
Solution to Exercise III.2.19 a) of Odifreddi

Duarte Maia

May 25, 2024

1 Problem Statement
Construct directly an example of a set which is simple but not effectively simple.

2 Solution
We perform a marker construction, in the following sense. We assume that countably many moving markers
have been placed on the natural numbers, one for each number, and we will describe a simulation in which
the markers are moved around. Once a natural number is left unmarked, it will never be marked again.
This shall determine a c.e. set, by enumerating the numbers which are left unmarked. We will ensure that
the resulting set is coinfinite by ensuring that each marker can be moved finitely many times. This leaves
us with two tasks to fulfil:

P Ensure that the resulting set is simple, by making sure that for every infinite c.e. set We there
is an element x ∈ We which is left unmarked,

N Ensure that the resulting set is not effectively simple, by making sure that for every φe there is
x such that either φe(x) ↑ or, if φe(x) ↓, Wx is a finite set, all of whose elements are marked, but
#Wx > φe(x).

To ensure that all tasks Pe are fulfilled, we simply dovetail over the c.e. sets We and, upon finding large
enough elements of We, we push any marker with label > e that may be in their place. We do this only (at
most) once for each We.

To ensure that Ne is fulfilled is quite tricker, and the way I’ve found to do it requires some strong usage
of the recursion theorem. First, let P be the code for the simulation that we are programming right now.
Moreover, define x(e) as code for a program that does the following (this again requires usage of the recursion
theorem):
Let x be this program
Let ν be φe(x)
Let P be the code for the simulation
Run P for as long as it takes for the simulation to compute ν
List the position of the first ν markers at this stage.

Once this is defined, we set our simulation to dovetail processes which compute ν = φe(x(e)) for every
e ∈ N; once such a computation is complete, we place a “lock” on the first ν markers so that they can’t be
moved again. This would fulfill Ne, with x = x(e).

I don’t think that this quite works, unfortunately, because it could be the case that the requirements Ne

create locks at an overwhelmingly fast rate, such that e.g. P73 is never fulfilled. (Also, it absolutely couldn’t
work; if it did, the union of all Wx(e) would be an infinite c.e. set contained in the complement of the final
set...) To get around this, we allow Pe to break through some locks, which will in turn mess up some of the
Ni, but we ensure that Pe only breaks locks created by large enough Ni, and when it does we will make a

1



note to re-fulfill Ni. Thus, each Ni will be broken a finite number of times (at most i), and after the last
time it will be fulfilled forever.

We are now almost ready for the final construction. Define x(e, s) as the following program:
Let x be this program
Let ν be φe(x)
Let P be the code for the simulation
Run P for s steps, then continue running it until it is about to fulfill Ne

List the position of the first ν + 1 markers at this stage.

Now, we define the simulation P as follows. Dovetail processes Pe and Ne, for e ∈ N. Here is what these
processes do:
Ne Compute ν = φe(x(e, 0)). Once this computation halts, immediately place “locks” labeled e on the first

ν + 1 markers and halt this process.

Pe Enumerate elements from We, stopping when you find some x ∈ We in an unmarked position, or in a
position with an unlocked marker, or in position with a marker all of whose locks have labels i > e.

• If x is in an unmarked position, Pe has been fulfilled; halt this process.
• If x is in a position with an unlocked marker i > e, “kick” this marker forward (i.e. push it to the

position of the next marker, and kick that one and so forth). Pe has now been fulfilled; halt this
process.

• If x is in a position whose marker has some number of locks labeled i1, . . . , in > e, kick the marker
forward and restart the processes Ni1 , . . . , Nin , albeit with ν defined as φe(x(e, s)), with s equal
t the current time of execution. Finally, Pe has been fulfilled; halt this process.

We claim that the set A given by the numbers which are eventually unmarked is a simple, but not effectively
simple, set. We now verify this.

• (c.e.) When a position is unmarked, it is never marked again. Moreover, the simulation of the markers
is computable. Thus, we enumerate the set by running the simulation indefinitely and printing out
every number which is unmarked.

• (coinfinite) It suffices to verify that every marker is kicked a finite number of times. This is the case
because the i-th marker will only ever be kicked by the processes P0, . . . , Pi−1, and once by each at
most.

• (simple) Let We be an infinite c.e. set. Suppose for the sake of contradiction that condition Pe is never
fulfilled, in which case the process Pe will run indefinitely.
Let N be a natural number larger than all the following:

– The final positions of the markers numbered 0 to e,
– The locks that will ever have been placed by processes N0 to Ne.

Such an N exists because each marker has a finite final position, and each process Ni places finitely
many locks each time it runs, and runs at most i times.
Now, eventually the process Pe enumerates an element of We which is larger than N , and by inspection
of the simulation it is clear that at this stage Pe will be fulfilled, a contradiction. Thus, A is simple.

• (not effectively simple) Suppose that A is effectively simple with function f = φe. We use the definition
of “effectively simple” that presupposes that f is a total function. Thus, whenever the process Ne is
made to run, it will finish executing in a finite amount of time. We also know that it is made to run
a finite number of times, and that the last time that it is executed the locks that it places will never
be removed, and the corresponding markers will stay in place forever. Thus, the corresponding set
Wx(e,s) shall be contained in Ac. Moreover, it contains ν + 1 > ν = f(x(e, s)) elements, and so f is
not a witness to A being effectively simple. Since this argument holds for every total computable f , A
cannot be effectively simple and the proof is complete.

2


