
CLASSICAL TESSELLATIONS AND 3-MANIFOLDS, SPRING 2014, FINAL

DANNY CALEGARI

This final exam was given out in class on Friday, May 30th.

Problem 1. Show that every orientation-preserving hyperbolic isometry g can be written uniquely as a
product g = kan where (in the upper half-space model)

• k is an elliptic element fixing i;
• a is a hyperbolic element fixing 0 and ∞; and
• n is a parabolic element fixing ∞.

(hint: it might be easier to write g−1 = n−1a−1k−1)

Problem 2. Show that every closed oriented surface of genus at least 2 has a hyperbolic structure in which
it can be tiled by regular right angled pentagons. How many pentagons do you need?

Problem 3. Fix a point p in the hyperbolic plane, and consider a sequence of pairs of points qi and ri so
that dist(p, qi)→∞ and dist(p, ri)→∞. Show that the angles at p of the triangles qipri converge to 0 if
and only if

dist(p, qi) + dist(p, ri)− dist(qi, ri)→∞

Problem 4. Suppose Σ is a genus 2 surface with a hyperbolic structure on it. Show that there is an
orientation-preserving isometry i : Σ→ Σ with i2 = id (i.e. an involution) with 6 fixed points, and identify
the quotient orbifold Σ/〈i〉. (Bonus: show — e.g. by counting dimensions of spaces of hyperbolic structures
— that there is a genus 3 surface with a hyperbolic structure that does not admit any non-trivial isometric
involution).

Bonus problem 5. What is one thing you liked about this class? What is one thing you didn’t like, or wish
had been done differently?
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