RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 7

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 30th.

Problem 1. Let G be a Lie group, and H a closed subgroup. Prove that the space G / H is complete in any G-invariant metric (where G acts on the left in the obvious way).

Problem 2 (Bott). Let G be a compact Lie group, with a bi-invariant Riemannian metric. Let p be a point, and let q be conjugate to p along a geodesic γ. Show that the dimension of the space of Jacobi fields along γ vanishing at p and q is even.
Problem 3. For any n let $\operatorname{SL}(n, \mathbb{R})$ denote the group of $n \times n$ real matrices with determinant 1. Embed $\mathrm{SL}(n-1, \mathbb{R})$ as a subgroup of $\mathrm{SL}(n, \mathbb{R})$ by the homomorphism $M \rightarrow\left(\begin{array}{cc}1 & 0 \\ 0 & M\end{array}\right)$. The group $\operatorname{SL}(n, \mathbb{R})$ acts on the homogeneous space $\operatorname{SL}(n, \mathbb{R}) / \mathrm{SL}(n-1, \mathbb{R})$ by multiplication on the left. Show that for $n \geq 3$ this homogeneous space admits no (left)-invariant metric.

Problem 4. The Lie group Nil (also sometimes called the Heisenberg group) is the group

$$
\text { Nil }=\left\{3 \times 3 \text { real matrices of the form }\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)\right\}
$$

(i): Find a basis for the Lie algebra and compute the adjoint action in those coordinates.
(ii): Give an explicit closed formula for the exponential map and show that it is a diffeomorphism from the Lie algebra to the group.
(iii): Define vector fields in $\mathfrak{X}\left(\mathbb{R}^{3}\right)$ by the formulae

$$
X:=\frac{\partial}{\partial x}-\frac{1}{2} y \frac{\partial}{\partial z}, \quad Y:=\frac{\partial}{\partial y}+\frac{1}{2} x \frac{\partial}{\partial z}, \quad Z:=\frac{\partial}{\partial z}
$$

Show that $[X, Y]=Z$ and $[X, Z]=[Y, Z]=0$. Use this to construct an identification of Nil with \mathbb{R}^{3}.
(iv): Let θ denote the 1 -form $\theta:=d z-\frac{1}{2}(x d y-y d x)$. The 2 -plane field $\xi=\operatorname{ker}(\theta)$ is a distribution spanned locally by X and Y. Show that for any points p and q there is a smooth path γ from p to q with $\theta\left(\gamma^{\prime}\right)=0$. In fact, show that for any continuous path δ from p to q there is a smooth path γ which is C^{0} close to δ (i.e. arbitrarily close in the C^{0} topology), satisfies $\theta\left(\gamma^{\prime}\right)=0$, and runs from p to q.
(v): Forgetting the z coordinate defines a projection $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, where we think of the image as the $x-y$ plane. Show that if $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ is a smooth curve in the $x-y$ plane, and $p \in \mathbb{R}^{3}$ is any point that projects to $\gamma(0)$, there is a unique smooth curve $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}^{3}$ with $\theta\left(\tilde{\gamma}^{\prime}\right)=0$ which projects to γ and starts at p. If $\gamma(0)=\gamma(1)$ (so that the image is a smooth, immersed circle in \mathbb{R}^{2}) show that the difference $z(\tilde{\gamma}(1))-z(\tilde{\gamma}(0))$ is equal to half the algebraic area enclosed by γ.

Note: for a smooth map $\gamma: S^{1} \rightarrow \mathbb{R}^{2}$, the algebraic area enclosed by γ is defined as follows. For each point $p \in \mathbb{R}^{2}-\gamma\left(S^{1}\right)$, join p to infinity by a smooth ray δ_{p}, and define wind (γ, p) to be the algebraic intersection number of δ_{p} with $\gamma\left(S^{1}\right)$. Then the algebraic area enclosed by γ is just $\int_{\mathbb{R}^{2}}$ wind $(\gamma, p) d$ area (p).

[^0]
[^0]: Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
 E-mail address: dannyc@math.uchicago.edu

