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1 Introduction

In 2021, T set up a Wordpress blog on my undergraduate webpage with the intent to post math content
there. I didn’t write more than three or four posts. One of these posts, however, I considered to be quite
good content, even if it was blatantly unfinished. Meanwhile, some software update or incompatibility has
taken the original blog down. I've been able to obtain a copy of my post from the Internet Archive. For
safekeeping, this document is a direct transcription of this post (and a prerequisite post) to ITEX form, with
all the blemishes and issues of the original format. It is my hope to one day make a more refined document,
but odds are I'll put it off for a few more years yet.

2 On the Visualization of Dual Space

August 8, 2021

This post talks about visualization of the dual space V*. To read it, you need to know what a vector
space is. If you don’t, this post is not for you.

This post is loosely based on the excellent book Geometrical Vectors by Gabriel Weinreich, which is
about visualization of vectors and covectors, as well as On the Visualisation of Differential Forms by Dan
Piponi, which is a random PDF I found online but thought was great.

Without further ado,

The Dual Space and Weird Vectors

In all that follows, V refers to a finite-dimensional real vector space.

2.1 Motivation

In our experience, a vector is an arrow, pointing from the origin to some point. Of course, the fact that
it starts at the origin is just convention of notation on our part: we could “place the vector anywhere”, as
long as it points in the same direction and has the same length. If we transform our space in some way, the
vector is transformed in the same manner.

Let me elaborate on that last sentence for a moment. Let us imagine that I have a map of my bedroom,
in which I have outlined the position of the chair I am writing this on, as well as my bed pillow, represented
below as A and B. Let us suppose that the scale of the map is in meters (this is important!) Represented
below is also the vector going from A to B, which we will henceforth call /.
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Figure 1: Schematic representation of my bedroom. Each grid square is 1m on the side.

Now, let us suppose that I decide to draw this map, but change the scale of the map. For example,
suppose I scale the x axis by a half, so that x is now measured in 2 x m. Then, everything in the map gets
scaled, including the vector:

AY (m)
B'=(2.5,3)
v =(1.5,2)
A= (1,1)
x (,Zm)

Figure 2: Still my bedroom. Now, each tick corresponds to “1” on the scale. A y tick is 1m, and an x tick
is 2m.

Note: Pay attention to the difference between the map and the territory. I only rescaled the map: my
actual bedroom has not been compressed. The coordinates of the points A and B, or A’ and B’ correspond
to coordinates on the page, not in real life.

Now, to be perfectly rigorous, every time I make a rescaled map I should be giving a new name to the
points. However, I would end up with something like A”” in no time, so I'll just stop worrying about it.
Just keep in mind that in each map I'm considering different points.

Anyhow, I could keep doing transformations on this map, but nothing would be surprising. If I rotate
the axes, or pick a different basis, the vector ¥ will always point from A to B, as it should. The trickiness
starts when I consider some kind of vector that does not represent a displacement between two points.

One of the simplest possible examples is a slope vector. Suppose I set up a straight ramp, so that I can
roll marbles from my head down to my pillow. I can represent the slope of this ramp by a vector s, which
points in the “downhill” direction, and whose magnitude is the slope (Az/A¢, where z is the height and ¢ is
how far along the ramp I am). For example, if my ramp decreased a total of 32 + 22 = 13 meters (I have a
very tall room), then § would be pointing in the AB direction and have magnitude v/32 + 22. Schematically,
we get a familiar looking picture.



Figure 3: In blue: My ramp, as seen from above. The light blue lines are level sets: one for every meter
descended.

Figure 4: A 3D render of the previous figure.

[If you're thinking about s as minus the gradient of h(x,y), you're not too far off, but hold your horses
for the moment.]

What can I do, and what do I want to do, with this s vector? I can use it to calculate the force a ball
feels when placed on the ramp, or the vector (in R3) orthogonal to the ramp, but both of these are specific
cases of something more general: we want to recover the shape of the ramp from the s vector.

To be more specific, we want to solve the following problem: Given the s vector, which encodes the
direction and slope of the ramp, we want to recover the function h(z,y), which given a point (z,y) returns
the height of the ramp at that point.

Note: Since the s vector only gives us information about the slope, we cannot expect to fully determine
h. Therefore, we will establish that at A the ramp is at a known height hg. Furthermore, in order not to
worry about the domain of h, let us assume that the ramp has been extended to cover the whole space.

The solution to our problem is not particularly difficult. The graph of h is a plane, so h must be of the
form

h(z,y) = ax + by + c.

Since h(A) is known to be hg, we can write this in a more convenient manner
h(p) = (a,b) - (p = A) + ho.

To find (a,b), recall first that the vector (a,b) is orthogonal to level sets. Looking at the figure above,
we find that s is also orthogonal to level sets (this is in fact what we meant when we said “s points in the
downhill direction”), so that (a,b) = as for some real number «.



To discover «, we can use the fact that h(B) is known, plugging h(B) = ho — 13 to get
as-(B—A)=-13.
Since s = B — A in our coordinate system and ||B — A|| = v/13, we conclude o = —1, hence
h(p) = ho — s (p — A).

Slightly more generally, it is a trivial exercise to show that h(p) — h(q) = —s - (p — q), so in some sense,
the s vector serves as a ruler which which one can measure height differences. This is, in fact, an apt way to
think about s.

Our definition of h, and the way we are thinking about s, is very closely related to the euclidean inner
product. The inner product has an important property: while it behaves well under isometries, it gets
distorted under other changes of coordinates. For example, if we rescale the whole map by a factor of 1/2,
and s along with it, the above formula for h(p) ceases to work. For example, h(B) (recall that in rigour I
should be writing B’) is meant to be equal to hg — 13, but if s’ is the rescaled vector we get

1
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Figure 5: Rescaled map of my ramp.

As we can see, this yields the wrong result. As it should, of course: if we scaled both (B — A) and s by a
factor of %7 the term (B — A) - s will have gotten smaller by i. The obvious way to fix the problem would,
in fact, be to scale s up by a factor of 2, while everything else got scaled down by % We can see this same
phenomenon in other changes of variable. For example, suppose we scaled only the x axis in the original
map, so the x axis is measured in 2 X m and the y axis in m. We represent below the “naively scaled” vector
s’, as well as a vector § which has been scaled the opposite way: that is, its z coordinate was doubled instead
of halved.



Figure 6: My ramp. s’ is the vector s scaled as the referential, § is the vector scaled inversely. Level sets of
the ramp extended for clarity.

Looking at the image, it is not immediately obvious why § is “the way we want s to scale”. After all, it’s
pointing in a completely different direction. However, it is “the right vector” to ensure that the definition of
h doesn’t change: otherwise, we’d need to change the inner product.

This notion of “scaling differently” is at the heart of the idea of a covector. It is kind of like a vector,
but it behaves very differently under changes of coordinates. And this change is made in order to retain a
very specific aspect: if the vectors of the vector space V' are scaled in some manner, the covectors are scaled
“inversely” in order to preserve inner products between vectors and covectors!

In this manner, the role of covectors is to “be inner product’d with vectors”. In some sense, the “most
natural setting” for the scalar product of two vectors is actually between a vector and a covector, because it
becomes independent of our coordinate system. The way we scale covectors relative to vectors will ensure
that the scalar product is independent of the chosen basis.

But then, the notion of scalar product becomes somewhat superfluous. If all we're going to do with
covectors is to use them to obtain numbers from vectors (and add covectors to each other and stuff), we
might as well define a covector as a thing that turns vectors into numbers. But this is precisely the notion
of dual vector: that is, an element of the dual space.

Recall the definition of dual space: V* is the set of linear functions from V' to R (or whatever field the
vector space is over).

In conclusion: if V is a vector space, we use the name vector for elements of V', and covectors for elements
of V*.

2.2 How it fits together

Let us now recall elementary linear algebra to figure out how to make sense of the relation between this
notion of covector and the scaling properties mentioned before.

First of all, how to represent a covector A in coordinates? Since a covector is a different kind of object from
a vector, fixing a basis of vectors eq,...,e, in V does not allow us to represent A in as a linear combination
of the e;.

There are two distinct but equivalent ways to handle the subject matter.

2.2.1 The Dual Basis

1 n

This is the simplest way. Given a basis ey, ..., e,, we define the so-called dual basis w", ... ,w™ as:

w'(e;) = di;, or equivalently wi(z rje;) = x;.
J



Then, any covector A can be written as a linear combination of the w*, as

Az) = A (Z :Eiei> = (Z wi(z)ei) = Z Aey)w'(z),

whence A = > A\(e;)w?. Therefore, we can consider the i-th coordinate of A in some basis as A applied to
the i-th vector of this basis.

Bonus: Compare the following three formulas to write a vector or a covector in coordinates. The first
is the usual formula for the coordinates of a vector in orthonormal coordinates (assuming V' has an inner
product), while the other two write a vector in the basis e; or a covector in the dual basis w?.

v = Z (v, e;) e,
v = Zwi(v)ei,
A= Z)\(ei)wi.

2.2.2 Matrix Form

This form is slightly more enlightening, because as well as telling us what the coordinates are, it also tells
us how they should be organized.

Recall from linear algebra that when we record the coordinates of a vector in some basis we do so in
column-matrices.

Recall also that given a linear transformation T: V — W, a basis of V' and a basis of W, we record the
“coordinates” of T in a matrix. This matrix is of size dim W x dim V.

As it turns out, the convention of writing vectors as column-matrices can be seen as a particular case of
this process: to specify an element of W is the same as to specify a linear transformation R — W, yielding
a matrix of size dim W x 1. It stands to reason that a dual vector, which is a linear transformation V" — R,
should be represented as a vector of size 1 x dim V'; in other words, a row-vector!

What should the coordinates be? In this, we find the same answer as before (which is why the two points
of view are equivalent). Recall from linear algebra that in order to represent T as a matrix, one must first
specify a basis {vi} of V and a basis {wy} of W, and the ij-th element of said matrix is the j-th coordinate
(in W) of Tw;. In our case, W is R, and the most natural basis is the single vector 1, and so we conclude
that (given a basis eq, ..., e, of V) it is natural to represent a covector A in coordinates as the row-matrix

[Aer) .o Aen)]-

This representation has two benefits. One, it reminds us that vectors and covectors are fundamentally
different objects, which could be lost on us if we represented both as mere sequences of numbers. Two, it
leads to a nice identity for application of covectors in local coordinates. Given a vector space V', some basis,
a vector v and a covector A, let © and \ be their coordinate representations. Then, the following identity
holds:

A(v) = AD.

2.2.3 Coordinate Changes

To conclude this section and move on to more visual stuff, let us discuss how covectors (or rather, their
representations) change under changes of basis.

Let e1,...,e, and f1,..., f, be two different bases of V. Given v € V or A € V*, denote by v, the
coordinates of v in the e basis, and likewise for A or f.

Let B be the matrix whose j-th column is the coordinates of f; in the e basis. Then, linear algebra
relates the representation of a vector in both bases by



ve = Buy.

How does it relate the representation of A, and Af? From the identities we have already deduced, we
conclude

>‘f = [/\(fl) )‘(fn)] = [/\e(fl)e )\e(fn)e]v

and from a little bit of matrix block multiplication we reach the conclusion

A=A [(f1)e v (fa)e] = AeB.

Compare the two formulas:
ve = Buy, A= A\;B7L.
The formulas are identical, except that B has been sent to the other side and inverted. This is as it
should be, as it ensures that the formula A(v) = Acve holds in any basis, as

AeVe = A\ B By = A vy

This last argument can be used as a mnemonic in a pinch to deduce how coordinates of covectors ought
to change in order to “preserve the dot product”.

Recall that we are representing the coordinates of the covector as a row-matrix. Note how, if we rep-
resented them in a column-matrix, the formulas would become slightly more awkward. The coordinates
represented in a column-matrix are given by (A¢)T and (A;)T, and so we conclude

(Ae)T = (B7H)T(Ap)T,

in other words, if the vector coordinates have changed by B then the covector coordinates have changed
by (B~1H)T.

2.2.4 Visual Representationss

All this discussion is fine and all, but it doesn’t help us “see” covectors. I don’t know about you, but I have
a hard time imagining covectors as arrows which “just scale differently”. For one, using equal-looking arrows
to represent two distinct kinds of vectors is inconvenient, and visualizing how they change upon distortion
of the space is troublesome. Fortunately, this is only because arrows are the wrong tool for the job: there’s
another, more convenient way to represent covectors visually.

Let’s look at the covector s from our initial discussion again, and how it changes under a coordinate
change.

AY (m)

Figure 7: s in the original coordinates
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Figure 8: s when z is scaled down by %

To visualize how our covector changes we need to find its new direction and the new magnitude. Let’s
focus on direction first.

In the original coordinates, s pointed straight from A to B, but upon coordinate change that stopped
happening, so “direction” in the usual sense is not reliable. However, if you’ll look closely, you’ll find
something that hasn’t changed when we changed coordinates: s is orthogonal to the level sets.

This suggests a relation between s (or rather, its representation) and these level sets. In retrospect, this
shouldn’t be surprising: recall that we originally defined s as a vector that represents the slope of my ramp
(or, more abstractly, of a plane).

The connection goes a little bit deeper, however. Recall: What do we do with covectors? The answer:
apply them to a vector to get a number. And while the inner product of vectors has an okay geometrical
interpretation (project one vector onto the other and take the product of lengths), the product of a vector
with a covector can be even more visual. For example, let us create a point C' about a third of the way down
the ramp, and let us calculate h(C) using the formula h(p) = hg — s (p — A), or, as we should be writing it
if we’re seeing s as a covector,

h(p) = ho — s(p — A).

Figure 9: Orange: the vector @ = (1,1); The level sets which intersect this vector are highlighted.

There are two ways to calculate h(C). One of them is simply calculating:

h(C) = ho — (3,2) - (1,1) = ho — 5.



Another is to look at the level sets. The vector 1@ intersects five level sets (not counting the one at A),
and so we conclude that h “has decreased by 5 steps on the way from A to C”. In other words, given a vector
v we can calculate s(v) by inspecting how many level sets v passes through. This shouldn’t be surprising:
after all, by definition these level sets measure the change in s.

This suggests a change in perspective: instead of visualizing a covector as an arrow, it is best to visualize
it as the collection of its level sets. In our two-dimensional case, we visualize s as a collection of parallel
lines. In n-dimensional space, we can imagine a covector A as a collection of hyperplanes. To evaluate A(v),
one counts how many of these hyperplanes of A the arrow v crosses.

There are a few loose ends which still need to be tied up. First of all, to specify the level sets isn’t enough:
one needs to specify in which direction the numbers get bigger. But that’s just a matter of specifying an
orientation.

Second: The interpretation of “applying a covector to a vector is just counting intersections” is pretty
cool, but comes with a lot of asterisks. If you only draw the level sets corresponding to the integers, you
don’t have enough resolution for non-integral results; you can’t have, say, 3.5 intersections between a vector
and a collection of hyperplanes.

To fix this last problem we change our perspective. Instead of drawing a discrete collection of hyperplanes,
imagine infinitely many, with an infinitesimal distance § between each of them. In order to evaluate the
covector on a vector, we count how many planes the vector crosses, with the caveat that each plane counts
only e, where this is another infinitesimal number. This isn’t a rigorous visualization, of course; there’s no
such thing as infinitesimal (real) numbers. But if we play a bit loose with rules, it works.

Here’s how the visualization works under transformations. If we distort space, every hyperplane still
counts for e, but the hyperplanes themselves are rotated or squished together or torn apart. Since they
represent level sets of the covector, they will always remain a faithful representation of it, and we will always
be able to imagine evaluating the covector on a vector as counting the number of planes it intersects (times
€).

Finally, in practical terms, we will only draw a few of these hyperplanes, leaving the job of picturing the
infinity of them with tiny spaces between them to the reader.

2.3 Summary

We have determined that, when measuring slopes in a coordinate-independent way, the notion of covector
is more robust with regard to coordinate changes than a “regular” vector.

A covector can be defined as a linear transformation from V' to R. This makes sense intuitively (because
to measure a slope is to assign a height to each number) and formally (because the coordinates scale as we
want them to).

We can visualize such covectors, not as arrows, but as stacked (oriented) hyperplanes, an infinity of them
an infinitesimal distance from each other. Under this picture, evaluation of a covector on a vector amounts
to counting how many hyperplanes the vector crosses.

2.4 Closing Remark

For another example of where covectors are useful, see p. 7 of Geometrical Vectors, where the author
discusses an application of covectors to electromagnetism.

While the presented method of visualizing covectors has its benefits, one place it fails is in visualization
of vector space operations: you can’t “add” hyperplanes.

There are ways around this, though they aren’t as simple as addition of vectors “just put the tail of one
on the head of the other”. To learn more, take a look at Geometrical Vectors, mentioned in the introduction.

Vectors and covectors aren’t the only type of vector out there. Geometrical Vectors talks about plenty
more. It refers to vectors as arrows and covectors as stacks, and includes thumbtacks, sheaves, and more.



3 On the Visualization of Differential Forms

September 8, 2021

This post talks about visualization of differential forms on differential manifolds. It is aimed at a reader
who is in the process of learning about differential forms (or who already has), but who has not seen any
visual intuition for what they are.

This post has as a prerequisite [the above] post on the visualization of the dual of a vector space, which
(hopefully) motivates a very simple particular case of what will be described in this post.

The references therein mentioned still apply, but mostly On the Visualisation of Differential Forms by
Dan Piponi, on which most of this post is based.

This post is intended for purely illustrative purposes. We will not yet examine how this “formalism” is
equivalent to the standard notion of differential form, nor will we turn our “proofs” and “definitions” into
rigorous arguments. That is the content of a future post,' in which we will show how the visualizations we

will build here tie into the symbolic garbage usually called “tensor algebra”.?

3.1 Differential Forms

In all that follows, M denotes an n-dimensional smooth manifold, for some non-negative integer n.

3.1.1 Motivation (n-form)

Before defining the notion of differential form, it is first useful to consider what problem we intend to solve.

The problem at hand is that of integration. We already know how to differentiate maps between differ-
ential manifolds, and now we wish to find out how to integrate them. Unfortunately, by itself this is not
possible.

For example, consider the constant function equal to one on the unit sphere S2. Its integral really ought
to be the surface area of the sphere, 47. On the other hand, the unit sphere is diffeomorphic, and therefore
indistinguishable as a smooth manifold, from the radius two sphere, which we will call 252. But integrating
1 on the latter yields a different result: 16w. What gives?

The obvious answer is that we shouldn’t be integrating the 1 function, but rather the function i, because
the diffeomorphism between S2? and 252 “spreads out the function”. And while this is legitimate intuition,
that’s just not how functions “go across diffeomorphisms”. We need to consider some other kind of object.

Let’s inspect the “physicist’s way” of approaching integration. First, one divides the domain of discourse
into many small rectangles, whose area we know how to calculate. Then, for each square, one multiplies the
value of on that rectangle by its area . Finally, one sums over all the tiny squares, which we represent by a
tall S in a familiar way as [ fdA.

How does this “approach” fail on smooth manifolds? The problem is that we don’t know how to measure
the areas of the tiny rectangles. Indeed, the notion of area is not conserved when we change charts, so
we cannot simply “measure the area of the rectangle in coordinates”, because this area depends on the
coordinates chosen.

Consequently, in order to define integration, we need to add additional structure. For each point x in
our manifold M, we need to know how to measure areas of tiny rectangles in a coordinate-free way. The
apparatus that allows us to do so is precisely the differential form: it receives an “infinitesimal parallelogram”
(represented by its edges given as tangent vectors) and returns its area (or rather, its area “scaled up” as
not to be infinitesimal).

1 Author’s note: This never happened.

2 Author’s note: I was feeling particularly sour at the subject after my geometry teacher at the time urged me to stop trying
to visualize differential forms. “Not everything can be visualized”, he said. “I spent a lot of time visualizing all Lie groups I
saw, and it wasted a lot of my time and didn’t end up being useful”; he said. Yes, I am still feeling a little sour. But the point
is, at the present time I would no longer describe tensor algebra as “symbolic garbage”.
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Figure 10: The relation between a parallelogram (orange) and the tangent vectors that represent it. Since
our parallelogram is infinitesimal, we work not with its edge-vectors, but rather we rescale these up by a
factor “1/e”, where € is a previously fixed infinitesimal number. In other words, the vectors v; and vy
represent a parallelogram with sides of order ¢ and area of order 2.

This, by itself, is enough motivation to define a differential form as “something that takes n tangent vectors
and returns a number”, and it is very natural to require multilinearity and skew-symmetry. However, we
have not yet reached a useful visualization.

To proceed, let us imagine that our manifold is some kind of physical object, composed of many tiny
pieces like “atoms”. Then, there is an unambiguous way to measure some kind of area on the manifold:
given some shape, one can count how many atoms lie in this shape. Then, assuming the atoms are uniformly
distributed in some sense, one must only multiply the atom count by some scaling factor to obtain “the area”
of the shape.

This thought experiment shows that a “manifold made of atoms” has a canonical way of measuring area
(modulo a scaling factor). Therefore, it might be worth toying with the idea of representing a differential
form by “a cover of the manifold by atoms”.

We then make the following “definition”: a differential form on M is a cover of M by an infinitely dense
mesh of points. To calculate the area of a set A C M, we count the number of atoms in A, and multiply by
an appropriate infinitesimal number.

The biggest benefit of this point of view is that it behaves naturally with regard to rescalings. In other
words, if we apply a diffeomorphism to the manifold that scales everything up in some manner, we are also
scaling up the spaces between the atoms (but not the weight of the atoms themselves!). Therefore, area is
conserved.

Equivalently, this point of view allows for coordinate-independent measurement of area, as any distortion
between two charts of M will imply an equal distortion of the “atoms”, and again area is conserved.

11
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Figure 11: Visual representation of some 2-forms in R2. The blue points represent “negative atoms”, which
count negatively towards the atom count. To (approximately) measure the integral of each of these forms
over a set U, simply count the amount of atoms in U.

3.1.2 Other Order Forms

Now that we have solved the problem of area measuring, what comes next? Why are other dimension forms
necessary?
At the most elementary level, forms of dimensions other than n appear in the statement of the generalized
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Stokes theorem (we will henceforth drop the “generalized” from the name). This is an important theorem,
having as particular cases the divergence and Green’s theorem, which are very useful tools of calculation.
Therefore, I hope the reader will agree that the study and proof (“proof”) of this theorem is a worthwhile
endeavor.

If the reader is not yet familiar with the Stokes theorem, they may have some trouble understanding the
following few paragraphs. However, I hope that the subject matter will become clearer over time. In any
case, I suggest that such a reader would continue linearly until we state and “prove” the Stokes theorem,
and then return here and reread this part with more context.

The statement of the Stokes theorem relates the integral of a form w on the border of a set U with the
integral of its “derivative” dw on the interior of U, with the usual statement being cleanly written as

/ w:/dw.
ouU U

Setting aside for now the “derivative” part of the statement, there is something we first have to touch. What
kind of object does w have to be for us to integrate it on QU? It cannot be a differential form as we have
described them, because if we fill the space with a very fine grid of atoms, it is very unlikely that any of
them lie exactly on the border of U.

Figure 12: The set U and its border, QU, the integrals over which the Stokes theorem relates.

In other words, we seek to solve the following problem. We have already concluded that the kind of
object used to integrate over n-dimensional sets and measure n-dimensional area is “covers of the space with
points”. However, this is not adequate to integrate over k-dimensional sets, with k& < n, i.e. k-dimensional
submanifolds of M. Therefore, we wish to discover what kind of object will allow us to naturally define
integrals on k-dimensional submanifolds of M.

From now on, let N be a k-dimensional submanifold of the n-dimensional manifold M.

The algebraic point of view presents itself rather naturally. Recall that the algebraic definition of a
differential form is a thing that takes n tangent vectors to the same point and returns a number. We want
to define an object on M which can be “restricted to N”, becoming an object which takes k vectors tangent
to N and returns a number. It is then natural to define a “k-form on M” as an object which takes k tangent
vectors at the same point of M, and the restriction to N becomes simply the restriction of w to the collection
of vectors tangent to V.

13



Let us now go from the algebraic point of view to the pictorial one. A k-form receives k vectors, forming
the edges of an infinitesimal parallelogram of dimension k. For example, if n = 3, this means that we are
considering an infinitesimal line segment or rectangle, instead of a cube.

If you’ve seen my other post on the dual space, you should already be familiar with a way to visualize a
covector, a thing that receives a vector and returns a number, as a collection of hyperplanes. This carries
over to the notion of 1-form, which is also a thing that recieves a vector and returns a number. Indeed, we
can visualize a 1-form as a collection of hypersurfaces (surfaces of dimension n — 1) on our manifold, and
evaluating 1 on a vector consists of counting how many of these hypersurfaces intersect the given vector.
Note the similarities:

n-form w 1-form 7
Collection of points Collection of hypersurfaces
(0-dimensional) ((n — 1)-dimensional)
To evaluate on a collection of To evaluate on a vector, count
vectors, count how many points how many hypersurfaces
are in the parallelogram intersect it
spanned by them

Now, it may not be obvious with only two data points, but I propose the following visualization of the
intermediate steps: Visualize a k-form as a collection of (n — k)-planes.
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Yields a 2-form on NV

Figure 13: A visualization of the restriction process of a k-form to a k-submanifold

Under this visualization, to evaluate such a k-form w on a collection of vectors is to count how many of
these (n — k)-planes intersect the k-parallelogram spanned by these vectors. The dimensions check out: in
general, the intersection between two objects of dimension a and b is an object of dimension a + b — n, and
if a =n — k and b = k, this means that these intersections will often be 0-dimensional points.

As a bonus, our original goal is also met. Indeed, if the k-form w consists of covering the space in
(n — k)-planes, the restriction of w to a submanifold N consists simply of taking the intersection between
these planes and N. As in the previous paragraphs, these intersections will often be points, and so we recover
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a differential form (of dimension k) on N.

3.2 The Bad and the Ugly

There are two big details we have been neglecting, and will keep neglecting, over the course of this post. We
will now take a slight detour, to shed some light on them before we shove them under the carpet again.
Readers who are not terribly interested are encouraged to skip ahead to “The Exterior Derivative”.

3.2.1 Transversality and Perturbations

Let’s go back to this paragraph: “in general, the intersection between two objects of dimension a and b is an
object of dimension a +b—n, and if a =n —k and b = k, this means that these intersections will often be
0-dimensional points.” Why would this statement be true, and what do we mean by “in general”?

The answer is related to a concept known in differential geometry as transversality. The following
discussion comes with a lot of asterisks, and is even more handwavey than the rest of this post.

Two submanifolds A and B of a common manifold M are said to intersect transversely at a point p if 7,4
and T, B span T, M. Intuitively, this corresponds to the intersection being, well, transversal, as opposed to
tangent. For example, two curves in the plane intersect transversely at a point if they form an angle which
is not 0 or 180 degrees. Two curves in space never intersect transversely.

The most important fact about transversality, aside from the fact that transverse intersections are The
Nice Kind, is that it is robust and very common. By this we mean that if two manifolds intersect transversely,
then small enough perturbations of the manifolds will not mess that up: given small enough perturbations,
they will still intersect, and the intersection will still be transverse.

Furthermore, non-transversality is sensitive and rare. If two manifolds intersect non-transversely, then
almost no perturbations will preserve this state of affairs. For example, consider two lines in space. If you
perturb either of them randomly, it is almost certain that they will stop intersecting. As another example,
consider in R? the z axis and the graph of f(x) = 23. These curves intersect non-transversely at the origin,
but any tiny nudge in either of these curves in the up or down direction will make the intersection transverse.

Finally, transverse intersections satisfy the dimensionality property referred at the start. That is, if two
manifolds A and B, of dimension a and b respectively, intersect transversely, their intersection is a manifold
of dimension a + b — n.

As a consequence, we will henceforth (as we have thus far) ignore the possibility of nontransverse inter-
sections.

3.2.2 Orientations

Another important detail to be observed is the orientation of the surfaces “composing” a form, and more
specifically the orientation of the intersections.
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Figure 14: Some standard forms in R2.

For example, consider the example representation of the form x dx A dy pictured above, or something
even simpler such as —dz A dy, both in R?. Then, the “atom” representation requires that some or all of the
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atoms composing these representations count negatively.

As another example, consider, still in R?, the 1-form dy, which is represented as a uniform stack of
horizontal lines. The mnemonic “to calculate dy(v) is to count how many horizontal lines v crosses” works
if v is pointing upwards, but requires negating the result if v points downwards.

The easiest solution is to play with orientability. Suppose, for the moment, that M is oriented, and let w
be a k-form. Then, we make the following slight addendum to our visualization of w: we represent it visually
by a mesh of oriented (n — k)-submanifolds.

Here’s what this means for visualization purposes:

e Points will be represented, as we have so far, as either red or blue depending on whether they are
positively or negatively oriented. (Yes, a zero dimensional manifold has orientation, either positive or
negative at each point!)

e Curves will be represented with an arrow representing the positive direction. The sign convention for
evaluation will be given by the right-hand rule, so for example dy in R? would be given by arrows
pointing to the right, and dz A dy in R? would be given by arrows pointing upwards.

o When representing 1-forms in R?® via surfaces, it should be understood which normal direction is
positive, either via arrows indicating the positive direction or through written indication. However,
this case probably won’t happen a lot.

e Since I'm not going to be making pictures in 4d, that basically exhausts all possible cases, except for
the case of O-forms, which will be mentioned at the end.?

Again, note that all of this makes sense for orientable M. In one hand, this foreshadows an interesting fact:
the theory of forms is more well-behaved for orientable manifolds than non-orientable ones. For example,
a Riemannian metric on M induces a volume form if and only if M is orientable; in fact, a differentiable
manifold is orientable if and only if it admits an n-form which is never null. Finally, and most problematic,
the definition of integral of an n-form on a manifold requires that the manifold be orientable, so without
orientability everything we intend to do with forms breaks down. [Note: There is a way around this last
problem called “densities”, which is a sort of generalization of n-forms. Unfortunately, I know nothing about
it.]

On the other hand, I would like to point out that despite these problems, a lot of what we will do works
equally well in non-orientable surfaces. Indeed, every manifold is locally orientable, so our pictures work
locally, and non-orientability will not invalidate our discussions on the exterior derivative, wedges or Lie
derivatives. As a rule of thumb, local or pointwise statements will work in every manifold, while global
statements require orientability.

Author’s note: I don’t know why I didn’t write about this at the time, but I certainly thought about it. The
reason that I focus on orientations is because they are more elementary and easier to describe, but really,
the true definition of “atom” should be: A co-oriented proper submanifold with boundary.

3.3 The Exterior Derivative

Recall the form dy on R?, which can be represented as a collection of horizontal lines. A trivial modification
to this form would be considering y dy, in which the lines are getting denser the further up you go.

3 Author’s note: I never got around to this, so let me summarize it in this footnote. As is known, zero-forms coincide with
functions on the manifold. The function f corresponds, in this visualization, to the collection of its sub-level sets. This works
out because, in this visualization, a zero-form is roughly a collection of open sets. At a place where f(z) = 5, say, we’d have
roughly 5¢~1 surfaces covering that point. Negative values correspond to “open sets that count negatively”.
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Figure 15: Representation of the two forms dy and ydy. The blue lines represent “negative lines”, and
intersections with them count as —1.

A slightly less trivial modification would be the form x dy. In this case, the lines are getting denser the
further to the right you go, yet the lines must be horizontal, in order for horizontal vectors to intersect none
of them. Consequently, you get a new-looking picture:

T
5 —
=
. > —
= 5
5 —
—— >
xdy

Figure 16: The form = dy
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The new phenomenon exhibited here is the “creation of lines”. This phenomenon is meaningless for n-
forms, but for forms of other dimensions it is the distinction between the “atoms” being (n — k)-manifolds,
versus being (n — k)-manifolds with boundary.

All this to say, our formalism does not require that the surfaces representing forms be boundaryless.
Indeed, some forms, like x dy, require that the surfaces representing them have boundary. As a consequence,
it is natural to ask, given a form, whats its boundary is. You can probably see where this is going: if the
k-form w is represented by a collection of (n — k)-surfaces, their boundaries (which are (n — k — 1)-forms)
make up a (k + 1)-form which we usually denote dw.

Let’s see what this looks like in the above examples. The forms dy and ydy are represented without
boundary, so their exterior derivatives are null, which agrees with the symbolic computation. On the other
hand, if we look at the borders of x dy, we get a uniform mesh of points, also known as the familiar da A dy.

— " y- o—20= e o ° y- o °
== . ° 3 . o ° o . °
== » ° — . o ° o . °
————% —° o 2= ~3s 5 o ° o o °
o | o o o3 . e o | o o °
P | o o3 e e 8 | o o °
> | o o= e
a dy d(xdy) = dz A dy

Figure 17: Visual representation of the computation of d(zdy). Even though the visual representation on
the right is not exactly a uniform grid, it is supposed to be: the vertical offset is only an artifact of the
visualization of z dy.

Let’s look at another, more complicated example, now in three-dimensional space.

Consider the 1-form xydz. As in the x dy example, this form must be represented by horizontal planes.
Their density depends on = and y, so that near the axes there are less planes, and far from the axes there
are more. Furthermore, the amount of planes at a point is proportional to zy, so it makes sense to represent
this form by a collection of planes with hyperbolic borders:
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Figure 18: Visualization of xy dz. The red planes are oriented such that an arrow going “up through” them
counts positively, while such an arrow would count negatively going through a blue plane.

Let us now compute visually the 2-form d(zy dz). The picture is as follows.

I\Z

" (e
~ )
_—é//

‘% /;/k;(///_—:
//L%;
RS P o
= ==
———— "

Figure 19: Visual representation of d(zy dz). Note that the borders of planes are oriented with the right-hand
rule.

The result is a collection of curves satisfying the equation zy = ¢, with constant z. Let us label these
curves by ¢ and z. We will calculate the form d(zy dz), let us call it w from now on, at a point p = (zo, Yo, 20)-

We'll revisit this example again when we look at the wedge product,* but until then we will sketch the
answer by calculating it for a well-chosen basis of the tangent space at p. Consider the following three
vectors:

4 Author’s note: I did not end up doing this, but the intent was to note that, by differential calculus, d(zy dz) = d(zy) A dz,
and one can recover Figure 19 using the facts: (1) Wedge corresponds to intersection, and (2) If f is a function, the 1-form df
has as atoms the level sets of f at equally-spaced infinitesimal intervals.
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Figure 20: The basis we are constructing for 7}, R3.

The vector vy is simply (0,0,1). The vector vy is chosen to be tangent to the curves, and vs is meant
to point in a direction of “increasing ¢”. We'll look at w(v1,vs) shortly, but until then it should be clear
that w(vy,v2) = w(va,v3) = 0. In general, whenever a vector is tangent to the curves defining a form, any
parallelogram with it as an edge will have no (or negligible) intersection with these curves.

With only this, we are in position of finding a partial expression for w. Indeed, if a;, as, as, b1, b2, and
b3 are real numbers,
ai b
as by

w(Zaivi, Zbivi) =

It remains to compute a; and as for a vector of the form a = (z,y,2) = >_ a;v;.

The a; component is trivial: it is simply the z component of a. To compute as, it is convenient to calculate
vs. If v1, vg, and v3 are chosen to make an orthonormal basis, a3 can be easily written as a3 = a - v3.

First, we compute vp. Since it is tangent to horizontal curves, it is of the form (vag,vay,0). Since it is
tangent to the curve xy = ¢, the value of ¢ for p + evy ought to be equal to xgyp to first order. This value is
(xo + €vaz) (Yo + €v2y) = ToYo + €(xov2y + YoU2,). Therefore,we conclude

w(vy,v3).

ZoV2y + YoLaz = 0.

The unit norm solution to this equation with, say, ve, > 0, is

1
vy = ;(xo, —40,0), with r = /23 + 42

Finally, we calculate v3 as a unit vector, pointing away from the axes, orthogonal to v; and vs.
Orthogonality to v; means simply its last coordinate is null, so we get vs = (v3g, U3y,0). Orthogonality
to v means rovs; — YovUsy = 0, with obvious solution

1
(y()aanO)'

V3 = —
r

In conclusion, we may write

a, b

b) = z
w(a,b) L(yoaz + woay)  L(yobs + zoby)

w(v1,vs),

or, in more familiar wedge notation,

1 1
w=w(v1,v3)dz A (r(yo dx + xq dy)) = ;W(Ug,vl)(yo dz Adz + 20 dy A dz).
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(Note the double sign change in the second step! w(vy,v3) = w(vs,v1) and dz A dx — dz A dz.)

Finally, we calculate w(vs,v1). The order change may appear confusing (we put vs before vy), but it is
actually for the best: this way, the vectors vs, v1, and the red arrows satisfy the right-hand rule, so that the
result is positive.

Since vy is a vertical unit vector and the system is symmetric with regard to vertical translations, we
reduce the computation to finding out how many curves the vector v3 passes through in the z = zy plane. In
other words, we wish to find out how much ¢ varies between p and p+ evz. The answer is trivial to calculate:

1 1
Cfinal = (-TO + 5;y0>(y0 + 5%-%0) R Cstart T 5;(1‘3 + yg) = Cstart T ET-

Therefore, we conclude that the rectangle spanned by evs and sv; passes through roughly €2r curves,
whence w(vs, v1) should be r, and so our sketches yield

w=ydrAdz+zdy Adz.

That was a boatload of work. Good thing they invented vector calculus, with which we may verify our
computation:
w=d(zydz) =d(zy) Adz = (ydx + 2dy) Adz = ydaz Adz + zdy A dz.

3.4 The Stokes Theorem

In this framework, the Stokes theorem is quite a triviality. (If you consider something like the Jordan curve
theorem a triviality, at least...)

Intuitively, let M be an n-dimensional manifold and @ a manifold which splits M into “an inside” and “an
outside”. The “inside” must be small in the sense that a line cannot “go on infinitely inside”. For example,
the plane z = 0 would not split R? into an inside and an outside, because neither half-space is small in this
sense: you have infinite line segments living in each.

An example of a set we wish to consider is Q = 52, which splits R® into an inside and an outside. The
inside is “small” because the only way to have an infinite line inside @ is to have it wind up infinitely. Now,
it is hard to express properly why such infinite winding up is disallowed, but if we assume that it is, then
the inside of S? counts as small. We are interested in sets whose inside satisfies this property.

Of course, all this intuitive handwaving is intended to convey a concept which mathematicians have
figured out long ago: We want @ to be the border of a manifold with boundary, say N. To say that N (“the
inside”) is small is to say that N is compact.

Now, we intend to integrate some (n — 1)-form w on Q. Ordinarily, there would be no reason to believe
that there would be a way to simplify this computation, but the hypothesis that @) splits the space in two
implies a very important fact: any line which enters Q must either exit it again or stop inside (). Therefore,
if we see integrating an (n — 1)-form on @ as counting the lines entering @, we conclude that solving the
problem of integrating w on @ is the same as to count the number of line ends in N. The line ends are
counted by dw, and so we conclude the familiar formula

/ w:/dw.
ON N
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Figure 21: Visualization of the Stokes theorem. The integral f oy W counts the number of intersections (red
minus blue, because orientations). The integral [, dw counts the number of crossed dots inside N.

3.5 What Comes Next

Let’s recap what we’ve done thus far. We have defined an n-form as an area/volume/measure measuring
device. In order to measure areas of lower dimension (say, on submanifolds) we have defined the notion of
k-form for k£ < n. These lower-dimensional forms displayed a phenomenon that could not be seen in the
n-forms, which is the possibility that the “atoms” were manifolds with boundary. Hence, we defined the
notion of exterior derivative as that which recovers these boundaries, and turns a k-form into a (k+ 1)-form.
Finally, we exploited the notion of “closed surface” to simplify the computation of integrals of (n — 1)-forms,
by noticing that counting outbound lines is the same as counting line ends inside the surface. This is the
celebrated Stokes Theorem.

The Stokes Theorem is certainly a very important milestone in vector calculus, but it is only the beginning.
I cannot hope to describe every phenomenon and definition, but in the remainder of this post we will look at
four important concepts: Wedge Products, Pullbacks, Lie Derivatives and Inner Products (aka Contraction
aka that thing where you put a vector field into the form). The discussion will culminate in another celebrated
formula of tensor calculus: Cartan’s Magical Formula

Lx(w)=d(X sw)+ X Jdw

3.6 The Wedge Product
3.6.1 Introduction: Wedges as Symbolic Glue

One of the biggest advantages of tensor calculus is its practicality. With only a small set of rules, it is possible
to do all kinds of manipulations and calculations in coordinates, which is part of what makes tensors so useful
and applicable in engineering and physics.

The reason behind this practicality is that, as the reader may or may not already know, tensors are
decomposible into very elementary parts. Indeed, any tensor can be written using only functions and one-
forms, for example something of the sort

w= fdr ANdy+ gdz A dw.
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The symbol between the one-forms is called the wedge product, and it is the glue that allows us to
compose small-dimensional forms in order to make higher-dimensional forms.

Therefore, when we define some new type of transformation (like, say, an exterior derivative or a Lie
derivative), it suffices to find how it behaves on these elementary parts, and how it behaves under the wedge
product. This then gives us a recipe for computing that transformation: simply decompose, apply to the
elementary parts, and tie it all back again.

[Remark: The reader might (understandably) believe that there is not one type of “symbolic glue” in
play, but two: the wedge product, and the product by scalar functions. However, as it turns out, the product
by a scalar function actually corresponds to the wedge product by a zero-form; see appendix A for details.
Author’s note: This was never written. It is left as an exercise to the reader.

3.6.2 Wedges as Intersections

Our current goal is to decompose a k-form into forms of lower dimension. From the perspective of our
framework, in which a k-form is represented by (n — k)-dimensional surfaces, we wish to write a manifold in
terms of manifolds of higher dimension.

This may seem abstract, but it is very easy to motivate if we think in terms of cartesian equations. For
example, consider a one-dimensional curve in R? such as the red circle in the following figure:

N2

/

Figure 22: The red circle is the intersection of the orange cylinder and blue plane.

This curve can be written in terms of the cartesian equations
1.2 + y2 — 17
z=1.

25



Now there is a trivial way to decompose this one-dimensional object as the intersection of two 2-
dimensional objects: a horizontal plane z = 1 and a cylinder 22 + 3% = 1.

This is a more or less general phenomenon. We can define a d-dimensional surface in n-dimensional space
through cartesian equations. Each of these equations separately defines an (n — 1)-dimensional surface, and
their intersection is obviously the surface we started with. In other words, we get a kind of general principle:

A surface S of dimension d contained in -dimensional space can be written as the intersection of n —d
hypersurfaces.

The next step is to apply to this to our framework for forms. A k-form w is represented through (n — k)-
surfaces, so we should expect to write the surfaces composing w as the intersection of k hypersurfaces; that
is, to write w in terms of k£ one-forms. Sound familiar?

This, in turn, presents a way to “glue forms”: take the intersection of the corresponding surfaces. Indeed,
the notation of wedge product is even suggestive: ever notice how w A 7 kind of looks like w N'7n? I have no
idea if this is a coincidence, but if so it is a very fortunate one.

Let w be a k-form and n be an ¢-form. Define the wedge product of w and n as the (k + ¢)-form whose
atoms are the pairwise intersections of atoms from w and atoms from 7.

For a simple example, let us show that the wedge product dz A dy corresponds to the uniform mesh of
points we have come to associate with the standard area form on R?. Indeed, recall that dx is represented
by uniformly spaced vertical lines, and dy is represented by uniformly spaced horizontal lines. Then, it is
visually obvious that the collection of pairwise intersections is a square grid of points.
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dz A dy

Figure 23: Writing the atoms of as intersections of horizontal and vertical lines.

3.6.3 Dimensions, Orientations and Properties

Appealing though this “definition” of wedge product may be, it remains to show (or at least, plausibly
convince) that the wedge product has the properties we have come to expect it to have. For example, is it
even obvious that the dimension of the wedge is the sum of the dimensions of the arguments? In this section,
we sketch arguments to justify the most important properties of the wedge product.

e Dimension: First, we recall the discussion on transversality above. In particular, recall that we
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will always be assuming that all intersections are transverse, which bodes very well for dimensional
considerations. In particular, the math checks out: if w is k-dimensional and 7 is ¢-dimensional,
they are represented respectively by (n — k) and (n — £)-surfaces, whose intersection has dimension
(n—k)+ (n—4¢) —n=mn— (k+{), which corresponds, as desired, to a (k + ¢)-form.

e dx Adx = 0: The calculation of such a wedge requires a bit of thought. At first glance, it would seem
that dx A doz = dx, because we are intersecting a collection of hyperplanes with themselves. However,
the computation cannot be done in this way, because a hyperplane is not traverse to itself!

The way around that is actually to work with two distinct representations of dz. Indeed, suppose the
first is represented by the hyperplanes x = 0,¢,2¢,... Then, instead of representing the second dx
by the same collection of hyperplanes, represent it through = = %5, 1+ %)5, (2+ %)5, ... Then, we
have two collections of hyperplanes which never intersect. Therefore, their intersections are transverse:
indeed, they are empty. (Yes, an empty intersection is a Good Intersection.) In conclusion, dzAdz = 0,

as it ought to.

e wAn = (=1)*nAw: To talk about this property, we would need to go back to the issue of orientations.
However, without getting into it, it is a priori obvious that w A n = £n A w, as the intersection of two
surfaces does not depend on the order in which the intersection is taken. However, the sign issues arise
upon consideration of the orientation of the intersection.

Unfortunately, the subject of orientation is too complex to be discussed in a mere bullet point, so the
term must remain mysterious for the time being.

Author’s note: I never wrote down the solution, but I promise it exists. In summary, recall that (as
said in a previous author note) what is actually demanded of the “atoms” is a co-orientation, and the
issue is: If A and B are co-oriented transversal submanifolds, what is the natural co-orientation on
AN B vs. BN A? Indeed, one takes positively oriented bases of the normal budles of A and B, and
Juxtaposes them to make a (by definition, positively oriented) basis of AN B or BN A, depending on
the order. These two definitions don’t generally agree: To turn one basis into the other, one needs
to perform codim A codim B swaps in the basis, which leads to a difference of orientation of sign
(—1)codim Acodim B - This s where the k{ term comes from.

e Associativity: Like in the previous bullet point, it is obvious that the wedge product would be asso-
ciative up to sign. To show that the orientations of a A (8A~) and (a A ) Ay match up would require
a deeper inspection of the orientation conventions, but it does check out.

[Note to future self: Write another post discussing orientations in more detail?]

3.6.4 Exterior Derivative of a Wedge Product

The following picture should speak for itself, modulo orientations.
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Figure 24: A visual argument for d(w An) = £dw An £ w A dn.
Again, to figure out the signs one would need a more careful look at orientations, which is beyond the
scope of this post, but the formula is given by
d(wAn) =dwAn+ (—1)*w Ady, for w of dimension k.

3.7 Pullbacks and Lie Derivatives
3.7.1 Pullbacks

Let M and N be manifolds, and f: M — N a smooth function. Then, the pullback of a form w on N is
usually defined as follows:

frwlvy, ... vk) == w((df)vg, ..., (df)og).
Symbolically, this is a very natural operation to define, but it also finds a nice interpretation in our
framework.
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For simplicity, let us consider a one-form w on N, though the following argument applies to higher-
dimensional forms as well. Recall that we represent w through a collection of hypersurfaces, and to evaluate
w(v) on a vector v tangent to N we count how many of the hypersurfaces the vector v crosses.

Consequently, to evaluate f*won a vector w tangent to M, what one does is push the vector w forwards
and counts how many surfaces of w it crosses. However, a bit of mental gymnastics should convince you of
the following alternative definition: To evaluate f*w(w), pull the surfaces composing w back into M (taking
their preimage in f), and count how many of those w crosses. In other words, we can represent f*w using
the preimages of the surfaces that represent w.

Yy
\/ EXW / ’ i
/
’ ! f(@,y) = (sin®(z) + 532, 9)

ANZ//A

Fw w=dz

S|

Figure 25: Left side: the manifold N = R?, with the form f*w in red and a vector w in blue. Right side: the
manifold M = R?, with the form w = dz in red and the vector (df)w in blue. Crossings between the vector
and the form are highlighted as to show the equivalence in modes of computation. Some artistic liberties
were taken: the atoms were drawn more densely than usual to aid in visualization, and the vector (df)w is
drawn slightly distorted. Indeed, what is drawn is the pointwise image of the curve which goes in a straight
line from (0, 1) to (1,2).

Like many others so far, this definition comes with a few of asterisks, because it is not obvious that taking
the preimage under f of the atoms of w will yield a collection of atoms of the right dimension. Less obvious
yet is that preimages behave well under borders, i.e. that f~1(A) = f~1(0A), where A is one of the atoms
of w and 0 is the border operator. I myself do not understand the underlying mechanics particularly well,
though this post will be updated if this unfortunate state of affairs happens to change. Author’s note: As
of 2025, this state of affairs has not yet changed, but in my defense I went on to do PhD in computability
theory. I'm still interested in this, however, so if you have thoughts on this subject please feel free to contact
me.

However, shady though it may seem, it appears to be the case that in general the border of the preimage
coincides with the preimage of the border, and so we reach the classical fact:

d(f*w) = F*(dw).

3.8 Lie Derivatives

First, let us recall the usual definition of Lie derivative.

Let w be a form on M, and X a vector field. Let ¢; be the time-t flow of X. Of course, there are domain
issues when considering flows, but we will sweep it all under the rug.

We define the Lie Derivative of w in the direction of X by the formula

d *
Lxw = X Od)tw.
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In order to inspect this definition, let us begin by considering the pullback of a form by a flow. As we
have seen, the pullback of a form can be visualized by taking the preimage of the form’s atoms, so we can
visualize ¢jw by “flowing the atoms of w backwards with X

This kind of moving visualization is harder to make drawings of, so I ask the reader to use their imagi-
nation to visualize the following example. Consider the form w = da Ady in R?, visualized as a uniform grid
of points. Let be X the radial vector field X(, ) = 20, + y0,.

We will visualize ¢jw as t varies by visualizing the motion of the atoms. Of course, for ¢ = 0 there has
been no motion, so we begin by seeing a uniform grid of points in R2.

Then, we begin flowing for positive time. The vector field in question points outwards from the origin, so
since we are taking the preimage under the flow we move the atoms inwards. By solving the ODE, it is easy
to check that an atom starting at (z,y) will, after time ¢, be at the point e *(x,y). Therefore, we conclude
that our uniform mesh of points is being pulled towards the origin in a way that preserves uniformity: after
time ¢, distances between points have been uniformly compressed by a factor of e~*.

This even allows us to compute explicitly ¢;w. Indeed, a uniform mesh of points represents a form of the
type C dx A dy, so all that remains is to find C. A heuristic argument is as follows: since in every direction,
points are denser by a factor of e, the amount of points in a given parallelogram has been increased by (ef)?.
In other words, we claim that ¢jw = e dx A dy.

A slightly less heuristic argument is to start with the unit square at time ¢t = 0, and flow it backwards for
time ¢. This will result in a smaller square, of side e~!, which contains exactly the same atoms, whence we
conclude

piw(e 0z, e70,) = w(9,, 0y) = 1.

A few algebraic manipulations will yield again the result C' = e?.
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Figure 26: The construction of ¢}, (dz A dy) for the radial vector field, for some small value of e. The Lie
derivative will measure the difference between the red form and the orange form.

Now that we are familiar with the pullback of a form under a flow, all that remains is to differentiate.
Unfortunately, the only visualization I am able to provide is very lackluster, and I encourage any reader who
has a better idea to contact me.

Let us visualize differentiation using infinitesimals. In what follows, let € be a very small positive number.
Then, %’ 0w = %(gbﬁw — w). In other words, we begin by taking w, flowing it backwards through X for
infinitesimal time, and subtracting w again. Now, this is zero to zeroth order, so we divide by € in order to
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get a real-valued thing.

Let’s elaborate a bit on the flow part for a moment. To first order, taking the flow in infinitesimal
time is just calculating the velocity vector at the point and moving in the direction of the tip. In other
words, (visualizing vectors as infinitesimal arrows) we may visualize ¢ w by, for each point p of each atom
A, evaluating X, at that point and placing the arrow so that the ¢ip is at p. Then, we replace p by the tail
of the arrow X,,. Doing this process for each point p, we obtain a new surface B, which is the atom of ¢ w
which corresponds to the atom A in w. Repeating this process for every atom A we obtain the atoms of ¢ w.

See Figure 26 for the example with the volume form w on R2, and the radial field. Given a red atom at
(w,y), the corresponding orange atom is given by (z,y) — X, ), that is,

(m,y) - EX(x,y) = (1 - E)(l’,y).

Therefore, we have a grid of uniformly spaced atoms, with a unit area square with sides (1 — ¢)d, and
(1 — €)9y. Therefore, an argument similar to above will show that the orange atoms represent the form

prfw=(1-¢)2dzAdy

and therefore we may calculate the Lie derivative of w in the direction of X:

Lxw = Y(grw—w) = %((1 _ o2 - 1)dzAdy,

€
and a bit of elementary calculus shows that, taking the limit ¢ — 0,

(1-¢)2

-1
Lxw = dz Ady = 2dz A dy.

3.9 Contraction/Inner Product

At first, it seems difficult to visualize the contraction, because it is explicitly defined in terms of evaluation.
In case you've forgotten or have never heard of it, given a k-form w and a vector field X, we define the
contraction X Jw as

(X sw)(vgy .. vp—1) == w(X, 01,000, Uk—1).

To see an easy example of how such a form can be drawn, consider the simple example M = R?, X = 9,,
and w = dz A dy.

Y Y
° ° °
v v
° ° ° —e X,
° ° ° H—o X,
De
T

Figure 27: A visualization of calculating (X Jw)(v) for some v. On the left is the trivial calculation, in which
you draw the parallelogram and count how many atoms are inside it. On the right is a different perspective,
in which we put a copy of X on each node and count how many of these copies of X the vector v crosses.
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The idea, as seen in the image above, is to count the amount of atoms inside the parallelogram spanned by
v and X by counting intersections. Indeed, roughly speaking, a point ¢ is inside the parallelogram spanned
by v and X if and only if there exist «, 8 € [0,1] such that

q=p+av+ BX.
Rearranging terms, one concludes that this happens if and only if there exist such « and 5 such that
p+av=q— Pz,

that is, the line segment that goes from p to (p + v) intersects the line segment that goes from (¢ — X)
to q.

A simple calculation will yield a similar result for higher dimensions and for forms with non-point atoms.
The general rule is as follows:

To represent X sw as a form, we construct its atoms out of the atoms of w as follows. If A is an atom
of w, i.e. an (n — k)-manifold, at each of its points a we calculate X,, and draw this vector with the arrow
tip on a. We then take the union of all the points on all of these vectors, yielding an (n — k + 1)-manifold,
which we call X 1 A. The atoms of X Jw are all those of the form X 1 A.

Alternate definition of X 1 A: The points of the form a — tX,, for a € A and ¢ € [0, 1].

Let’s look at the example above again, and calculate X Jw. This case is particularly easy, but we will
see that sometimes the visualization of X J w requires some mental gymnastics.

In this case, we begin by drawing a uniform grid of points, and drawing X at each point. Then, we just
consider the collection of resulting line segments.
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dz A dy Draw the vector field X = 9, The resulting 1-form

Figure 28: The construction of the 1-form given by 0, 1 (dz A dy).

As you can see, this is a collection of line segments which are organized in rows, where each row is
composed of infinitely many (length one) line segments. However, the way that the form is evaluated on a
vector would not change if we glued these line segments together. So we glue them, and lo and behold, we
get a uniform collection of horizontal lines, also known as dy, so we conclude

Oz o (dx A dy) = dy.

3.10 Cartan’s Magical Formulas

We are now ready to look at Cartan’s magic formula for the Lie derivative, as we have already seen the three
necessary ingredients: the Lie derivative, contraction, and the exterior derivative.
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Let us begin by noting the relation between these three concepts. Given a vector field X and a form w,
both the Lie derivative and the contraction are related to the notion of “gluing the tip of X into the atoms
of w”. Indeed, if w is a top form (i.e. its atoms are points) a useful identity appears:

Lyw=d(X Jw).

P
e et
PR
X and w Lxew
% Contraction
A 0.0.‘.
d
A S o.°.°.
A 2 0.""
X Jw (X sw)

Figure 29: A visual proof that, for a top-level form w, Lxw = d(X Jw).

This identity is the first version of Cartan’s magic formula, and it actually works whenever w is a closed
form. However, when w has atoms with nonempty border, a new term appears. To visualize why, suppose
that w is not a closed form, and has an atom A with border 0A. Assume for the sake of terminology that A
is one-dimensional, so that we may call it a curve with one or two extrema. Then, X 4 A is a strip. One of
its sides is exactly A. Let us call the opposite side B, and the one or two other sides will be called C. Then,
on the one hand, the atom corresponding to Lxw is simply A 4+ B. On the other hand, d(X Jw) includes A
and B, but also C, so we need to remove that term. A little bit of thought shows that C' is an atom from
X Jdw, and so, modulo signs, we reach the famous formula

LXde(X_lw)—‘rX_ldw.
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Figure 30: A visual proof of Cartan’s magic formula. Note that, while orientations are usually opaque,
they are reasonably understandable here. The most difficult orientations here are those of d(X s w). To
understand them, simply note that the “positive direction” on the border is the one induced by w, and any
arrow in that direction counts as positive, and in the opposite direction counts as negative.
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