
Encoding Finite Sequences in RCA0

Duarte Maia

December 17, 2022

Contents

1 Introduction 1

2 Prerequisites and Conventions 2

3 What We Mean by Encoding of Finite Sequences 2
3.1 Finite Sequences . 2
3.2 Finite Sets . 3

4 The Bounds of the Problem: Limits to our Approach 3

5 Our Approach: Encoding Sequences 4

6 Operations on Sequences 9
6.1 Application: Appending . 9
6.2 Application: Factorial Function 10

1 Introduction

This essay is intended as a long-form version of pages 66-68 of Simpson’s book
[1], in which he describes a way to encode finite sequences of natural numbers
in RCA0. It was borne of dissatisfaction: while very efficient in wordcount,
Simpson’s exposition came across (to me) as unmotivated and mysterious. In
this essay, I seek to do the opposite, and write a relatively detailed account of
how one may encode finite sequences in RCA0.

The encoding below is by far not the simplest, and upon conclusion of this
document I found a couple of evident ways in which the development could be
made shorter and more elegant. However, strong as the temptation to simplify
in order to make a sleeker proof, I am afraid that this would detract from the
naturality of the approach, so I have opted to preserve it in its original state.

1

2 Prerequisites and Conventions

The reader is assumed to be familiar with basic notions of the system RCA0,
which in this context means pages 63-66 of Simpson [1], and some familiarity in
working within this system. This means that we will use basic arithmetical facts
and abuses of notation, not writing out proofs in more detail than is deemed
necessary, with intuitive clarity being prioritized over formal completeness. The
reader who is not yet comfortable working in this manner within RCA0 may
take it as an exercise to translate the proofs below into formal proofs in RCA0.

Of the arithmetical facts that we will be assuming, the most notable is the
notion of ordered pair; see Theorem II.2.2 in [1].

3 What We Mean by Encoding of Finite Se-
quences

3.1 Finite Sequences

In order to make the end goal clear, we begin by defining what is sought.
In RCA0 it is very easy to encode what we mean by a function, and in

particular a sequence: it is a set F of ordered pairs ⟨x, y⟩ such that for all x in
some domain X there exists exactly one y ∈ N such that ⟨x, y⟩ ∈ F . Thus, we
have a way to define the notion of finite sequence: a finite sequence is a set F
as above (i.e. a function) whose domain is X = {x ∈ N | x < n} for some fixed
n ∈ N (called the length of the sequence).

Now, the problem with this ‘encoding’ is that it encodes sequences as second
order objects, when we know a posteriori that finite sequences can be encoded as
first order objects, which is very useful. Thus, what we seek is a correspondence
between finite sequences and a certain subset of the natural numbers, which will
eventually be called Seq(N) ⊆ N. Moreover, from some s ∈ Seq(N) we wish to
perform certain operations, such as

� The length of the sequence, n,

� (Uniformly) recovering the k-th element of the sequence, for k < n,

� Constructing the empty sequence,

� Appending an element to the end of the sequence,

� Concatenating sequences,

� Comparing sequences lexicographically, etc.

As it turns out, the first two operations are enough to do pretty much any-
thing one would want to do with sequences; in section 6 we use them to construct
the appending map and the factorial function, and in section II.3 of Simpson
[1] sequences are used to prove that the universe of functions in RCA0 is closed
under primitive recursion and minimization; the operations above are more than
enough for this purpose.

2

3.2 Finite Sets

An alternative approach to this problem (which Simpson takes) is to encode
finite sets instead of finite sequences. Indeed, from a finite set one may encode
a finite sequence, or really any function with finite domain, in much the same
way that one encodes functions from sets.

On the other hand, from an encoding of finite sequences it is easy to encode
finite sets. Indeed, given a set X bounded by some integer n, it may be repre-
sented by a sequence of length n, whose k-th element is zero or one depending
on whether k ∈ X.

We will not take this approach here.

4 The Bounds of the Problem: Limits to our
Approach

It is known a posteriori that the things we can do in RCA0 correspond roughly
to those which can be done effectively. As such, it would be expected that any
effective encoding of sequences would suffice. However, this is not the case, as
sequences are necessary to do effective tasks; more precisely, they are necessary
to do effective tasks with a variable number of steps.

This places a strong restriction on our encoding. Besides needing to be
effective, we need that the extraction of the entries of the sequence needs to be
doable in a fixed number of steps. This is no easy feat. Let us look at some
approaches which are invalidated by this requirement.

� Linked lists: This is a recursive way to encode arbitrary length lists using
ordered pairs. It works as follows. First, fix a symbol ε which is not an
ordered pair (this can be done using a non-surjective encoding for pairs).
Then, by fiat, we declare ε to be the empty list. Then, a list with one
element x would be the pair ⟨x, ε⟩. A list with the elements x, y would
correspond to ⟨x, ⟨y, ε⟩⟩, and so on.

Despite being very elementary, this approach does not work in RCA0

because recovering the n-th element of a list takes (heuristically) n opera-
tions, and so cannot be performed before we have a way to chain variably
many operations.

� Binary: One could attempt to encode a finite set as the collection of
nonzero digits of a certain number n, when n is written in binary. Recov-
ering the k-th binary digit of n is not a terrible affair: first we define n0

as the remainder of the division of n by 2k+1, and then we check whether
n0 ≥ 2k. Both of these steps are easily done using bounded quantifiers,
with the exception of powers. Indeed, taking powers is not built into
RCA0 (though it is built into other systems such as EFA, in which this
approach would work), and while powers may be computed in RCA0, their
computation requires a variable number of steps, and so cannot easily be
done until we have a notion of sequence.

3

� Prime decomposition: This is perhaps the most obvious encoding for a
mathematician. Given a sequence x0, . . . , xn encode it as the number
px0
0 . . . pxn

n , where p0, p1, . . . is an enumeration of the prime numbers. Un-
fortunately, not only does extraction of the sequence entries also require
powers, it moreover requires an enumeration of the prime numbers within
the language.

5 Our Approach: Encoding Sequences

So, given that we are now more knowledgeable about what we can’t do, let’s
talk about what we can do. Evidently we can add and multiply, but this will not
give us much expressive power. The operations we have access to for the time
being which give us the most expressive power are elementary number theory
operations, such as:

� We can do Euclidean division, recovering both the quotient and the re-
mainder,

� We can check divisibility of a number by another,

� We can find the minimal element of a nonempty set.

Euclidean division in particular provides us with a way to encode a list of
numbers into a single natural. The idea is as follows: given a ‘seed number’
N , we take the remainder of the division of N by several distinct numbers
a0, a1, . . . , an−1 to obtain the encoded sequence x0, x1, . . . , xn−1. In the follow-
ing, we use the notation N mod a for the remainder of the division of N by
a.

It is not obvious what the numbers a0, . . . , an−1 should be, though we cer-
tainly want them to be easily expressible, so it is reasonable to consider an
arithmetical sequence ak = a0+kb. However, in order to ensure that N mod ak
can be arranged to be whatever we want, we will need to make sure that the
elements of ak don’t have any interdependencies, in some sense. As an example
of something that could go wrong, suppose that b = 1. Then, if a0 is even then
a2 is also even, and this implies that N mod a0 and N mod a2 both have the
same parity (which is the same as the parity of N). If a0 were odd instead, the
same argument holds for a1 and a3.

The problem that arises when b = 1 is that some elements of the sequence
have common divisors. This problem also holds if a0 is poorly chosen; for
example, if a0 is even. Thus, the first step to find our encoding is to show
that this can be avoided. Note that we must also show that a0 may be made
arbitrarily large, as (N mod ak) < ak always.

Theorem 1. RCA0 proves the following. Given n ∈ N and m ∈ N, there exist
a0, b ∈ N such that m < a0, and a0+ k0b and a0+ k1b have no common divisors
(except for 1) for all distinct k0, k1 < n.

4

Proof Sketch: Before performing the actual proof, we give a plausibility argu-
ment by reasoning ‘in usual mathematics’.

First, let us consider for simplicity the case a0 = 1. The requirement that
1 + k0b be coprime with 1 + k1b for k0 < k1 < n is equivalent to requiring that
1+k0b be coprime with (k1−k0)b. Now, we claim that b = n! works. Indeed, in
this case, all prime divisors of the right-hand side are less than n, while on the
left-hand side we have a number whose remainder of division by all such primes
is one.

Now it should be clear that we can moreover choose arbitrarily large values
of a0, as adding any multiple of n! to a0 will preserve this property.

Now, let us investigate how we could implement this in RCA0. Unfortu-
nately, the factorial operation is not one we have access to yet, because it is
computed by recursion and this requires sequences. However, with Σ0

1 induc-
tion we can prove the following:

RCA0 ⊢ For all n ∈ N, there exists r ∈ N, r ̸= 0
which is divisible by all k < n.

(1)

Unfortunately, (1) is not quite enough for the proof idea above to work. This
is because we have no guarantee that r is ‘not too big’, in the sense that it has
no prime divisors greater than n. Thus, we want (and will prove) a slightly
stronger existence theorem (though the proof is mostly the same):

RCA0 ⊢
For all n ∈ N, there exists r ∈ N, r ̸= 0 which is
divisible by all k < n,
and whose prime divisors are all less than n.

(2)

Now we consider b equal to this value of r, and a0 equal to mr+1. We claim
that the only common divisor of a0 + k0b and ∆k b for k0,∆k < n, ∆k ̸= 0, is
1. To do so, consider the set

X = { d ∈ N | d ̸= 1 and d divides a0 + k0b and ∆k b }. (3)

Note that this set can be constructed in RCA0 because it is made by com-
prehension over a bounded quantifier formula. Now, we claim that X is empty,
and to prove it, we suppose that it is not, and let d0 be some element of X.

We have no guarantee that d0 is prime, so we make it so. Indeed, it can
be proven in RCA0 that every d0 ̸= 1 has a prime divisor p, so we pick such a
prime. Note that p ̸= 1 and p | d, so p is also in X.

Now, we know that p | ∆k b, so therefore p | ∆k or p | b. If p | ∆k, then
p ≤ ∆k and hence p < n. On the other hand, if p | b, by construction of b (2)
we also have p < n.

Now, on the other hand, we show that p does not divide a0+k0b = 1+(m+
k0)r. To this effect, consider the remainder of the division of this expression by
p. Indeed, by (2) we have that r is of the form pq for some q, and thus we can
easily show that

a0 + k0b = [(m+ k0)q]p+ 1, (4)

5

hence in particular the remainder of Euclidean division is 1, and hence p ∤
a0 + k0b. This contradicts the hypothesis that p ∈ X, and since a contradiction
was sought, we have finally shown that X is empty. In other words, a0 + k0b
and ∆k b are coprime.

To conclude the proof of theorem 1 in RCA0, it is a simple exercise to show
that x and y with x < y are coprime iff x and y−x are coprime, and then apply
this exercise to prove that all elements of {a0 + kb | k < n} are coprime. □

Now that we have built the desired sequence (ak) by which we will take
the remainders, we must build the large value of N such that N mod ak = xk,
where x0, . . . , xn−1 is the sequence to be encoded.

The statement that such a value of N exists is easily seen to be equivalent to
a particular case of the famous Chinese Remainder Theorem, so now it remains
to prove it in RCA0.

Theorem 2. Let (xk)k<n be a finite sequence of natural numbers1. Let ak =
a0+kb with a0 and b as in theorem 1, with m an upper bound for the sequence.2

Then, there exists N ∈ N such that

xk = N mod ak, for k < n. (5)

Proof Sketch: First, let us look at the proof of this fact in ‘ordinary mathemat-
ics’. The basic idea is to look at some N of the form

N = y0a1 . . . an−1 + a0y1a2 . . . an−1 + · · ·+ a0 . . . an−2yn−1. (6)

For such N , it is easy to see that when taking the remainder modulo ak
almost all the terms vanish, so that

N mod ak = (yka0 . . . ak−1ak+1 . . . an−1) mod ak (7)

Thus, it suffices to find yk for each k such that (7) holds. Now we recall the
following facts from elementary number theory:

a) If P is the product of integers which are coprime with ak, then P itself is
coprime with ak, and

b) If P is coprime with ak it has an inverse modulo ak. In other words, there
exists Q such that PQ mod ak = 1.

The first statement is a trivial consequence of the definitions (and easy to
prove in RCA0), and the second statement follows from the Euclidean algorithm
(and hence less easy to prove in RCA0).

Unfortunately, expressions with ellipses such as (6) are not allowed in RCA0,
so to implement this proof in RCA0 we will need to change our approach a little
bit.

1Seen as a function from {k ∈ N | k < n} to N.
2It is easy to prove by Σ0

1 induction in n that this does exist in RCA0.

6

In our approach, we will begin by constructing numbers that take the place
of the summands in (6). As a first lemma, we ‘construct a0 . . . âk . . . an−1’.

RCA0 ⊢
For each k < n, there exists s ∈ N such that
s mod aℓ = 0 for ℓ < n, ℓ ̸= k, and s is coprime
with ak.

(8)

The proof of (8) is messy but can be done by Σ0
1 induction by proving the

following statement. Let k, a0, and b be fixed natural numbers:

RCA0 ⊢
For each n ∈ N, there exists N ∈ N such that, if all distinct pairs
of elements of {a0+ ℓb}ℓ<n or ℓ=k are coprime, N is coprime with
a0 + kb, and N is divisible by a0 + ℓb for all ℓ < n, ℓ ̸= k.

(9)

The base case n = 0 is done by setting N = 1. The induction step is done by
multiplying the N obtained from the induction hypothesis by a0 + nb if n ̸= k,
and keeping the same value of N if n = k. This requires the use of the lemma:
‘if x and y are coprime with an then so is xy’, which we leave to the reader to
verify is true in RCA0.

If we fix n and apply (9) to a0, b given by theorem 1, we have a proof of (8).
Now, we wish to find the equivalent to the yk in (6). Classically, this is

equivalent to the theorem that if x is coprime with n then it is invertible modulo
n. We phrase it as such:

RCA0 ⊢ If x is coprime with n and y < n then there exists
z ∈ N such that xz mod n = y.

(10)

A classical proof in ordinary mathematics goes as follows. First, use Euclid’s
algorithm to prove (a particular case of) the Darboux theorem, which is that
there exist integers z and q such that xz − nq = 1. Replacing (z, q) by (z +
kn, q+kn) for high enough k, we may assume that z and q are in fact nonnegative
integers, and multiplying z and q by y, we may assume that xz−nq = y instead.
Finally, using the fact that y < n, we obtain that xz mod n = y as desired.

A proof of this fact in RCA0 still takes some work, so we postpone it to
theorem 3 below.

We are now finally able to conclude the proof of theorem 2. We prove the
following by Σ0

1 induction on ν ∈ N, which morally takes the place of the index
in the sum

N =

n−1∑
ν=0

yν a0 . . . âν . . . an−1. (11)

Fixed a finite sequence (xk)k<n and ak as in theorem 1 (with m upper bound
for (xk)),

RCA0 ⊢
For each ν ∈ N, there exists N ∈ N such that,
if ν ≤ n, for all k < ν we have xk = N mod ak,
and for ν ≤ k < n we have N mod ak = 0.

(12)

The base case ν = 0 holds for N = 0, so it suffices to perform the induction
step. Thus, we assume that the statement is true for some fixed ν, and prove it

7

for ν + 1. Assume that ν + 1 ≤ n as otherwise the statement is also vacuously
true.

Let N be previously built such that xk = N mod ak for k < ν and N mod
ak = 0 for ν ≤ k < n. We wish to construct N ′ ∈ N such that N ′ mod ak =
N mod ak for k < n, k ̸= ν, and such that N ′ mod aν = xν . We construct N ′

by adding to N an appropriate number s. In particular, we construct s using
(8), and by (10) we may replace s by an appropriate multiple of itself such that
s mod aν = xν .

This concludes the proof of (12), and so, applying it to ν = n, we finally
complete the proof of theorem 2. □

Theorem 3. RCA0 proves: If x is coprime with n and y < n then there exists
z ∈ N such that xz mod n = y.

Proof Sketch: As we have mentioned before, the usual proof of this fact is via the
Darboux theorem, which in turn is usually shown using Euclid’s algorithm. We
do not yet have access to Euclid’s algorithm (we need sequences to implement
it), but this algorithm can actually be replaced by minimization. In particular,
we may try instead find the minimal possible positive value of xz−nq as z and
q range over the positive integers. Now, this approach requires modification to
work, as the set of all these values is not constructible in RCA0, since it requires
Σ0

1 comprehension. However, we know a posteriori that z may be chosen less
than n, and in this case (for positive xz − nq) q will be less than x. Thus, we
may construct by bounded comprehension

X(x, n) = { d ∈ N | d ̸= 0 and ∃z<n∃q<x xz = qn+ d } (13)

and set d(x, n) equal to the minimal element of X(x, n). This exists because
X(x, n) is nonempty, as x ∈ X(x, n) so long as x > 0 and n > 1, as x ∈ X(x, n).
Thus, in the following we assume x ̸= 0 and n > 1. We leave it as an exercise
to the reader to verify that (10) holds if x = 0 or n ≤ 1.

We wish to show that d0 = d(x, n) is a common divisor of x and n. Suppose
first that d0 does not divide x. Then, we may consider d1 = x mod d0. It is clear
that 0 < d1 < d0, so if we prove that d1 ∈ X(x, n) we obtain a contradiction,
from which we conclude that d0 | x.

Thus, we write d0 = Qx+ d1. Since d1 ∈ X(x, n) we may find z and q such
that xz = qn+ d0, and putting these two equalities together we obtain

xz = qn+Qx+ d1. (14)

Thus, we get xz′ = qn + d1 for some q and z′ = z − Q (Left to reader:
verify that z ≥ Q and so z′ is a well-defined natural). Now, we know that
q < x by hypothesis, but it remains to show that z′ < n. To do so, note that
xz′ = qn + d1 ≤ (x − 1)n + d1. If we can show that d1 < n we have xz′ < xn,
hence, since x ̸= 0, we get z′ < n. To show that d1 < n we remark that
d2 = x mod n ∈ X(x, n), as

x = qn+ d2, (15)

8

with qn ≤ x and therefore, since n > 1, we have q < x. Moreover, d2 ̸= 0
as otherwise n would be a common divisor of x and n, which contradicts their
coprimality (because n > 1). In conclusion, d1 < d0 ≤ d2 < n, and so by the
previous paragraph we do indeed have z′ < n.

Now we show that d0 is a divisor of n. Similarly to before, consider d1 =
d0 mod n, hence d0 = Qn+ d1. Then, we have

xz = qn+Qn+ d1. (16)

Thus, we conclude that xz = q′n + d1 with q′ = q + Q and using a similar
argument as before we conclude that xn > q′n hence x > q′. Thus, d1 ∈ X(x, n)
and we obtain a contradiction, hence d0 | n.

We finally have a proof in RCA0 of theorem 3, as if x is coprime with n then
d(x, n) may only be equal to one, hence there exist z and q such that xz = qn+1
and thus xz mod n = 1. It is thus easy to verify that for any y < n we have
xzy mod n = y. □

6 Operations on Sequences

Theorem 2 shows that any sequence can be encoded as a 4-uple s = ⟨n,N, a0, b⟩
(called a code for the sequence), where n is the length of the sequence and
N, a0, b are as in theorem 2.

It is evident that the length of s can be obtained as the first entry of the
4-uple, and the k-th entry of the sequence is given by the remainder of division
of N by a0 + kb. Both of these are represented by bounded quantifier formulas.

In general, a sequence will have multiple distinct codes. This is undesirable,
so for any given sequence we associate to it a canonical code: the minimal value
of s which encodes it. We define Seq(N) as the set of all s ∈ N which are minimal
codes for some sequence. This set exists by bounded quantifier comprehension,
over the predicate: ‘for all s′ < s, either the length of s′ is different from the
length of s, or there exists some k less than this length such that sk ̸= s′k’. Thus,
‘the set of finite sequences of natural numbers’ is a well-defined set in RCA0.

6.1 Application: Appending

Let s ∈ Seq(N), and q ∈ N. Then, we may consider the sequence obtained by
appending q to the end of s. We will show that this is well-defined in RCA0,
and in fact we can even construct the append function A : Seq(N)×N → Seq(N)
in RCA0. The methods that we will use for this purpose can be adapted with
very little modification to construct concatenation of sequences, restriction to a
subsequence, among others.

First, we show that there exists a code for the sequence obtained by append-
ing q to s. The proof has very little substance. Simply put, from s = ⟨n,N, a0, b⟩
construct the sequence S which s is a code of, by setting

S = { ⟨x, y⟩ | x < n and y = N mod (a0 + xb) }. (17)

9

Then, append q to S by setting S′ = S ∪{⟨n, q⟩}. Finally, consider the code
s′ ∈ Seq(N) of S′. This proves that such a code exists.

Now, the reason we have provided the proof is because it does not look
effective. Indeed, it requires passing through second order. As such, it would
not appear at a glance that the append function could be defined in RCA0.
However, the fact that we have shown that this code exists and is unique suffices
to build this function, because crucially, we can verify if s′ is the code of the
sequence S′ above without going through second order. Indeed, it is a first order
bounded quantifier predicate: check that s′ ∈ Seq(N), that the length of s′ is
the length of s plus one, that s′k = sk for k less than this length, and check that
s′n = q. As such, we may define the append function:

A =

{
⟨⟨s, q⟩, s′⟩

∣∣∣∣ s, s′ ∈ Seq(N) and s′ codifies the sequence
obtained by appending q to s

}
. (18)

As we have mentioned before, these methods may be used with virtually no
modification to implement several other common operations.

6.2 Application: Factorial Function

We now apply sequences as a tool to construct the factorial function in RCA0.
In other words, we will see that RCA0 shows that there exists a unique function
F : N → N such that F (0) = 1 and F (n + 1) = (n + 1)F (n). Note that this
example may easily be generalized to show that RCA0 is closed under primitive
recursion.

Uniqueness is easy to prove by induction. Given F and G satisfying this
recurrence, define X = {n ∈ N | F (n) = G(n)}, which exists by bounded
quantifier comprehension. Then, the recurrence may easily be used to show by
set induction that X = N.

To show existence is where we apply the machinery of sequences. Define F
as follows by ∆0

1 comprehension:

F =

 ⟨x, y⟩

∣∣∣∣∣∣
There exists a sequence s ∈ Seq(N) of
length x+1 such that s0 = 1, for all k < x
we have sk+1 = (k + 1)sk, and sx = y.

 , (19)

This formula is ∆0
1 because RCA0 proves that such an s always exists, and

that it is unique. Uniqueness is done similarly to uniqueness of F itself, and
existence is done by Σ0

1 induction, using the results from section 6.1. This shows
that the ‘exists’ in φ may be replaced by a ‘for all’, which proves that φ is a ∆0

1

predicate.
It remains to verify that F itself is a function and that it satisfies the re-

cursion. By uniqueness and existence of s (with a given length), we conclude
that for each x there exists exactly one y with ⟨x, y⟩ ∈ F , hence F is a function.
To verify that it satisfies the recursion, let s be the sequence of length x + 1
satisfying the recurrence. Then, if s′ is obtained by removing the last element,

10

s′ also satisfies the recurrence. Hence,

F (x+ 1) = sx+1 = (x+ 1)sx = (x+ 1)s′x = (x+ 1)F (x). (20)

The verification that F (0) = 1 is obvious, and thus F does satisfy the recur-
rence as desired. We have hence constructed the factorial function.

References

[1] Stephen G Simpson and Stephen George Simpson. Subsystems of second
order arithmetic, volume 1. Cambridge University Press, 2009.

11

