CLASSICAL TESSELLATIONS AND 3-MANIFOLDS, SPRING 2014, HOMEWORK 5

DANNY CALEGARI

Homework is assigned on Fridays; it is due at the start of class the week after it is assigned. So this homework is due May 16th.

Problem 1. Prove the "second" hyperbolic law of cosines: if abc is a hyperbolic triangle with side lengths A, B, C and opposite angles α, β, γ , show that

$$\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cosh A$$

Problem 2. Suppose P is a hyperbolic hexagon with all right angles. Show that if the side lengths are ℓ_1, \dots, ℓ_6 (in order) then

$$\frac{\sinh \ell_1}{\sinh \ell_4} = \frac{\sinh \ell_3}{\sinh \ell_6} = \frac{\sinh \ell_5}{\sinh \ell_2}$$

Problem 3. In the Klein model, the hyperbolic plane is the interior of the unit disk, and (hyperbolic) straight lines are the restriction of (Euclidean) straight lines to this disk.

- (1) Let ℓ be a (hyperbolic) straight line with two points p and q at infinity, and suppose that ℓ does not go through 0. Show that the two tangent lines to the circle at p and q meet at a unique point ℓ' in the complement of the disk. What if ℓ goes through 0?
- (2) Let ϕ be a hyperbolic isometry which takes the line ℓ to itself, and acts as a "translation" along it. Let Φ be the linear map of \mathbb{R}^3 to itself fixing the origin, and acting as ϕ where we identify the hyperbolic plane with the (positive sheet of the) hyperboloid of vectors with norm squared equal to -1. Show that Φ has an eigenvector with real eigenvalue 1, and that the eigenspace it spans projects to the point ℓ' , under the linear projection which takes the hyperboloid to the unit disk in the Klein model.
- (3) show that three lines ℓ_1, ℓ_2, ℓ_3 in the hyperbolic plane pass through a common point if and only if the points $\ell'_1, \ell'_2, \ell'_3$ are contained in a straight line (interpret this suitably if the ℓ_i all pass through 0).

Problem 4. Let A be a 3×3 matrix with columns u, v, w. Show that A is an isometry of \mathbb{R}^3 in the usual Euclidean metric if and only if the vectors u, v, w all have norm 1 and are mutually perpendicular.

Similarly, show that A is an isometry of \mathbb{R}^3 in the Minkowski metric if and only if the vector w is on the hyperboloid, and if u, v are in the tangent space w^{\perp} with norm 1 and are mutually perpendicular.

Problem 5. Let's use hyperbolic geometry to tackle a problem in number theory (this problem is quite involved). Suppose we want to find triples of integers a, b, c such that $a^2 + b^2 - c^2 = n$ for some fixed integer n; for instance, taking n = 0 is the problem of finding Pythagorean triples — integer sides for a right-angled Euclidean triangle. We can encode a solution a, b, c as the entries of a vector, and then denote by V_n the set of vectors corresponding to solutions for some fixed n.

- (1) Let $O(2,1;\mathbb{Z})$ denote the set of 3×3 matrices with integer entries which preserve the Minkowski inner product. Show that $O(2,1;\mathbb{Z})$ is a group.
- (2) Show for any n that $O(2,1;\mathbb{Z})$ takes V_n to itself and permutes it (as a set).
- (3) Show that the matrices

$$R := \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad T := \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

are in $O(2,1;\mathbb{Z})$ and explain how someone could find these matrices by hand.

- (4) Let G be the group generated by R, T. Show that G is discrete, and that the quotient of the hyperbolic plane by G has finite area (although it is not compact!)
- (5) For any negative integer n, show that the (Minkowski) inner product of any two distinct vectors in V_n is nonzero, and integral. Deduce that the action of G on V_n has finitely many orbits for n negative (hint: interpret this inner product in terms of the hyperbolic distance between their projections to the hyperboloid). Use this to show that there is an algorithm to find a complete set of orbit representatives for each negative n; implement this for n = -1, -2.

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637 $E\text{-}mail\ address$: dannyc@math.uchicago.edu