BANACH-TARSKI PARADOX

DANNY CALEGARI

Free group. Let $F = \langle a, b \rangle$ be free on elements a and b. We denote a^{-1} by A and b^{-1} by B for simplicity. The group F acts on itself by left multiplication. Elements of F are uniquely represented by reduced words in a, A, b, B; i.e. such that a is never adjacent to A, and b is never adjacent to B.

We may partition F into the following four subsets:

- (1) P_1 consisting of all words starting with A but not equal to a positive power of A;
- (2) P_2 consisting of all non-negative powers of A, together with all words starting with a;
- (3) P_3 consisting of all words starting with b; and
- (4) P_4 consisting of all words starting with B.

These four sets are disjoint. Moreover, aP_1 is equal to the complement of P_2 , and bP_4 is equal to the complement of P_3 . Thus the action of F on itself is paradoxical, in the sense that F can be decomposed into the 4 disjoint sets P_i , and then we can make two copies of F from translates of the pieces: $F = aP_1 \cup P_2$ and $F = P_3 \cup bP_4$.

Hyperbolic geometry. Let Γ be a discrete cocompact subgroup of the group of isometries of the hyperbolic plane \mathbb{H} . Then Γ contains a copy of F acting freely. This is proved by Klein's "ping-pong" lemma. The key is to find two hyperbolic elements α and β with disjoint fixed points p^{\pm} and q^{\pm} respectively, and then to replace α by big powers $a := \alpha^N$ and $b := \beta^N$ so that there are neighborhoods U^{\pm} of p^{\pm} and V^{\pm} of q^{\pm} so that

- (1) a takes the complement of U^- into U^+ ;
- (2) A takes the complement of U^+ into U^- ;
- (3) b takes the complement of V^- into V^+ ; and
- (4) B takes the complement of V^+ into V^- .

Once we know that a and b generate a copy of F acting freely on \mathbb{H} we can produce a paradoxical decomposition for Γ acting on \mathbb{H} .

Let X be a fundamental domain for the action (i.e. a set of orbit representatives, so that for each point p in \mathbb{H} there is exactly one point x_p in X so that $gp = x_p$ for some unique $g \in F$). We can then define a

decomposition of \mathbb{H} into the disjoint subsets $X_j = P_j X$ for P_j the subset of F defined above. Then just as before, \mathbb{H} is the disjoint union of X_1 , X_2 , X_3 and X_4 , and we have decompositions $\mathbb{H} = aX_1 \cup X_2 \text{ and } \mathbb{H} = X_3 \cup bX_4.$

Free subgroups of rotations. We use number theory to construct a free subgroup of the group of rotations of the 2-sphere.

First consider the quadratic form $Q^- := x^2 + y^2 - \sqrt{2}z^2$ on \mathbb{R}^3 . The matrices

$$R := \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad S := \begin{pmatrix} -1 - \sqrt{2} & 2 + \sqrt{2} & 2 + 2\sqrt{2} \\ -2 - \sqrt{2} & 1 + \sqrt{2} & 2 + 2\sqrt{2} \\ -2 - \sqrt{2} & 2 + \sqrt{2} & 3 + 2\sqrt{2} \end{pmatrix}, \quad T := \begin{pmatrix} 0 & 3 - 2\sqrt{2} & 2 - 2\sqrt{2} \\ 1 & 0 & 0 \\ 0 & 2 - 2\sqrt{2} & 3 - 2\sqrt{2} \end{pmatrix}$$

preserve the form Q^- , and generate a group Γ^- which can be conjugated into Isom⁺(\mathbb{H}) by multiplying the last column of each matrix by $2^{-1/4}$ and the last row by $2^{1/4}$ (so that the bottom rightmost entry is unchanged). The image is a discrete cocompact subgroup of $\mathrm{Isom}^+(\mathbb{H})$ and therefore contains a copy of the free group F.

Next consider the quadratic form $Q^+ := x^2 + y^2 + \sqrt{2}z^2$ on \mathbb{R}^3 . The matrices in Γ^- have entries in the ring $\mathbb{Z}[\sqrt{2}]$. There is a Galois automorphism σ of this ring, defined by

$$\sigma: a+b\sqrt{2} \to a-b\sqrt{2}$$

for $a, b \in \mathbb{Z}$. This automorphism takes the group Γ^- to a group Γ^+ of matrices which preserve the form Q^+ , and which can be conjugated into $\mathrm{Isom}^+(S^2)$ by multiplying the last column of each matrix by $2^{-1/4}$ and the last row by $2^{1/4}$. Thus $\mathrm{Isom}^+(S^2)$ contains a copy of the free group F.

Fixed points. A nontrivial element of Isom⁺(S^2) fixes exactly two points, so there are countably many points Y in S^2 fixed by some element of our free group F. Let θ be an irrational rotation with the property that the translates $\theta^n Y$ are disjoint from each other, for all non-negative integers n. Define $Z := Y \cup \theta Y \cup \theta^2 Y \cup \cdots$. Then $\theta Z = Z - Y$ so we can partition S^2 into the sets $S^2 - Z$ and Z, apply θ to Z, and observe that $S^2 - Z \cup \theta Z = S^2 - Y$.

But F acts freely on $S^2 - Y$, so we can choose a set of orbit representatives X for the action exactly as before, define $X_j = P_j X$, and observe that $S^2 - Y$ can be partitioned into X_1, X_2, X_3, X_4 such that $S^2 - Y = aX_1 \cup X_2$ and $S^2 - Y = X_3 \cup bX_4$. Then decompose each of these $S^2 - Y$ s into $S^2 - Z$ and Z - Y, and apply θ^{-1} to Z - Y to obtain Z, and thereby obtain a paradoxical decomposition for the action of Isom⁺ (S^2) on S^2 .

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637 $E\text{-}mail\ address$: dannyc@math.uchicago.edu