
TOPICS IN POINT SET TOPOLOGY
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Abstract. These notes supplement Point Set Topology courses taught at the University
of Chicago in Winters 2021, 2023 and 2024.
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1. Tychonoff’s Theorem

1.1. Statement of the Theorem.

Theorem 1.1 (Tychonoff). Any product of compact spaces is compact (in the product
topology).

1.2. Characterization of compactness. A collection B of open subsets for X is a basis
if every open subset of X is a union of elements of B. The elements of B are called basic
open sets, and their complements are called basic closed sets. Note that a collection K of
closed subsets of X are the basic closed sets for some basis if and only if every closed set
of X is the intersection of elements of K.

Definition 1.2 (Finite intersection property). A collection of subsets A of a set X has the
finite intersection property if for every finite subset A1, · · · , An ∈ A the intersection ∩iAi
is nonempty.

Lemma 1.3. Let X be a space, and fix a basis for X. The following are equivalent.
(1) X is compact;
(2) every basic open cover has a finite subcover;
(3) if A is a collection of basic closed sets with the finite intersection property then
∩A∈AA is nonempty.

Proof. The definition of compactness is that every open cover has a finite subcover; thus
(1) implies (2). Conversely, suppose (2) holds, and let {Uα} be a finite cover of X. For
every x ∈ Uα there is a basic open set x ∈ Bx ⊂ Uα and therefore the open cover {Bx}
refines {Uα}. By (2) there is a finite subcover Bx1 , · · · , Bxn . Each Bxi is contained in some
Ui ∈ {Uα} and therefore U1, · · · , Un is a finite subcover of {Uα}, so that (2) implies (1).
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Finally we show that (2) is equivalent to (3). Taking contrapositives, (2) is equivalent
to the statement that if {Bα} is a family of basic open sets with no finite subcover then
the entire family does not cover. For a family of sets to fail to cover X is equivalent to
the statement that their complements have a nonempty intersection, so {Bα} has no finite
subcover if and only if {X − Bα} has the finite intersection property, and ∪Bα 6= X is
equivalent to ∩(X −Bα) 6= ∅. Thus (2) and (3) are equivalent. �

1.3. Ultrafilters.

Definition 1.4 (Filter). Let X be a set. A collection of subsets F of X is a filter on X if
(1) every A ∈ F is a nonempty subset of X;
(2) if A,B ∈ F then A ∩B ∈ F; and
(3) if A ∈ F and A ⊂ B ⊂ X then B ∈ F.

Example 1.5. Suppose X is infinite. The collection F of all cofinite subsets of X (i.e.
subsets with finite complement) is a filter.

Definition 1.6. Let A be a collection of subsets of X with the finite intersection property.
Define 〈A〉 to be the collection of all subsets B of X so that B contains some finite
intersection of elements of A. We call 〈A〉 the filter generated by A.

Lemma 1.7. For any A with the finite intersection property 〈A〉 is the smallest filter
containing A (in particular it is a filter).

Proof. Since A has the finite intersection property, every A ∈ 〈A〉 contains a nonempty
subset and is therefore nonempty. Furthermore, if A contains a finite intersection of ele-
ments of A then so does B for any A ⊂ B ⊂ X. Finally if A contains An1 ∩ · · · ∩Ank

and
B contains Am1 ∩ · · · ∩ Aml

then A ∩B contains

An1 ∩ · · · ∩ Ank
∩ Am1 ∩ · · · ∩ Aml

Thus 〈A〉 is a filter containing A.
If F is any filter containing A it necessarily contains all finite intersections of elements

of A, and all supersets of these, so it contains 〈A〉. �

Lemma 1.8. Let {Fα} be a collection of filters of X, simply ordered by inclusion (i.e. for
all Fα, Fβ either Fα ⊂ Fβ or Fβ ⊂ Fα). Then F := ∪αFα is a filter.

Proof. Let A ∈ F. Then A ∈ Fα for some α so that A is nonempty. Furthermore, if
A ⊂ B ⊂ X then B ∈ Fα so B ∈ F. Finally, if A,B ∈ F then A ∈ Fα and B ∈ Fβ for some
α, β where without loss of generality Fα ⊂ Fβ so that actually A,B ∈ Fβ and therefore
A ∩B ∈ Fβ ⊂ F. �

Definition 1.9 (Ultrafilter). An ultrafilter is a filter that is maximal with respect to
inclusion; i.e. it is not a proper subset of any filter.

Zorn’s Lemma and Lemma 1.8 together imply that every filter on a set is contained in
some ultrafilter.

Example 1.10 (Principal ultrafilter). Let x ∈ X. The collection Fx of all subsets of X
containing x is an ultrafilter, called the principal ultrafilter generated by x.
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Lemma 1.11. A filter F is an ultrafilter if and only if, for every A ⊂ X, exactly one of
A and X − A is in F.

Proof. The sets A and X − A are disjoint and therefore cannot be contained in the same
filter. Suppose F is a filter and neither A nor X − A are in F. If some B ∈ F is disjoint
from A then B ⊂ X − A so that X − A is in F; thus A intersects every element of A
and therefore A ∪ {A} has the finite intersection property. But then 〈A ∪ {A}〉 is a filter
properly containing F, so that F is not maximal.

Conversely suppose F is a filter and for every A ⊂ X exactly one of A and X − A is
in F. Let B be a subset of X that is not in F. Then X − B is in F, so there is no filter
containing F and B; thus F is maximal. �

Lemma 1.12. Let F be an ultrafilter and suppose A ∈ F. If we can write A = B ∪C then
at least one of B,C is in F.

Proof. If neither of B,C are in F then X −B and X −C are in F so (X −B)∩ (X −C) is
in F. But (X−B)∩ (X−C) = X− (B∪C) = X−A contrary to the fact that A ∈ F. �

1.4. Ultrafilters and Topology.

Definition 1.13. Let F be an ultrafilter on a topological space X. We say F converges to
x ∈ X (denoted F → x) if F contains every open neighborhood of x.

Lemma 1.14. Let X be a topological space.
(1) X is compact if and only if every ultrafilter converges to at least one point; and
(2) X is Hausdorff if and only if every ultrafilter converges to at most one point.

Proof. First we prove (1). Suppose F is an ultrafilter. If F fails to converge to any point,
then for every point x there is an open neighborhood Ux which is not in F. ThusX−Ux ∈ F

for all x. Evidently {Ux} is an open cover. If it contained a finite subcover Ux1 , · · · , Uxn
then ∩(X−Uxi) would be empty, despite the fact that it is a finite intersection of elements
of F. Thus X is not compact.

Conversely, suppose every ultrafilter on X converges to some point. Let {Uα} be an
open cover of X. If this open cover failed to have a finite subcover then the collection
{X −Uα} would have the finite intersection property, and would therefore be contained in
some ultrafilter F. By hypothesis F → x for some x so F contains some Uα with x ∈ Uα.
But F also contains X − Uα, which is a contradiction. Thus X is compact.

Now we prove (2). Suppose F converges to two distinct points x, y ∈ X. If X were
Hausdorff then we could find disjoint open sets U, V with x ∈ U , y ∈ V . But F contains
both U and V , which is absurd. Thus X is not Hausdorff.

Conversely suppose X is not Hausdorff, so that there are distinct x, y so that every
neighborhood of x intersects every neighborhood of y. Thus the collection of all neigh-
borhoods of x and of y satisfies the finite intersection property, and is contained in some
ultrafilter. By construction this ultrafilter converges to both x and y. �

1.5. Pushforward of ultrafilters. Let F be an ultrafilter on X and let f : X → Y be
any map of sets. Define f∗F to be the collection of all subsets A ⊂ Y for which f−1(A) ∈ F.

Lemma 1.15. The collection f∗F is an ultrafilter.
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Proof. If A is any subset of Y then f−1(A) = X − f−1(Y − A) so exactly one of A and
Y − A is in f∗F. If A ∈ f∗F then f−1(A) ∈ F is nonempty, so A is nonempty. Likewise, if
A ⊂ B and f−1(A) ∈ F then f−1(A) ⊂ f−1(B) so f−1(B) ∈ F. Finally, if A,B are in f∗F
then f−1(A ∩B) = f−1(A) ∩ f−1(B) so A ∩B ∈ F∗F. Thus f∗F is an ultrafilter. �

Lemma 1.16 (Pushforward of limits). Let f : X → Y be any function between topological
spaces. Then f is continuous if and only if for every ultrafilter F on X with F → x we
have f∗F → f(x).

Proof. Suppose X is continuous, and let F → x ∈ X. Let U be an open neighborhood of
f(x). Then f−1(U) is an open neighborhood of x and is therefore in F, so that U ∈ f∗F.
Thus f∗F → f(x).

Conversely suppose for every ultrafilter F on X with F → x we have f∗F → f(x). Let
U ⊂ Y be open and suppose f−1(U) is not open, so that f−1(Y − U) is not closed. Let
x ∈ f−1(U) be a point of the closure of f−1(Y − U) so that every open neighborhood V
of x intersects f−1(Y −U). The collection of all open neighborhoods V of x together with
f−1(Y −U) has the finite intersection property, so it is contained in some ultrafilter F; by
construction F → x so that f∗F → f(x) so that f∗F contains U and therefore F contains
f−1(U). But F contains f−1(Y −U) = X − f−1(U) which is a contradiction. So f−1(U) is
open after all, and f is continuous. �

1.6. Proof of the Theorem. We now give the proof of Theorem 1.1.

Proof. Let Xα be a collection of compact spaces, and define X :=
∏

αXα. Let F be an
ultrafilter on X. We shall show that F converges to some point in X. For all α the
pushforward (πα)∗F converges to some xα; let x be the point in X such that πα(x) = xα
for all α. Then for every α and every open neighborhood Uα of xα the set Uα is in (πα)∗F
so that π−1α (Uα) ∈ F.

It follows that for any finite collection of indices α1, · · · , αn and every finite collection of
open sets xαi

∈ Uαi
that U :=

∏n
i=1 Uαi

×
∏

β 6=αi
Xβ is in F. But U is an arbitrary basic

open neighborhood of x; thus F contains every open neighborhood of x, so that F → x.
Since F is arbitrary, X is compact by Lemma 1.14. �

2. Alexandroff–Hausdorff Theorem

2.1. Statement of the Theorem.

Definition 2.1 (Cantor Set). Let {0, 1} be a 2 element space with the discrete topology.
The Cantor set C is the space {0, 1}N with the product topology.

Theorem 2.2 (Alexandroff–Hausdorff). The following are equivalent for a Hausdorff space
X:

• there is a surjective continuous map f : C→ X;
• X is compact, nonempty and metrizable.

2.2. Properties of the Cantor set.

Definition 2.3. Let X be Hausdorff. We say that X is totally disconnected if the compo-
nents are single points. We say that X is perfect if no point is open; equivalently, if any
neighborhood of any point x ∈ X contains a point of X − x.
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Proposition 2.4. Let X be any countably infinite product of finite, nonempty discrete
spaces Xi. Then X is compact, nonempty, metrizable, and totally disconnected. Further-
more, if infinitely many of the Xi have more than one point, X is perfect. In particular,
this is true of X = C.

Proof. Suppose Xi has ni points. For each i let’s choose an identification of each Xi with
a subset of [0, 1] as follows. If ni = 1 we identify Xi with the point 0 and if ni > 1 we
identify Xi with the multiples of 1/(ni − 1).

A finite space is compact, so X is a product of compact spaces and is therefore compact
by Tychonoff’s Theorem 1.1. It contains (for example) the point (0) all of whose coordinates
are 0, so it is nonempty.

If we give [0, 1] the usual Euclidean metric d we may metrize [0, 1]N by

d ((x), (y)) := sup
n

(
d(xn, yn)

n

)
and as a subspace, X is therefore metrizable. If (x) and (y) are different points of X
they must differ in at least one coordinate (say the nth one) and without loss of generality
xn < yn. Then the clopen subsets π−1n ([0, xn]) and π−1n ((xn, 1]) give a separation of X for
which (x) and (y) are in different sets. Thus X is totally disconnected.

Finally let’s suppose infinitely many of the Xi have more than one point. If (x) is
arbitrary and ε > 0 there is an n so that ε > 1/n. Then any (y) whose first n − 1
coordinates agree with (x) and differs in some mth coordinate with m > n is within the
ε-neighborhood of x for the metric above but is not equal to (x). Thus X is perfect. �

2.3. Images of compact metric spaces.

Proposition 2.5. Let f : A → B be surjective. If A is a compact and metrizable, and B
is Hausdorff, then B is compact and metrizable.

Proof. The image of any compact space is compact, since an open cover of the range pulls
back to an open cover of the domain which has a finite refinement. So it suffices to show
B is metrizable.

We use the Urysohn metrization Theorem, which says that any normal space (for in-
stance, any compact Hausdorff space) with a countable basis is metrizable. Every compact
metric space has a countable basis (for example, take the union of any collection of finite
covers by open balls of radius 1/n for all n). Let {Ui} be a countable basis for A, and let
{U ′i} be another countable basis for A whose elements are all finite unions of elements of
{Ui} (note that this is also countable). Now define Vi ⊂ B by Vi := B − f(A − U ′i). We
claim {Vi} is a countable basis for B.

Since A is compact, so is A − U ′i and therefore also f(A − U ′i). Since B is Hausdorff,
this set is therefore closed, so Vi is open. Let b ∈ B be arbitrary, and let V be an open
neighborhood of b in B. The set f−1(b) is compact and contained in f−1(V ) and therefore
there are finitely many basis elements of {Ui} whose union contains f−1(b) and is contained
in f−1(V ). In other words, there is a single basis element U ′i that contains f−1(b) and is
contained in f−1(V ).

Then taking complements,
A− f−1(V ) ⊂ A− U ′i ⊂ A− f−1(b)
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and therefore composing with f ,
f(A− f−1(V )) ⊂ f(A− U ′i) ⊂ f(A− f−1(b))

so taking complements again,
B − f(A− f−1(b)) ⊂ Vi ⊂ B − f(A− f−1(V ))

Since f is surjective, for any subset C ⊂ B we have f(A − f−1(C)) = B − C. Thus
b ⊂ Vi ⊂ V so that {Vi} is a basis for B. �

2.4. Components and Quasicomponents.

Definition 2.6. Let X be a topological space and x ∈ X. The component of x, is the
maximal connected subset C of X containing x. The quasicomponent of x is the maximal
subset Q containing x so that for every separation of X into disjoint clopen sets X = U tV
the set Q is contained in either U or V .

Lemma 2.7. Let X be an arbitrary topological space.
(1) Every point of x is contained in a (unique) component and quasicomponent.
(2) Every component is a subset of a quasicomponent.
(3) Every component and every quasicomponent is closed.

Proof. The component Cx of x is the union of all connected subsets of X containing x.
The quasicomponent Qx of x is the intersection of all clopen subsets of X containing x.
This proves (1).

If Cx is a component then it is connected so for any clopen subset U of X containing x
we must have Cx ⊂ U . But then Cx ⊂ Qx proving (2).

If C is connected then so is C; for, if U t V is a nontrival separation of C, each of U
and V must meet C and therefore (by the definition of closure) must meet C and therefore
induce a nontrivial separation of C. Likewise, every quasicomponent is an intersection of
clopen sets and is therefore closed. This proves (3). �

Proposition 2.8. If X is compact and Hausdorff, every component is a quasicomponent.

Proof. Let x be arbitrary, and let y ∈ Qx the quasicomponent of x. Let {Kα} be the
collection of all closed subsets of X containing x ∪ y so that there is no separation Kα =
A tB, A,B both clopen in Kα, with x ∈ A and y ∈ B.

By the definition of quasicomponent, X ∈ {Kα} so this collection of sets is nonempty.
Let {Kα′} be a maximal subcollection ordered by inclusion and let K := ∩K ′α. Note that
K is an intersection of closed sets and therefore closed. We claim K ∈ {Kα}. For if not,
we can find K = A t B with x ∈ A and y ∈ B, and A,B both clopen in K and hence
compact in X. Since X is compact and Hausdorff, it is normal, and therefore there are
disjoint open U, V ⊂ X with U ∩K = A and V ∩K = B.

If any Kα′ ⊂ U ∪ V we would get a separation
Kα′ = (Kα′ ∩ U) t (Kα′ ∩ V )

with x and y in different components, contrary to the definition of Kα′ . Thus Lα′ :=
K ′α ∩ (X − U ∪ V ) is nonempty and compact for each α′ and because they are nested,
L := ∩α′Lα′ is also nonempty. But L = K ∩ (X − U ∪ V ) = ∅, a contradiction. It follows
that K ∈ {Kα} after all, and is (by construction) a minimal element.
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If K is not connected, there is a nontrivial separation K = K1 tK2 and by definition,
x, y must be contained in one of these, say x, y ∈ K1. But then K1 ∈ {Kα} contradicting
the minimality of K. It follows that y is in the component Cx of x, and since y ∈ Qx was
arbitrary it follows that Qx = Cx. �

Proposition 2.9. Let X be compact, Hausdorff and totally disconnected. Then X has a
basis of clopen sets.

Proof. For every x ∈ X and every open neighborhood U of x we must find a clopen set
contained in U and containing x. Since x is totally disconnected, by Proposition 2.8 every
point is a quasicomponent, and therefore x is the intersection of all clopen sets containing
x. Conversely X − x is a union of clopen sets disjoint from x and in particular X − U is
covered by clopen sets disjoint from x. But X − U is compact and therefore it is covered
by finitely many clopen sets U1, · · · , Un all disjoint from x. Then W := ∪Ui is clopen and
contains U , and V := X −W is clopen and satisfies x ∈ V ⊂ U . �

2.5. Inverse Limits.

Definition 2.10. Let Xi for i ≥ 0 be a countable family of Hausdorff topological spaces,
and for each i > 0 let fi : Xi → Xi−1 be a continuous map. The inverse limit, denoted
lim←−Xi is the subspace of the product

∏
iXi consisting of points (x) with fi(xi) = xi−1 for

all i > 0.

Lemma 2.11. The inverse limit is a closed subset of the infinite product. If all the Xi are
compact and nonempty, then the inverse limit is compact and nonempty.

Proof. For any n define Yn ⊂
∏
Xi to be the set of points (x) for which fi(xi) = xi−1 for

all i ≤ n. Suppose (y) is not in Yn so that there is an index i with fi(yi) 6= yi−1. Since each
Xi is Hausdorff we may choose disjoint open subsets Ui−1, U ′i−1 ⊂ Xi−1 containing yi−1 and
fi(yi) respectively and an open neighborhood yi ∈ Vi ⊂ Xi such that fi(Vi) ⊂ U ′i−1. Let
U ⊂

∏
nXn be the open subset whose ith coordinate is in Vi and whose (i−1)st coordinate

is in Ui−1. Then U is open, contains (y), and is disjoint from Yn; thus Yn is closed. The
inverse limit is by definition equal to ∩nYn and is therefore also closed.

If every Xi is compact, then the projection map from Yn to
∏

i≥nXi is a continuous
bijection and therefore a homeomorphism. Thus each Yn is compact and nonempty and
since the Yn are nested, their intersection is also compact and nonempty. �

Proposition 2.12. Let X be compact, nonempty, metrizable and totally disconnected.
Then X is the inverse limit of a sequence of finite spaces.

Proof. Since X is a compact metric space, it has a finite open cover by sets of diameter
< 1. By Proposition 2.9 we may find a finite subordinate cover by clopen sets U1, · · · , Un
of diameter < 1. For all i let Vi = Ui − ∪j<iUj. Then U1 := {Vi} is a finite cover by
nonempty disjoint clopen sets, each of diameter < 1.

By the same argument, each Vi is the disjoint union of finitely many clopen sets, all
of diameter < 1/2, and therefore we may obtain a cover U2 by finitely many nonempty
disjoint clopen sets all of diameter < 1/2 so that each element of U1 is a finite disjoint
union of elements of U2. Proceed by induction to produce Un, a cover by finitely many
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nonempty disjoint clopen sets all of diameter < 1/n so that each element of Un−1 is a finite
disjoint union of elements of Un.

For each n let Xn be a finite discrete space whose elements are in bijection with the sets
of Un. Define fn : Xn → Xn−1 as follows: if xi ∈ Xi corresponds to the set Ui,ni

∈ Un,
there is a unique Ui−1,ni−1

∈ Un−1 for which Ui,ni
⊂ Ui−1,ni−1

, corresponding to an element
xi−1 ∈ Xi−1; then define fi(xi) = xi−1.

We construct a homeomorphism h : lim←−Xi → X as follows. A point (x) in lim←−Xi

corresponds to a sequence of points xi ∈ Xi satisfying fi(xi) = xi−1 for all i and therefore
a sequence Ui,ni

∈ Ui of clopen sets of diameter < 1/i satisfying Ui,ni
⊂ Ui−1,ni−1

. The
intersection ∩Ui,ni

is a nested intersection of compact sets and therefore nonempty. On the
other hand, it has diameter < 1/i for all i so it consists of a single point p. Set h((x)) = p.

The map h is evidently continuous, injective and surjective and is therefore a homeo-
morphism. �

Corollary 2.13. A space is compact, nonempty, metrizable and totally disconnected if and
only if it is the inverse limit of a sequence of finite spaces.

Proof. One direction is Proposition 2.12. Conversely, an inverse limit of finite spaces is
compact and nonempty by Lemma 2.11, and metrizable and totally disconnected by Propo-
sition 2.4. �

2.6. Characterization of the Cantor Set.

Lemma 2.14. Let X be compact, nonempty, metrizable, totally disconnected and perfect.
Let U be clopen and nonempty. Then for any positive integer n we may write U as the
disjoint union of n clopen nonempty sets.

Proof. Let x ∈ U . Since X is perfect, there is y ∈ U with x 6= y. By Proposition 2.9 X
has a basis of clopen sets, so there is V clopen with x ∈ V ⊂ U − y. Then U = V tU − V
is a partition of U into two disjoint clopen sets. The result follows by induction. �

Proposition 2.15. Let X and Y be compact, nonempty, metrizable, totally disconnected
and perfect. Then X and Y are homeomorphic (and therefore both spaces are homeomorphic
to the Cantor set C).

Proof. As in the proof of Proposition 2.12 let Un and Vn be a sequence of decompositions of
X and Y respectively into finitely many disjoint clopen nonempty sets of diameter < 1/n.

Without loss of generality U1 has at least as many elements as V1. If it has more elements,
subdivide some element of V1 using Lemma 2.14 so they have the same cardinality. Define
U′1 := U1 and V′1 the result of subdividing an element of V1 in this way. Choose a bijection
h1 between the finite sets h1 : U′1 → V′1.

Now, U′1 and V′1 are finite covers of compact metric space, so they have positive Lebesgue
numbers. It follows that there is an n so that every element of Vn is contained in some
element of V′1 and every element of Un is contained in some element of U′1. Let’s suppose
we reorder indices so that h1(Ui) = Vi for all i. Let Un,i be the subcover of Un refining Ui
and Vn,i the subcover of Vn refining Vi. If one of these sets has smaller cardinality than
the other, subdivide one of its elements into clopen sets using Lemma 2.14 so they have
the same cardinality. Perform this subdivision for all i. In this way we obtain refinements
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U′2 of Un and V′2 of Vn that are also refinements of U′1 and V′1 respectively, so that there is
a bijection h2 : U′2 → V′2 compatible with h1.

Continue inductively. We obtain two sequences of finite spaces Xi, fi and Yi, gi and bi-
jections hi : Xi → Yi so that hifi+1 = gihi+1 for all i. Thus the hi induce a homeomorphism
between the inverse limits h : lim←−Xi → lim←−Yi. As in the proof of Proposition 2.12 these
spaces are homeomorphic to X and Y respectively, and we are done. �

Example 2.16 (Middle third Cantor Set). The middle third Cantor set is the subset of [0, 1]
consisting of points with a base 3 expansion containing only the digits 0 and 2. It satisfies
the properties of Proposition 2.15 and is therefore homeomorphic to C.

2.7. Proof of the Theorem. We now give the proof of Theorem 2.2.

Proof. Suppose X is compact, metrizable and nonempty. Then as in the proof of Urysohn
metrization we may embed X as a nonempty closed subset of [0, 1]N.

There is a continuous surjective map C → [0, 1] that takes a point (x) to the number
whose base 2 expansion is 0.x1x2x3 · · · . Thus there is a continuous surjective map CN →
[0, 1]N. But CN is compact, nonempty, metrizable, totally disconnected and perfect so by
Proposition 2.15 there is a homeomorphism h : C → CN. The preimage Y := h−1(X) is
closed, and therefore (since it is a subset of C) it is compact, nonempty, metrizable and
totally disconnected. Then Y × C has all these properties and is furthermore perfect, so it
is homeomorphic to C and we have a chain of surjective maps

C→ Y × C→ Y → X

This proves one direction of the theorem.
Conversely suppose X is Hausdorff, and there is a surjective map f : C → X. Since

f is continuous, X is compact. Since C is nonempty, so is X. By Proposition 2.5 X is
metrizable. �

3. Hahn–Mazurkiewicz Theorem

3.1. Statement of the Theorem.

Definition 3.1 (Locally Connected). A space X is locally connected at a point x if for all
open neighborhoods U of x there is a connected open neighborhood V of x contained in
U . A space is locally connected if it is locally connected at every point.

Theorem 3.2 (Hahn–Mazurkiewicz). The following are equivalent for a Hausdorff space
X:

• there is a surjective continuous map f : [0, 1]→ X;
• X is compact, metrizable, connected, and locally connected.

3.2. Constructing paths.

Definition 3.3 (Chain). Let X be a set and x, y ∈ X. A chain from x to y is a finite
collection of subsets U1, · · · , Un so that x ∈ U1, y ∈ Un, and Ui ∩ Ui+1 is nonempty for all
i.

Lemma 3.4 (Chain exists). Suppose X is connected, and {Uα} is an open cover of X.
Then any two points of X may be connected by a chain of elements of the cover.
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Proof. Fix x ∈ X and let Y denote the subset of X consisting of points that may be
connected to x by a chain. Note that x ∈ Uα for some α so that x ∈ Y and therefore Y is
nonempty. We claim Y = X.

First, Y is open. For, if y ∈ Y , there is a chain U1, · · · , Un with x ∈ U1 and y ∈ Un. But
then this is also a chain from x to any point in Un, so Un ⊂ Y .

Second, Y is closed. For if y ∈ Y and y ∈ Uβ then Uβ contains some point y′ of Y . Let
U1, · · · , Un be a chain from x to y. Then U1, · · · , Un, Uβ is a chain from x to y.

Since X is connected, any clopen nonempty set (e.g. Y ) must be all of X. �

Proposition 3.5. Let X be a locally compact, connected, locally connected metric space.
Then X is path-connected.

Proof. We shall construct a path between arbitrary a, b ∈ X. Without loss of generality
we may assume a 6= b.

Fix ε > 0. Since X is locally connected and locally compact, there is an open cover of
X by connected open sets of diameter < ε/2 whose closures are compact. Therefore by
Lemma 3.4 there is a chain U1, · · · , Un of such sets from a to b. If we let K denote the
union of the closures of the Ui, then K is compact and therefore complete.

Define x0 := a, xn := b and for all 0 < i < n pick a point xi ∈ Ui−1 ∩ Ui; without
loss of generality we may assume the xi are all distinct. Let P1 ⊂ [0, 1] be the finite set
{0, 1/n, 2/n, · · · , 1} and define f1 : P1 → K by f1(i/n) = xi.

At the next stage we will find a new finite subset P1 ⊂ P2 ⊂ [0, 1] and a map f2 : P2 → K
such that f2|P1 = f1. Here is how we do the construction. For each 0 ≤ i < n we may cover
the open ball Ui by connected open sets of diameter < ε/22. Therefore, again by Lemma 3.4
there is a chain V1, · · · , Vm of such sets, all contained in Ui, from xi to xi+1. Define y0 := xi,
ym := xi+1 and for all 0 < j < mi pick a point yj ∈ Vj−1 ∩Vj; without loss of generality we
may assume the yj are all distinct. Do this for each i and let P2 ⊂ [0, 1] be the finite set
whose intersection with each [i/n, (i+1)/n] is {i/n, i/n+1/mn, i/n+2/mn, · · · , (i+1)/n}
as above, and define f2 : P2 ∩ [i/n, (i+ 1)/n] by f2(i/n+ j/mn) = yj.

Continue inductively. We get a sequence of finite subsets P1 ⊂ P2 ⊂ · · · of [0, 1] and
functions fn : Pn → K with fn|Pm = fm for all n ≥ m. Furthermore, by construction,
if p, q are consecutive points of Pn then fn(p) 6= fn(q), and fm(Pm ∩ [p, q]) has diameter
< ε/2n for all m ≥ n.

It follows that for any two consecutive points p, q of Pn there is an m > n so that p, q
are not consecutive in Pm (or else the distance from p to q would be less than ε/2m for all
m, violating fn(p) 6= fn(q)). Thus in particular, P := ∪Pn is dense in [0, 1].

Let f : P → K agree with fn on each Pn. Then for each r ∈ [0, 1] and each monotone
sequence pi ∈ P with pi → r we claim that the images f(pi) form a Cauchy sequence in
K. To see this, observe that for any n, all but finitely many pi are contained between
consecutive elements of Pn and therefore d(f(pi), f(pj)) < ε/2n for all but finitely many
i, j. Since K is compact it is complete, and we may define f(r) to be the limit of f(pi).

To see that f is continuous, pick any r ∈ [0, 1] and let U be an open neighborhood
of f(r). There is n so that the closed ball of radius ε/2n about f(r) is contained in U .
Choose points p < r < q (or on only one side of r if r is 0 or 1) so that p, q ∈ Pn and there
are no elements of Pn strictly between p and r or between r and q. Then f([p, r]) and
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f([r, q]) both have diameter at most ε/2n, and are therefore contained in U . This proves
continuity. �

Definition 3.6 (Uniformly Locally Path-Connected). Ametric spaceX is uniformly locally
path-connected if for all ε > 0 there is a δ > 0 so that if p, q ∈ X satisfy d(p, q) < δ, then p
and q may be joined by a path of diameter at most ε.

Proposition 3.7. Suppose X is a compact, connected, locally connected metric space.
Then X is uniformly locally path-connected.

Proof. SinceX is locally connected, it admits a cover by open connected subsets of diameter
< ε. Any open subset of a locally connected space is locally connected, and any open subset
of a compact space is locally compact, so each set in the cover satisfies the hypothesis of
Proposition 3.5 and is therefore path-connected.

Let δ > 0 be the Lesbesgue number of the covering (this exists because X is compact).
Then any two points at distance < δ are contained in a path-connected subset of diameter
< ε. �

3.3. Proof of the Theorem. We now give the proof of Theorem 3.2.

Proof. Let X be compact, metrizable, connected and locally connected. By Theorem ??
there is a surjective map f : C → X where C ⊂ [0, 1] is the middle third Cantor set. By
Lemma 3.7 X is uniformly locally path connected. Let εn → 0 be a sequence of positive
numbers, and δn → 0 with δ0 equal to the diameter of X such that any two points in X
with distance < δn may be joined by a path of diameter < εn.

For each maximal connected open interval J ⊂ [0, 1]−C let J± ∈ C denote the endpoints
of the closure J . Since C is compact and f is continuous, for all n there are only finitely
many such J so that the d(f(J+), f(J−)) > δn.

For each complementary interval J with δn > d(f(J+), f(J−)) > δn+1, extend f over J
to a path of diameter < εn. In this way we extend f to f : [0, 1] → X. Since f |C was
already surjective, the same is true of f |[0, 1]. It remains to check that f is continuous.
Evidently f is continuous on each J . It remains to check that f is continuous at each point
of C. Let p ∈ C be arbitrary. If p ∈ J on one side, f is continuous on this side, so we just
need to check continuity on a side for which p is not in the closure of a complementary
interval. But then for any n there is a one-sided neighborhood U of p so that f(C∩U) has
diameter < δn and therefore f([0, 1] ∩ U) has diameter < εn + δn which may be taken to
be as small as we like, and continuity is proved.

Conversely, suppose X is Hausdorff and there is a surjective map f : I → X. Since I is
compact and connected, the same is true of X. Since I is metrizable, the same is true of
X by Proposition 2.5. Finally we show that X is locally connected.

Fix x ∈ U ; we must find an open subset x ∈ V ⊂ U so that V is connected. Let V
be the union of all paths in U starting at x. This set is path-connected, hence connected;
we claim it is open. Let y ∈ V be arbitrary, so that there is some path α from x to y.
Suppose to the contrary that V does not contain any open neighborhood of y. Then there
is a sequence of points yn → y so that yn ∈ U − V . In particular, there is no path β from
y to yn contained in U , or else we could concatenate β with α to get a path in U from x
to yn, showing that yn ∈ V after all.
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But each yn = f(pn) for some pn, and by compactness of [0, 1] the pn contains a Cauchy
subsequence converging to some p ∈ [0, 1] with f(p) = y. It follows by continuity of f that
there is an n so that f([pn, p]) ⊂ U , so that there is a path in U from y to yn after all.
Thus V contains an open neighborhood of any y ∈ V so that V is open and connected,
and X is locally connected. �
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