
A Proof of the Low Basis Theorem

Duarte Maia

July 31, 2023

Lemma. Let T ⊆ 2<ω be a tree which is computable in the Halting problem, by an oracle program P which
is inversely monotone in the oracle, in the following sense: If A ⊆ B are oracles, then PA ≥ PB pointwise.

Then, there is a computable tree T ′ which contains the same paths. Moreover, T ′ can be obtained
effectively from P .

Proof: Let P be a program which, using the Halting problem as an oracle, returns whether a finite string σ
is in T or not. Then, we determine whether σ is in T ′ as follows. First, we pick an increasing approximation
to the Halting problem H which improves with depth, let’s say Hlenσ. Then, we verify that, with this oracle,
P thinks that σ, and all its initial segments, are in T .

The resulting set T ′ is computable. We verify that it is a tree. Indeed, suppose that

PHlen σ (ε) = PHlen σ (σ0) = PHlen σ (σ0σ1) = · · · = PHlen σ (σ) = 1. (1)

Then, by monotonicity of P as a function of the oracle, all of the above equalities still hold when using
any n < lenσ. Thus, in particular, any prefix of σ is in T ′.

Now, let us verify that T and T ′ have the same paths. One inclusion is due to the fact that, due to a
reasoning similar to the one we just did, T ⊆ T ′, and so any path in T is also in T ′. So, we focus on the
opposite inclusion.

Let f be a path in T ′, and let fn be its n-th initial segment. We wish to verify, for arbitrary n, that
PH(fn) = 1. Note that the computation of PH(fn), whatever the output may be, uses the oracle only
finitely many times. Thus, there is some approximation HN such that PHN (fn) = PH(fn). Now, since the
entirety of f is in T ′, then in particular fmax(N,n) is in T ′, and so by definition we have PHmax(N,n)(fn) = 1.
By monotonicity in the oracle, we conclude that

PH(fn) = PHN (fn) ≥ PHmax(N,n)(fn) = 1. (2)

■

Theorem. Let T ⊆ 2<ω be an infinite computable binary tree. Then, there exists a path A through T of
low degree.

Proof: We will construct A at the same time as we conclude (or force) things about its jump. More precisely,
we will iterate over all programs P that make use of an oracle, and whenever possible we will ensure that A
is built such that P does not halt when given A as an oracle.

Given the computable tree T , and fixed an oracle program P , we construct the subtree T0 given as follows.
To decide whether a string σ ∈ T is in T0, we check whether P halts (on the empty tape) when given σ as an
oracle, with the stipulation that if P tries to access past the bounds of σ, it crashes and loops indefinitely.
If Pσ runs forever (or crashes), we declare that σ is in T0. It is trivial that T0 is a tree. Moreover, Pσ

requires no oracle to execute, and so T0 is computable in the Halting problem, and furthermore in a way
that is inversely monotone in the oracle. Thus, there is a computable tree T ′

0 ⊇ T0 whose paths are the
same as those of T0, and moreover by intersecting with T we may in fact assume that T ′

0 ⊆ T . (Note that
intersecting with T does not remove any paths.)

1



Now that we have performed the construction in the previous paragraph, we construct A itself, by
constructing a decreasing sequence Tn of infinite trees. The first tree is T itself. Then, we iterate over all
oracle programs P , and at each step construct the computable subtree (say Un+1) of the current tree (say
Tn) given by the above procedure. Now, there are two cases. Either Un+1 is infinite, or Un+1 is finite, and
with an oracle for the Halting problem it is possible to tell effectively which of these two cases holds.

If the first case holds, and Un+1 is infinite, then there is an oracle in Tn which causes P never to halt,
and indeed any oracle in Un+1 does this. So we set Tn+1 = Un+1. If the second case holds, then any oracle
in Tn will cause P to halt in finite time. Thus, we set Tn+1 = Tn, confident that whatever future restrictions
we place on A, P will halt when given A as an oracle.

We thus obtain a decreasing sequence of trees, all of which contain at least one path, and so we may
find a path f which is in all of them. [Note: This path is unique, because we can, by considering specific
programs P , force the process to make a decision on whether any particular n ∈ N is in A.] The jump of f
is determined by the above process, which is effective in the Halting problem, and so f has low degree. ■

2


