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1 Introduction
This document is ostensibly a solution, and explanation thereof, of the titular exercise. This particular
exercise struck me as particularly challenging, and the intended solution comes a bit out of left field. Even
the hint is remarkably obtuse, especially taking into account that it’s basically the skeleton of a proof. Thus,
I decided to make this document in an attempt to convince to myself that the solution makes sense, and
explain how someone might have come up with it.

2 Problem Statement
Let A be a c.e. set. We say that A is dense simple if pAc dominates every total computable function.
We say that A is strongly effectively simple if there is a (wlog total) computable function f such that
We ⊆ Ac =⇒ max We ≤ f(e). Prove that A cannot be dense simple and s.e.s. at the same time.

3 Pre-Solution
At first sight this problem looks relatively approachable. An obvious avenue of attack is to suppose that A is
s.e.s. and construct explicitly a computable function which is not dominated by pAc . However, one quickly
finds (or at least I did) that there doesn’t seem to be an easy way to do that. In hindsight, I think that’s
what the full solution does – More on that later – but the motivation for the solution definitely comes from
attempting a proof by contradiction: Suppose that A is both dense simple and s.e.s, and let us try to find a
contradiction.

Let’s take a look at the puzzle pieces at hand. We have:

• An enumeration of A,

• A computable function f that witnesses that A is s.e.s,

• We are given that the principal enumeration of Ac dominates every computable total function.

At first sight, the last puzzle piece doesn’t quite fit together with the rest. How are we going to make the
principal enumeration of Ac pop up? After some thought, this is where the enumeration of A comes up: We
can use it to approximate pAc !

More concretely, define as(n) as follows. First, enumerate s elements of A. Then, let as(n) be the n-th
non-enumerated element in increasing order. This two-indexed sequence has the following property:

Fact 1. The sequence as is an increasing sequence of monotone injective functions whose pointwise limit is
lim as(n) = pAc(n).
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For the sake of notation, we set a(n) = pAc(n), so that a = lim as.

Now that we have a better way to tie the pieces together, let’s figure out how to manufacture a contra-
diction. We know that a(n) dominates every total computable function, so perhaps the way lies through
creating a computable function h(n) for which being dominated somehow causes a contradiction. Perhaps
we could try to create h from as? It is as yet unclear how f (the function that witnesses that A is s.e.s.)
comes into the picture, but let us continue along this line of reasoning for the time being.

Here’s a skeleton of an idea. By making use of the recursion theorem, we can use h in the definition
of h. Moreover, we know that a(n) eventually dominates h(n), so perhaps we can use this to create a
self-contradictory function. Namely:

h0(n) =
{

Compute as(n) for increasing values of s until you exceed h0(n).
Output the first such value of as(n).

This would certainly be a contradiction if h0 were total! However, there is no reason why it should be;
the obvious conclusion is simply that the computation of h0(n) will never halt for any values of n. This
is where the function f that witnesses s.e.s. comes in, as we can use it to conjure values out of possibly
non-terminating computations. Indeed, let us define x1(n) as the code “compute as(n) for increasing values
of s until you exceed h1(n) and print out the first such value of as(n)”, so that

Wx1(n) =
{

{as(n)}, for the smallest s such that as(n) > h1(n) if one exists,
∅, otherwise.

Then, we may set h1(n) = f(x1(n)), and voila! We have a total function. Now, to find that contradiction...

Let’s play around with the function we’ve defined. We know that it is total, so there must be some n0
after which we have a(n) > h1(n), and so in particular we will always be in the first branch of the definition
of Wx1(n). Let us call the element of the resulting singleton set by the name as1(n)(n). Then, the definition of
f tells us: If it is the case that as1(n)(n) is in Ac, we must have f(x1(n)) > as1(n)(n). But this is impossible
because, by definition of s1(n), it must happen that as1(n)(n) > h1(n) = f(x1(n)). This is not yet a full
contradiction, but we do obtain for sure:

Fact 2. It must be the case that as1(n)(n) ∈ A. In particular, as1(n)(n) cannot equal a(n).

This is... Something. It’s not really a contradiction yet, and we begin to run out of cards to play. It starts
to look like we’re at a dead end, but fortunately there’s a tricky way out of this situation. Let’s dig a little
deeper.

We know that as1(n)(n) cannot equal a(n). In other words, as1(n) hasn’t finished converging at n. By
inspecting the definition of as, we reach another conclusion however: It must be the case that as1(n)(n+1) ≤
a(n). This seems useless for now, but it is interesting because it allows us to jump “between values of n”,
which is something we have yet to do. It requires some tinkering to make the following idea work, but hear
me out: What if we can ensure that as1(n)(n + 1) ≥ h(n + 1)? This seems undoable at first sight, as the
argument s1(n) has no reason to be large enough, but on a second look it requires a very simple modification
in the definition of x1(n):

Wx2(n) =
{

{as(n)}, for the smallest s such that as(n) > h2(n) and as(n + 1) > h2(n + 1), if one exists,
∅, otherwise,

followed by setting h2(n) = f(x2(n)). Let us see if we get a contradiction this time.
As before, if we call s2(n) the time obtained in Wx2(n) we obtain for n > n0 (the value after which a

dominates h2) that as2(n)(n) ∈ A, hence a(n) ≥ as2(n)(n + 1) > h2(n + 1). Can we keep this inequality going
for n + 2, n + 3, etc? It... Doesn’t seem likely. For a very simple reason in fact: By construction, we will
always have as(n) ≥ n, and thus h2(n) ≥ n for all n > n0. A last modification is necessary; it will let us
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transpose inequalities not just from n (the point of evaluation) to n + 1, but from y to y + 1 where y is not
necessarily the point of evaluation. We begin by decoupling two uses of n in the definition of x2 which need
not be the same. Define x3(n, y) by:

Wx3(n,y) =
{

{as(y)}, for the smallest s such that as(y) > h3(n) and as(y + 1) > h3(n + 1), if one exists,
∅, otherwise,

and set h3(n) = maxy≤n f(x3(n, y)). Why this particular computation? Well, we want to have access to
values of as(y) for y < n, otherwise we will definitely run into the issue we pointed out for h2. As for why
we take a max and not a min, say, is because otherwise the computation in the next paragraph would not
work.1

Let n > n0 as before. Moreover, define s3(n, y) as the one that shows up in the computation of Wx3(n,y),
if one exists. First, we conclude that h3(n+1) < a(n) basically as before: If as3(n,n)(n) were in Ac,2 it would
be the case that h3(n) ≥ f(x3(n, n)) > as3(n,n)(n) > h3(n), a contradiction. Thus, a(n) > as3(n,n)(n), hence
a(n) ≥ as3(n,n)(n + 1) > h3(n + 1).

Now we want to continue the argument by using h3(n + 1) ≥ f(x3(n + 1, n)). There is a subtlety
in this step, however: We need to ensure that s3(n + 1, n) is well-defined, or equivalently that a(n) >
h3(n + 1) ∧ a(n + 1) > h3(n + 2). Fortunately this is the case; we have just proven that a(n) > h3(n + 1)
for every n > n0, including n + 1, and so the argument continues: If as3(n+1,n)(n) were in Ac, we would
have h3(n + 1) ≥ f(x3(n + 1, n)) > as3(n+1,n)(n) > h3(n + 1), and so a(n) > as3(n+1,n)(n) whence a(n) ≥
as3(n+1,n)(n + 1) > h3(n + 2).

Ah, so now we’re getting somewhere! Continuing by induction (using the IH to get well-definedness of
s3(n + k, n)) we conclude that a(n) ≥ h3(n + k) for every k ∈ N. In particular, h3 is a bounded function!

This starts getting into contradiction territory, but we haven’t hit the goal quite yet. We have yet to show
that h3 cannot be bounded. This isn’t too difficult, however; we need only find a collection of values on which
we can control the value of f(x3(n, y)). For example, let us suppose that h3 is bounded by M . Then, since
A is simple, its complement contains some element z > M . For this element, we have a0(z) = z > h3(z),
and so h3(z) ≥ f(x3(z, z)) > a0(z) = z > M , a contradiction! Finally, the proof is complete.

4 Final Notes
Even though the above proof was constructed as a proof by contradiction, we could have made it “direct”
in the following way. The definition of h3 only uses the fact that A is c.e, as well as the definition of f .
Thus, we could have begun by assuming that A is strongly effectively simple, constructed the function h as
we did above, and proven that h is not dominated by Ac. Well, I suppose this part would have been by
contradiction... Still, that’s another way to look at the proof, I suppose.

1Indeed, the author initially wrote the definition with a minimum, changing it only when he realized that he needed the
opposite inequalities afterwards...

2Note: s3(n, n) is well-defined because n > n0 and so a(n) > h3(n).
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