
CLASSICAL TESSELLATIONS AND 3-MANIFOLDS, SPRING 2014, HOMEWORK 5

DANNY CALEGARI

Homework is assigned on Fridays; it is due at the start of class the week after it is assigned. So this
homework is due May 16th.

Problem 1. Prove the “second” hyperbolic law of cosines: if abc is a hyperbolic triangle with side lengths
A,B,C and opposite angles α, β, γ, show that

cosα = − cosβ cos γ + sinβ sin γ coshA

Problem 2. Suppose P is a hyperbolic hexagon with all right angles. Show that if the side lengths are
`1, · · · , `6 (in order) then

sinh `1
sinh `4

=
sinh `3
sinh `6

=
sinh `5
sinh `2

Problem 3. In the Klein model, the hyperbolic plane is the interior of the unit disk, and (hyperbolic)
straight lines are the restriction of (Euclidean) straight lines to this disk.

(1) Let ` be a (hyperbolic) straight line with two points p and q at infinity, and suppose that ` does
not go through 0. Show that the two tangent lines to the circle at p and q meet at a unique point
`′ in the complement of the disk. What if ` goes through 0?

(2) Let φ be a hyperbolic isometry which takes the line ` to itself, and acts as a “translation” along
it. Let Φ be the linear map of R3 to itself fixing the origin, and acting as φ where we identify the
hyperbolic plane with the (positive sheet of the) hyperboloid of vectors with norm squared equal
to −1. Show that Φ has an eigenvector with real eigenvalue 1, and that the eigenspace it spans
projects to the point `′, under the linear projection which takes the hyperboloid to the unit disk
in the Klein model.

(3) show that three lines `1, `2, `3 in the hyperbolic plane pass through a common point if and only if
the points `′1, `

′
2, `

′
3 are contained in a straight line (interpret this suitably if the `i all pass through

0).

Problem 4. Let A be a 3 × 3 matrix with columns u, v, w. Show that A is an isometry of R3 in the usual
Euclidean metric if and only if the vectors u, v, w all have norm 1 and are mutually perpendicular.

Similarly, show that A is an isometry of R3 in the Minkowski metric if and only if the vector w is on
the hyperboloid, and if u, v are in the tangent space w⊥ with norm 1 and are mutually perpendicular.

Problem 5. Let’s use hyperbolic geometry to tackle a problem in number theory (this problem is quite
involved). Suppose we want to find triples of integers a, b, c such that a2 + b2 − c2 = n for some fixed
integer n; for instance, taking n = 0 is the problem of finding Pythagorean triples — integer sides for a
right-angled Euclidean triangle. We can encode a solution a, b, c as the entries of a vector, and then denote
by Vn the set of vectors corresponding to solutions for some fixed n.

(1) Let O(2, 1;Z) denote the set of 3 × 3 matrices with integer entries which preserve the Minkowski
inner product. Show that O(2, 1;Z) is a group.

(2) Show for any n that O(2, 1;Z) takes Vn to itself and permutes it (as a set).
(3) Show that the matrices

R :=

 0 1 0
−1 0 0
0 0 1

 , T :=

1 2 2
2 1 2
2 2 3


are in O(2, 1;Z) and explain how someone could find these matrices by hand.

1



2 DANNY CALEGARI

(4) Let G be the group generated by R, T . Show that G is discrete, and that the quotient of the
hyperbolic plane by G has finite area (although it is not compact!)

(5) For any negative integer n, show that the (Minkowski) inner product of any two distinct vectors
in Vn is nonzero, and integral. Deduce that the action of G on Vn has finitely many orbits for
n negative (hint: interpret this inner product in terms of the hyperbolic distance between their
projections to the hyperboloid). Use this to show that there is an algorithm to find a complete set
of orbit representatives for each negative n; implement this for n = −1,−2.

0 0 1
2 -2 3
2 2 3
12 12 17
-2 2 3
-8 4 9
-12 12 17
-70 70 99
-2 -2 3
0 0 1
-4 -8 9
-22 -46 51
-12 -12 17
-38 -34 51
-70 -70 99
-408 -408 577
2 -2 3
4 -8 9
0 0 1
-2 2 3
8 -4 9
30 -18 35
46 -22 51
268 -128 297
12 -12 17
2 -2 3
34 -38 51
192 -216 289
70 -70 99
212 -208 297
408 -408 577
2378 -2378 3363
2 2 3
12 12 17
8 4 9
46 22 51
0 0 1
-2 2 3
-2 -2 3
-12 -12 17
4 8 9
2 2 3
18 30 35
104 172 201
22 46 51
60 132 145
128 268 297
746 1562 1731
12 12 17
34 38 51
2 2 3
0 0 1
38 34 51
148 136 201
216 192 289
1258 1118 1683
70 70 99
12 12 17
208 212 297
1178 1202 1683
408 408 577
1226 1222 1731
2378 2378 3363
13860 13860 19601
-2 2 3
-8 4 9
-12 12 17
-70 70 99
-4 8 9
-6 18 19
-22 46 51
-128 268 297
0 0 1
-2 2 3
-2 -2 3
-12 -12 17
2 -2 3
8 -4 9
12 -12 17
70 -70 99
-8 4 9
-18 6 19
-2 2 3
-4 8 9
-30 18 35
-112 64 129
-172 104 201
-1002 606 1171
-46 22 51
-8 4 9
-132 60 145
-746 338 819
-268 128 297
-810 390 899
-1562 746 1731
-9104 4348 10089
-12 12 17
-70 70 99
-38 34 51
-216 192 289
-2 2 3
-4 8 9
0 0 1
2 -2 3
-34 38 51
-12 12 17
-136 148 201
-782 850 1155
-192 216 289
-542 614 819
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