A Proof of the Low Basis Theorem

Duarte Maia

July 31, 2023

Lemma. Let T C 2<% be a tree which is computable in the Halting problem, by an oracle program P which
is inversely monotone in the oracle, in the following sense: If A C B are oracles, then P4 > PB pointwise.

Then, there is a computable tree T’ which contains the same paths. Moreover, T’ can be obtained
effectively from P.

Proof: Let P be a program which, using the Halting problem as an oracle, returns whether a finite string o
is in T or not. Then, we determine whether o is in T” as follows. First, we pick an increasing approximation
to the Halting problem H which improves with depth, let’s say Hien,. Then, we verify that, with this oracle,
P thinks that o, and all its initial segments, are in T'.

The resulting set T is computable. We verify that it is a tree. Indeed, suppose that

PHienc (g) = PHiene () = PHienc (ggoy) = - - = PHene () = 1. (1)

Then, by monotonicity of P as a function of the oracle, all of the above equalities still hold when using
any n < leno. Thus, in particular, any prefix of ¢ is in 7".

Now, let us verify that T and 7" have the same paths. One inclusion is due to the fact that, due to a
reasoning similar to the one we just did, T C T’, and so any path in T is also in T'. So, we focus on the
opposite inclusion.

Let f be a path in T7”, and let f, be its n-th initial segment. We wish to verify, for arbitrary n, that
PH(f,) = 1. Note that the computation of P¥(f,), whatever the output may be, uses the oracle only
finitely many times. Thus, there is some approximation Hy such that PH~(f,,) = PH(f,). Now, since the
entirety of f is in 7", then in particular fi,ax(nn) is in T”, and so by definition we have PHuaxvn) (£,) = 1.
By monotonicity in the oracle, we conclude that

PU(fa) = P (f) 2 Plmesvon () = 1. 2)
]

Theorem. Let T C 2<% be an infinite computable binary tree. Then, there exists a path A through T of
low degree.

Proof: We will construct A at the same time as we conclude (or force) things about its jump. More precisely,
we will iterate over all programs P that make use of an oracle, and whenever possible we will ensure that A
is built such that P does not halt when given A as an oracle.

Given the computable tree T, and fixed an oracle program P, we construct the subtree Ty given as follows.
To decide whether a string o € T is in T, we check whether P halts (on the empty tape) when given o as an
oracle, with the stipulation that if P tries to access past the bounds of o, it crashes and loops indefinitely.
If P runs forever (or crashes), we declare that o is in Ty. It is trivial that Tj is a tree. Moreover, P?
requires no oracle to execute, and so Ty is computable in the Halting problem, and furthermore in a way
that is inversely monotone in the oracle. Thus, there is a computable tree T} 2 Ty whose paths are the
same as those of Ty, and moreover by intersecting with 7' we may in fact assume that T, C T. (Note that
intersecting with T does not remove any paths.)



Now that we have performed the construction in the previous paragraph, we construct A itself, by
constructing a decreasing sequence T,, of infinite trees. The first tree is T itself. Then, we iterate over all
oracle programs P, and at each step construct the computable subtree (say U,11) of the current tree (say
T,.) given by the above procedure. Now, there are two cases. Either U, is infinite, or U, y; is finite, and
with an oracle for the Halting problem it is possible to tell effectively which of these two cases holds.

If the first case holds, and U, is infinite, then there is an oracle in 7,, which causes P never to halt,
and indeed any oracle in U, 41 does this. So we set T}, 11 = Up,41. If the second case holds, then any oracle
in T, will cause P to halt in finite time. Thus, we set T}, 1 = T;,, confident that whatever future restrictions
we place on A, P will halt when given A as an oracle.

We thus obtain a decreasing sequence of trees, all of which contain at least one path, and so we may
find a path f which is in all of them. [Note: This path is unique, because we can, by considering specific
programs P, force the process to make a decision on whether any particular n € N is in A.] The jump of f
is determined by the above process, which is effective in the Halting problem, and so f has low degree. W



