Solution to Exercise III.3.9 c) of Odifreddi

Duarte Maia

June 3, 2024

1 Introduction

This document is ostensibly a solution, and explanation thereof, of the titular exercise. This particular exercise struck me as particularly challenging, and the intended solution comes a bit out of left field. Even the hint is remarkably obtuse, especially taking into account that it's basically the skeleton of a proof. Thus, I decided to make this document in an attempt to convince to myself that the solution makes sense, and explain how someone might have come up with it.

2 Problem Statement

Let A be a c.e. set. We say that A is dense simple if $p_{A^{c}}$ dominates every total computable function. We say that A is strongly effectively simple if there is a (wlog total) computable function f such that $W_{e} \subseteq A^{c} \Longrightarrow \max W_{e} \leq f(e)$. Prove that A cannot be dense simple and s.e.s. at the same time.

3 Pre-Solution

At first sight this problem looks relatively approachable. An obvious avenue of attack is to suppose that A is s.e.s. and construct explicitly a computable function which is not dominated by $p_{A^{c}}$. However, one quickly finds (or at least I did) that there doesn't seem to be an easy way to do that. In hindsight, I think that's what the full solution does - More on that later - but the motivation for the solution definitely comes from attempting a proof by contradiction: Suppose that A is both dense simple and s.e.s, and let us try to find a contradiction.

Let's take a look at the puzzle pieces at hand. We have:

- An enumeration of A,
- A computable function f that witnesses that A is s.e.s,
- We are given that the principal enumeration of A^{c} dominates every computable total function.

At first sight, the last puzzle piece doesn't quite fit together with the rest. How are we going to make the principal enumeration of A^{c} pop up? After some thought, this is where the enumeration of A comes up: We can use it to approximate $p_{A^{c}}$!

More concretely, define $a_{s}(n)$ as follows. First, enumerate s elements of A. Then, let $a_{s}(n)$ be the n-th non-enumerated element in increasing order. This two-indexed sequence has the following property:

Fact 1. The sequence a_{s} is an increasing sequence of monotone injective functions whose pointwise limit is $\lim a_{s}(n)=p_{A^{c}}(n)$.

For the sake of notation, we set $a(n)=p_{A^{c}}(n)$, so that $a=\lim a_{s}$.
Now that we have a better way to tie the pieces together, let's figure out how to manufacture a contradiction. We know that $a(n)$ dominates every total computable function, so perhaps the way lies through creating a computable function $h(n)$ for which being dominated somehow causes a contradiction. Perhaps we could try to create h from a_{s} ? It is as yet unclear how f (the function that witnesses that A is s.e.s.) comes into the picture, but let us continue along this line of reasoning for the time being.

Here's a skeleton of an idea. By making use of the recursion theorem, we can use h in the definition of h. Moreover, we know that $a(n)$ eventually dominates $h(n)$, so perhaps we can use this to create a self-contradictory function. Namely:

$$
h_{0}(n)=\left\{\begin{array}{l}
\text { Compute } a_{s}(n) \text { for increasing values of } s \text { until you exceed } h_{0}(n) \\
\text { Output the first such value of } a_{s}(n)
\end{array}\right.
$$

This would certainly be a contradiction if h_{0} were total! However, there is no reason why it should be; the obvious conclusion is simply that the computation of $h_{0}(n)$ will never halt for any values of n. This is where the function f that witnesses s.e.s. comes in, as we can use it to conjure values out of possibly non-terminating computations. Indeed, let us define $x_{1}(n)$ as the code "compute $a_{s}(n)$ for increasing values of s until you exceed $h_{1}(n)$ and print out the first such value of $a_{s}(n)$ ", so that

$$
W_{x_{1}(n)}= \begin{cases}\left\{a_{s}(n)\right\}, & \text { for the smallest } s \text { such that } a_{s}(n)>h_{1}(n) \text { if one exists }, \\ \emptyset, & \text { otherwise }\end{cases}
$$

Then, we may set $h_{1}(n)=f\left(x_{1}(n)\right)$, and voila! We have a total function. Now, to find that contradiction...
Let's play around with the function we've defined. We know that it is total, so there must be some n_{0} after which we have $a(n)>h_{1}(n)$, and so in particular we will always be in the first branch of the definition of $W_{x_{1}(n)}$. Let us call the element of the resulting singleton set by the name $a_{s_{1}(n)}(n)$. Then, the definition of f tells us: If it is the case that $a_{s_{1}(n)}(n)$ is in A^{c}, we must have $f\left(x_{1}(n)\right)>a_{s_{1}(n)}(n)$. But this is impossible because, by definition of $s_{1}(n)$, it must happen that $a_{s_{1}(n)}(n)>h_{1}(n)=f\left(x_{1}(n)\right)$. This is not yet a full contradiction, but we do obtain for sure:

Fact 2. It must be the case that $a_{s_{1}(n)}(n) \in A$. In particular, $a_{s_{1}(n)}(n)$ cannot equal $a(n)$.
This is... Something. It's not really a contradiction yet, and we begin to run out of cards to play. It starts to look like we're at a dead end, but fortunately there's a tricky way out of this situation. Let's dig a little deeper.

We know that $a_{s_{1}(n)}(n)$ cannot equal $a(n)$. In other words, $a_{s_{1}(n)}$ hasn't finished converging at n. By inspecting the definition of a_{s}, we reach another conclusion however: It must be the case that $a_{s_{1}(n)}(n+1) \leq$ $a(n)$. This seems useless for now, but it is interesting because it allows us to jump "between values of n ", which is something we have yet to do. It requires some tinkering to make the following idea work, but hear me out: What if we can ensure that $a_{s_{1}(n)}(n+1) \geq h(n+1)$? This seems undoable at first sight, as the argument $s_{1}(n)$ has no reason to be large enough, but on a second look it requires a very simple modification in the definition of $x_{1}(n)$:

$$
W_{x_{2}(n)}= \begin{cases}\left\{a_{s}(n)\right\}, & \text { for the smallest } s \text { such that } a_{s}(n)>h_{2}(n) \text { and } a_{s}(n+1)>h_{2}(n+1), \text { if one exists } \\ \emptyset, & \text { otherwise },\end{cases}
$$

followed by setting $h_{2}(n)=f\left(x_{2}(n)\right)$. Let us see if we get a contradiction this time.
As before, if we call $s_{2}(n)$ the time obtained in $W_{x_{2}(n)}$ we obtain for $n>n_{0}$ (the value after which a dominates h_{2}) that $a_{s_{2}(n)}(n) \in A$, hence $a(n) \geq a_{s_{2}(n)}(n+1)>h_{2}(n+1)$. Can we keep this inequality going for $n+2, n+3$, etc? It... Doesn't seem likely. For a very simple reason in fact: By construction, we will always have $a_{s}(n) \geq n$, and thus $h_{2}(n) \geq n$ for all $n>n_{0}$. A last modification is necessary; it will let us
transpose inequalities not just from n (the point of evaluation) to $n+1$, but from y to $y+1$ where y is not necessarily the point of evaluation. We begin by decoupling two uses of n in the definition of x_{2} which need not be the same. Define $x_{3}(n, y)$ by:
$W_{x_{3}(n, y)}= \begin{cases}\left\{a_{s}(y)\right\}, & \text { for the smallest } s \text { such that } a_{s}(y)>h_{3}(n) \text { and } a_{s}(y+1)>h_{3}(n+1), \text { if one exists, } \\ \emptyset, & \text { otherwise },\end{cases}$
and set $h_{3}(n)=\max _{y \leq n} f\left(x_{3}(n, y)\right)$. Why this particular computation? Well, we want to have access to values of $a_{s}(y)$ for $y<n$, otherwise we will definitely run into the issue we pointed out for h_{2}. As for why we take a max and not a min, say, is because otherwise the computation in the next paragraph would not work. ${ }^{1}$

Let $n>n_{0}$ as before. Moreover, define $s_{3}(n, y)$ as the one that shows up in the computation of $W_{x_{3}(n, y)}$, if one exists. First, we conclude that $h_{3}(n+1)<a(n)$ basically as before: If $a_{s_{3}(n, n)}(n)$ were in $A^{c},{ }^{2}$ it would be the case that $h_{3}(n) \geq f\left(x_{3}(n, n)\right)>a_{s_{3}(n, n)}(n)>h_{3}(n)$, a contradiction. Thus, $a(n)>a_{s_{3}(n, n)}(n)$, hence $a(n) \geq a_{s_{3}(n, n)}(n+1)>h_{3}(n+1)$.

Now we want to continue the argument by using $h_{3}(n+1) \geq f\left(x_{3}(n+1, n)\right)$. There is a subtlety in this step, however: We need to ensure that $s_{3}(n+1, n)$ is well-defined, or equivalently that $a(n)>$ $h_{3}(n+1) \wedge a(n+1)>h_{3}(n+2)$. Fortunately this is the case; we have just proven that $a(n)>h_{3}(n+1)$ for every $n>n_{0}$, including $n+1$, and so the argument continues: If $a_{s_{3}(n+1, n)}(n)$ were in A^{c}, we would have $h_{3}(n+1) \geq f\left(x_{3}(n+1, n)\right)>a_{s_{3}(n+1, n)}(n)>h_{3}(n+1)$, and so $a(n)>a_{s_{3}(n+1, n)}(n)$ whence $a(n) \geq$ $a_{s_{3}(n+1, n)}(n+1)>h_{3}(n+2)$.

Ah, so now we're getting somewhere! Continuing by induction (using the IH to get well-definedness of $s_{3}(n+k, n)$) we conclude that $a(n) \geq h_{3}(n+k)$ for every $k \in \mathbb{N}$. In particular, h_{3} is a bounded function!

This starts getting into contradiction territory, but we haven't hit the goal quite yet. We have yet to show that h_{3} cannot be bounded. This isn't too difficult, however; we need only find a collection of values on which we can control the value of $f\left(x_{3}(n, y)\right)$. For example, let us suppose that h_{3} is bounded by M. Then, since A is simple, its complement contains some element $z>M$. For this element, we have $a_{0}(z)=z>h_{3}(z)$, and so $h_{3}(z) \geq f\left(x_{3}(z, z)\right)>a_{0}(z)=z>M$, a contradiction! Finally, the proof is complete.

4 Final Notes

Even though the above proof was constructed as a proof by contradiction, we could have made it "direct" in the following way. The definition of h_{3} only uses the fact that A is c.e, as well as the definition of f. Thus, we could have begun by assuming that A is strongly effectively simple, constructed the function h as we did above, and proven that h is not dominated by A^{c}. Well, I suppose this part would have been by contradiction... Still, that's another way to look at the proof, I suppose.

[^0]
[^0]: ${ }^{1}$ Indeed, the author initially wrote the definition with a minimum, changing it only when he realized that he needed the opposite inequalities afterwards...
 ${ }^{2}$ Note: $s_{3}(n, n)$ is well-defined because $n>n_{0}$ and so $a(n)>h_{3}(n)$.

