RIEMANNIAN GEOMETRY, SPRING 2019, MIDTERM

DANNY CALEGARI

This midterm exam was posted online on Thursday, May 2nd, and is due before class on Thursday, May 9th.

Problem 1. The helicoid is the surface in \mathbb{E}^3 given in parametric form by the equations

$$x = \rho \cos(\theta), \ y = \rho \sin(\theta), \ z = \theta$$

for $\rho, \theta \in (-\infty, \infty)$. Show that the second fundamental form has zero trace at every point.

Problem 2. Let $M = S^2 \times S^2$ with the product metric $g := g_1 \oplus g_2$ where g_1 and g_2 are metrics on the two sphere factors making them isometric to the round spheres in \mathbb{E}^3 of radius 1 and 2 respectively. Let $T \subset M$ be a torus, obtained by taking the product of the equators in the two spheres. Show that T (with its intrinsic metric) is flat, and that it is totally geodesic in M (i.e. that geodesics on T are geodesics in M).

Problem 3. Let B be the open unit disk in \mathbb{R}^2 . Define a Riemannian metric g on B by setting

$$g(X,Y)_x := \frac{4}{(1-|x|^2)^2} \langle X,Y \rangle$$

for each point $x \in B$, where $X, Y \in T_x B$, and $\langle X, Y \rangle$ denotes the usual inner product (i.e. the dot product) for vectors in \mathbb{R}^2 .

- (1) Show that g is preserved by every conformal self-map of B.
- (2) Show that the geodesics in the metric are straight lines through the origin, and arcs of circles perpendicular to ∂B .
- (3) Show that the sectional curvature is equal to -1 everywhere.

This is known as the *hyperbolic metric* on B, and with this metric, B becomes isometric to the *hyperbolic plane*.

Problem 4. Prove the second Bianchi identity (or: the differential Bianchi identity): for any three vector fields X, Y, Z we have

$$\nabla_X R(Y,Z) + (\nabla_Y R)(Z,X) + (\nabla_Z R)(X,Y) = 0$$

where $\nabla_X R$ is the covariant derivative in the direction of X of the tensor field R, thought of as a section of the bundle of two-forms with values in endomorphisms of the tangent bundle (hint: compute in geodesic normal coordinates at a point).

Problem 5. A Riemannian manifold is said to be an *Einstein manifold* if the Ricci curvature is proportional to the metric at every point; i.e. if there is a smooth function f on M so that Ric = f(p)g at every point p.

Show that if the dimension of M is at least 3 and M is connected, the function f as above must be constant. (hint: use the second Bianchi identity, whether you were able to prove it or not).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637 *E-mail address*: dannyc@math.uchicago.edu