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1 Introduction
In the 1930s, around the same time as Alan Turing published his work on what we
nowadays call Turing machines, Alonzo Church published his own formalism for com-
putability, which is called lambda calculus. Around this time, it was also proven that
these two notions of computability are equivalent. Today, Turing Machines serve as the
‘public face’ of computability: we say that a function is computable if there exists a Tur-
ing machine which computes it, for example. As far as computational models go, Turing
machines are very slow and unwieldy, but they match cleanly to our mental model of
what computation is: a sequence of instructions which can be followed to turn inputs
into outputs.

Lambda calculus does not match our intuition as cleanly, being based on substitu-
tion of expressions in other expressions, but surprisingly turns out to be much more well
behaved in practical terms. Starting with ALGOL around 1960, some programming lan-
guages have included some features originating from lambda calculus, such as first-class
and anonymous functions, which will be explained later. This is especially noticeable in
the programming language Haskell, whose first version was published in 1989, which at
its core is simply a lambda calculus evaluator.

Lambda calculus comes in several shapes, but the kind relevant for Haskell is the
so-called typed lambda calculus. It is typed in the sense that functions have well-defined
domains and codomains, which are known at compilation time, and it is a syntatic error
to compose functions whose domains and codomains do not match. In other words,
Haskell is strongly typed, in opposition to C, in which a function which recieves a floating-
point number may instead accept an integer. As a consequence, functions in Haskell can
be thought of as forming a category, with the domain and codomain of every function
being known at compile time and composition only being allowed between functions of
compatible types. This is part of the reason why there is such a strong relation between
Haskell and category theory.

Besides being strongly typed, another important feature of Haskell is purity. Essen-
tially, functions in Haskell are like mathematical functions, in the sense that the same
function called with the same input will always return the same output, depending on
nothing other than its input and doing nothing other than returning its output. This
has wide and far-reaching consequences, both in terms of performance (since there is no
implicit input or output, the compiler is free to rearrange the order of computations, or
even have them done in parallel) and in terms of code maintainability (when changing
pre-existing code, the developer does not need to have knowledge of any other part of the
system, making it easier for several developers to work in isolation), but also means that
a wide array of tools programmers rely on are inviabilized. For example, simulations
of physical objects are often done by defining global variables representing the x and
y coordinates of the objects at play, their velocities, etc., and then defining a function
which advances the global state in time, calling that function on repeat until the desired
amount of time has elapsed:
x = 0
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y = 0
vx = 0
vy = 0
t = 0
while t < 1000:

vx, vy = force(x,y)
x = x + vx
y = y + vy

print("At t = 1000, the object is at " + (x,y))

This is impossible in Haskell, as not only can global variables never be changed, but
even if they could, this could not be done inside of a function, because functions cannot
modify anything, only return an output. This requires that the programmer change
their perspective: in this case, instead of defining a function which modifies a few global
variables, one instead defines a function which receives as input the state of the physical
system at time t and returns the state at time t+ dt.

This is just an example of how purity requires a complete rearrangement of the way
one thinks about a problem. In this case a solution was quickly found, but how does one
receive input from the user? How does one write to a file? How does one implement an
algorithm which relies on mutable state, e.g. marking the nodes of a graph as they are
traversed? And most importantly, how does one do all of the above without making the
code completely unreadable? This is a place where category theory has found surpris-
ing application, by providing powerful abstractions which pick up the slack left by the
lack of global state and mutability, and at the same time giving Haskell unprecedented
amounts of type safety and generality. In the same way that many seemingly unrelated
phenomena were found by category theorists to be expressions of a single phenomenon
(for example, adjunctions, limits or colimits), computer theorists have found abstrac-
tions which encompass many programming strategies which on the surface seem to be
completely distinct.

In this essay, I hope to convince the reader that there are very real mathematical
concepts underlying many tools used by in the day-to-day of a Haskell programmer.
Furthermore, I also want to get across that these concepts are useful, allowing for cleaner
and more understandable code, at least so long as the programmer is familiar with the
underlying math!

2 A Crash Course in Haskell
The following examples are all valid Haskell code, which was implemented and executed
in GHCi, the Glasgow Haskell Compiler interpreter, which is the de facto implementation
of Haskell and can be downloaded here: https://www.haskell.org/downloads/.
The reader can also try Haskell online without downloading anything on https://tr
yhaskell.org/.

(A disclaimer: If the reader tries the examples below, some of them might yield
output which is different from the one shown, in particular in regards to types of func-
tions. This is because some functions are more general than we present them as, but an
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explanation of this generality must wait until we discuss typeclasses in 3.2. In any case,
the reader is assured that where the output of code in this essay is wrong, it is at most
a particular case of the truth.)

As mentioned in the introduction, Haskell is at its core a lambda calculus evaluator,
so we begin by introducing the most basic concept to lambda calculus: the lambda
expression.

2.1 Lambda expressions
A lambda expression is something similar to the notation a 7→ f(a) for defining mathe-
matical functions without giving them a name. For example, if I am talking about the
function which squares a given number, I may write it as a 7→ a2. A lambda expression is
the same, but it is written using a slightly different notation: the square function would
be written as λa.a2. The λ marks the beginning of the function, then the argument is
given a name, and then an expression is written, in which the only free variable is the
one in the argument.

A lambda expression can be applied as a function. For example, we could write
(λa.a2)2; in lambda calculus, function application is written without parentheses. When-
ever a lambda expression is juxtaposed to the left of another expression, it should be
understood as applying the function defined by the lambda to the argument given by
the expression. The above example can be written in Haskell as
(\a ‐> a^2) 2
output: 4

Note the changes in syntax: the lambda has been replaced by a backslash (it’s like
a lambda with one leg cut off), and the period has been replaced by an arrow. Also,
note that the expression (\a ‐> a^2) represents a Haskell function, but it has not been
given a name. For this reason, lambda expressions in Haskell are also called anonymous
functions.

The way that this works under the hood is that the Haskell interpreter is doing
something called β-reduction. Formally, given an expression fx where f is a lambda
expression of the form (λa.M), the Haskell interpreter rewrites it as M [a = x], i.e. the
expression M where every instance of the variable a has been replaced by x. In the
above example, (\a ‐> a^2) 2 is β-reduced to 2^2, which is then evaluated to 4.

The reason why this idea is so powerful is the following: in Haskell and in lambda
calculus, lambda expressions are first class objects. What this means is that functions
can be stored in variables and given as arguments to other functions. For example,
the following lambda expression takes as an argument another lambda expression, and
returns its ‘square’. Mathematically, we would usually write it as f 7→ f ◦ f .
\f ‐> (\x ‐> f (f x))
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2.2 Variables, Syntactic Sugar and Recursion
As we have seen, functions in Haskell do not need to be named, but that does not mean
that they should not. If we want to use a function more than once, we do not want to
rewrite its definition every time we do. Therefore, Haskell lets us name expressions so
that we may reuse them later. For example,
f = \a ‐> a^2
x = 2
f x
output: 4

It is inconvenient to write lambda expressions whenever we want to define a function,
so Haskell allows us to define functions using more convenient and slightly more standard
notation
f a = a^2

though it should be understood that beneath this expression is a definition via a lambda
expression. Haskell contains many of these alternative notations, in which a common
but cumbersome expression is given an alternative notation, which is unfurled to its un-
derlying meaning before being passed to the Haskell interpreter. These kind of syntactic
expansion rules are collectively referred to as syntactic sugar.

Another piece of syntactic sugar without which writing any program would be almost
impossible is recursion. As an example, consider the following implementation of the
factorial function
factorial x = if x == 0 then 1 else x * factorial (x‐1)

This is a valid definition in Haskell, but it is not easy to write it as a lambda
expression, because the function is being called inside itself. If we were to naïvely write
factorial as an anonymous lambda expression, we would get
\x ‐> if x == 0 then 1 else x * factorial (x‐1),

which would require us to expand the definition of factorial inside the expression (since
it is anonymous we cannot refer to it by name), obtaining a more complex expression
which itself has a factorial, and so on. This tricky problem (expressing recursion in
lambda calculus) has a solution via the so-called Y combinator, which is a particular
lambda expression which can be used to define the factorial as above. Fortunately, as a
Haskell programmer we don’t need to know about it, because recursive expressions are
rewritten using the Y combinator under the hood.

2.3 Types and Morphisms
As we said in the introduction, Haskell is strongly typed: every function has a domain
and a codomain. This makes Haskell a category1, which is usually called Hask, in
which the types (examples: Int, Char, String) are the objects and the functions (lambda
expressions) are the morphisms.

1This is not exactly true; see [3].
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That said, what is the domain and codomain of the lambda expression \a ‐> a^2?
We have evaluated it on the number 2, which is an integer (i.e. of type Int) and gotten
an integer back, but we could also have applied it to the floating-point number 2.1 (of
type Float). We’ll get back to this ambiguity later, but to assuage our concerns we can
add type annotations explicitly using the following syntax
f :: Int ‐> Int
f a = a^2

This means that f is a morphism with domain Int and codomain Int; mathematically,
f ∈ Hask(Int, Int). If we try to evaluate it on a non-integer such as 2.1, we get an error:2

f 2.1
<interactive>:1:3: error:

• Couldn't match expected type 'Int' with actual type 'Float'
• In the first argument of 'f', namely '2.1'

In the expression: f 2.1
In an equation for 'it': it = f 2.1

Haskell has a wide array of so-called primitive types, like Int, Char and so on, but it
also allows us to make complex types out of simpler ones. We have already seen one:
the humble arrow!

The sequence of characters ‐> has the role usually taken by Hom or C in categorical
texts: we write a ‐> b to denote what we would usually call Hask(a, b). This is in itself
a Haskell type. In other words, the Hask category has exponential objects. This is the
first taste of categorical language in Haskell.

2.4 Currying and Composition
So far, every function we have seen takes only one argument. This is also the case in
lambda calculus: every lambda has exactly one variable. It also happens in, for example,
the category of Sets: an arrow A → B takes as argument exactly one element of A. Of
course, we emulate our functions taking multiple arguments by using cartesian products:
a function f which receives two real numbers and returns another is denoted as

f : R× R → R. (1)

A similar process can be done in Haskell, so that a function that receives, say, two
integers, could have type (Int,Int) ‐> Int. The comma (,) denotes the categorical
product in Hask, and is another example of a type constructor. However, functions
receiving multiple arguments are usually handled another way.

The type of a pre-existing function f can be found by writing :t f in GHCi. For
example, using f = (+), i.e. the predefined function which adds two numbers, we get3

2Strictly speaking, this isn’t the error you’ll actually get. You’ll get something like No instance
for (Fractional Int) arising from the literal '2.1', which is Haskell trying a little harder to
make 2.1 into an integer.

3Again, the actual output isn’t exactly the one shown, as addition is defined more generally than on
the integers.
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:t (+)
output: (+) :: Int ‐> Int ‐> Int

What gives? This expression will be made clearer if we introduce parentheses. Haskell
associates the ‐> operator to the right, so the above expression should be read as
(+) :: Int ‐> (Int ‐> Int)

Aha! So what’s happening here, in categorical terms, is simply that

(+) ∈ Hask(Int,Hask(Int, Int)). (2)

Recall that in Sets we have an adjunction between the functors

F (a) = a× b, G(c) = Hom(b, c). (3)

In particular, F a G, and the natural isomorphism given by the adjunction is defined
as

ϕ : Hom(a× b, c) → Hom(a,Hom(b, c))

f 7→ (x 7→ (y 7→ f(x, y))).
(4)

In Haskell, this isomorphism is called curry. We say functions in Haskell are curried.
The nomenclature is in honor of Haskell Curry, an important logician. We can inspect
the type of this function in GHCi:
:t curry
output: curry :: ((a, b) ‐> c) ‐> a ‐> b ‐> c

This matches our expectation, but remember that parentheses are implicit on the
right-hand side. Note the use of the so-called type variables: any ‘type’ whose name is a
lower-case letter denotes a type variable, and may be substituted by any type. Therefore,
curry isn’t a function in and of itself: it is a family of functions, parametrized by three
objects in Hask: a, b and c. This is similar to how the usual isomorphism in adjunctions
is parametrized by a pair of objects, as in ϕxy. In Haskell, the parametrization is implicit:
the compiler keeps the definition as ambiguous as possible at every moment, and deduces
what a, b and c should be from context when necessary.

Surprisingly, currying (and its inverse, uncurry) isn’t used very often. Functions are
almost always left curried, because this allows for a technique called partial application.
We won’t go into details, but for example expressions such as (\a ‐> f 2 a) are usually
shortened to (f 2).

Finally, let’s talk about the most important categorical concept: function composi-
tion. It is a very surprising fact that almost no modern languages have a composition
operator, but Haskell does. It is denoted with a single dot, as in f . g, as it is the closest
a standard keyboard gets to the usual notation of composition, except perhaps for the
hideous notation f o g. Unsurprisingly, the composition has type given by
:t (.)
output: (.) :: (b ‐> c) ‐> (a ‐> b) ‐> a ‐> c

Again, note the usage of type variables: the types written in lower case are a stand
in for any type in Hask.
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3 Elementary Categorical Concepts
3.1 A Few Limits and Colimits
We have already seen a few examples of categorical concepts cropping up in Haskell. The
types and morphisms form a category called Hask (kind of, see [3]), the arrow operator
‐> is the categorical exponent, the comma operator (,) is the categorical product, and
these two functors (though we haven’t realized them as functors yet) are adjoint to each
other, with the bijection between hom-sets being given by curry.

Another common categorical construction is the coproduct. In Haskell, this is realized
by using the Either type constructor. The coproduct of two types a and b is denoted
Either a b, and the coproduct diagram is the following, with the inclusions being denoted
by Left and Right.

a Either a b bLeft Right (5)
We also present the product diagram of (a,b).

a (a,b) bfst snd (6)

As an example, Either is often used for error handling: a Right value represents a
successful computation, while Left represents an error. For example, we can define a
safe division:
safediv :: Rational ‐> Rational ‐> Either String Rational
safediv x y = if y == 0 then Left "Error! Division by zero."

else Right (x/y)

safediv 2 3
output: Right (2 % 3)

safediv 2 0
output: Left "Error! Division by zero."

Note the Haskell notation for fractions: 2 % 3 means the rational number 2/3.
We may define a function on Either a b using pattern matching. In categorical terms,

if i1 and i2 are the inclusions in the coproduct, we define f : aqb → c by defining f(i1(x))
and f(i2(x)), i.e. by applying the universal property of the coproduct.
safeadd1 :: Either String Rational ‐> Either String Rational
safeadd1 (Right y) = Right (y+1)
safeadd1 (Left err) = Left ("Woah there! You have an error: " ++ err)

safeadd1 (safediv 2 3)
output: Right (5 % 3)

safeadd1 (safediv 2 0)
output: Left "Woah there! You have an error: Error! Division by zero."

Besides binary products and coproducts, Haskell also has empty (co)products, i.e. a
final and an initial object.
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The final object is the type (), whose only element is the (unique) zero-uple, also
denoted (). The only function a ‐> () is defined by \x ‐> ().

The initial object is the type Void. There is no object of type Void, and the unique
function Void ‐> a is called absurd.

A particularly simple approach to error handling is to use () as the error type,
i.e. considering Either () a, where Left () gives us the information that an error has
occurred, while telling us nothing about what it was. Categorically, this corresponds to
taking the coproduct with the final object, that is, ‘adding one element’. Haskell actually
has another type constructor, called Maybe, which has the same semantics.

Let a be a type. We define Maybe a as the type whose elements are either of the form
Nothing or Just x, where x :: a (i.e. x has type a). In other words, we have the following
coproduct diagram.

a Maybe a ()Just cn (7)

where cn = \x ‐> Nothing. A function defined on Maybe a is defined using the universal
property, similarly to the coproduct.
safeadd1m :: Maybe Rational ‐> Maybe Rational
safeadd1m (Just x) = Just (x+1)
safeadd1m Nothing = Nothing

safeadd1m (Just 1)
output: Just (2 % 1)

safeadd1m Nothing
output: Nothing

3.2 Functors and Typeclasses
The type constructor Maybe is a particularly simple example, because it takes one type
as an argument and returns another. In other words, it is a map from the objects of
Hask to the objects of Hask. This suggests that it could be made into a functor: all we
need is to define an adequate map of type (a ‐> b) ‐> (Maybe a ‐> Maybe b). This map
exists, and it is called fmap.
fmap :: (a ‐> b) ‐> (Maybe a ‐> Maybe b)
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

Note the use of currying. It looks like we are defining a function of two arguments
(one of type a ‐> b and the other Maybe a), but thanks to currying, this is the same as
a function of one argument which returns a function. It is possible to make a definition
that maps closer to our intuitive notion of ‘a function which takes a function as input and
returns another function’, but it requires introducing additional syntax. In the interest
of keeping this essay short we will keep ourselves in a relatively minimal subset of the
language.

Let’s go back to the definition of fmap. By inspection, it is easy to deduce the
functoriality conditions, i.e. fmap (f . g) = fmap f . fmap g and fmap id = id (where id
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is the identity map). Furthermore, this agrees with the categorical definition of the
functor (1 q −) given by taking the coproduct with the final object, so this functor in
particular is well represented in Haskell. This is not an isolated occurrence, but to explain
how functors are represented generally in Haskell we need to talk about typeclasses.

In Haskell, a typeclass corresponds to additional structure that a type or type con-
structor can have. For example, for a given type a, Haskell may or may not know how to
check that two elements of a are equal. It certainly knows how to check that two integers
Int are the same, but it cannot check that two functions Int ‐> Int are the same: this
is an undecidable problem! Therefore, the binary function == will be defined on Int but
not on Int ‐> Int.

Let us look at the type of ==. If we check its type in GHCi using :t, we obtain
:t (==)
output: (==) :: Eq a => a ‐> a ‐> Bool

So what’s happening here? As the reader might have already suspected, == is a binary
function which returns a boolean value: that’s what a ‐> a ‐> Bool means. However, we
have that additional term Eq a =>. What that is saying is that the type signature that
follows only applies when a is a type which satisfies the predicate Eq. We say that such
types are in the typeclass Eq. Most predefined types are in this typeclass, so the equality
operator can be used on Int, Float, Char, etc., but not on Int ‐> Int.

In short, to each typeclass there are a few functions which need to be defined in
order for a type to be part of the typeclass: for a type mytype to be in Eq, we need to
define (==) :: mytype ‐> mytype ‐> Bool. For it to be in Ord (totally ordered types) we
need to define (<=) :: mytype ‐> mytype ‐> Bool, the ‘less than or equal operator’. To
tell Haskell that Maybe Int is in the Eq typeclass, we would use the notation
instance Eq (Maybe Int) where

Nothing == Nothing = True
Nothing == Just x = False
Just x == Nothing = False
Just x == Just y = x == y

to define equality. Fortunately, Haskell has built-in mechanisms to deduce that, for
example, if a is in the Eq typeclass, so is Maybe a, so we seldom need to explicitly tell it
how to define equality for a given type.

What does this have to do with functors? Well, just like how a type can be in a
given typeclass, there are also typeclasses for type constructors. In particular, given a
type constructor of kind * ‐> * (this means that it requires one type as argument and
returns another type), it may or may not be in the Functor typeclass, which is defined
as
class Functor f where

fmap :: (a ‐> b) ‐> (f a ‐> f b)

In other words, for a type constructor (map from objects in Hask to objects in Hask)
to be in the Functor typeclass, we need to define how it acts on morphisms in Hask.
It is not (and can not be) enforced by the language that a given implementation of
fmap is functorial, but it is generally understood that one should not implement such
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a pathological version of fmap which does not satisfy them, especially as the compiler
might perform optimizations which rely on these laws.

Now that we know about the Functor typeclass, we may list a few of its instances,
most of which are familiar from category theory.

• We’ve already seen the Maybe functor, which is the coproduct with a one-element
set,

• More generally, for a given type a, the coproduct with a is a functor. In other
words, Either a is in the Functor typeclass. Note that this is not to say that Either
is in the Functor typeclass: Either itself is, categorically speaking, a bifunctor in
Hask, and therefore in another typeclass called Bifunctor. Of course, technically
speaking, this is just a functor Hask×Hask → Hask, but everything we do is in the
Hask category, which is why bifunctors get a different treatment. This also means
that the Functor typeclass could perhaps be more aptly renamed to Endofunctor.
A few more words on Either: since we see Either a as a functor, the instantiation
of fmap to Either a b has the type
fmap :: (b ‐> c) ‐> (Either a b) ‐> (Either a c)

In other words, fmap f will apply f to a Right value, and do nothing to a Left value.
This is in keeping with the use of Either as an error handling tool: fmap f means
‘if we have a valid value, apply f. Otherwise, preserve the error message’.

• Another important functor in category theory is the hom-functor Hom(x,−). In
Haskell, this is denoted as (‐>) x; it should be read as partially applying the type
constructor (‐>), which takes two arguments, to x, becoming a type constructor
that takes a type a and returns the type x ‐> a. Applied to morphisms, this functor
has a very simple definition
fmap :: (a ‐> b) ‐> (x ‐> a) ‐> (x ‐> b)
fmap f g = f . g

If one is in a particularly terse mood, they could simply write fmap f = f . or even
fmap = (.). This style of programming, in which one omits the arguments of a
function as much as possible, is called point-free style.
The hom-functor as we’ve described has a contravariant sister: the contravariant
hom-functor Hom(−, x). This functor is denoted Op x, and is not a member of
the Functor typeclass, being instead in the Contravariant typeclass. The function
corresponding to fmap is called contramap.
Finally, we can see ‐> as a functor Haskop×Hask → Hask. The nomenclature used
in Haskell for such an object is a Profunctor. This does not completely agree with
the mathematical nomenclature: in category theory, a profunctor is a functor Dop×
C → Sets. However, the category of Haskell types can be approximated by the
category of sets (identify a type with the set of its elements), so the nomenclature
Profunctor makes sense.
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• Let a be a type. Then, there exists another type, called [a], whose elements are
lists of a. In other words, [] is a map that turns a type into another type.
Now, let f :: a ‐> b. Then, there is an obvious way to turn a list of a into a list
of b: simply apply f to every element of the list. This operation is often referred
to in programming circles as mapping f , and can be found in Python with the
syntax map(f, list), in Mathematica with the syntax Map[f, list] and in Haskell
with the syntax map f list. It is easy to check that this operation is functorial,
so the list functor is actually one of the most widespread examples of functors
in programming. In fact, the notion of functor in Haskell actually began as a
generalization of the list functor: see [4]4, where the concept of typeclass is first
introduced precisely for this task. The author also uses map to denote application
of a functor to a morphism, which was presumably changed to fmap to avoid name
collision.

• Lots of algorithms in computer science rely on some kind of global state in order
to keep track of what has already been done, what has already been visited, etc.
In Haskell, this can be done by using the product (s,a).
To be more precise: let s be a type, which represents the global state necessary
for our program. For example, where in an imperative language we would have a
variable for an integer and another for a list of characters, we might set s = (Int
, [Char]). Then, (,) s corresponds to the functor (s × −); (,) s a is a synonym
for (s,a). An element of type (s,a) can be seen as an element of a together with
some ‘background state’ of type s. Mapping a morphism f :: a ‐> b corresponds
to modifying the element of type a without modifying the state, yielding a function
fmap f :: (s,a) ‐> (s,b).

There are many more examples of functors in the Haskell ecosystem. In particular,
most types of containers (lists, trees, sets, databases, etc) are functors, as well as type
constructors which represent computations, such as (‐>) x, as well as others we will see
shortly, such as IO, and even random number generation.

3.3 Natural Transformations and Free Theorems
Let f and g be two Functors. Then, a natural transformation between f and g would be
a function of type
eta :: f a ‐> g a

where the only free variable is a. We mentioned before the concept of type variables,
where in the signature of a function we write lower-case letters instead of types, and
the compiler will fill those letters in for whatever type makes sense at compile time.
Another way to think of it is that our function is actually a function-making machine,
which recieves a type as input (in this case a) and returns a function of appropriate

4This article is freely available at https://www.cs.tufts.edu/comp/150GIT/archive/mark‐jon
es/fpca93.pdf.
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type. This matches up with the usual notation for natural transformations ηx, where
the subscript represents an object of the category, in this case a type. Sometimes, this
type argument is written explicitly using the notation5

eta :: forall a. f a ‐> g a

Let us look at an example. Consider the following natural transformation from Maybe
to []

maybeToList :: Maybe a ‐> [a]
maybeToList Nothing = []
maybeToList (Just x) = [x]

It is easy to verify that this is indeed natural, i.e. that

maybeToList . (fmap f) = (fmap f) . maybeToList (8)

Note that in this expression fmap is used for two different functors. Now, it would be
reasonable to ask whether it would be possible to define functions f a ‐> g a which are
not natural transformations, and the very surprising answer turns out to be no. This is
in contrast to, for example, fmap, for which it is not very difficult to define instances of
the Functor typeclass which do not satisfy the functor laws.

This has to do with something called parametric polymorphism. There is a very
influential paper titled ‘Theorems for free!’ [11] by Philip Wadler, in which a method is
explained for obtaining theorems about a function in typed lambda calculus from nothing
but its type signature. The intuitive reason behind this very unexpected result is that
in lambda calculus and in Haskell a polymorphic function (i.e. one which has more than
one type at once) must be defined with the same expression for all its instantiations. For
example, consider a function f :: a ‐> [a]. The expression must for f must be the same
whether we are considering f :: Int ‐> [Int] or f :: () ‐> [()]. As a consequence, f
cannot do anything to its argument, because it has no guarantees that anything it can
do to it is valid. Therefore, there is a very limited number of functions f may be: it
may be the constant returning the empty list, it may be the function \x ‐> [x], it may
be \x ‐> [x,x], etc., but no more. This is an example of how the type signature of a
polymorphic function can tell us a lot about the function itself, yielding the so-called
theorems for free. In the case of functions eta :: f a ‐> g a, with f and g functors, the
free theorem obtained from the type signature is precisely the naturality of eta. [8]

3.4 Hask is not Finitely Complete (Probably)
In 3.1 we discussed products and coproducts in Haskell. We showed that Hask has initial
and final objects and is closed under binary products and coproducts. Consequently,
Hask has all finite products and coproducts, so it makes sense to ask whether it has

5Don’t be confused with the name forall. Superficially it can be understood as the universal
quantifier, but from the perspective of the compiler it reads as ‘eta recieves a type a and returns a
function of type f a ‐> g a’. The reason behind the nomenclature forall has to do with an important
theorem in logic called the Curry-Howard isomorphism, which is far beyond the scope of this essay.
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(co)equalizers, as if it did it would have all finite (co)limits. I have not found any definite
source proving that the answer is negative, but this Stack Overflow answer strongly
suggests that the answer is no: https://stackoverflow.com/a/15113919/2997964.
In any case, the fact that after over 30 years of categorical language and methods being
applied to the language there is still no mechanism, built in or otherwise, for constructing
(co)equalizers strongly suggests that such a problem is, if solvable, very difficult.

4 A Kleisli Category: The Writer Monad
The reader might recognize the names ‘monad’ and ‘Kleisli category’ from the mathemat-
ical terminology, and indeed the concepts we are about to discuss coincide with these
mathematical notions. However, since they have not yet been explained, the reader
should see these as mere names; an explanation will have to wait until section 6.

4.1 The Motivation
Suppose that one is implementing a complicated algorithm and wishes to keep a log of
what the algorithm is doing for debugging purposes. Then, classically, one keeps a global
‘log’ variable, to which one writes as the algorithm proceeds. In pseudocode:
log = ""
def factorial(n):

let output = 1
log.append("We start with 1. ")
for i = 1 ... n:

log.append("We multiply by " ++ i ++ ". ")
output = output * i
log.append("We get " ++ output ++ ". ")

log.append("This is the final result.")
return output

factorial(3)
output: 6
log: We start with 1. We multiply by 1. We get 1. We multiply by 2. We get 2. We

multiply by 3. We get 6. This is the final result.

In Haskell, this could be dealt with by having our factorial function return a pair (
String, Int), but this solution quickly gets unwieldy when considering complex systems.
For example, function composition can no longer be done via the (.) operator. Indeed,
composition of functions with an attached log becomes a complicated endeavor: if the
function f does some computation and returns a log of what it did, and the function g
wants to call f and compose its own logs with the ones from f, one needs to do ugly
constructions to separate the logs of f from the output, do the computations, and return
the logs mixed with the result. This is doable but cumbersome, as the following example
shows.
logAdd1 :: Int ‐> (String, Int)
logAdd1 x = ("Added 1", x+1)
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logMul2 :: Int ‐> (String, Int)
logMul2 x = ("Multiplied by 2", 2*x)

log2nplus1 :: Int ‐> (String, Int)
log2nplus1 x = let (logmul2, xmul2) = logMul2 x in

let (logadd1, result) = logAdd1 xmul2 in
(logmul2 ++ logadd1, result)

Kleisli categories offer a solution to this issue.

4.2 The Solution
Let us begin by recapping the problem. We have functions which, besides computing
some value, return a log of the computation. In other words, they are of type
f :: a ‐> (String, b)
g :: b ‐> (String, c)

We want to compose f and g and obtain a composite log, but clearly the expression
g . f does not make sense. In order to deal with logging functions in a reasonable way
we need to change the notion of composition, and hence the category at hand.

Definition 1. Let W be the category such that:

• The objects of W coincide with the objects of Hask,

• Let f : a ↠ b mean that f is a morphism in W . We say f : a ↠ b if f is a map (in
Hask) of type f : a → (String, b). In other words,

W (a, b) := Hask(a, (String, b)). (9)

• The composition of two maps f : a ↠ b and g : b ↠ c is given by
h :: a ‐> (String, c)
h x = let (logg, y) = g x in

let (logf, z) = f y in
(logg ++ logf, z)

It is clear that W is a category: composition is associative because string concate-
nation is associative, and the identities on W are simply given by
idW :: a ‐> (String, a)
idW x = ("", x)

In fact, a little thought will show that the construction of W can be generalized,
by replacing String with any type which has an associative binary operation and a null
element. In other words, we need a monoid.

Monoids in Haskell are represented by the Monoid typeclass. For a type w to be in the
Monoid typeclass, there must exist a constant
mempty :: w
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and a binary function
(<>) :: w ‐> w ‐> w

satisfying the axioms for a monoid (associativity of <>, etc). Like in the case for func-
tors, the language does not enforce the monoid axioms: it is the responsibility of the
programmer, when defining a new monoid, to ensure that they hold.

That said, we can now define the so-called Kleisli category for the Writer monad:

Definition 2. Let w be a type in the Monoid typeclass. We define the Kleisli category
for the monad Writer w, denoted W , as follows.

• The objects of W coincide with the objects of Hask,

• A morphism f : a ↠ b, with a and b types, is a map (in Hask) of type f : a → (w, b).
In other words,

W (a, b) = Hask(a, (w, b)). (10)

• The composition of two maps f : a ↠ b and g : b ↠ c is given by
h :: a ‐> (w, c)
h x = let (logg, y) = g x in

let (logf, z) = f y in
(logg <> logf, z)

In Haskell, the Writer monad is already present in the Control.Monad.Writer package.
Instead of (w,a), for historical reasons the notation Writer w a is used, so a Kleisli arrow
would actually be of type
f :: a ‐> Writer w b

and composition in the Kleisli category is given by the so-called ‘fish operator’
(<=<) :: (b ‐> Writer w c) ‐> (a ‐> Writer w b) ‐> a ‐> Writer w c

where f <=< g is implemented as the h above.
Until now, we have been using pairs (w,a) to store data and logs. However, the Writer

monad uses instead the type Writer w a. This is a distinct type, but it is isomorphic to
(w,a), and the isomorphism is given by a function called writer.

Well, actually, for historical reasons, the argument of writer actually has the product
swapped. More concretely, writer is a function of type (a,w) ‐> Writer w a. Obviously
this is of no real consequence, as (a,w) is isomorphic to (w,a). The following diagram
shows the isomorphisms between the three types (w,a), (a,w), and Writer w a.

(w,a) (a,w) Writer w a

swap

swap

writer

runWriter

(11)
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4.3 Examples
Factorial The following function factorial computes the factorial of its argument and
logs the products computed on the way.
logProduct :: Int ‐> Int ‐> Writer String Int
logProduct x y = writer (x*y, "Compute " ++ show x ++ "*" ++ show y ++ ". ")

factorial :: Int ‐> Writer String Int
factorial n = if n == 0 then

writer (1, "0! is 1. ")
else

((logProduct n) <=< factorial) (n‐1)

runWriter (factorial 4)
output: (24,"0! is 1. Compute 1*1. Compute 2*1. Compute 3*2. Compute 4*6. ")

Other Monoids Instead of using the String monoid, one could instead use [String],
with the operation of list concatenation. This could be useful for preventing weird
formatting (such as the space at the end in the previous example) or to make it clearer
where one message ends and the other begins. We present a version of the factorial
function above using this method; we highlight in blue the significant changes.
logProduct :: Int ‐> Int ‐> Writer [String] Int
logProduct x y = writer (x*y, ["Product"])

factorial :: Int ‐> Writer [String] Int
factorial n = if n == 0 then

writer (1, ["0! is 1"])
else

((logProduct n) <=< factorial) (n‐1)

runWriter (factorial 4)
output: (24,["0! is 1","Product","Product","Product","Product"])

If for some reason we want to get our logging in reverse order, we can use the Dual type
constructor. If w is a monoid, Dual w is essentially the same monoid, but the arguments
of <> are swapped. The function Dual (not to be confused with the type constructor) is
the identity w ‐> Dual w, and getDual is its inverse.
logProduct :: Int ‐> Int ‐> Writer (Dual [String]) Int
logProduct x y = writer (x*y, Dual ["Product"])

factorial :: Int ‐> Writer (Dual [String]) Int
factorial n = if n == 0 then

writer (1, Dual ["0! is 1"])
else

((logProduct n) <=< factorial) (n‐1)

runWriter (factorial 4)
output: (24,Dual {getDual = ["Product","Product","Product","Product","0! is 1"]})
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Separation of Concerns The writer function does two things at the same time: it
records the result of a computation, and it writes a log. However, it is possible to do
each of these separately.

First observe that, as we’ve seen, Writer w a is effectively the same as (w,a). In other
words we can identify Writer w with (,) w, making Writer w a functor, and so there exists
an instance of fmap:
fmap :: (a ‐> b) ‐> (Writer w a ‐> Writer w b)

We can interpret this instantiation of fmap in practical terms: if f :: a ‐> b then
fmap f :: Writer w a ‐> Writer w b is the function which takes an a together with a log,
and applies f to the a without modifying the log. In other words, fmap f computes f
without logging anything.

Another (orthogonal) way to interpret the expression ‘do computation without log-
ging’ is to take a value of type a and turn it into one of type Writer w a, by simply
attaching an empty log to the value. This is actually the identity arrow in the Kleisli
category, and it is called return:
return :: Monoid w => a ‐> Writer w a
return x = (mempty, x)

Note the identity:

(return <=< f) = (f <=< return) = f (12)

Now, let us discuss how we can print to the log without doing any computation. To
this effect, consider the following function
say :: Monoid w => (a ‐> w) ‐> a ‐> Writer w a
say tellfunc x = writer (x, tellfunc x)

This function is not part of the standard Haskell library; Haskell has its own way
to log without computing, which would require introducing additional notation. In any
case, with fmap and say we may rewrite our factorial function more neatly.6

logProduct :: Int ‐> Int ‐> Writer [String] Int
logProduct = curry (

say (\res ‐> ["Output " ++ show res])
<=< fmap (uncurry (*))
. say (\p ‐> ["Product " ++ show p])

)

factorial :: Int ‐> Writer [String] Int
factorial n = if n == 0 then

say (\x ‐> ["0! is 1"]) 1
else

((logProduct n) <=< factorial) (n‐1)

runWriter (factorial 4)
output: (24,["0! is 1","Product (1,1)","Output 1","Product (2,1)","Output 2","

Product (3,2)","Output 6","Product (4,6)","Output 24"])

6Of course, neatness is in the eye of the beholder.
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Counting Operations We will now use the Writer monad to compare implementa-
tions of the Fibonacci sequence Fn, n ≥ 0. To measure roughly the efficiency of such an
algorithm, we will count how many times we perform sums of the form Fn−1 + Fn.

We will use the Writer monad with the Sum Int monoid, which is the integers with
addition (as opposed to Product Int, which would be the integers with multiplication).
Mind the injection Sum :: Int ‐> Sum Int and its inverse getSum :: Sum Int ‐> Int).

In order to shorten the code, we define the alias WSII for Writer (Sum Int) Int. The
code below is not very idiomatic, in particular the function logAdd: it is usually bad
form to work directly with the logs, being better to let the fish operator <=< do the
compositions itself. However, the tools that let us write logAdd in a more idiomatic
fashion will have to wait until we talk about monads in general; see section 6 below.
type WSII = Writer (Sum Int) Int

logAdd :: WSII ‐> WSII ‐> WSII
logAdd x y = let (xval, xlog) = runWriter x in

let (yval, ylog) = runWriter y in
writer (xval + yval, xlog <> ylog <> Sum 1)

naiveFib :: Int ‐> WSII
naiveFib n = if n <= 1 then

writer (n, Sum 0)
else

logAdd (naiveFib (n‐1)) (naiveFib (n‐2))

optFib :: Int ‐> WSII
optFib n = aux n 1 0 1

aux :: Int ‐> Int ‐> Int ‐> Int ‐> WSII
aux n iter prev now = if iter == n then

return now
else
((aux n (iter+1) now)<=<(logAdd (return now) . return)) prev

‐‐

runWriter (naiveFib 10)
output: (55,Sum {getSum = 88})
runWriter (naiveFib 20)
output: (6765,Sum {getSum = 10945})

runWriter (optFib 10)
output: (55,Sum {getSum = 9})
runWriter (optFib 20)
output: (6765,Sum {getSum = 19})

Clearly, naiveFib is very naïve indeed, with the number of additions growing very
fast with its argument!

20



5 The IO Monad
We’ve talked about the purity of Haskell, how it inviabilizes a few common programming
constructs, and a few ways that category theory gives us alternatives via powerful ab-
stractions. Now let’s talk about the concept that suffers the most from the introduction
of purity: input and output.

Recall that functions in Haskell are only mathematical functions: they receive an
input and they return an output. Since a Haskell program is only a composition of
Haskell functions, and hence a function itself, it could do nothing upon execution other
than a single computation. Let’s look over some things that cannot be done under the
umbrella of purity:

• Print messages to the screen (implicit output)

• Get input from the user (implicit input)

• Draw an image on screen (implicit output)

• Read/write files in disk (implicit input and output)

• Generate random numbers (unless we want the same numbers every time we run
the program, we need implicit input)

• Get the time and date (implicit input)

• Execute other programs (implicit input and output)

• Internet functionality (implicit input and output)

• The list goes on...

All of these problems are partially or totally solved by the so-called IO monad.

5.1 The Solution
So how do we make a Haskell program, whose functions must all be pure, interact
with the outside world? The built-in Haskell way to interact with the outside world is
through the IO monad. There are many ways to interpret or explain the IO monad: see
[2] for a few, [1] for another and [12] for an article on the difficulty of teaching IO and
monads to novices. For concreteness and conciseness we will only look at one of these
interpretations, which can be found in [2].

The idea is the following. Under the assumption that Haskell is pure without ex-
ception, a Haskell program can do nothing but compute a Haskell value, which is the
same every time the program is run. The idea is to postulate the existence of a Haskell
type which represents a (possibly impure) program. Let us call this hypothetical type
Program.

Then, our Haskell program would do its computations, culminating in a value of
type Program, and this value would be passed to an external interpreter who would then
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External Interpreter

Haskell

Program

User input Output (screen, disk, etc.)

Figure 1: Visual representation of the (fictitious) external interpreter connecting to
Haskell to run a Program

execute it. This way, with the help of this external interpreter, Haskell remains a pure
engine of computation (as the returned Program is the same every time it is executed)
but it becomes capable of interaction with the external world. See figure 1 for a visual
representation of this process.

One thing that we ought to be able to do with Programs is compose them. For
example, suppose that we have a program askName :: Program and another greet ::
String ‐> Program, the first of which asks the user for their name, and the second of
which, given a name, will print ‘Hello, name’ on the screen. It is reasonable to want to
build a composite program, askAndGreet :: Program, which asks the user for their name
and proceeds to greet them. How could we define askAndGreet starting from askName and
greet?

Unfortunately, we can’t, because the Program abstraction is missing one critical thing:
Programs are unable to pass the results of their computations onwards to other Programs.
In this case, askName should be able to give its output (the user input) to greet. Therefore,
we now allow a different kind of Program, which besides its implicit input and output (via
effects on the world) also has an explicit output, which can be passed onwards to other
Programs. This new kind of program is called IO, or rather, IO a, with a a Haskell type.
To recap:

• A value of type Program is an instruction or sequence of instructions built by Haskell,
which the external interpreter executes,

• However, since this formalism does not have a built-in way to pass outcomes of
some programs to others, we add a new type of program: IO.

• A value of type IO a, with a a Haskell type, is an instruction or sequence of instruc-
tions built by Haskell, which the external interpreter executes, which culminates
in a value of type a.

There is but one short hop before we understand how Haskell deals with side effects:
the type Program does not actually exist. Indeed, a program which does not culminate
in any value can be identified with a program that culminates in an object of a trivial
type, such as (). For example, the Haskell function putStrLn is of type String ‐> IO ().
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5.2 Working with IO and a few Examples
Let us look at a couple of the simplest IO functions in Haskell:
getLine :: IO String
putStrLn :: String ‐> IO ()

These types should be interpreted as: getLine is a program which goes off into the
world and comes back to Haskell with a String, usually input that the user has written
into the console. On the other hand, putStrLn isn’t a program in its own right: it is a
function which receives a String and returns a program, which in turn does some action
on the outside world (printing the String) and returns no information.

Hello World Our first program with side effects will be the classical ‘Hello world!’:
main :: IO ()
main = putStrLn "Hello world!"

When compiled, this program results in an executable which, when run, prints the
string ‘Hello world!’ to the screen. Note the use of main. A Haskell file will typically
define many functions, so we need to tell the compiler which of them builds the IO ()
value it is meant to execute, so it looks for a value of type IO () and name main.

Echo and Bind Let us now make a program which receives input from the user
and repeats it back to them. To get the input from the user we want the IO String
action getLine, and we want to feed its output (a String) to the putStrLn function.
Unfortunately, it’s not as easy as writing putStrLn . getLine, as getLine returns an IO
String and putStrLn requires a String.

A ‘program composition operator’ must behave as follows: given an IO action which
culminates in a value of type a, and a function which turns such a value into another
computation of type IO b, we want to write the program ‘do this thing, feed the a into
this function, and do that other thing’. The operator that does this composition is called
bind:
(>>=) :: IO a ‐> (a ‐> IO b) ‐> IO b

This is the tool necessary to do the echo program:
main = getLine >>= putStrLn

Prompting and Prettying: Using Lambdas We will now make a less rude pro-
gram. Instead of simply getting input and saying it right back like a petulant child, we
will kindly ask the user for their name, and upon getting it with the use of getLine, we
will return a greeting ‘Hello, name!’.

First, we define the IO () action which consists of prompting the user:
askName :: IO ()
askName = putStrLn "Hello! What is your name?"
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Then, we define a function which gets the user input and returns a greeting. To
this effect, we need to modify the input (turning the name into a pretty message) be-
fore printing it. To do this, we could first define an auxilliary function, which is then
composed with getLine:
greet :: String ‐> IO ()
greet name = putStrLn ("Hello, " ++ name ++ "!")

getNameAndGreet :: IO ()
getNameAndGreet = getLine >>= greet

However, in order to avoid cluttering our code with functions that are only ever used
once, it is sometimes better to instead use a lambda expression in place of greet:
getNameAndGreet :: IO ()
getNameAndGreet = getLine >>= (\name ‐> putStrLn ("Hello, " ++ name ++ "!"))

Finally, we compose askName and getNameAndGreet. However, we cannot use >>=: for
that to work, we would need that getNameAndGreet be of type () ‐> IO (), and not IO ().
The fix is simple, however: instead of writing getNameAndGreet on the right-hand side of
>>= we write a function which takes one argument of type (), ignores it, and returns the
IO action getNameAndGreet.
main = askName >>= (\x ‐> getNameAndGreet)

Of course, writing this is slightly silly and verbose for something as simple as ‘run
this program then run this one’, so Haskell offers an alternative, via the >> operator,
which can be read as ‘and then’:
(>>) :: IO a ‐> IO b ‐> IO b
a1 >> a2 = a1 >>= (\x ‐> a2)

We may write our greeting program without any auxilliary functions, to see it in all
its glory:
main = putStrLn "Hello! What is your name?" >>

getLine >>=
(\name ‐> putStrLn ("Hello, " ++ name ++ "!"))

IO is a Functor In the previous example, we got user input and forwarded it using
>>= to another function, which processed it and returned another IO action. However,
sometimes it is appropriate to associate the processing to the left-hand side of >>= rather
than to the right-hand side.

As an example, consider the following scenario: we wish to make a program that
receives an integer input by the user, doubles it, and prints it on the screen. Let us take
for granted that there exists a function strToInt :: String ‐> Int which reads an integer
off of a string,7 as well as a function print :: Int ‐> IO () which prints an integer to

7In Haskell, there is the read function which does just that, but it is unsafe as it crashes the program
if it is fed invalid input. There are other, safer alternatives, but it should suffice to say that they exist.
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the screen.8 Then, our program could be written as
main = getLine >>= (print . (\x ‐> 2*x) . strToInt)

However, suppose that we want to isolate the ‘get an integer from the user’ action.
In other words, we want to build a Haskell object of type IO Int, using getLine ::
IO String and strToInt :: String ‐> Int. We cannot simply construct a composite

strToInt . getLine, as the types don’t match, but if we could build a function IO String
‐> IO Int out of strToInt our problem would be solved. Interpreting this in the program

framework, this function would take an IO String, i.e. a sequence of instructions for the
external interpreter telling it how to fetch a String from the outside world, and add
to the very end of these instructions ‘when you’re done getting that String, apply the
function strToInt to it’.

This function exists, and can be constructed via fmap strToInt. Yes, this is the same
fmap as in 3.2: IO is a functor! In other words, if we define a map F : Hask → Hask given
by

• If a is a type, F (a) = IO a,

• If f : a → b, define F (f) : F (a) → F (b) as in the previous paragraph,

then F is a functor. In other words, fmap satisfies the functor laws.9
In conclusion, we are now able to define an IO Int action which reads an integer from

the console, as
getInt :: IO Int
getInt = fmap strToInt getLine

The Monad Laws From the discussion above, we are able to conclude a very impor-
tant fact relating >>= and fmap which will be very important later on: doing an IO-free
computation before or after >>= is irrelevant. In other words, if act1 = IO a, f :: a ‐> b
and act2 = a ‐> IO b then

act >>= (act2 . f) = (fmap f act) >>= act2 (13)

This is the most important of the so-called monad laws, which will be heavily dis-
cussed in section 6.

8Actually, the function print has type print :: Show a => a ‐> IO (). The Show typeclass
consists of types which may be represented as a string; to represent a value as a string one uses the
function show :: Show a => a ‐> String. With it, one defines print = putStrLn . show.

9Strictly speaking, this is not necessarily true. There might be a small difference between action ::
IO a and fmap id action: the former is a sequence of instructions, and the latter is the same sequence
followed by ‘and then, apply id to the result’. Of course, this is obviously of no consequence, except
perhaps for an infinitesimal delay in execution, and it is very likely that the compiler would optimize
away such a frivolous instruction anyway. Regardless of whether there exists a difference or not, there is
no harm in accepting the fiction that IO is a functor, in much the same way that engineers do not need
to correct for relativistic effects when building bridges.
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Figure 2: Visual representation of the ongoing conversation between Haskell and the
(fictitious) interpreter

5.3 Conclusion
In this section, we discussed what a value of type IO a is (it is a sequence of instructions
for the interpreter to go out into the world and get Haskell an object of type a), how to
compose IO actions with functions that take their results and return other IO actions via
the >>= operator, and how IO is a functor.

The >>= operator changes the IO metaphor slightly, because it allows for the outside
world to talk to Haskell. For example, consider the program
main = getLine >>= (\in ‐> if in == "jackpot" then putStrLn "You hit the jackpot!"

else putStrLn "...")

Then, when the interpreter executes this program, first it gets user input, and then
it consults Haskell ‘hey, I got this input, what do I do now?’, and Haskell replies with
another IO action. Consequently, figure 1 could be improved, leading to figure 2, which
represents Haskell not as a box which is executed once to yield a Program, but rather as
an engine the interpreter is in constant conversation with, executing actions, showing
their results to Haskell, and consulting it about what to do next.

6 Monads
We preface this section with a joke.

Joke 1.

Novice learning Haskell: What is a Monad?

Haskell expert: Nothing special: it’s just a monoid in the category of endofunctors!
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6.1 Categorical Definition
Before talking about the applications to programming, we give a very brief introduction
to the concept of monad. For a more in depth but still light introduction, see chapter
VI of [7].

Definition 3. A monad in a category X is an endofunctor T : X → X, together with
two natural transformations

η : idX ⇒ T, µ : T 2 ⇒ T, (14)

satisfying the equations

µ · Tµ = µ · µT, (15)
µ · ηT = µ · Tη = idT . (16)

Monads often, but not always, arise from adjunctions.

Proposition 1. Let F : X → Y and U : Y → X be adjoint functors, with F a U . Then,
T = UF is a monad, with η the unit of the adjunction and µ = UεF , where ε is the
counit of the adjunction.

Let us look at one particular example, which will be useful in the sequence. Let
F : Sets → Mon be the free-monoid-generated-by functor, and U : Mon → Sets the
forgetful functor. In this case, T = UF is the functor which, given a set A, returns the
monad freely generated by A, without the monadic structure. In other words, we can
see T (A) as the collection of finite sequences of elements of A.

In this case, η : A → T (A) is the function which, given an element a of A, returns
the one-element sequence ‘a’.

The other natural transformation, µ, is trickier. It is a function from T (T (A)) to
T (A). In other words, it receives sequences of sequences of elements of A, and returns
a sequence of elements of A.10 It is not obvious, but can be deduced by expanding the
definition of µ and η, that µ consists of sequence concatenation. In other words, suppose
that s = s1 . . . sn is an element of T (T (A)), with

si = ai1 . . . aimi , i = 1, . . . , n, aij ∈ A. (17)

Then, µ(s) is given by

µ(s) = a11 . . . a1m1a21 . . . a2m2 . . . an1 . . . anmn . (18)
10Strictly speaking, this is not necessarily true. The result is heavily dependent on how we represent

the free monad generated by a set. Here we will be assuming that the free monad generated by A is
represented by the finite sequences of elements of A, with the operation given by concatenation.
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6.2 A Monad in Haskell: Lists
Lists as Sequences We have seen that a simple example of a monad consists of the
functor which takes a set A and returns the collection of finite sequences of elements of
A. As it happens, we have already seen such an object in Haskell: the list functor!11

The list functor List : Hask → Hask takes a type a and returns the type [a], and it
takes a function f :: a ‐> b and returns the function fmap f :: [a] ‐> [b] which applies
f to all the elements of its input. To see it as a monad, by analogy with the example
seen above we set
eta :: a ‐> [a]
eta x = [x]

mu :: [[a]] ‐> [a]
mu = concat

where concat takes a list of lists and returns the result of their concatenation. This shows
that Haskell already contains the natural transformation µ for the list functor, and it
also contains η in the form of the function return :: a ‐> [a].

Lists as Output of Nondeterministic Computations An important example of
list usage is when some query has more than one possible response. For some appli-
cations, only one response is enough, but sometimes it is useful to know all possible
responses to a query.

As an example, consider the following game. Start with a composite integer n. At
each step, pick a divisor 1 < d < n of n and replace n with d − 1. The game halts
whenever we reach a prime number n, or 1. We wish to find, for a positive integer n,
the maximal number of moves until the game halts.

To a first approximation, let us implement a simple strategy to play the game: at
each step of the game we pick the biggest divisor of n. Our code will execute this strategy
and return the number of moves necessary to halt.
step :: Int ‐> Maybe Int
step n = let divisors = filter (\d ‐> n `mod` d == 0) [n‐1,n‐2..2] in

fmap (\d ‐> d‐1) (listToMaybe divisors)

stepsToHalt :: Int ‐> Int
stepsToHalt n = aux (step n)

aux :: Maybe Int ‐> Int
aux Nothing = 0
aux (Just n) = 1 + aux (step n)

stepsToHalt 73
output: 0

11This is not technically true. Since Haskell is lazy, it is possible (and oftentimes useful) to construct
infinite lists. Therefore, the list functor does not correspond exactly to the monad associated to the free
monoid constructor. However, it is close enough that the exposition does not suffer for it.
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stepsToHalt 766
output: 8

Some explanation on the functions and notation used in the code above:

• The function filter :: (a ‐> Bool) ‐> [a] ‐> [a] takes a predicate p and a list x
and returns the elements of the list which satisfy p. In this case the predicate is
that n `mod` d == 0, i.e. that d be a divisor of n.

• The expression [n‐1,n‐2..2] represents the list that is suggested by the notation.

• The function listToMaybe takes a list and returns Just the first element of the list
if it exists, and Nothing otherwise.

Now, evidently our strategy is not optimal. For example, suppose we start with
n = 48. The current implementation goes 48 → 23, and so halts in one step. However,
there is a better set of moves: 48 → 15 → 4 → 1.

With this in mind, let us implement a nondeterministic solver, where instead of
picking a move and sticking with it, all possible moves are tried in parallel.

In preparation for this nondeterministic solver, we consider how to represent a state
of the game at hand. There are two cases: either the game is still ongoing, in which
case we want to store how many steps have elapsed since the start, and the value of n
we currently have; or the game has already terminated, in which case we just want to
store how many steps it took us to get where we are.
type UnhaltedState = (Int, Int)
type HaltedState = Int
type GameState = Either HaltedState UnhaltedState

Now, our nondeterministic step function takes an unhalted game and returns a list
which contains all possible states of the game after one step; in the special case where
the value of n which is input is prime or 1, it returns a singleton list, representing that
the only possible next step is to halt.
stepND :: UnhaltedState ‐> [GameState]
stepND (s,n) = let divisors = filter (\d ‐> n `mod` d == 0) [n‐1,n‐2..2] in

if divisors == [] then [Left s]
else fmap (\d ‐> (Right (s+1,d‐1))) divisors

Now we implement the function stepsFromStateND, which, given a state s, outputs all
possible numbers of moves until halting:
stepsFromStateND :: GameState ‐> [Int]
stepsFromStateND (Left s) = return s
stepsFromStateND (Right st) = concat (fmap stepsFromStateND (stepND st))

Finally, we may extract the maximum number of moves by using the maximum function.
stepsToHaltND :: Int ‐> Int
stepsToHaltND n = maximum (stepsFromStateND (Right (0,n)))

We can see that the nondeterministic version does fare better than the deterministic
version.
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filter (\(x,y,z) ‐> y<z)
(fmap (\n ‐> (n, stepsToHalt n, stepsToHaltND n)) [1..100])

output: [(28,1,2),(36,1,2),(40,1,2),(48,1,3),(58,2,3),(60,1,3),(64,1,3),(74,2,3)
,(75,2,3),(76,1,3),(82,2,3),(84,1,3),(87,2,3),(88,1,3),(96,1,3),(98,2,4)]

Nondeterministic Functions as Kleisli Arrows In the previous example, we used
monadic structure explicitly in the function stepsFromStateND. Now we present another
way to look at the problem.

Recall that in section 4 we introduced the idea of different function compositions.
In that section, we considered functions of type a ‐> Writer m b, which took an input
and returned an output together with a log, and defined the fish operator <=< which
computes ‘logged functions’ by composing their logs appropriately.

We will now do a similar thing: we will redefine the concept of function composition
in order to allow for composition of nondeterministic functions.

To be more precise, suppose that f :: a ‐> [b] is a nondeterministic function, which
takes an a as input and returns possibly many (or none) values of b as output. Likewise,
let g :: b ‐> [c]. Then, we define the nondeterministic composition of g and f as
(<=<) :: (b ‐> [c]) ‐> (a ‐> [b]) ‐> a ‐> [c]
g <=< f = \x ‐> concat (fmap g (f x))

Note the fact that we are reusing the fish operator. This is no accident: as it happens,
Writer m is also a monad, and if we’ll look at the typing of the fish operator in GHCi:
:t (<=<)
output: (<=<) :: Monad m => (b ‐> m c) ‐> (a ‐> m b) ‐> a ‐> m c

In other words, the fish operator is defined for pairs of functions of types b ‐> m c
and a ‐> m b with m a monad. We have already seen the implementation for lists, and
we will see that it generalizes trivially for a general monad m.

We can rewrite the function stepsFromStateND using the fish operator:
stepsFromStateND :: GameState ‐> [Int]
stepsFromStateND (Left s) = return s
stepsFromStateND (Right st) = (stepsFromStateND <=< stepND) st

Nondeterministic Input Let us look at a third way to see nondeterministic functions,
which is often more useful for practical programming.

In practice, programmers don’t always have the opportunity to write their functions
as neat compositions of other functions. Sometimes dependencies are used multiple
times, and it is much easier to store data in a variable and then reuse that variable
multiple times than coming up with convoluted ways to carry the data across function
compositions to where it needs to be. In other words, function application is useful.

This presents a problem to nondeterministic programming, because if y :: [b] is the
(nondeterministic) output of a function f :: a ‐> [b], and we want to feed y as input
to another function g :: b ‐> [c], simply writing g y will not do. We need some kind
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of new ‘nondeterministic function application’ which, given nondeterministic input and
a nondeterministic function, applies the function to all elements of the input.

Enter the bind operator, >>=. Yes, this is the same bind operator as in section 5, but
now it has type
(>>=) :: [a] ‐> (a ‐> [b]) ‐> [b]

or, more generally,
(>>=) :: Monad m => m a ‐> (a ‐> m b) ‐> m b

For lists, it is defined by
(>>=) :: [a] ‐> (a ‐> [b]) ‐> [b]
y >>= g = concat (fmap g y)

and stepsFromStateND may be rewritten using bind:
stepsFromStateND :: GameState ‐> [Int]
stepsFromStateND (Left s) = return s
stepsFromStateND (Right st) = stepND st >>= stepsFromStateND

6.3 It All Ties Together (Categorically)
We have seen that the List type constructor is a monad, and from that we were able
to define the fish operator <=< and the bind operator >>=. Now, we will show that the
converse holds, so that, for example, <=< can be used to compose functions a ‐> IO b
with b ‐> IO c, or that >>= can be used to feed a Writer m a into a function of type Writer
m b. It is an interesting exercise to understand how these operations are interpreted,

but for the sake of conciseness we will only show that the bind and fish operators induce
different, but equivalent, ways to define monads.

Theorem 1. Let X be a category. The following data are equivalent.

• A functor T : X → X together with natural transformations

η : I ⇒ T, µ : T 2 ⇒ T (19)

such that

µ · µT = µ · Tµ, (20)
µ · ηT = µ · Tη = idT . (21)

• A functor T : X → X, together with a natural transformation

η : I ⇒ T (22)

and an associative binary operation (g, f) 7→ g� f , defined for f, g ∈ X1 satisfying

f : x → Ty, g : y → Tz, (23)
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with g � f : x → Tz, and such that for all such f and g we have

f � ηx = ηy � f = f. (24)

Furthermore, it relates to usual composition by

(h� g) ◦ f = h� (g ◦ f), (25)
Th′ ◦ (g′ � f ′) = Th′ � (Tg′ ◦ f ′). (26)

whenever f , g and h compose appropriately, and likewise for f ′, g′ and h′.

• A functor T : X → X, together with a natural transformation

η : I ⇒ T (27)

and an operator βxy : X(x, Ty) → X(Tx, Ty) which satisfies

Tf = βxy(ηy ◦ f), (28)
βxy(f) ◦ ηx = f, (29)

βyz(g) ◦ βxy(f) = βxz(βyz(g) ◦ f). (30)

Remark 1. Before going through with the proof, it is worth it to look at how these
concepts are reflected in Haskell.

All three of the definitions start with a functor and a natural transformation η. In
Haskell, the functor is a type constructor, e.g. [], Writer m, IO, and the η is represented
by the function return :: a ‐> m a.

The first definition contains an additional natural transformation, denoted µ. In
Haskell, this is represented by the function join :: m m a ‐> m a.

The second definition contains the binary operator �. In Haskell, this is represented
by the fish operator <=<.

The third definition is the one which is a little further away from its Haskell coun-
terpart. In Haskell, β is represented by the bind operator
(>>=) :: m a ‐> (a ‐> m b) ‐> m b

whose typing is not the same as β. To get from one to the other, one must first invert
the order of the arguments, yielding the function
(=<<) :: (a ‐> m b) ‐> (m a ‐> m b)
(=<<) = curry ((uncurry (>>=)) . swap)

This one maps directly to β.
The reason that this mental gymnastics is necessary is because the original typing

of bind only makes sense in nice enough categories, namely those with exponentiation.
The modified definition is more general, being applicable to any category.

Proof: Since all definitions provide the functor T and natural transformation η : I ⇒ T ,
it suffices to construct the following three pieces of data from one another: µ, �, and β.
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• (Build � from µ) Let f : x → Ty and g : y → Tz. Then, set

g � f := µz ◦ Tg ◦ f. (31)

We need to verify that � is associative and that η is a neutral element, as well as
the relation between � and composition.
To show associativity, we compute (h � g) � f , for f : x → Ty, g : y → Tz and
h : z → Tw:

(h� g)� f = µw ◦ T (h� g) ◦ f
= µw ◦ Tµw ◦ TTh ◦ Tg ◦ f
= µw ◦ µTw ◦ TTh ◦ Tg ◦ f (by (20))
= µw ◦ Th ◦ µz ◦ Tg ◦ f (Naturality)
= µw ◦ Th ◦ (g � f)

= h� (g � f).

(32)

Now, we prove that f � ηx = f :

f � ηx = µy ◦ Tf ◦ ηx
= µy ◦ ηTy ◦ f (Naturality)
= idTy ◦ f (by (21))
= f.

(33)

The proof that ηy � f = f is similar, and so we turn to showing (25).

(h� g) ◦ f = (µw ◦ Th ◦ g) ◦ f
= µz ◦ Th ◦ (g ◦ f)
= h� (g ◦ f).

(34)

Finally, we prove (26).

Th ◦ (g � f) = Th ◦ µz ◦ Tg ◦ f
= µTw ◦ T 2h ◦ Tg ◦ f (Naturality)
= Th� (Tg ◦ f).

(35)

The first part of the proof is complete.

• (Build β from �) Simply set

βxy(f) = f � idTx. (36)
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To prove (28), we compose with an appropriate identity:

β(ηy ◦ f) = (ηy ◦ f)� idTx

= T idy ◦ (ηy ◦ f)� idTx

= T idy � (Tηy ◦ Tf ◦ idTx) (by (26))
= T idy � (Tηy ◦ Tf)
= T idy ◦ (ηy � Tf) (by (26))
= f.

(37)

The proof of (29) is trivial, so we now prove (30):

β(g) ◦ β(f) = (g � idTy) ◦ (f � idTx)

= g � (f � idTx) (by (25))
= (g � f)� idTx) (Associativity)
= ((g � idTy) ◦ f)� idTx (by (25))
= β(β(g) ◦ f).

(38)

• (Build µ from β) Define µx, for x ∈ X0, by

µx = β(idTx). (39)

The proofs of naturality of µ and (20) and (21) are left to the reader.

Now that we have constructed � from µ, β from � and µ from β, it remains to
show that these constructions do not lose information. In other words, if we start from
µ, build �, then β, and then a new µ, we need to show that µ = µ, and likewise for
the other two constructions. The proof of this fact is straight-forward and left to the
reader. ■

Remark 2. It should be noted that the proof of theorem 1 gives us more than the
statement: it actually tells us how to construct each piece of data from the others. This
translates to implementation. For example, in Haskell a monad is defined in terms of
the bind operator >>= (in the nomenclature above, β), and the fish operator <=< (in the
notation above, �) is defined on all monads using bind, as is join (µ).

Remark 3. The definition in terms of T , η and β can actually be further simplified.
Indeed, by (28) the definition of T on morphisms can be induced solely from the rest
of the data. Therefore, if we remove the hypothesis that T is a functor and replace the
hypothesis (28) by something else, we actually obtain a leaner definition of monad:

Theorem 2. Let X be a category. The following data is equivalent:

• A monad (T, η, β) on X,
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• A map T : X0 → X0, a collection of maps ηx : x → Tx, and a collection of maps
βxy : X(x, Ty) → X(Tx, Ty), satisfying the so-called monad laws:

β(η) = id, (40)
β(f) ◦ η = f, (41)

β(g) ◦ β(f) = β(β(g) ◦ f). (42)

Proof: Evidently a monad induces such data. On the other hand, from this data we may
define T on morphisms via (28), and functoriality of the resulting T is easy to verify;
note that (40) is necessary to prove that T (id) = id. ■

Theorem 2 is actually the reason behind an interesting historical accident. As it
happens, functors and monads were both introduced in version 1.3 of the Haskell report
(the official standard for the language), in 1996. Now, it was already known all the
way back to 198912 that every monad was a functor, but it was only in 2015, with the
so-called ‘Applicative => Monad proposal’ (AMP) [6], that the language itself enforced
that fmap be defined for every instance of Monad.

6.4 How Programming Inspires Math
When we introduced monads in definition 3 we remarked (proposition 1) that every
adjunction induces a monad. On the other hand, it has been known since at least 1964
[5] that every monad is induced by an adjunction.

Historically, this all happened long before monads were applied to programming
languages, but as it happens the work we have already done in a programming context
leaves us but a short step away from this theorem.

We begin by remarking that every monad induces a category in a natural way: if
we combine theorem 1 with ideas from definition 2, we conclude that, given a monad
M = (T, η,�) on T , the collections

W0 = X0, W (x, y) = X(x, Ty) (43)

form a category W with � as the composition and η as the identities. This is called the
Kleisli category for the monad M . We may define F : X → W and U : W → X as

F (x) = x, F (f) = ηy ◦ f,
U(x) = Tx, U(f) = β(f) = f � idTx.

(44)

It is worth it to take a step back and interpret W , F and U in computational terms,
and the list monad T is particularly enlightening in this respect. We saw that a function
a ‐> [b] can be interpreted as a nondeterminstic function, and hence in this case the

12See [10], definition 3.2.1 (which corresponds to our definition via β) and proposition 3.2.4 (which
establishes the equivalence between this definition and the classical one based on on functors). See also
[5] for another proof of equivalence, way back in 1964.
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Kleisli category is the category whose morphisms are nondeterministic functions, with
the appropriate composition. The functor F takes a deterministic function and turns it
into a ‘deterministic nondeterministic function’, whose list of outputs contains only one
element. On the other hand, the functor U takes a nondeterministic function and turns
it into a deterministic function, by seeing the nondeterministic results for what they are:
lists. In breaking the nondeterministic metaphor, it must turn a function in W (x, y)
into a function whose output is a nondeterministic y, i.e. U : W (x, y) → X(?, T y). By
consistency, U must act on all objects by T , and we have already seen that β acts on
W (x, y) = X(x, Ty) in an appropriate way. Interpreting β computationally, U goes to
a category which does not know how to perform nondeterministic computations, so U
itself teaches the functions how to accept nondeterministic inputs using β.

We will now verify that F and U form an adjoint pair, which in turn originates the
monad we started with. We already have the candidate for the unit of the adjunction,
which is η, and so all that remains is to find the candidate for the counit, i.e. to solve
the equation

µx = U(εF (x)). (45)

Expanding (45) using (44), we obtain

µx = β(εx), (46)

and so we may use equation (29) to recover ε via

εy = β(εy) ◦ ηTy = µy ◦ ηTy, (47)

and hence, by (21),
εy = idTy. (48)

It is not difficult to show that η and ε satisfy the triangular equalities, and therefore
(F,U, η, ε) forms an adjunction, whose associated monad is M . Therefore, we have just
shown:

Theorem 3. Every monad is induced by an adjunction in the sense of proposition 1.

The proof that we have presented is due to Kleisli [5]. It is not the only construction;
see for example VI.2 in [7] for another, due to Eilenberg-Moore.

7 Closing Remarks
The connection between Haskell and category theory is a rather interesting one, and
not only for its content. First of all, it is of note that we have barely touched on the
computational part of the theory behind Haskell, such as lambda calculus and type
theory. Those are interesting areas in their own right, and they have a remarkable
intersection with category theory, for example when it comes to theorems for free [11].
Furthermore, in this essay we have been working with ‘idealized Haskell’, in which all
functions terminate and there are no infinite loops or errors, which is of course an
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unreasonable assumption; domain theory helps us account for this, by providing better
descriptions of what kind of thing can be output by a program. For example, formally,
each type is inhabited by at least one element, called bottom and denoted ⊥. This type
represents a computation which does not terminate, and since Haskell is a lazy language
(a term which we have not had the opportunity to define or explore) the notion of
bottom is more nuanced than it would seem at first sight. For example, the pair (⊥,⊥)
is different from (⊥, 1), which is different from (⊥, 2), and all of these are different from
⊥ (the undefined pair).

Another interesting thing about using mathematics to describe Haskell is that it
approaches physics in a sense. This is because Haskell is a real programming language,
and the real world is messy. Haskell is riddled with minor exceptions, concessions to
practicality which break otherwise ironclad rules: the reader will have noticed that this
essay is riddled with footnotes saying ‘well, actually...’ In this sense, any description of
Haskell (short of the official documentation) will be only an approximation, and much
like how Newtonian and relativistic physics both have their place as descriptions of
the world to better or worse approximation, so do idealized Haskell and more complex
models. In this way, the content of this essay is applied category theory in a quite
literal sense, which goes to show that even the most abstract areas of mathematics may
eventually find application in the real world.

As a last remark on category theory, in this essay we have gone to reasonable depth
on monads in particular as a programming abstraction. No other categorical concept
has found as wide application, except of course for the notion of morphism and perhaps
the notion of functor, but that does not mean that other categorical concepts go unused.
For a great reference, see [9], in which concepts such as comonads and coalgebras are
used as a formalism for, for example, random number generation and object inspection
(lenses), both of which very useful notions in practice. There is also another concept
which neither we nor [9] touch on, which is the notion of monad transformer, which is a
way to deal with the fact that composition of monads is not, in general, a monad; this
is an active area of research.
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