 0 ≤ k ≤ 1, and

2. for at least one choice of 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1 with

max{rkVi,0(x), rkVi,1(x) ≥ max{rkVj,k(x), : 1 ≤ j ≤ 8, 0 ≤ k ≤ 1}

we have max{rkVi,0(x), rkVi,1(x)} > max{rkVi,k(y), rkVi,k(z)}.

If Hx
0 ∈ H(x), we say that y is rank V–shrinking relative to Hx

0 if, in addition, there is

Hy
i ∈ H(y) with Hy

i ⊆ Hx
0 . Denote the set of rank V–shrinking edges relative to Hx

0 by

rkshrinkV(Hx
0). We now prove Lemma 6.1.5, which will allow us to rewrite classes in E2

1,1

as linear combinations of classes with lower rkVi,k.

Lemma 6.1.5. Let g ≥ 33 and a ⊆ Sg be a nonseparating curve. Let M ⊆ Sg % a be

a nonseparating multicurve with |M | = 8. Let b ⊆ Sg be a nonseparating curve such

that b has geometric intersection number with a, and such that b intersects M trivially.

Let V = {[c] : c ∈ M}. Let x ⊆ Xg be an edge. Suppose that g(Hx
0) ≥ 12, and that

rkVi,1(x) > 1 for at least one 1 ≤ i ≤ 8. Then the natural map

φ :
⊕

y∈rkshrinkV (Hx
0 )

Ay ∩ Ax → Ax

is surjective.
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Proof. Let r1 ∧ r2 ∧ r3 ∈ Ax. We will show that r1 ∧ r2 ∧ r3 ∈ Ay for some y ∈

rkshrinkV(Hx
0). If r1, r2, r3 ∈ Hx

1 then r1 ∧ r2 ∧ r3 ∈ ∧3Hx
1 ⊆ ∧3Hy

1 ⊆ Ay for any

y ∈ rkshrinkV(Hx
0), so it remains to prove the result in the case that r1 ∧ r2 ∧ r3 ∈ Hx

0 .

Suppose without loss of generality that rkV1,1(x) > 1 and

rkV1,1(x) = max{max{rkVi,0(x), rkVi,1(x)} ≥ max{max{rkVj,0(x), rkVj,1(x)} : 1 ≤ j ≤ 8}.

For each 1 ≤ i ≤ 8, let wi,k denote the nonzero primitive homology class in H1(Sg;Z)

such that

projHx
k∩[b]⊥

(vi) = rkVi,k(x)wi,k.

We claim that there is a nonzero primitive class u ∈ Hx
0 such that:

• ⟨u,wi,0⟩ = 0 for all 1 ≤ i ≤ 8,

• ⟨u, rs⟩ = 0 for all 1 ≤ s ≤ 3, and

• u is not in the span of {w1,0, . . . , w8,1, r1, . . . , r3}.

Such a u exists since we have assumed that g(Hx
0) ≥ 12 and there are only eleven elements

in the set {w1,0, . . . , w8,0, r1, r2, r3}, so the subspace w⊥1,0 ∩ . . . w⊥8,0 ∩ r⊥1 ∩ r⊥2 ∩ r⊥3 has

genus at least one. Let h = w1,0 − u. Let y ⊆ Xg be an edge such that such that:

• Hy
0 ⊆ Hx

0

• u ∈ Hy
0,

• h ∈ Hy
1 ∩Hx

0 ,

• wi,0 ∈ Hx
0 ∩H

y
1 for all 2 ≤ i ≤ 8, and

• rs ∈ Hy
1 ∩Hx

0 for all 1 ≤ s ≤ 3.

Let σ be a 2–cell containing x and y, and let z be the third edge of σ. Index H(z) so that

Hz
0 ⊆ Hx

0 . By construction, the vectors proj[b]⊥∩Hy
k
(vi) and proj[b]⊥∩Hz

k
(vi) are given as

follows:

1. proj[b]⊥∩Hy
0
(v1) = rkV1,0(x)u,
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2. proj[b]⊥∩Hy
0
(vi) = 0 for 2 ≤ i ≤ 8,

3. proj[b]⊥∩Hy
1
(v1) = rkV1,1(x)w1,1 + rkV1,0 h,

4. proj[b]⊥∩Hy
1
(vi) = rkVi,1(x)wi,1 + rkVi,0(x)wi,0 for 2 ≤ i ≤ 8,

5. proj[b]⊥∩Hz
0
(v1) = rkV1,0(x)h,

6. proj[b]⊥∩Hz
0
(vi) = rkVi,0(x)wi,0 for 2 ≤ i ≤ 8,

7. proj[b]⊥∩Hz
1
(v1) = rkV1,1(x)w1,1 + rkV1,0 u, and

8. proj[b]⊥∩Hz
1
(vi) = rkVi,1wi,1 for 2 ≤ i ≤ 8.

By assumption, the homology classes wi,k, h and u are all primitive. Hence the numbers

rkVi,k(y) and rkVi,k(z) are given as follows, where each relation in the following list follows

from the corresponding relation in the previous list:

(a) rkV1,0(y) = rkV1,0(x),

(b) rkVi,0(y) = 0 for 2 ≤ i ≤ 8,

(c) rkV1,1(y) = gcd(rkV1,1(x), rk
V
1,0(x)),

(d) rkVi,1(y) = gcd(rkVi,1(x), rk
V
i,0(x)) for

2 ≤ i ≤ 8,

(e) rkV1,0(z) = rkV1,0(x),

(f) rkVi,0(z) = rkVi,0(x) for 2 ≤ i ≤ 8,

(g) rkV1,1(z) = gcd(rkV1,1(x), rk
V
1,0(x)),

(h) rkVi,1(z) = rkVi,1(x) for 2 ≤ i ≤ 8.

We have assumed that rkV1,1(x) > 1. Since v1 is primitive, we have gcd(rkV1,0(x), rk
V
1,1(x)) =

1, so relation (c) implies that rkV1,1(y) < rkV1,1(x). Similarly, relation (g) implies that

rkV1,1(z) < rkV1,1(x). Then relations (a), (b) and (d) imply that rkVi,k(y) ≤ rkVi,k(x) for all

1 ≤ i ≤ 8 and 0 ≤ k ≤ 1, and relations (e), (f) and (h) imply that rkVi,k(z) ≤ rkVi,k(y) for

all 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1, and thus y ∈ rkshrinkV(Hx
0). Then we have chosen y so that

r1, r2, r3 ∈ Hy
0, so r1 ∧ r2 ∧ r3 ∈ Ay, and thus the proof is complete.

We use Lemma 6.1.5 to prove the following, which is the first step of the proof of

Lemma 6.1.1.
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Lemma 6.1.6. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let

x⃗ = [a]. Let M ⊆ Sg % a be a nonseparating multicurve with |M | = 8. Let b ⊆ Sg be

a nonseparating simple closed curve such that b has geometric intersection number with

a, and such that b intersects M trivially. Let V = {[c] : c ∈ M}. Let Er
p,q denote the

equivariant homology spectral sequence for the action of Ig on Cx⃗(Sg). Let (x, f) ∈ E2
1,1

be a class. There is a relation in E2
1,1 given by

(x, f) =
m∑
ℓ=1

λℓ(yℓ, fℓ)

such that λℓ ∈ Q, rkVi,k(yℓ) ≤ 1 for all 1 ≤ i ≤ 8, 0 ≤ k ≤ 1, and 1 ≤ ℓ ≤ m.

Proof. Let maxrk(x) = max1≤i≤8,0≤k≤1 rk
V
i,k(x). Let nummaxrk(x) be the number of

pairs (i, k) with 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1 such that rkVi,k(x) = maxrk(x). The proof

proceeds by double induction on maxrk(x) and nummaxrk(x).

Base case: maxrk(x) = 1. In this, the resulting linear relation is (x, f) = (x, f).

Inductive step: the lemma holds for all y ⊆ Xg that satisfy either maxrk(y) < maxrk(x)

or both maxrk(y) ≤ maxrk(x) and nummaxrk(y) < nummaxrk(x). We want to apply

Lemma 6.1.5. We begin with the the following claim.

Claim. There is a linear relation

(x, f) =

q∑
p=1

(zp, fp)

such that for every 1 ≤ p ≤ q:

• either maxrk(zp) = maxrk(x) and nummaxrk(zp) ≤ nummaxrk(x), or maxrk(zp) <

maxrk(x), and

• if maxrk(zp) ̸= 1, there is a pair (i, k) such that rkVi,k(zp) = maxrk(zp) and g(Hzp
k ) ≥

13.
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Proof of claim. By reindexing, we may assume without loss of generality that rkV1,0(x) =

maxrk(x). If g(Hx
0) ≥ 13 then we are done, so suppose that g(Hx

0) ≤ 12. Since f ∈ Ax,

we may rewrite f as a Q–linear combination of pure tensors r1∧r2∧r3 ∈ Ax such that each

ri is primitive. Therefore we may assume without loss of generality that f = r1 ∧ r2 ∧ r3

with r1, r2, r3 ∈ Hx
k for some 0 ≤ k ≤ 1. Now, since g(Hx

0) ≤ 12, we have g(Hx
1) ≥

33− 12 ≥ 13. Hence there is a primitive subgroupH ⊆ Hx
1 such that the following hold:

• 2 ∗ g(H) + 1 = rkV(H),

• g(Hx
1)− g(H) ≤ 11,

• x⃗ ∈ H,

• r1, r2, r3, v1,1, v2,1, . . . , v8,1 ∈ H⊥.

Let z1 ⊆ Xg be the unique edge withH ∈ H(z1). By construction, z1 and x share a 2–cell

σ ⊆ Xg that satisfies H(σ) = {Hx
0 ,H,Hx

1 ∩ H⊥}. Let z2 be the third edge of σ. We have

H(z1) = {H,H⊥} andH(z2) = {H⊥ ∩Hx
1 ,Hx

0 +H}. Since r1, r2, r3 are all in eitherHx
0

or Hx
1 and are in H⊥ by hypothesis, the fact that H(σ) = {Hx

0 ,H,H⊥ ∩ Hx
1} implies that

f ∈ Aσ. Therefore in E2
1,1, the image of d12,1(σ, f) (after possibly reorienting x, z1 and z2)

yields a relation

(x, f) = (z1, f) + (z2, f).

Assume that H(z1) is indexed so that H = Hz1
0 . By our choice of H, the projections of

each vi to the elements ofH(z1) are given as follows:

• vz1i,1 = vi, and

• vz1i,0 = 0.

Since each vi is primitive by assumption, we have rkVi,k(z1) = 1 or 0 for every 1 ≤ i ≤ 8

and 0 ≤ k ≤ 1. Hence (z1, f) satisfies the desired properties of zi in the claim, since:

• maxrk(z1) = 1 < maxrk(x), and
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• z1 does not satisfy the hypothesis in the second condition.

For the class (z2, f), after indexing H(z2) so that Hx
0 ⊆ H

z2
0 , the projections vz2i,k satisfy

vz2i,k = vxi,k. Hence we have rkVi,k(z2) = rkVi,k(x) for 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1. Now, by

construction we have g(Hz2
0 ) = g(Hx

0) + g(H). Since we have chosen H so that g(Hx
1)−

g(H) ≤ 11, we have g(H) ≥ g(Hx
1)− 11. Then we have

g(Hz2
0 ) = g(Hx

0) + g(Hx
1) ≥ g(Hx

0) + g(Hx
1)− 11 ≥ 33− 1− 11 ≥ 13,

since we have assumed that g = g(Hx
0) + g(Hx

1) + 1 ≥ 33. Therefore z2 satisfies the

properties in the claim, since:

• maxrk(z2) = maxrk(x) and nummaxrk(z2) = nummaxrk(x), and

• any pair (i, 0) that satisfies rkVi,0(x) = maxrk(x) also satisfies rkVi,0(z2) = maxrk(z2),

and g(Hz2
0 ) ≥ 13,

so the claim holds.

We now continue with the inductive step of the proof. By the claim, we may rewrite the

class (x, f) as a sum so that each summand (z, f ′) satisfies maxrk(z) ≤ maxrk(x), and

nummaxrk(z) ≤ nummaxrk(x) if maxrk(z) = maxrk(x), and, if (z, f) does not already

satisfy maxrk(z) ≤ 1, we have g(Hz
0) ≥ 13 with rkVi,0(z) = maxrk(z) for some i. Hence

we may assume without loss of generality that g(Hx
0) ≥ 13 and rkVi,0(x) = maxrk(x) for

some 1 ≤ i ≤ 8. Then by Lemma 6.1.5, there is a collection of edges yℓ ∈ rkshrinkV(Hx
0)

and a choice of fℓ ∈ Ayℓ ∩ Ax such that

f =
m∑
ℓ=1

fℓ.

For each yℓ, there is a 2–cell σℓ ⊆ Xg with xℓ, yℓ ∈ Xg by the definition of rkshrinkV(Hx
0).

For each of these σℓ, let zℓ ⊆ σℓ denote the third edge besides x and yℓ. Then fℓ ∈ Ayℓ ∩Ax
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andAx∩Ayℓ = Aσℓ
by the definition ofAτ for any τ ⊆ Xg, so we have fℓ ∈ Aτ . Therefore

we have the following relation in E2
1,1:

d12,1

(
m∑
ℓ=1

(σℓ, fℓ)

)
=

m∑
ℓ=1

(x, fℓ) + (yℓ, fℓ)− (zℓ, fℓ).

But now, by rearranging terms, we have a relation

m∑
ℓ=1

(x, fℓ) =
m∑
ℓ=1

(yℓ, fℓ)− (zℓ, fℓ).

Then since
∑m

ℓ=1 fℓ = f , we have a relation

(x, f) =
m∑
ℓ=1

(zℓ, fℓ)− (yℓ, fℓ).

Since yℓ ∈ rkshrinkV(Hx
0), for any 1 ≤ ℓ ≤ m, we have either maxrk(yℓ) < maxrk(x),

or maxrk(yℓ) = maxrk(x) and nummaxrk(yℓ) < nummaxrk(x), and similarly for zℓ.

Therefore by the inductive hypothesis, yℓ and zℓ are linear combinations of elements as in

the statement of the lemma, so the lemma holds for (x, f) as well.

6.1.2 The proof of Lemma 6.1.8

We now proceed to the second step of the proof of Lemma 6.1.1. Let x ⊆ Xg be an edge

such that rkVi,k(x) ≤ 1 for all 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1. Let y ⊆ Xg be another edge

such that y and x are two edges of a 2–cell σ, and let z be the third edge of σ. We say that

y is algebraically V–shrinking relative to x if, after possibly reindexing H(x), H(y), and

H(z), the following hold:

1. rkVi,k(y), rk
V
i,k(z) ≤ 1 for 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1,

2. max{|θ(V)i,j,1(x)| , 1} ≥ |θ(V)i,j,1(y)| , |θ(V)i,j,1(z)| for all 1 ≤ i, j ≤ 8, and
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3. at least one pair 1 ≤ i < j ≤ 8 and 0 ≤ k ≤ 1 with

|θ(V)i,j,k(x)| = max{|θ(V)i′,j′,k(x)| : 1 ≤ i′, j′ ≤ 8, 0 ≤ k ≤ 1}

has |θ(V)i,j,k(x)| > |θ(V)i,j,k(y)| , |θ(V)i,j,k(z)|.

If x is an edge, let algshrinkV(x) ⊆ X
(1)
g denote the set of algebraically V–shrinking

relative to x edges in Xg. We will prove the following result about algshrinkV(x), which

completes the second step of the proof of Lemma 6.1.1.

Lemma 6.1.7. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let

x⃗ = [a]. Let M ⊆ Sg % a be a nonseparating multicurve with |M | = 8. Let b ⊆ Sg

be a nonseparating simple closed curve such that |a ∩ b| = 1 and such that b intersects

M trivially. Let V = {[c] : c ∈ M}. Let Er
p,q denote the equivariant homology spectral

sequence for the action of Ig on Cx⃗(Sg). Let x ⊆ Xg be an edge such that rkVi,k(x) ≤ 1 for

all 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1. Suppose that there is a pair 1 ≤ i < j ≤ 8 and 0 ≤ k ≤ 1

such that |θ(V)i,j,k(x)| > 1. Then the natural map

φ :
⊕

y∈algshrinkV (x)

Ay ∩ Ax → Ax

is surjective.

Proof. Choose three primitive classes r1, r2, r3 ∈ Hx
0 ∪ Hx

1 such that r1 ∧ r2 ∧ r3 ∈ Ax.

We will show that r1 ∧ r2 ∧ r3 ∈ im(φ). Since |θ(V)i,j,0(x)| = |θ(V)i,j,1(x)| for all

1 ≤ i, j ≤ 8 because we have assumed that ⟨vi, vj⟩ = 0, we may assume without loss

of generality that g(Hx
0) ≥ 33

2
, so in particular g(Hx

0) ≥ 13. If r1, r2, r3 ∈ Hx
1 then we

are done since algshrinkV(x) is nonempty, so assume that r1, r2, r3 ∈ Hx
0 . We will show

that there is an edge y ∈ algshrinkV(x) such that r1 ∧ r2 ∧ r3 ∈ Ay. For each vi ∈ V ,

let wi,k be the projection wi,k = proj[b]⊥∩Hx
k
vi. By hypothesis each wi,k is either primitive

or zero. Assume without loss of generality that |θ(V)1,2,0| is maximal over all |θ(V)i,j,0|.
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By possibly replacing v1 with −v1, we may also assume without loss of generality that

θ(V)1,2,0(x) ≥ 0. Since g(Hx
0) ≥ 13 and the set {w1,0, . . . , w8,0, r1, r2, r3} has eleven

elements, we may choose two primitive classes u1, u2 ∈ Hx
0 such that the following hold:

1. ⟨ut, wi,0⟩ = 0 for all 1 ≤ t ≤ 2, 1 ≤ i ≤ 8,

2. ⟨ut, rs⟩ = 0 for all 1 ≤ t ≤ 2, 1 ≤ s ≤ 3,

3. ⟨u1, u2⟩ = 1,

Consider the following classes hi for 1 ≤ i ≤ 8:

1. h1 = w1,0 − u1,

2. h2 = w2,0 − u2 and

3. hi = wi,0 for 3 ≤ i ≤ 8.

Now, let y be an edge that shares a 2–cell with x such that the following properties hold:

1. Hy
0 ⊆ Hx

0 ,

2. hi ∈ Hx
0 ∩H

y
0 for 1 ≤ i ≤ 8,

3. rs ∈ Hx
0 ∩H

y
1 for 1 ≤ s ≤ 3, and

4. ut ∈ Hx
0 ∩H

y
1 for 1 ≤ t ≤ 2.

We will show that:

1. y ∈ algshrinkV(x) and

2. r1 ∧ r2 ∧ r3 ∈ Ay.

This completes the proof, since then r1 ∧ r2 ∧ r3 ∈ im(φ). The latter property follows by

construction, so it suffices to prove the former. Let z denote the third edge of a 2–cell σ

with x ⊆ σ, y ⊆ σ. Label H(z) = {Hz
0,Hz

1} such that Hz
0 ⊆ Hx

0 . Therefore we have

Hz
0 = Hx

0 ∩H
y
1 andHz

1 = H
y
0 +Hx

1 . For notational convenience, let ui = 0 for 3 ≤ i ≤ 8.

By construction, the vectors proj[b]⊥∩Hw
k
(vi) for each choice of 1 ≤ i ≤ 8, 0 ≤ k ≤ 1 and

w = x, y, z are given as follows:
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1. proj[b]⊥∩Hy
0
(vi) = hi for 1 ≤ i ≤ 8,

2. proj[b]⊥∩Hy
1
(vi) = ui + wi,1 for 1 ≤ i ≤ 8,

3. proj[b]⊥∩Hz
0
(vi) = ui for 1 ≤ i ≤ 8, and

4. proj[b]⊥∩Hz
1
(vi) = hi + wi,1 for 1 ≤ i ≤ 8.

Now, given these projections, we can compute ranks and intersection numbers as follows.

1. We have rkVi,k(y), rk
V
i,k(z) ≤ 1 for 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1, since by assumption

and construction each projection is primitive.

2. We have |θ(V)i,j,0(y)| = |⟨hi, hj⟩| = |θ(V)i,j,0(x)| − 1(i,j)=(1,2).

3. We have |θ(V)i,j,0(z)| = |⟨ui, uj⟩| = 1(i,j)=(1,2).

Furthermore, since ⟨vi, vj⟩ = 0 by assumption, we have |θ(V)i,j,0(y)| = |θ(V)i,j,1(y)|,

and similarly for z. Therefore we have |θ(V)i,j,k(x)| ≥ |θ(V)i,j,k(y)| , |θ(V)i,j,k(z)| for all

1 ≤ i, j ≤ 8 and 0 ≤ k ≤ 1. Additionally, we have assumed that |θ(V)i,j,0(x)| > 1, so we

have |θ(V)1,2,0(x)| > |θ(V)1,2,0(y)| , |θ(V)1,2,0(z)|. Hence we have y ∈ algshrinkV(x), so

the proof is complete.

We now complete the second step of the proof of Lemma 6.1.1.

Lemma 6.1.8. Let g ≥ 33 and a ⊆ Sg be a nonseparating simple closed curve. Let

M ⊆ Sg % a be a nonseparating multicurve with |M | = 8. Let b ⊆ Sg be a nonseparating

simple closed curve such that b has geometric intersection number with a, and such that b

intersects M trivially. Let V = {[c] : c ∈ M}. Let Er
p,q denote the equivariant homology

spectral sequence for the action of Ig on Cx⃗(Sg). Let (x, f) ∈ E2
1,1 be a class such that

rkVi,k(x) ≤ 1 for all 1 ≤ i ≤ 8 and 0 ≤ k ≤ 1. Then there is a relation in E2
1,1 given by

(x, f) =
m∑
ℓ=1

λℓ(yℓ, fℓ)
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such that λℓ ∈ Q, rkVi,k(yℓ) ≤ 1, and θ(V)i,j,k(yℓ) ≤ 1 for all 1 ≤ ℓ ≤ m, 1 ≤ i, j ≤ 8, and

0 ≤ k ≤ 1.

Proof. Let maxalg(x) = max1≤i,j≤8 |θ(V)i,j,0(x)|. Since θ(V)i,j,0(x) = −θ(V)i,j,1(x), we

only need take the maximum for k = 0. Let nummaxalg(x) denote the number of pairs

1 ≤ i < j ≤ 8 such that |θ(V)i,j,0| = maxalg(x). The proof proceeds by double induction

on maxalg(x) and nummaxalg(x).

Base case: maxalg(x) ≤ 1. In this case, the relation in the lemma is the trivial relation

(x, f) = (x, f), so the lemma holds.

Inductive step: the lemma holds for all y ⊆ Xg with either maxalg(y) < maxalg(x) or with

both maxalg(y) ≤ maxalg(x) and nummaxalg(y) < nummaxalg(x). By Lemma 6.1.7,

there is a linear combination

f =
m∑
ℓ=1

fℓ

such that each fℓ ∈ Ayℓ , where yℓ ∈ algshrinkV(x). By definition, each yℓ shares a 2–cell

σℓ with x, and fℓ ∈ Aσℓ
. Let zℓ denote the third edge of σℓ. Then there is a relation in E2

1,1

given by
m∑
ℓ=1

d12,1(σℓ, fℓ) =
m∑
ℓ=1

(x, fℓ) + (yℓ, fℓ)− (zℓ, fℓ) = 0.

By rearranging terms and applying the fact that f =
∑m

ℓ=1 fℓ, we have

(x, f) =
m∑
ℓ=1

(zℓ, fℓ)− (yℓ, fℓ).

But then yℓ ∈ algshrinkV(x) for all 1 ≤ ℓ ≤ m, so for all 1 ≤ ℓ ≤ m, either maxalg(yℓ) <

maxalg(x) or maxalg(yℓ) = maxalg(x) and nummaxalg(yℓ) < nummaxalg(xℓ), and

similarly for zℓ. Therefore the classes (yℓ, fℓ) and (zℓ, fℓ) are linear combinations of classes

as in the statement of the lemma by the inductive hypothesis, so the lemma holds for (x, f)

as well.

We are now ready to conclude Section 6.1.
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Proof of Lemma 6.1.1. Let W ⊆ E2
1,1 denote the subspace of E2

1,1 spanned by elements

(x, f) where x satisfies rkVi,k(x), θ(V)i,j,k(x) ≤ 1 for all 1 ≤ i < j ≤ 8, 0 ≤ k ≤ 1.

We will show that W = E2
1,1. By Lemma 6.1.4, it suffices to show that (x, f) ∈ W

for any x ⊆ Xg and f ∈ Ax. This follows from Lemmas 6.1.6 and 6.1.8. Now, as a

consequence of Lemma 6.1.2, there is a finite set of edges y1, . . . , yn ⊆ Xg given by all

possible combinations of genera g(H(yℓ)) and choices of rkVi,k and |θ(V)i,j,k| less than or

equal to one, such that any x ⊆ Xg with rkVi,k(x), θ(V)i,j,k(x) ≤ 1 for all 1 ≤ i < j ≤ 8,

0 ≤ k ≤ 1 is in the same G–orbit as some yℓ, so the natural map

⊕
1≤ℓ≤n

IndG
StabG(yℓ)

Ayℓ → W

is surjective. Therefore the map

H0

(
G;
⊕
1≤ℓ≤n

IndG
StabG(yℓ)

Ayℓ

)
→ H0(G;W )

is surjective since H0(G,−) is left exact. Then Shapiro’s lemma says that

H0

(
G;
⊕
1≤ℓ≤n

IndG
StabG(yℓ)

Ayi

)
∼=
⊕
1≤ℓ≤n

H0(StabG(yℓ);Ayℓ).

But then Ayℓ is contained in H1(StabIg(a);Q) for all yℓ, so Ayℓ is finite dimensional for all

yℓ. Therefore H0(StabG(yℓ);Ayℓ) is finite dimensional for any 1 ≤ ℓ ≤ n, so the proof is

complete.

6.2 The Proof of Theorem C

In this section, we will complete the proof of Proposition 1.3.2, which, along with Propo-

sition 1.3.1, completes the proof of Theorem C. For the remainder of this section, unless

otherwise specified, fix a g ≥ 33 and a ⊆ Sg a nonseparating curve, and set x⃗ = [a]. We

will also let Er
p,q denote the equivariant homology spectral sequence for the action of Ig on
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Cx⃗(Sg).

Outline of Section 6.2. We will devote the bulk of the section to proving Lemma 6.2.1,

which is done in Section 6.2.1. The statement of Lemma 6.2.1 requires some notation,

so we defer the statement for a moment. We then use Lemma 6.1.1 and 6.2.1 to prove

Proposition 1.3.2 in Section 6.2.2, and then use Proposition 1.3.2 and Proposition 1.3.1 to

prove Theorem C.

6.2.1 The proof of Lemma 6.2.1

Let V = {v1, . . . , vk} ⊆ x⃗⊥ ⊆ H1(Sg;Z) be a set of primitive elements. Let x ⊆ Xg be an

edge withH(x) = {Hx
0 ,Hx

1}. LetAVx denote the subspace of im(τg) = ∧3H1(Sg;Q)/H1(Sg;Q)

given by

(
im
(
∧3Hx

0 ⊕ ∧3Hx
1 → im(τg)

)
∩ im

(
∧3V⊥ → im(τg)

))
⊗Q.

Let XVg ⊆ Xg denote the subcomplex consisting of cells σ such that H(σ) is compatible

with V , i.e., every v ∈ V satisfies v ∈ H for some H ∈ H(σ). Let E2,V
1,1 denote the image

of the composition ⊕
x∈(XV

g )
(1)

AVx →
⊕

x∈X(1)
g

Ax → E2
1,1

where Ax is as in Section 6.1. If V = {v} is a singleton, we will denote E2,V
1,1 and AVx by

E2,v
1,1 and Av

x respectively. We are now ready to state Lemma 6.2.1.

Lemma 6.2.1. Let V = {v1, . . . , v9} ⊆ x⃗⊥ be a set of primitive elements such that there is

a nonseparating multicurve M ⊆ Sg % a with V = {[c] : c ∈M}. Then the natural map

ξ :
⊕
vi∈V

E2,vi
1,1 → E2

1,1

is surjective.
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The outline of the proof of Lemma 6.2.1. We will prove Lemmas 6.2.2, 6.2.3 and 6.2.6.

The first two lemmas are statements about generating sets for vector spaces equipped with

alternating forms, while the last is a statement about a generating set for the first rational

homology of a certain subcomplex of Xg. In order to prove Lemma 6.2.6, we will prove

Lemma 6.2.4 and Lemma 6.2.5, which are auxiliary results about rational abelianizations

of subgroups and quotients of the Torelli group. We use Lemma 6.2.2, Lemma 6.2.3, and

Lemma 6.2.6 to prove Lemma 6.2.1.

Lemma 6.2.2. Let V be a finite dimensional Q–vector space equipped with an alternating

form ⟨·, ·⟩. Let v1, v2, v3 be elements in V such that the image of the set {v1, v2, v3} under

the adjoint map V → HomQ(V,Q) is linearly independent. Then the natural map

ψ :
⊕

i∈{1,2,3}

∧2v⊥i → ∧2V

is surjective.

Proof. Let B = {a1, . . . , an} be a basis for V such that ⟨vi, aj⟩ = δij . Let

Bi = {a1, . . . , âi, . . . , an},

which is a basis for v⊥i for any i ∈ {1, 2, 3}. The vector space ∧2V has a basis consisting of

pairs of elements in B. Each pair of these elements is contained in at least one Bi. Therefore

im(ψ) contains a basis for ∧2V , so ψ is surjective.

We now extend Lemma 6.2.2 as follows.

Lemma 6.2.3. Let V be a finite dimensional Q–vector space equipped with an alternating

form ⟨·, ·⟩. Let V = {v1, . . . , vn} be a set of elements in V with |V| ≥ 3 such that the image

of V under the adjoint map V → HomZ(V,Z) is linearly independent. Let m ≤ |V| − 2 be
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a natural number. Then the natural map

ψm :
⊕

V ′⊆V:|V ′|=m

∧2 (V ′)⊥ → ∧2V

is surjective.

Proof. We proceed by induction on m.

Base case: m = 1. This is exactly the content of Lemma 6.2.2.

Inductive step: the lemma holds for m′ < m. Let ψm be as in the lemma. By the inductive

hypothesis, the map ψm−1 is surjective. Hence it suffices to show that ∧2
(
W⊥

)
⊆ im(ψm)

for anyW ⊆ V with |W| = m− 1. LetW ⊆ V be a subset with |W| = m− 1. Since we

have chosen m with m ≤ |V| − 2, we have |V \ W| ≥ 3. Hence Lemma 6.2.2 applied to

L =W⊥ and the set V \W says that the map

⊕
v∈V\W

∧2(v⊥ ∩W⊥)→ ∧2W⊥

is surjective. Since ∧2(v⊥ ∩W⊥) ⊆ im(φm) for any v ∈ V \W because |{v} ∪W| = m,

we have ∧2W⊥ ⊆ im(ψm). Hence im(ψm) = im(ψm−1) and the inductive hypothesis says

that im(ψm−1) is surjective, so im(ψm) is surjective as well.

We will now give an explicit description of the vector space H1(Xg;Q).

The Johnson homomorphism, alternate description. Let π(k)
1 (Sg) denote the kth term of

the lower central series of the fundamental group of π1(Sg) (we suppress the basepoint in

the notation, since the choice of basepoint does not affect the construction). The Johnson

homomorphism is a map

τg : Ig → HomZ

(
π1(Sg)/π

(1)
1 (Sg), π

(1)
1 (Sg)/π

(2)
1 (Sg)

)
.

If γ ∈ π1(Sg) is a loop and f ∈ Ig is a mapping class, then τg(f)(γ) = γ−1f(γ), where the
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element γ−1f(γ) is only defined up to conjugation by π1(Sg). Johnson showed that this is

well defined as a map π1(Sg)/π
(1)
1 (Sg)→ π

(1)
1 (Sg)/π

(2)
1 (Sg). Now, if ω′ ∈ ∧2H1(Sg;Z) is

given by a1 ∧ b1 + . . .+ ag ∧ bg for {ai, bi}1≤i≤g a symplectic basis for H1(Sg;Z), then the

Johnson homomorphism can be rewritten as a map

τg : Ig → HomZ
(
H1(Sg;Z),∧2H1(Sg;Z)/Zω′

)
.

This description of the Johnson homomorphism allows us to prove Lemma 6.2.4. IfW ⊆

H1(Sg;Z) is a set of elements, recall that XWg ⊆ Xg denotes the subcomplex of Xg gen-

erated by elements σ such that H(σ) is compatible with W , i.e., for each w ∈ W there

there is an H ∈ H(σ) such that w ∈ H. If α1, β1, . . . , αg, βg are a symplectic basis for

H1(Sg;Z) with x⃗ = α1, let ω′a = α2 ∧ β2 + . . .+αg ∧ βg. If V ⊆ H1(Sg;Q) is a subspace,

let XV
g denote the subcomplex of Xg consisting of cells x such that V ⊆ H ⊗Q for some

H ∈ H(σ).

Lemma 6.2.4. Let g ≥ 4 and let a ⊆ Sg be a nonseparating simple closed curve. Let

x⃗ = [a]. Then there is an isomorphism τg : H1(Xg;Q) ∼= ∧2x⃗⊥ ⊗ Q/Qω′a. Furthermore,

this isomorphism is functorial in the following sense. Let W ⊆ x⃗⊥ be a set of elements

such that g(W⊥ ∩ x⃗⊥) ≥ 1. Then im(H1(X
W
g ;Q) → H1(Xg;Q) → ∧2x⃗⊥ ⊗ Q/Qω′a)

contains im(∧2(W⊥ ∩ x⃗⊥)⊗Q→ ∧2x⃗⊥ ⊗Q/Qω′a).

Proof. Since g ≥ 4, the complex Cx⃗(Sg) is 1–acyclic by Theorem B. Therefore the last

three terms of the five term exact sequence associated to the equivariant homology spectral

sequence for the action of Ig on Cx⃗(Sg) form a right exact sequence

H1(StabIg(a);Q)→ H1(Ig;Q)→ H1(Xg;Q)→ 0.

We have the following claim.
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Claim. We have im(H1(StabIg(a);Q)→ H1(Ig;Q)) = ker(evalx⃗ ◦τg), where

evalx⃗ : HomZ(H1(Sg;Z),∧2H1(Sg;Z)/Zω′)→ ∧2H1(Sg;Z)/Zω′

is the linear map given by evaluation on x⃗.

Proof of claim. We prove each containment in turn. If f ∈ StabIg(a), we have τg(f)(x⃗) =

0, so f ∈ ker(evalx⃗) and the ⊆ containment holds. For the ⊇ containment, let f ∈ Ig

be a mapping class such that evalx⃗(τg(f)) = 0. Let γ ∈ π1(Xg) be a loop such that γ is

homotopic to a as an unbased loop. Since the choice of representative of x⃗ is arbitrary, we

must have γ−1f(γ) ∈ π(2)
1 (Sg) since τg(f)(a) = 0 by hypothesis. A theorem of Church [9,

Theorem 1.1] tells us that there is some h ∈ Kg, where Kg is the Johnson kernel [12,

Section 6.6], such that ha = f(a), so h−1f(a) = a, and therefore h−1f ∈ StabIg(a).

Johnson [19, Lemma 4A] showed that h ∈ ker(τg), so [h−1f ] = [f ] ∈ H1(Ig;Q), since

im(τg) ⊗ Q ∼= H1(Ig;Q) [22]. Therefore [f ] ∈ im(H1(StabIg(a);Q) → H1(Ig;Q)), so

the claim holds.

Given the claim, we have an exact sequence

H1(StabIg(a);Q)→ H1(Ig;Q)
evalx⃗−−−→ ∧2H1(Sg;Q)/Qω′.

Therefore, it suffices to show that im (evalx⃗) = ∧2x⃗⊥/Qω′a. This is a consequence of

Johnson’s computation of the image of the Johnson homomorphism [19, Theorem 1].

We now use Lemma 5.1.4 to prove the second part of the lemma. In particular, it

suffices to show that any element γ ∧ δ ∈ ∧2W⊥ ∩∧2x⃗⊥ with γ, δ primitive and ⟨γ, δ⟩ = 1

lies in the image of the composition

H1(X
W
g ;Q)→ H1(Xg;Q)→ ∧2x⃗⊥ ⊗Q/Qω′a.

Let x ⊆ Xg be an edge, x̂ a lift of x to Cx⃗(Sg) with one vertex equal to a, and f ∈ Ig
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a mapping class taking a to the other endpoint of x̂. By the construction of the equivari-

ant homology spectral sequence, the class [x] ∈ H1(Xg;Q) is the image under the map

H1(Ig;Q) → H1(Xg;Q) of the class [f ] ∈ H1(Ig;Q). Then by alternate definition of τg

given before the lemma, we have evalx⃗(f) = ωH, where ωH ∈ ∧2H1(Sg;Q) is the charac-

teristic element for someH ∈ H(x). Then for any γ ∧ δ with γ, δ primitive and ⟨γ, δ⟩ = 1,

there is an x ⊆ Xg andH ∈ H(x) with ωH = γ ∧ δ. The set of such γ ∧ δ spans ∧2x⃗⊥⊗Q

by Lemma 5.1.4, so the image of the composition

H1(X
W
g ;Q)→ H1(Xg;Q)→ ∧2x⃗⊥ ⊗Q/Qω′a.

contains im(∧2(W⊥∩ x⃗⊥)⊗Q→ ∧2x⃗⊥⊗Q/Qω′a), so the proof of the lemma is complete.

We will need another auxiliary lemma about the rational abelianizations of the Torelli

groups of surfaces.

Lemma 6.2.5. Let g ≥ 4, and let T0, T1 be two surfaces each equipped with an embedding

ιi : Ti ↪→ Sg. Assume that the following hold:

• each embedding ιi is clean,

• Sg % ιi(Ti) is connected,

• g(Ti) ≥ 3 for i = 0, 1,

• the pullback S of the maps ι0 and ι1 is a connected, smooth manifold,

• Sg % (ι0(T0) ∩ ι1(T1)) is connected, and

• g(S) ≥ 3.

The following commutative square
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H1(I(S, Sg);Q) //

��

H1(I(T1, Sg);Q)

ι1∗
��

H1(I(T2, Sg);Q)
ι2∗ // H1(Ig;Q),

is a pullback square.

Proof. For each Ti, let κi denote the map S → Ti, and let ι denote the composition ιi ◦ κi.

Note that since S is a pullback, we have ι1 ◦κ1 = ι0 ◦κ0, so the definition of ι does not de-

pend on i. Now, since we have assumed that each embedding ιi is clean, we have ιi∗ injective

by a theorem of Putman [37, Theorem B]. The map ι is also clean by hypothesis, and there-

fore the pushforward ι∗ is injective by the same theorem of Putman, so it suffices to show

that im(ι∗) = im(ι0∗)∩im(ι1∗). Lemma 5.1.5 says that that im(I(ιi)∗) = im(∧3H1(Ti;Q)→

∧3H1(Sg;Q)) and im(I(ι)∗) = im(∧3H1(S;Q) → ∧3H1(Sg;Q)). Since the functor ∧3

from Q–vector spaces to Q–vector spaces sends pullbacks of monomorphisms to pullbacks

of monomorphisms, it is enough to show that

im(H1(T0;Q)→ H1(Sg;Q)) ∩ im(H1(T1;Q)→ H1(Sg;Q))

is equal to

im(H1(S;Q)→ H1(Sg;Q)).

This follows from our hypotheses that Sg % ι(S) and Sg % ιi(Ti) are connected, so embed-

ding S and Ti into Sg does not introduce any new relations in H1(S;Q) or H1(Ti;Q).

We now prove the following.

Lemma 6.2.6. Let L ⊆ x⃗⊥ be a free abelian subgroup with g(L) = 2 and dim(L⊗Q) = 4.

Let V = L⊗Q. Let V be as in Lemma 6.2.1. Then the natural map

ψ :
⊕

V ′⊆V:|V ′|=4

H1(X
V
g ∩XV

′

g ;Q)→ H1(X
V
g ;Q)

is surjective.
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Proof. We begin with the following claim.

Claim. The pushforward H1(X
V
g ;Q) → H1(Xg;Q) is an injection, and the image of

this map is sent to ∧2V ⊥ ∩ ∧2x⃗⊥ under the isomorphism H1(Xg;Q) ∼= ∧2x⃗⊥/Qωα from

Lemma 6.2.4.

Proof of claim. Let S1
2 ⊆ Sg be a compact subsurface such that

im
(
H1(S

1
2 ;Z) ↪→ H1(Sg;Z)

)
= V.

Let I1g−2 denote the subgroup of Ig generated by elements that fix ∂S1
2 and restrict to the

identity on S1
2 . Let Cx⃗(Sg, S

1
2) denote the subcomplex of Cx⃗(Sg) generated by curves c

such that c is disjoint from S1
2 . By a result of Kent, Leininger and Schleimer [24, Theorem

7.2], the fibers of the natural map Cx⃗(Sg, S
1
2) → Cx⃗(Sg−2) are all trees, so Cx⃗(Sg, S

1
2) is

homotopy equivalent to Cx⃗(Sg−2). Then by Theorem B, Cx⃗(Sg−2) is at least 1–acyclic, and

thus Cx⃗(Sg, S
1
2) is at least 1–acyclic as well. Therefore the equivariant homology spectral

sequence Er
p,q(I1g−2, Cx⃗(Sg, S

1
2);Q) converges to H1(I1g−2;Q). Hence there is a right exact

sequence

H1(StabI1g−2
(a);Q)→ H1(I1g−2;Q)→ H1(X

V
g ;Q)→ 0.

Since g ≥ 33, we have g
(
S1
g−2 % a

)
≥ 3. Then the inclusion S1

g−2 % a ↪→ S1
g−2 is a

clean embedding (as in Section 4.2), so a theorem of Putman [37, Theorem B] says that

the pushforward mapH1(StabI1g−2
(a);Q)→ H1(I1g−2;Q) is an injection. Hence the above

right exact sequence is in fact exact:

0→ H1(StabI1g−2
(a);Q)→ H1(I1g−2;Q)→ H1(X

V
g ;Q)→ 0.

Furthemore, there is a morphism of short exact sequences
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0 // H1(StabI1g−2
(a);Q)

ρa

��

// H1(I1g−2;Q)

ρ

��

// H1(X
V
g ;Q)

ρ

��

// 0

0 // H1(StabIg(a);Q) // H1(Ig;Q) // H1(Xg;Q) // 0,

where ρa and ρ are the natural pushforward maps. Lemma 6.2.5 says that left square is

a pullback. Furthermore, each map in this square is an injection by the aforementioned

theorem of Putman, so the map cok(ρa) → cok(ρ) is injective. Furthermore, since ρ is

injective, we have ker(ρ) = 0. Then the snake lemma says that there is an exact sequence

ker(ρ)→ ker(ρ)→ cok(ρa)→ cok(ρ).

The map cok(ρa)→ cok(ρ) is injective and ker(ρ) = 0, so ker(ρ) = 0, and in particular we

see that ρ : H1(X
V
g ;Q)→ H1(Xg;Q) is an injection. The second part of the claim follows

from the fact that for any edge x ⊆ XV
g , the characteristic element ωH for any H ∈ H(x)

lies in ∧2V ⊥ ∩ ∧2x⃗⊥ ⊗ Q. This implies that im
(
H1(X

V
g ;Q)→ H1(Xg;Q)

)
is contained

in ∧2V ⊥ ∩ ∧2x⃗⊥. Then the second part of Lemma 6.2.4 gives the containment in the other

direction, so we have equality.

Given the claim, we now continue with the proof of the lemma. The claim says that

H1(X
V
g ;Q) ∼= ∧2[V ]⊥ ∩ x⃗⊥ ⊗Q. Since dim(V ) = 4 and the elements of V have pairwise

trivial algebraic intersection, the set projV ⊥(V) contains at least six linearly independent

elements. Let B ⊆ V be a subset of maximal size with B′ = projV ⊥(B) linearly indepen-

dent. Since we have assumed that each element v ∈ V has trivial algebraic intersection

with x⃗, we have B ⊆ x⃗⊥ ∩V ⊥. Then since |B′| = 6, Lemma 6.2.3 applied to the set B′ and

the vector space V ⊥ ∩ x⃗⊥ with m = 4 says that the natural map

ψ :
⊕

V ′⊆B′:|V ′|=4

∧2(V ⊥ ∩ (V ′)⊥ ∩ x⃗⊥)⊗Q→ ∧2(V ⊥ ∩ x⃗⊥)⊗Q

is a surjection. Then, for any v ∈ B, we have v⊥ ∩ V ⊥ = w⊥ ∩ V ⊥, where w = projV (v),
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so the natural map

ψ :
⊕

V ′⊆B:|V ′|=4

∧2(V ⊥ ∩ (V ′)⊥)⊗Q→ ∧2(V ⊥ ∩ x⃗⊥)⊗Q

is a surjection. We have H1(X
V
g )
∼= ∧2(V ⊥ ∩ x⃗⊥) ⊗ Q by the claim. Furthermore, by

Lemma 6.2.4, we have im(H1(X
V
g ∩ Xv

g );Q) → H1(Xg;Q)) ⊇ ∧2(V ⊥ ∩ v⊥) for any

v ∈ B. Then by substituting in each of these homology groups in the previous equality, we

see that the natural map

ψ :
⊕

V ′⊆B:|V ′|=4

H1(X
V
g ∩XV

′

g ;Q)→ H1(X
V
g ;Q)

is surjective, so the lemma is complete.

We are now almost ready to conclude Section 6.2.1. We will first prove the following

auxiliary result, and then we will prove Lemma 6.2.1.

Lemma 6.2.7. Let (x, f) ∈
⊕

x∈X(1)
g
Ax be a class. There is a linear combination in E2

1,1

given by

(x, f) =
m∑
i=1

(xi, fi)

such that, for each 1 ≤ i ≤ m, each xi has a representative x̂i ⊆ Cx⃗(Sg) and fi has a

representative Fi ∈ StabIg(x̂i). These representatives have the property that there is a

subsurface Ti ⊆ Sg with Ti ∼= S1
2 , Fi supported on Ti, and x̂i disjoint from Ti.

Proof. Let x̂ ⊆ Cx⃗(Sg) be a representative for x. Let S ′, S ′′ be the connected components

of Sg % x̂. We have a surjection I(S ′, Sg) × I(S ′′, Sg) → StabIg(x̂), and hence by the

Künneth formula we have a surjection

H1(I(S ′, Sg);Q)⊕H1(I(S ′′, Sg);Q)→ H1(StabIg(x̂);Q).

Hence we may assume that, without loss of generality, f is represented by a mapping class
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F ∈ I(S ′, Sg). Furthermore, we may assume that g(S ′) ≥ 4. Indeed, if g(S ′) ≤ 3,

then g ≥ 33 implies that there is a 2–cell σ̂ ⊆ Cx⃗(Sg) such that x̂ ⊆ σ̂, and such that

for ŷ, ẑ ⊆ σ̂ the other two edges, the connected component of Sg % ŷ that contains S ′

has genus at least 3, and similarly for ẑ. Then since g(S ′) ≥ 4 ≥ 3, Lemma 5.1.3 says

that I(S ′, Sg) is generated by bounding pair maps. Then bounding pair maps supported

on separating curves vanish in H1(Ig;Q) since Dehn twists along separating curves vanish

under τg. Then Lemma 5.1.5 says that if ι : S ′ → Sg is the inclusion map, the pushforward

I(ι)∗ in H1 is injective, so bounding pair maps supported on separating curves are trivial

in H1(I(S ′, Sg);Q). Hence the class f is a linear combination of classes represented by

bounding pair maps supported on nonseparating curves contained in S ′, so we may assume

that f has a representative Tc,c′ ∈ I(S ′, Sg) for c∪ c′ a bounding pair with [c] ̸= 0. We now

have two cases.

Case 1: [c] ̸= x⃗. We first show that we can assume that no connected component of

S ′ % (c ∪ c′) has genus zero. Suppose otherwise, so one connected component of

S ′ % (c ∪ c′)

is a subsurface P with P ∼= S4
0 . Since we have assumed that g(S ′) ≥ 4 ≥ 3, there is another

curve c′′ disjoint from c ∪ c′ and not equal to c or c′ with [c′′] = [c] and such that both con-

nected components of S ′ % (c ∪ c′′) have positive genus. Now, we have Tc,c′ = Tc,c′′Tc′′,c′ ,

and both c ∪ c′′ and c′′ ∪ c′ satisfied the desired condition on the genera of connected com-

ponents. Now, assuming that both connected components of S ′ % (c ∪ c′) have positive

genus, we can rewrite Tc,c′ as a product of bounding pair maps Tc0,c1Tc1,c2 . . . Tcn−1,cn such

that:

• c0 = c, cn = c′, and

• at least one connected component of S ′ % (ci ∪ ci+1) has genus one.

Hence we may assume without loss of generality that c ∪ c′ is supported on a surface of
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genus one with two boundary components. Then there is a surface T that contains c ∪ c′

and is disjoint from x̂ such that T ∼= S1
2 , as desired.

Case 2: [c] = x⃗. We will reduce to Case 1, by showing that [Tc,c′ ] ∈ H1(I(S ′, Sg);Q) is

a sum [Td,d′ ] + [Te,e′ ] with d ∪ d′ and e ∪ e′ bounding pairs such that [d], [e] ̸= x⃗. As in

Case 1, we may assume that the connected component of S ′ % (c∪ c′) that does not contain

x̂ has genus one. Then by Lemma 5.1.5, we have H1(I(S ′, Sg);Q) ∼= ∧3H1(S
′;Q). By

Lemma 5.1.2, if the connected component S ′′ of S ′ % (c ∪ c′) that does not contain x̂ has

a, b ∈ H1(S
′′;Z) a pair of primitive elements with ⟨a, b⟩ = 1, then the image of Tc,c′ in

∧3H1(S
′;Q) is x⃗ ∧ [b] ∧ [c]. Now, choose nonzero primitive [d], [e] ∈ H1(S

′;Z) such that

[d] + [e] = [c] and [d], [e] ∈ x⃗⊥ ∩ [b]⊥. Then we take Td,d′ and Te,e′ bounding pair maps in

I(S ′, Sg) such that [Td,d′ ] = x⃗ ∧ [b] ∧ [d] and [Te,e′ ] = x⃗ ∧ [b] ∧ [e].

We are now ready to conclude Section 6.2.1.

Proof of Lemma 6.2.1. Let (x, f) ∈
⊕

x∈X(1)
g
Ax be a class, where x ⊆ Xg is an edge and

f ∈ Ax. Let x̂ be a lift of x to Cx⃗(Sg) such that a is a vertex of x̂. We will show that the

image of (x, f) in E2
1,1 is contained in im(ξ). By Lemma 6.2.7, it suffices to prove the result

in the case that f is represented by a bounding pair map F ∈ StabIg(x̂) and that there is an

inclusion ι : S1
2 ↪→ Sg such that x̂ is disjoint from im(ι) and F is supported on im(ι). Let

V = im(ι∗). By Lemma 6.2.6, there is a linear combination in H1(X
V
g ;Q) given by

[x] =
n∑

i=0

λi[xi]

such that each xi is contained in XV ′
g ∩ XV

g for some V ′ ⊆ V with |V ′| = 4. Since each

xi ⊆ XV
g , we have f ∈ Axi

for each xi, and thus there is a linear combination in E2
1,1 given

by

(x, f) =
n∑

i=0

(xi, f).

Hence it is enough to prove the result in the case that x ∈ XV
′

g for some V ′ ⊆ V with
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|V ′| = 4. Let H(x) = {Hx
0 ,Hx

1} and, without loss of generality, assume V ⊆ Hx
0 . Now,

if V ′ ̸⊆ Hx
0 for i = {0, 1}, we have (x, f) ∈ E2,v

1,1 for any v ∈ V ′. Otherwise, the vector

spaceHx
0 ⊗Q and the set V ′ satisfy the hypotheses of Lemma 5.1.8. Hence there is a linear

combination

f =
m∑
j=1

λjfj

where each fj ∈ ∧3(Hx
0 ∩ v⊥i )⊗Q for some vi ∈ V ′. Hence in E2

1,1, we have

(x, f) =
m∑
j=1

λj(x, fj)

with each (x, fj) ∈ E2,v
1,1 for some v ∈ V ′ ⊆ V . Therefore we have (x, f) ∈ im(ξ) as

desired.

6.2.2 The proof of Theorem C

We begin by proving Proposition 1.3.2, which says that E2
1,1 is finite dimensional.

Proof of Proposition 1.3.2. Let G = im(Mod(Sg % a) → Sp(2g,Z)). We will show that

the hypotheses of Proposition 4.1.1 are satisfied for the G–representation E2
1,1 with d = 9.

The first hypothesis is the content of Lemma 6.2.1 and the second is the content of Lemma

6.1.1, so E2
1,1 is finite dimensional by Proposition 4.1.1.

We are now ready to complete Section 6.2.

Proof of Theorem C. Let g ≥ 33 and E∗∗,∗ denote the equivariant homology spectral se-

quence for the action of Ig on Cx⃗(Sg). As a consequence of Theorem B, Er
p,q converges

to H2(Ig;Q) for p + q = 2. Hence it suffices to show that E2
2,0 and E2

1,1 are finite dimen-

sional. The vector space E2
2,0 is finite dimensional by Proposition 1.3.1 and E2

1,1 is finite

dimensional by Proposition 1.3.2.
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CHAPTER 7

THE PROOF OF THEOREM A

7.1 The proof of Theorem A

We now prove Theorem A, which we recall says that H2(Ig;Q) is finite dimensional for

g ≥ 33. We will begin by proving Lemma 7.1.1, which is an alternate proof of a corollary

of a result of Kassabov and Putman result [23, Theorem A]. We will then use Theorem C

along with Proposition 4.1.1 to prove Theorem A.

Lemma 7.1.1. Let g ≥ 3. The vector spaceH0(Sp(2g,Z);H2(Ig;Q)) is finite dimensional.

Proof. Let Er
p,q be the Leray–Serre spectral sequence associated to the short exact sequence

1→ Ig → Mod(Sg)→ Sp(2g,Z)→ 1.

The vector space H2(Mod(Sg);Q) is finite dimensional [12, Section 5.4]. Then since

H1(Ig;Q) is finite dimensional [20], the modules E2
p,q = Hp(Sp(2g,Z);Hq(Ig;Q)) are

all finite dimensional for q ≤ 1 [39, Corollary 3]. Hence both the image and the kernel of

the pushforward map

H0(Sp(2g,Z);H2(Ig;Q))→ H2(Mod(Sg);Q)

are finite dimensional, so H0(Sp(2g,Z);H2(Ig;Q)) is finite dimensional.

We now prove the main result of the thesis.

Proof of Theorem A. Let G = Sp(2g,Z) and V = H2(Ig;Q). We will show that the G–

representation V satisfies the hypotheses of Proposition 4.1.1 for d = 1, and hence is finite
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dimensional. The first hypothesis is that for any primitive v ∈ H1(Sg;Z), the cokernel of

H2(Ig;Q)Tv → H2(Ig;Q)

is finite dimensional, which is the content of Theorem C. The second is that H2(Ig;Q)G is

finite dimensional, which is the content of Lemma 7.1.1. Hence Proposition 4.1.1 says that

H2(Ig;Q) is finite dimensional for g ≥ 33, as desired.
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