
On The Algorithmic Law of Large Numbers
And the Rarity of Sequences that Don’t Conform to the LLN

Duarte Maia

January 1, 2025

1 Introduction
This document is a distillation of my reading of Proposition 3.2.13 in [1]: Each ML-random set satisfies the
law of large numbers. In the entirety of this document, “random” will always be used to mean “Martin-Löf
random”.

This document is intended as a proof of the law of large numbers for random sets, which we state in its
fullness for posteriority:

Theorem 1. If A is a random set, then A satisfies the law of large numbers, in the sense that #A↾n
n → 1

2 .

The proof we outline below has two parts. First, we prove that if a property Q is “likely”, in the sense that
the probability that a randomly-chosen sequence of size n has property Q gets closer to 1 as n → ∞ at a rate
to be determined below, then any random sequence will eventually satisfy the property Q. Then, we apply
probability-theoretic tools to show that the property of “satisfying the law of large numbers up to error ε”
is likely in this sense, implying by the definition of limit that Theorem 1 holds. That said, this document
is intended to be mostly self-contained, at least when it comes to probability. The reader is nevertheless
assumed to be comfortable with the notion of Martin-Löf randomness and prefix-free complexity.

2 Random Implies Not Rare
Let P be a property of strings. We will show that if P is a (computable enough) “rare” property, in a sense
to be defined shortly, then for any random sequence A almost all prefixes of A satisfy ¬P . More precisely,
for all but finitely many n ∈ N we have ¬P (A↾n).

The strategy that we will follow will be the following. We describe the prefixes of A, or at least the ones
that satisfy P , by encoding their length n, followed by instructions to print out the sequences of this length
that satisfy P , followed by saying “the string I want is the k-th one”. If P is rare enough, then k will be
small enough that this encoding is better than linear.

Let’s do some back-of-the envelope calculations to figure out how rare P should be. Let’s say that we want
to encode the string σ in this manner. Say that its length is n, and in some previously-fixed enumeration of
the strings of length n satisfying P , σ comes in k-th place. Then, let us encode the pair ⟨n, k⟩ in an efficient
prefix-free way.

• The most direct way would be to encode using unary, which yields n + 1 + k + 1, which will never be
smaller than n.

• Let us instead encode in binary, using unary to encode the order of magnitude. This yields1 2 log n +
2 log k, which grows slower than n so long as 2 log k ≤ n−2 log n−un, with un some sequence converging

1Ignoring some constant terms arising from the need to use separators, a habit which we will follow henceforth.

1

to infinity. This will be satisfied so long as P is rare enough that the number Nn of strings of length
n satisfying P satisfies (for example) 2 log Nn ≤ n − (1 + ε) log n, or equivalently

N2
n ≤ 2n/n1+ε. (1)

This is a really bad bound. To see this, let us rephrase it in terms of density, or probability. Let
pn = Nn/2n be the proportion of strings of size n that satisfy p. Then, Equation (1) may be rewritten
as

pn ≤ 2−n/2/n
1
2 +ε′

.

In other words, we need that the proportion of strings satisfying P decreases exponentially. This is no
good. Fortunately, we can notice that the exponential term comes from the term 2 log k in the size of
the encoding. If we encode a little smarter, like, say, encoding the order of magnititude itself in binary,
we will get a polynomial bound.

• Let us encode n in binary as before, and let us now encode k in binary, with the order of magnitude
itself in binary. This yields 2 log n +log k +2 log log k. Thus, if Nn is as above, we now want the bound

2 log n + log Nn + 2 log log Nn ≤ n − un

for some un → ∞. This suggests, though it will not be sufficient, to assume the bound log Nn ≤
n − 2 log n. Once we do, we will get

2 log n + log Nn + 2 log log Nn ≤ n + 2 log(n − 2 log n),

which is in fact not growing slower than n. However, if we subtract another two log terms from our
bound, we get something much more promising:

log Nn ≤ n − 4 log n =⇒ 2 log n + log Nn + 2 log log Nn ≤ n − 2 log
(

n

n − 4 log n

)
.

Unfortunately, n
n−4 log n → 1 and so log

(
n

n−4 log n

)
converges to 0, not to ∞. Thus, this is barely not

enough.

• Let us now try to take the encoding of k one step deeper, giving the bound 2 log n + log k + log log k +
2 log log log k. Now, if Nn ≤ n − 4 log n we get

2 log n + log Nn + log log Nn + 2 log log log Nn ≤ n − log
(

n2

(n − 4 log n)(log(n − 4 log n))2

)
, (2)

and we can now verify that the log term does in fact converge to infinity. This proves a preliminary
version of our result:

Proposition 2. Let P be a c.e. property of strings that is rare in the sense that, for every n,
number of strings of size n that satisfy P

2n
≤ 1

n4 .

Then, if A is a random sequence, only finitely many prefixes of A satisfy P .

Proof: The paragraphs that precede this proposition provide a way to encode string satisfying P in a sublinear
way. Thus, if infinitely many prefixes A↾ni of A satisfied P , we would have K(A↾ni) ≤ ni−uni

, which implies
by the K-complexity definition of 1-randomness that A is nonrandom. ■

This bound can be improved. If we also encode n in a smarter way, using log n + 2 log log n bits, something
similar to Equation (2) may be recovered assuming only Nn ≤ n − 3 log n. There is also no harm in adding
a constant term. In other words:
Proposition 3. Let P be a c.e. property of strings such that, for some constant c, for every n ∈ N we have
number of strings of size n that satisfy P

2n ≤ c
n3 . Then, if A is a random sequence, only finitely many prefixes of A

satisfy P .

2

3 Most Strings Satisfy the Law of Large Numbers
Let A be a random set. We want to show that the Law of Large Numbers holds for A, that is,

lim
n→∞

#A↾n
n

= 1
2 .

By expanding the definition of limit, this boils down to saying that, for any ε > 0, for all but finitely
many n we have

∣∣∣ #A↾n
n − 1

2

∣∣∣ < ε. In light of Proposition 3, this suggests proving that, for fixed ε > 0, the

proportion of strings σ of size n that satisfy
∣∣∣ #σ

n − 1
2

∣∣∣ ≥ ε decreases at least cubically, where #σ denotes the
number of ones in σ. So let’s establish some notation to help us approach the problem.

Definition 4. For p ∈ R and n ∈ N, define

Anp = { σ ∈ 2n | #σ ≤ pn },

and define analogously Bnp as the set of strings of size n with #σ ≥ pn.

The quantity we intend to bound is the amount of strings satisfying
∣∣∣ #σ

n − 1
2

∣∣∣ ≥ ε, or equivalently

#σ ≤ 1
2 − ε ∨ #σ ≥ 1

2 + ε.

Thus, we intend to bound the size of A
n

(
1
2 −ε

) ∪ B
n

(
1
2 +ε

). Moreover, the operation of swapping zeros on

a string for ones and vice-versa provides a bijection between these two sets, and so it suffices to get a good
upper bound on the quantity

Pnp = #Anp

2n
,

for p < 1
2 . In this section, we will provide four ways to obtain upper bounds, of which one is insufficient,

and another merely heuristic.

3.1 Failed Approach: Chebyshev
The first attempt at a bound on the size of Anp might be via the use of Chebyshev’s inequality (though I
believe probabilists refer to what I’m about to state as Markov’s inequality). We state it for the particular
case of finite measure spaces, which is the only case for which we will use it.

Theorem 5 (Chebyshev). If f : X → [0, ∞[, for X a finite set, and a ≥ 0 is a real number, we have∑
x∈X

f(x) ≥ a × #{x | f(x) ≥ a}.

A first try would be to apply it to the function

f : 2n → N
σ 7→ #σ

getting the inequality:
∑

σ∈2n f(σ) ≥ #{σ | f(σ) ≥ qn} × qn. The left-hand side is seen by combinatorial
arguments to equal n2n−1, because the involution σ 7→ σ∗ that swaps zeros and ones divides the space 2n

into orbits of size two, for which f(σ) + f(σ∗) = n. The right-hand side is qn #Bnq. Applying this to
q = 1 − p and using the fact that #Anp = #Bn(1−p), we get the bound

#Anp ≤ 1
2(1 − p)2n.

3

This is not a very good bound. We want the proportion of elements in #Anp to decrease cubically, and
we failed to even show that it goes to zero.

A better bound – and this is the one that probabilists call Chebyshev’s inequality – consists of applying
Theorem 5 to the function

g : 2n → [0, ∞[
σ 7→ (#σ − n/2)2,

with a = n2ε2This yields the inequality

#An(1
2 −ε) + #Bn(1

2 +ε) ≤ 1
ε2

∑
σ∈2n

g(σ).

It remains to compute
∑

g(σ). For this task, it is probably best to change to purely probabilistic methods.
Indeed, to calculate

∑
g(σ)

2n is to compute the variance of X1 + · · · + Xn, with the Xi being independent
random variables with value 0 or 1 with probability 1

2 . We have the formula from probability

Var(X + Y) = Var(X) + Var(Y),

for X and Y independent variables. Thus, Var(X1 + · · · + Xn) = nVar(X), for X a zero-one coin flip, and
Var(X) = 1

4 . Thus,
#An(1

2 −ε) + #Bn(1
2 +ε)

2n
≤ 1

4ε2n
.

This is a better bound, but it still falls short, decreasing at a rate of 1/n and not the required 1/n3.

3.2 Heuristic Approach
We now present a heuristic approach that suggests that we can do much better than 1/n3. We will make
this heuristic approach rigorous in Section 3.3.

A direct counting argument gives us a reasonably explicit expression for #Anp:

#Anp =
∑

k≤np

(
n

k

)
.

We approximate
(

n
k

)
by a smooth expression, and approximate the sum by the integral of this expression.

To obtain an approximation for
(

n
k

)
, we also apply a similar technique.

First, we recall and sketch Stirling’s approximation for the factorial. Note that log n! = log n+ · · ·+log 1,
which we approximate by

∫ n

1 log x dx = n log n + n − 1. Thus, log n! ≈ n log n + n − 1, and so

n! ≈ nnen

e .

From this and the expression for the binomial, we obtain the approximation(
n

k

)
≈ 1

e
nn

kk(n − k)n−k
.

Thus, we can approximate

#Anp =
∑

k≤np

(
n

k

)
≈

∫ np

0

1
e

nn

kk(n − k)n−k
dx,

4

which by a change of variables to y = x/n is given by

#Anp ≈ n

e

∫ p

0

(
1

yy(1 − y)1−y

)n

dy. (3)

This integral is not amenable to direct computation, but it can be approximated. Let us look at plots of
the integrand, for large values of n.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
y

1.2

1.4

1.6

1.8

2.0

1

yy (1 - y)1-y

n

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
y

200000

400000

600000

800000

1×106

1

yy (1 - y)1-y

n

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
y

2×1029

4×1029

6×1029

8×1029

1

yy (1 - y)1-y

n

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
y

1×10298

2×10298

3×10298

4×10298

5×10298

6×10298

7×10298

1

yy (1 - y)1-y

n

Figure 1: A plot of
(

1
yy(1−y)1−y

)n

, for n = 1, 20, 100, and 1000, for y ∈ [0, 0.45].

We can see from the figures that, as n → ∞, only the rightmost part of the graph is significant. We can
approximate the graph by a right triangle, and its integral by the area of this triangle.

Remark 6. The above approximation is only valid for p < 1
2 !

Set hn(x) =
(

1
yy(1−y)1−y

)n

. Then, for large values of n, the triangle we refer to in the previous paragraph

has height given by hn(p) =
(

1
pp(1−p)1−p

)n

, and its slope is

m = h′
n(p) = n

(
1

pp(1 − p)1−p

)n−1
h′

1(p),

and a computation yields h′
1(y) = 1

yy(1−y)(1−y) log
(

1−y
y

)
. Putting it all together, and using the formula for

the area of a right triangle: A = y2

2m , we get

#Anp ≈ n

e

(
1

pp(1−p)1−p

)2n

2n
(

1
pp(1−p)1−p

)n

log
(

1−p
p

) = 1
2e log

(
1−p

p

) (
1

pp(1 − p)1−p

)n

.

Thus, the proportion of strings in Anp is approximated by

#Anp

2n
≈ C(2pp(1 − p)1−p)−n,

5

which, so long as 2pp(1 − p)1−p > 1, decreases geometrically, which is faster than cubically. This may be
verified analytically (for p ̸= 1

2), but for now, the following plot corroborates this guess:

0.0 0.2 0.4 0.6 0.8 1.0
p

0.5

1.0

1.5

2.0
2 pp (1 - p)1-p

Figure 2: Plot of 2pp(1 − p)1−p, compared against y = 1.

This gives us our conclusion: Not only does the proportion of strings in #Anp decrease to zero faster than
cubically, but it does so exponentially, at a rate of (2pp(1 − p)1−p)−n.

In the following two sections, we verify that this indeed holds true.

3.3 First Successful Approach: Bounding Sums by Integrals
This section consists entirely of a rigorous approach to the contents of Section 3.2.

To recap: We seek to bound the value of

#Anp =
∑

k≤np

(
n

k

)
.

We begin by providing a bound for
(

n
k

)
. As before, we consider

log
(

n

k

)
= log n + · · · + log(n − k + 1) − log k − · · · − log 1. (4)

Throughout, we will take recourse to the following principle:
Proposition 7. Let f : [a, b + 1] → R be an increasing function. Then,∑

a≤k≤b

f(k) ≤
∫ b+1

a

f(x) dx.

Proof: Use the lower Darboux sum given by the partition (a, ⌈a⌉, ⌈a⌉ + 1, . . . , ⌊b⌋, ⌊b⌋ + 1, b + 1). ■

An analogous idea, or applying Proposition 7 to −f(−x) provides a lower bound.
Proposition 8. Let f : [a − 1, b] → R be an increasing function. Then,∑

a≤k≤b

f(k) ≥
∫ b

a−1
f(x) dx.

Applying Propositions 7 and 8 to Equation (4) (after disregading log 1 = 0) yields the bound

log
(

n

k

)
≤

∫ n+1

n−k+1
log(x) dx −

∫ k

1
log(x) dx

= (n + 1) log(n + 1) +����(n + 1) − (n − k + 1) log(n − k + 1) −������(n − k + 1) − k log k − �k + 1
= (n + 1) log(n + 1) − (n − k + 1) log(n − k + 1) − k log k + 1,

6

providing the bound on the binomial: (
n

k

)
≤ e (n + 1)n+1

(n − k + 1)n−k+1kk
.

Let us define the auxilliary function, which was seen to be useful in Section 3.2,

h(x) = 1
xx(1 − x)1−x

.

We note that our bound on the binomial may be rewritten using it as recourse:(
n

k

)
≤ e h

(
k

n+1

)n+1
. (5)

We may compute h′(x) = h(x) log
(1−x

x

)
, whose sign is the same as the sign of log

(1−x
x

)
. As a consequence

h(x), and hence the bound in (5), is increasing for x < 1
2 , resp. k < n+1

2 . As such, we may apply Proposition
5 in conjunction with (5) to obtain ∑

k≤np

(
n

k

)
≤

∫ np+1

0
e h

(
x

n+1

)n+1
dx, (6)

which by a change of variables to y = x
n+1 gives

∑
k≤np

(
n

k

)
≤ (n + 1)e

∫ np+1
n+1

0
h (y)n+1 dx. (7)

Now, let’s recall that the quantity we are interested in is 1
2n

∑
k≤np

(
n
k

)
. Unfortunately, since (7) is not

as tidy as the heuristic bound (3), the computations are going to get a little ugly. Nevertheless, we will
prove that 1

2n

∑
k≤np

(
n
k

)
decreases exponentially, which is faster than cubically and so will suffice to prove

the Law of Large Numbers.
We divide the integral in 7 into two parts:

(n + 1)e
∫ np+1

n+1

0
h (y)n+1 dx = (n + 1)e

∫ p

0
h (y)n+1 dx︸ ︷︷ ︸

Q1

+ (n + 1)e
∫ np+1

n+1

p

h (y)n+1 dx︸ ︷︷ ︸
Q2

. (8)

We start by bounding Q2, as it is the easiest. We have the bound

Q2 ≤ (n + 1)e
(

np + 1
n + 1 − p

)
h

(
np+1
n+1

)n+1
= e(1 − p)h

(
np+1
n+1

)n+1
.

Finally, since np+1
n+1 → p, p < 1

2 , and h is decreasing for x < 1
2 , we may choose n large enough that np+1

n+1 is
always less than p+ε for some small ε, whence h

(
np+1
n+1

)
< h(p+ε) < 2, and so 1

2n Q2 decreases exponentially,
completing the first part of the proof.

Let us now bound Q1. In order to make the “approximate by a right triangle” argument from Section
3.2 rigorous, we employ the following lemma.

Lemma 9. Let f : [0, 1] → [0, ∞[be a function whose left-derivative at 1, which we will refer to as f ′(1),
exists and is nonzero. Then, the integral

∫ 1
0 f(x)n dx is asymptotically equal to f(1)

nf ′(1) f(1)n. In other words,∫ 1
0 f(x)n dx
f(1)

nf ′(1) f(1)n
→ 1.

7

Proof: By considering f̃ = 1
f(1) f , we may without loss of generality assume that f(1) = 1. This is not an

essential part of the proof, but makes it notationally nicer, as now the question boils down to computing the
limit of n

∫ 1
0 f(x)n dx, which we claim equals f ′(1).

We begin by considering the special case where

f(x) =
{

m(x − 1) + 1 x ≥ 1 − δ

c x < 1 − δ
(9)

for some positive real number m, 0 ≤ c < 1, and small enough value of δ. In this case, the integral may be
computed explicitly:∫ 1

0
f(x)n dx = (1 − δ)cn +

∫ 1

1−δ

(m(x − 1) + 1)n dx = (1 − δ)cn +
(

1
m(n + 1) − (1 − δm)n+1

m(n + 1)

)
.

Now, for δ small enough, we have 0 < 1 − δm < 1, and so

n

∫ 1

0
f(x)n dx = n(1 − δ)cn + n

n + 1

(
1
m

− (1 − δm)n+1

m

)
→ 1

m
,

and so this special case is proven. Now, for the general case, we note that any function f that satisfies
the assumptions of the problem statement, f may be bounded from above by a function of type (9) with
m = f ′(1) + ε, and from below by a function of type (9) with m = f ′(1) − ε. Thus, any sublimit of
n

∫ 1
0 f(x)n dx is between f ′(1) − ε and f ′(1) + ε, which by standard real analysis arguments implies that the

limit exists and equals f ′(1). This completes the proof. ■

Remark 10. We didn’t get a factor of 1
2 in the assymptotic approximation, which means that in fact

approximating by a right triangle is an underestimate by a factor of a half. It appears that we should have
approximated by a rectangle instead, which is pretty weird!
Now equipped with Lemma 9, we can bound Q1 easily. Indeed, by Lemma 9 we have

Q1 = (n + 1)e h(p)
nh′(p)h(p)n × an,

with an → 1. We see that n+1
n → 1 also, and so the only thing that determines the growth of Q1is the

exponential term h(p)n. To investigate this, note that we’ve calculated before that h is increasing (strictly)
up to 1

2 , and moreover we can easily compute h(1/2) = 2. Thus, h(p) is (for p < 1/2) strictly less than 2,
and so we conclude that 1

2n Q1 converges exponentially to zero, which is again faster than cubic, as desired.

Remark 11. While this proof is sufficient to get that #Anp

2n goes to zero exponentially, it does not quite
reach the exponential decay of rate 2pp(1 − p)1−p that we expected from Section 3.2. We only obtained
exponential decay with rate 2pp(1 − p)1−p + ε for arbitrary ε. A better bound could be obtained by being
more careful in step (6). Instead of bounding the whole sum by an integral, leave the last term out:∑

k≤np

(
n

k

)
≤

∫ np

0
e h

(
x

n+1

)n+1
dx +

(
n

⌊np⌋

)
.

The first term is what we referred to in Equation (8) as Q1, which we bounded by c (pp(1 − p)1−p)n, and
the second term we can bound using Equation (5) to get(

n

⌊np⌋

)
≤ e h

(
⌊np⌋
n + 1

)n+1
≤ c′ h(p)n,

where we used the fact that h is increasing up to 1
2 and ⌊np⌋

n+1 ≤ p. This is a better bound than the bound
we obtained for Q2, and gives us an exponential bound with rate h(p) = pp(1 − p)1−p as desired.

Remark 12. I suspect that the same approach could be used to furnish a lower bound for #Anp

2n , and hence
prove that the decay bound (2pp(1 − p)1−p)−n is tight up to multiplicative factors, but I have been unable
to get it to work.

8

3.4 Second Successful Approach: Chernoff Bounds
This approach boils down to applying Theorem 5 to a well-chosen family of functions {ft}, and keeping the
best bound we obtain from this process. These functions are chosen as to exploit regularities of our specific
scenario. Probabilistically speaking, what we have is a sum of independent random variables X1 + · · · + Xn,
each of which is zero or one with probability 1/2. A remarkable property of independent r.v.s is that, if X
and Y are independent, E[XY] = E[X]E[Y], which suggests taking an exponential to turn the sum into a
product. Thus, we consider the bounds obtained by applying Chebyshev/Markov’s inequality to λX1+···+Xn

for λ > 0, or equivalently to exp(t(X1 + · · · + Xn)) for t ∈ R. We will in fact only consider t > 0, because
other choices for t do not preserve inequalities.

To begin the proof, let us recall that what we want to estimate is the proportion of strings in 2n that lie
in Anp. In the framework of the previous paragraph, this is the same as to estimate P[X1 + · · · + Xn ≤ np],
which is the same as P[etX1 . . . etXn ≤ etnp] for arbitrary t > 0. In turn, we apply Markov’s inequality here
to obtain

P[etX1 . . . etXn ≤ etnp] ≤ 1
etnp

E[etX1 . . . etXn] = E[etX]n
etnp

, (10)

where we used the fact that the Xi are independent, and hence the etXi are independent. We also use X to
denote an arbitrary r.v. with the same distribution as the Xi. Finally, we optimize the right-hand side of
Equation (10). Using E[etX] = 1+et

2 , what follows is a calculus exercise, whose conclusion is that the optimal
value of t is t = log

(
p

1−p

)
, which yields the bound

P[X1 + · · · + Xn ≤ np] = P[etX1 . . . etXn ≤ etnp] ≤

1
2

1 + p
1−p(

p
1−p

)p

n

= (2pp(1 − p)1−p)−n. (11)

This is already enough to prove the Law of Large Numbers for random sequences, as it provides us with
exponential decay, which is faster than cubic decay.

To conclude this document, we briefly explain how to go from bound (11) to the Chernoff bounds outlined
by Nies on page 101. The main step is to prove that pp(1−p)1−p ≥ 1

2 e(p− 1
2)2 . This can be done by optimizing

the logarithm of the quotient pp(1−p)1−p

exp((p− 1
2)2) , which is p log p + (1 − p) log(1 − p) + (p − 1

2)2. Its derivative is

log
(

p
1−p

)
−2p−1, which can be seen to be negative for p < 1

2 by using the bound log x ≤ x−1, and positive

for p > 1
2 because it’s odd about 1/2. Thus, the global minimum of pp(1−p)1−p

exp((p− 1
2)2) is at p = 1

2 , with value 1/2,
which proves the inequality pp(1 − p)1−p ≥ 1

2 e(p− 1
2)2 . Therefore, Equation 11 has as a consequence that

P[X1 + · · · + Xn ≤ np] ≤ e−n(p− 1
2)2

.

This gives a bound on the size of Anp. The bound on the size of Bn(1−p) is the same, and so we get Nies’
bound

P
[∣∣∣∣X1 + · · · + Xn

n
− 1

2

∣∣∣∣ ≥ ε

]
≤ 2e−nε2

.

References
[1] André Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford University Press,

Oxford, 2009.

9

