
Approximating Σn Classes by Σn Opens
Duarte Maia

November 21, 2024

1 Introduction
The context for this document is Section 6.8 of [1]. In trying to read it, more than in other sections, I found
that I was not appropriately appreciating the distinction between a Σn class an an open generated by a Σn

set, because the difference is not relevant in the n = 1 case. In this document, I will clarify (to myself) the
distinction, and subsequently prove a relevant approximation lemma.

2 Classes vs. Opens
First, let us be clear about the spaces of discussion. On one hand, we have the space of finite strings 2<ω. A
subset of this space is referred to as a “set of strings”, or just as a “set”. On the other hand, we have Cantor
space 2ω. A subset of this space is referred to as a “class”. We will relentlessly fail to distinguish between
the following two views on what an element of Cantor space is: A subset of N, or a sequence of zeros and
ones.

The definition of Σn set and Σn space is almost the same, with some notational distinctions. We will
restrict ourselves to the case n ≥ 1.

Definition 1. A Σn set of strings is a set of the form

A = { σ ∈ 2<ω | ∃x1∀x2 . . . QxnP (σ, x1, . . . , xn) },

where P is a recursive predicate.

Definition 2. A Σn class is a collection of sets of numbers of the form

C = { A ∈ 2ω | ∃x1∀x2 . . . Qxn
P (A, x1, . . . , xn) },

where P is a recursive predicate.

Definition 3. An index for a Σn set/class consists of an index for the recursive predicate P .

It is worth going into a little more depth about the meaning of “P is a recursive predicate” in Definition
2, notably when it comes to the meaning of A being given as input. One way to see it is one that can be
computed by a Turing machine whose initial tape contains the tuple x⃗ = ⟨x1, . . . , xn⟩ and that has access to
A as an oracle tape. In other words, we may instead write P (A, x1, . . . , xn) as P A(x1, . . . , xn). Note that the
recursiveness requirement means that the Turing machine in question will halt regardless of input, including
A.

Note that a finite computation can only check a finite amount of data from A. In other words, the value
of P (A, x1, . . . , xn) depends only on a certain long enough prefix of A, the length of which depends on the
xi and on A itself. It turns out, however, that given x⃗ we can (recursively) find a uniform bound on how
long a prefix of A is necessary to determine the value of P .

1



Proposition 4. Let P (X, x) be a recursive predicate whose first input is an element of Cantor space and
whose second input is a natural number. Then, there exists a recursive function f such that the value of
P (X, x) depends only on X ↾f(x).

Proof: Consider the following computable binary tree T ≡ T (x). We say a string σ is in T if the computation
of P (σ, x) either consults elements of the input tape past the length of σ, or has not terminated after |σ|
steps. Now, since P is recursive and thus terminates on every input, there is no path through T , and thus
T must be finite. A brute force search will easily find the depth of the tree T (x), which provides the desired
function f(x). ■

Corollary 5. Let P (X, x) be a recursive predicate as above. Then, for any value of x ∈ N there is a finite
collection of strings D(x), computable from x, such that

P (X, x) iff
∨

σ∈D(x)

σ ≤ X,

where σ ≤ X means that σ is a prefix of X.

Now, let us go back to Definition 2, and let us momentarily focus on the case where Q = ∃. In this case,
∃xn

P (A, x⃗) may be replaced by ∃xn
∃i≤N(x⃗)σ(x⃗, i) ≤ A, where σ(x⃗, 0), . . . σ(x⃗, N(x⃗)) is some enumeration of

D(x⃗). On the other hand, the case where Q = ∀ may be rearranged using quantifier laws to yield

Corollary 6. Every Σn class may be written in the form

C = { A ∈ 2ω | ∃x1¬∃x2 . . . ¬∃xn
(R(x⃗) ∧ σ(x⃗) ≤ A) },

where an index for the recursive functions R and σ may be effectively found from an index for the class.

Remark 7. We only need to include R in our discussion because of the possibility that, for some tuple x⃗,
the set D(x⃗) is empty. It may be avoided by having our variables xi range over recursive/c.e. sets that may
depend on the previous xj . We will take this approach henceforth.

Let us now briefly go over an important topological facet of this corollary. For the sake of notation, we will
momentarily restrict our attention to n = 1, 2, and 3, but similar considerations hold at all levels.

Recall that we define a topology on 2ω, which is generated by the basic open sets

Uσ = { A ∈ 2ω | σ ≤ A }.

As a consequence, Corollary 6 may be interpreted as follows:

• Any Σ1 class may be written as C = ∪xUσ(x),

• Any Σ2 class may be written as C = ∪x ∩y U c
σ(x,y),

• Any Σ3 class may be written as C = ∪x ∩y ∪zUσ(x,y,z),

• And so on,

where in either case σ is a recursive function and each variable ranges over a recursive set depending on the
previous variables. In other words, x ranges over a recursive set C, y ranges over a uniformly recursive set
C ′(x), and z ranges over a uniformly recursive set C ′′(x, y). We can also assume without loss of generality
that only the last variable ranges over a set that varies, and that all variables preceding it vary over all of N.
It’s also worth noting that everything that has been done thus far is reversible, and indeed in each instance
the written expression determines a Σn class.

Thus, we obtain that a Σ1 class is an “effective open”. In other words, while a “general” open is a union
of basic open sets, a Σ1 class is a union of basic open sets where the list of basic open sets in question can
be recursively enumerated. In a similar vein, a Σ2 class is an “effective Fσ set”, and so on.

Let us discuss this idea of “effective open” a little further. It lends itself to a trivial generalization:

2



Definition 8. If X is an oracle, an X-effective open is a set of the form U = ∪x∈NUσX (x), where σX is an
X-computable enumeration of strings.1 Equivalently, an X-effective open is a union U = ∪σ∈AUσ, where A
is an X-enumerable set.

By considering the case where X = 0(n−1), we obtain that a 0(n−1)-effective open is one which is generated by
a Σnset of basic opens, so we make the following definition (which I believe is not standard in the literature):

Definition 9. For n ≥ 1, a Σn open means the same as a 0(n−1)-effective open.

3 Relating Terms and Open Approximations
We now relate the following three objects of discussion, all of which are classes of subsets of Cantor space:

• Σn open sets.

• Open Σnclasses,

• Σn classes,

We now proceed to relate them. It is worthy of note that all the theorems that will be stated henceforth, as
well as their proofs, are effective, but to avoid clutter we will neglect to mention that fact.

Proposition 10. Every Σn open is a Σn class. In particular,

Σn open =⇒ Open Σn class =⇒ Σn class.

Proof: A Σn open is of the form

U = { A ∈ 2ω | ∃σ[(Q⃗x⃗P (σ, x⃗)) ∧ σ ≤ A] },

where Q⃗x⃗ abbreviates an alternation of n quantifiers starting with an ∃. Now, the formula at hand can be
rearranged as to make it a Σn formula in A. To be precise, we get

U = { A ∈ 2ω | ∃σ∃x0∀x1 . . . Qxn
(P (σ, x⃗) ∧ σ ≤ A) }.

Note that the predicate (A, σ, x⃗) 7→ P (σ, x⃗) ∧ σ ≤ A is recursive, and so the proof is complete. ■

We now show that the three classes coincide when n = 1, but not for n ≥ 2.

Proposition 11. Every Σ1 class is a Σ1 open.

Proof: A Σ1 class C is the set of A ∈ 2ω satisfying ∃σ∃x(P (σ, x) ∧ σ ≤ A). In other words, C is the union of
Uπ1(p), where p ranges over the set of pairs (σ, x) that satisfy P (σ, x), which is evidently enumerable. ■

Corollary 12. A Σn open is the same as a Σ0(n−1)

1 class, where the superscript denotes relativization in the
obvious way.

Proof: Inspection of the proof of Proposition 11 will show, by relativization, that to define a Σ0(n−1)

1 class
is the same as to define a 0(n−1)-enumerable collection of basic open sets, i.e. a Σn collection of basic open
sets. ■

Proposition 13. For n ≥ 2 there is a Σn class that is not open, and an open Σn class that is not a Σn open
set.

1Technically, an edge case must be made in this definition for the case where U is the empty set. This can be fixed in several
ways, such as having the union range over an arbitrary computable/c.e. set instead of N, or allowing σX to be nontotal. That
said, the definition that follows is better in this respect.

3



Proof: For the first part, it suffices to find a Σ2 class that is not open, and here it is: The singleton {0}.
For the second part, we also reduce to the case n = 2, by showing that there is an open Σ2 class that is

not a Σ0′

1 class. The general case follows by relativization to 0(n−1), to get an open Σ0(n−1)

2 class – which is
easily seen to be a Σn class – which is not a Σ(0(n−1))′

1 class, i.e. a Σ0(n)

1 class, i.e. a Σn open.
The following argument is adapted from page 76 of [1]. The idea is to build an open set U that is of

the form U = 2ω \ {A}, with A built in such a way as not to be 0′-computable. We shall ensure that A is
“simple” enough that there is a Σ2 formula that determines membership in U , making U an open Σ2 class.
On the other hand, the fact that A is not 0′-computable will guarantee that U is not a Σ2 open, because
in this case A would be 0′-computable as follows: To determine A(n), enumerate basic open sets of U until
you’ve either entirely covered {B | B(n) = 0} or {B | B(n) = 1}. This happens in finite time because each of
these subsets of Cantor space is compact, and one of them (the one which does not contain A) is contained
in U .

The definition of A requires the following lemma, whose proof we relegate to below:

Lemma 14. There is a computable binary tree T that admits a unique path A that does not terminate in
infinitely many zeros. Moreover, A is not 0′-computable.

With this lemma: The class {A} is easily seen to be a Π2 class:

{A} = { B ∈ 2ω | ∀x(A↾x is in T ) ∧ ∀x∃y(y > x ∧ A(x) = 1) }.

Thus, the complement 2ω \ {A} is a Σ2 class. ■

Proof (Lemma 14): We shall diagonalize against every limit computable function. To this effect, let λen be a
partial computable universal collection of sequences of 0, 1-valued functions, with λe(x) := limn λen(x) being
an enumeration of limit-computable 0, 1-valued functions. We will outline the way in which we diagonalize
against λ0, then explain how the process proceeds recursively.

The top of the tree looks as follows, with the left starting out as a path containing only zeros, and the
right branch starting with 1, followed by a tree that we call T0 whose purpose will be to diagonalize against
λ1.

T0

Figure 1: The start of the construction of T .

Now, in parallel with making the tree grow, we evaluate λ0n(0) for larger and larger values of n. More
precisely, we will in parallel evaluate λ0n(0) for every n ∈ N in parallel, until this expression halts for some
value of n = n0.

If λ0n0(0)↓ = 0, we continue as we were, but we shall now only evaluate λ0n(0) for n > n0. On the other
hand, if λ0n0(0)↓ = 1, we suspend the construction of T0, in a sense to be made precise soon. At this point,
on the left hand side, we branch off and do something similar to what was done at the origin: On the left,
we keep appending just 0, and on the right we construct a new subtree T1 whose purpose is to diagonalize
against λ1.

4



T0
(Suspended)

T1

Figure 2: After we’ve guessed λ0(0) = 1.

After this point, we continue evaluating λ0n(0) in parallel for n > n0. If we find λ0n(0)↓ = 1, we continue
the process as we were. On the other hand, if we find λ0n(0)↓ = 0, for n = n1 say, we will switch back to
T0. More concretely, we permanently suspend the construction of T1, and unsuspend the construction of T0.
Again, the meaning of suspension will be defined shortly.

T0

T1
(Suspended)

(Forever)

Figure 3: After we’ve guessed λ0(0) = 1, followed by λ0(0) = 0.

The process continues, evaluating λ0n(0) for n > n1. If we find a result of 0, we continue the process as
we were. Otherwise, we again suspend T0 and begin the construction of a new tree T2on the left branch.

T0
(Suspended)

T1
(Suspended)

(Forever)

T2

Figure 4: After we’ve guessed λ0(0) = 1, then 0, then 1 again.

This process continues indefinitely. We will now explain the construction of the subtrees Ti. They are
constructed the exact same way, only with the following differences:

• The trees we have been referring to so far should be built as to diagonalize against λ1 instead of λ0. In
turn, they will have their own subtrees, which should be built as to diagonalize against λ2, and so on.

5



• In particular, the diagonalization must take the tree’s position into account. In other words, T0 will
be keeping track of λ1(1), but if T1 has its root node at σ, it needs to keep track of λ1(|σ|), and so on.

• Finally, there is the matter of suspension, which we now explain.

As we said, the trees Ti should be constructed recursively in the same way as the big tree we’ve been
describing, except that these subtrees may be told to suspend sometime during the construction. This
means that all branching and function evaluation is put on pause, and while this happens, every currently-
hanging leaf is to continue growing to the left. This means that a tree that is left suspended forever will
have a finite fixed number of paths, all of which terminate in an infinite string of zeros. On the other hand,
a tree (in the above case, only T0, but this will apply to other trees that are built from the recursion) may
eventually be told to “unsuspend”. This simply means that it should resume diagonalizing and branching
from where it left off.

Now that the construction of the tree – let’s call it T – is complete, let us show that it satisfies the
required properties. It is clearly computable, so we show that it admits exactly one path A that does not
terminate in all zeros, and that this path A is not 0′-computable.

To describe the path A, we begin with the following observation. Either the tree changes its mind about
λ0(0) infinitely often, or it does not. In the former case, we see that T0 (as above) is the only subtree that
is left unsuspended for an infinite amount of time (though not consecutively). In the latter case, it will
eventually stop alternating suspensions, and thus there is a subtree Ti that is left unsuspended for an infinite
amount of time. In either case, there is a unique subtree Ti that is left unsuspended for infinite time, and
our path A starts by going to the root of that subtree. Note that any path that does not do the same is
forced by construction to terminate in an infinite string of zeros!

In turn, a similar reasoning shows that Ti admits exactly one sub-subtree that is left unsuspended for an
infinite amount of time, and so on; at each step, the path A follows the subtree that is left unsuspended for
an infinite amount of time.

Now that we’ve shown that A is the only path that does not terminate in an infinite string of zeros,2 we
turn to proving that A is not 0′-computable.

Suppose that A was 0′-computable, or equivalently limit-computable. Suppose that A = λn. Let σ be
the root of the (sub)ntree that A passes through. Then, q = λn(|σ|) is well-defined, and this subtree is given
infinitely much time to approximate it, whence the tree’s approximation of λn(|σ|) will eventually converge.
Thus, every subtree below σq is suspended, and will stay suspended forever. Thus, A must follow σ(1 − q),
which contradicts the assumption that A = λn. The proof is thus complete. ■

Regardless of the above result, it turns out that any Σn class can be (effectively) approximated arbitrarily
closely from the outside by Σn opens. This is precisely what is necessary to ensure that (cf. §6.8 of [1]) the
notions of Martin-Löf test corresponding to each of these collections of classes provide the same notion of
randomness.

Instead of directly proving the full result, we start with an attempt at providing intuition by manually
doing the cases n = 1, 2, 3, and 4.

Proposition 15. Given a Σ1 class C and a rational ε > 0, there is a Σ1open U ⊇ C so that µ(U) < µ(C)+ε.

Proof: By Proposition 11, just set U = C. ■

Proposition 16. Given a Σ2 class C and a rational ε > 0, there is a Σ2 open U ⊇ C so that µ(U) < µ(C)+ε.

Proof: By Remark 7, we can write C in the form

C =
⋃
x

⋂
y

U c
σ(x,y),

2Note that at each subtree we descend to we gain a 1, which is why A does not end with only zeros. Another way to prove
this is to note that if ended with a string of zeros, it would be computable and therefore 0′-computable, contrary to what we
are about to show.

6



where x ranges over the natural numbers and y ranges over some computable set that depends uniformly
on x. Our approach will be as follows: We know that each Uσ(x,y) is actually clopen, with U c

σ(x,y) being the
union of Uτ over all τ of same size as σ(x, y) that disagree with it. As such, for each fixed x, Fx := ∩yU c

σ(x,y)
can be approximated from the outside by open sets by considering the partial (finite) intersections. We will
show that this can be done uniformly with good control of the measure:

Lemma 17. Given a Π1 class F and a rational ε > 0, there is a 0′-effective open U ⊇ F so that µ(U) <
µ(F ) + ε.

Once we have established Lemma 17, the proof of Proposition 16 follows as such: Approximate each Fx by
a 0′-effective open set Ux = ∪yUν(x,y) within 2−x−1ε measure, and elementary measure estimates yield that

U =
⋃
x,y

Uν(x,y) (1)

is the desired open approximation of C. ■

It remains only to establish Lemma 17.

Proof (Lemma 17): Let F = ∩yU c
σ(y), and suppose ε > 0 has been given. Define F k = ∩y<kU c

σ(y) as the
k-th approximation of F . The function k 7→ µ(F k) is easily seen to be computable,3 as well as decreasing,
so it furnishes an approximation of µ(F ) from above. Moreover, using 0′, we can find approximations from
below. More precisely, given a rational q we ask “will µ(F k) ever be below q?”, and if the answer is “no”
we now know that µ(F ) ≥ q. As such, 0′ is able to find some k such that µ(F ) ≥ µ(F k) − ε. This F k is an
effective open, and so furnishes the desired approximation. ■

Remark 18. This proof of Lemma 17 actually proves the following stronger statement: Given F ∈ Π1 and
ε, there is a computable (cl)open approximating F from the outside within ε measure. However, the process
is only 0′-effective. In other words, in Equation (1), for each fixed value of x the set of valid indices ⟨x, y⟩
and the function ν(x, y) on these indices are both computable, but not uniformly in x; the entire aggregation
is only 0′-computable.

Proposition 19. Given a Σ3 class C and a rational ε > 0, there is a Σ3 open U ⊇ C so that µ(U) < µ(C)+ε.

Proof: By Remark 7, write
C =

⋃
x

⋂
y

⋃
z

Uσ(x,y,z).

As with Proposition 16, the main step is to approximate each Fx = ∩y ∪z Uσ(x,y,z) from the outside by
an open set. In a similar fashion to the proof thereof, we will want to look at the partial approximations
F k

x = ∩y<k ∪z Uσ(x,y,z), each of which is open, and find a (0′′-effective) value of k for which F k
x has at most

2−x−1ε excess measure.
For a fixed value of k, we can write F k

x as a computable union of opens, say ∪wUσ′(x,k,w). Unlike in
the proof of Lemma 17, we cannot compute µ(F k

x ), and indeed it will generally not be a rational. However,
there is a computable sequence {mi}i∈N that approximates µ(F k

x ) from below. This means that there is a
0′-computable way to approximate µ(F k

x ) from above, namely, for a given q ∈ Q, ask the Halting Problem
if mi ever exceeds q.

By enumerating the values of q ∈ Q that are above µ(F k
x ) for some k ∈ N, that is, the set

{ q ∈ Q | ∃kq > µ(F k
x ) },

we can provide a sequence {qi}i∈N that approximates µ(Fx) = µ(∩k∈NF k
x ) from above. Finally, 0′′ can use

the “does this sequence ever go below p ∈ Q” trick to find a sequence {pi}i∈N that approximates µ(Fx) from
3This requires writing F k as a disjoint (finite) union ∪zUσ′(z) and adding up

∑
z

2−|σ′(z)|.

7



below. Thus, 0′′ can compute arbitrary approximations to µ(Fx), and moreover it can find a value of k for
which µ(F k

x ) < µ(Fx) + δ for a given δ: Simply find an approximation M of µ(Fx) that is sure to be within
δ/2 of the real thing, followed by seeking out a value of k for which M + δ/2 is an approximation of µ(F k

x )
by excess.

To conclude the proof: Let k(x) be a 0′′-computable function so that µ(F k(x)
x ) < µ(Fx) + 2−x−1ε. Then,

U = ∪xF
k(x)
x is a 0′′-effective open set that approximates C from above with at most ε excess measure, as

was desired. ■

Proposition 20. Given a Σ4 class C and a rational ε > 0, there is a Σ4 open U ⊇ C, so that µ(U) < µ(C)+ε.

Proof: By Remark 7, write
C =

⋃
x

⋂
y

⋃
z

⋂
w

U c
σ(x,y,z,w).

This high in the hierarchy, an induction starts to reveal itself. In order to simplify the problem down to
something managable, we would like to approximate Qxy = ∪z ∩w U c

σ(x,y,z,w) by an open superset Vxy. This
can be done 0′-effectively by Proposition 16, and the sets Vxy are Σ2 opens. It should sound plausible – and
we will do the details shortly – that if we’re careful in how we go about it, we can set things up so that

µ

(⋂
y

Vxy

)
< µ

(⋂
y

Qxy

)
+ 2−x−1ε = µ

(⋂
y

⋃
z

⋂
w

U c
σ(x,y,z,w)

)
+ 2−x−1ε, (2)

and therefore so that

µ

(⋃
x

⋂
y

Vxy

)
< µ

(⋃
x

⋂
y

⋃
z

⋂
w

U c
σ(x,y,z,w)

)
+ ε = µ(C) + ε.

Now the result follows by relativization of Proposition 16. More precisely, we have in our hands a Σ0′′

2
class, namely C′ = ∪x ∩y Vxy, and Proposition 16 gives us a Σ0′′

2 open that approximates C′ from above with
at most ε excess measure, and therefore approximates C from above with at most 2ε measure. The result
therefore follows by noticing that by Definition 9 a Σ0′′

2 open is the same as a (0′′)′-computable open, i.e. a
0(3)-computable open, i.e. a Σ4 open.

The only thing remaining to finish the proof is to be a little more careful about the definition of Vxy.
The following argument is a little clumsy, but it’s straightforward. Set Vxy to approximate Qxy by at most
δy = 2−x−y−2ε. In other words, we have Vxy = Qxy ∪Exy, with µ(Exy) < δy. Then, we have the set-theoretic
inclusion ⋂

y

Vxy ⊆
⋂
y

Qxy ∪
⋃
y

Exy.

As a consequence, we have the inequality

µ

(⋂
y

Vxy

)
≤ µ

(⋂
y

Qxy

)
+
∑

y

µ(Exy) = µ

(⋂
y

Qxy

)
+
∑

y

δy = µ

(⋂
y

Qxy

)
+ 2−x−1ε.

This is sufficient to establish Equation 2, and the proof is complete. ■

We are finally in a position to establish the general result.

Theorem 21. Given a Σn class C and a rational ε > 0, there is a Σn open U ⊇ C so that µ(U) < µ(C) + ε.
This procedure is 0(n−1)-effective.

8



Proof: The proof follows by induction, with step size equal to 2. The cases n = 1 and n = 2 are Propositions
15 and 16. For the induction step, assume that the case for n has been proven, and we shall now prove the
case n + 2.

To proceed, write the Σn+2 class C as
C =

⋃
x

⋂
y

Qxy,

where {Qxy}x,y∈N is an effective family of Σn classes. As in the proof of Proposition 20, approximate each
of these 0(n−1)-effectively by a Σn open Vxy, with excess measure less than 2−x−y−2ε. Then, following a
relativized version of the proof of Proposition 20, we obtain a 0(n+1)-effective approximation of C with excess
measure less than ε, which proves the desired result. ■

References
[1] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity. Theory and

Applications of Computability. Springer, New York, 2010.

9


