BANACH-TARSKI PARADOX

DANNY CALEGARI

Free group. Let $F=\langle a, b\rangle$ be free on elements a and b. We denote a^{-1} by A and b^{-1} by B for simplicity. The group F acts on itself by left multiplication. Elements of F are uniquely represented by reduced words in a, A, b, B; i.e. such that a is never adjacent to A, and b is never adjacent to B.

We may partition F into the following four subsets:
(1) P_{1} consisting of all words starting with A but not equal to a positive power of A;
(2) P_{2} consisting of all non-negative powers of A, together with all words starting with a;
(3) P_{3} consisting of all words starting with b; and
(4) P_{4} consisting of all words starting with B.

These four sets are disjoint. Moreover, $a P_{1}$ is equal to the complement of P_{2}, and $b P_{4}$ is equal to the complement of P_{3}. Thus the action of F on itself is paradoxical, in the sense that F can be decomposed into the 4 disjoint sets P_{i}, and then we can make two copies of F from translates of the pieces: $F=a P_{1} \cup P_{2}$ and $F=P_{3} \cup b P_{4}$.

Hyperbolic geometry. Let Γ be a discrete cocompact subgroup of the group of isometries of the hyperbolic plane \mathbb{H}. Then Γ contains a copy of F acting freely. This is proved by Klein's "ping-pong" lemma. The key is to find two hyperbolic elements α and β with disjoint fixed points $p^{ \pm}$and $q^{ \pm}$respectively, and then to replace α by big powers $a:=\alpha^{N}$ and $b:=\beta^{N}$ so that there are neighborhoods $U^{ \pm}$of $p^{ \pm}$and $V^{ \pm}$of $q^{ \pm}$so that
(1) a takes the complement of U^{-}into U^{+};
(2) A takes the complement of U^{+}into U^{-};
(3) b takes the complement of V^{-}into V^{+}; and
(4) B takes the complement of V^{+}into V^{-}.

Once we know that a and b generate a copy of F acting freely on \mathbb{H} we can produce a paradoxical decomposition for Γ acting on \mathbb{H}.

Let X be a fundamental domain for the action (i.e. a set of orbit representatives, so that for each point p in \mathbb{H} there is exactly one point x_{p} in X so that $g p=x_{p}$ for some unique $\left.g \in F\right)$. We can then define a decomposition of \mathbb{H} into the disjoint subsets $X_{j}=P_{j} X$ for P_{j} the subset of F defined above.

Then just as before, \mathbb{H} is the disjoint union of X_{1}, X_{2}, X_{3} and X_{4}, and we have decompositions $\mathbb{H}=a X_{1} \cup X_{2}$ and $\mathbb{H}=X_{3} \cup b X_{4}$.
Free subgroups of rotations. We use number theory to construct a free subgroup of the group of rotations of the 2 -sphere.

First consider the quadratic form $Q^{-}:=x^{2}+y^{2}-\sqrt{2} z^{2}$ on \mathbb{R}^{3}. The matrices

$$
R:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad S:=\left(\begin{array}{ccc}
-1-\sqrt{2} & 2+\sqrt{2} & 2+2 \sqrt{2} \\
-2-\sqrt{2} & 1+\sqrt{2} & 2+2 \sqrt{2} \\
-2-\sqrt{2} & 2+\sqrt{2} & 3+2 \sqrt{2}
\end{array}\right), \quad T:=\left(\begin{array}{ccc}
0 & 3-2 \sqrt{2} & 2-2 \sqrt{2} \\
1 & 0 & 0 \\
0 & 2-2 \sqrt{2} & 3-2 \sqrt{2}
\end{array}\right)
$$

preserve the form Q^{-}, and generate a group Γ^{-}which can be conjugated into Isom ${ }^{+}(\mathbb{H})$ by multiplying the last column of each matrix by $2^{-1 / 4}$ and the last row by $2^{1 / 4}$ (so that the bottom rightmost entry is unchanged). The image is a discrete cocompact subgroup of $\operatorname{Isom}^{+}(\mathbb{H})$ and therefore contains a copy of the free group F.

Next consider the quadratic form $Q^{+}:=x^{2}+y^{2}+\sqrt{2} z^{2}$ on \mathbb{R}^{3}. The matrices in Γ^{-}have entries in the ring $\mathbb{Z}[\sqrt{2}]$. There is a Galois automorphism σ of this ring, defined by

$$
\sigma: a+b \sqrt{2} \rightarrow a-b \sqrt{2}
$$

for $a, b \in \mathbb{Z}$. This automorphism takes the group Γ^{-}to a group Γ^{+}of matrices which preserve the form Q^{+}, and which can be conjugated into Isom ${ }^{+}\left(S^{2}\right)$ by multiplying the last column of each matrix by $2^{-1 / 4}$ and the last row by $2^{1 / 4}$. Thus Isom ${ }^{+}\left(S^{2}\right)$ contains a copy of the free group F.

Fixed points. A nontrivial element of Isom ${ }^{+}\left(S^{2}\right)$ fixes exactly two points, so there are countably many points Y in S^{2} fixed by some element of our free group F. Let θ be an irrational rotation with the property that the translates $\theta^{n} Y$ are disjoint from each other, for all non-negative integers n. Define $Z:=Y \cup \theta Y \cup \theta^{2} Y \cup \cdots$. Then $\theta Z=Z-Y$ so we can partition S^{2} into the sets $S^{2}-Z$ and Z, apply θ to Z, and observe that $S^{2}-Z \cup \theta Z=S^{2}-Y$.

But F acts freely on $S^{2}-Y$, so we can choose a set of orbit representatives X for the action exactly as before, define $X_{j}=P_{j} X$, and observe that $S^{2}-Y$ can be partitioned into $X_{1}, X_{2}, X_{3}, X_{4}$ such that $S^{2}-Y=a X_{1} \cup X_{2}$ and $S^{2}-Y=X_{3} \cup b X_{4}$. Then decompose each of these $S^{2}-Y$ s into $S^{2}-Z$ and $Z-Y$, and apply θ^{-1} to $Z-Y$ to obtain Z, and thereby obtain a paradoxical decomposition for the action of Isom ${ }^{+}\left(S^{2}\right)$ on S^{2} 。

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
E-mail address: dannyc@math.uchicago.edu

