RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 7

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 30th.

Problem 1. Let G be a Lie group, and H a closed subgroup. Prove that the space G/H is complete in any G-invariant metric (where G acts on the left in the obvious way).

Problem 2 (Bott). Let G be a compact Lie group, with a bi-invariant Riemannian metric. Let p be a point, and let q be conjugate to p along a geodesic γ . Show that the dimension of the space of Jacobi fields along γ vanishing at p and q is even.

Problem 3. For any n let $SL(n, \mathbb{R})$ denote the group of $n \times n$ real matrices with determinant 1. Embed $SL(n-1, \mathbb{R})$ as a subgroup of $SL(n, \mathbb{R})$ by the homomorphism $M \to \begin{pmatrix} 1 & 0 \\ 0 & M \end{pmatrix}$. The group $SL(n, \mathbb{R})$ acts on the homogeneous space $SL(n, \mathbb{R})/SL(n-1, \mathbb{R})$ by multiplication on the left. Show that for $n \geq 3$ this homogeneous space admits no (left)-invariant metric.

Problem 4. The Lie group Nil (also sometimes called the Heisenberg group) is the group

$$\text{Nil} = \left\{ 3 \times 3 \text{ real matrices of the form } \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

(i): Find a basis for the Lie algebra and compute the adjoint action in those coordinates.

(ii): Give an explicit closed formula for the exponential map and show that it is a diffeomorphism from the Lie algebra to the group.

(iii): Define vector fields in $\mathfrak{X}(\mathbb{R}^3)$ by the formulae

$$X := \frac{\partial}{\partial x} - \frac{1}{2}y\frac{\partial}{\partial z}, \quad Y := \frac{\partial}{\partial y} + \frac{1}{2}x\frac{\partial}{\partial z}, \quad Z := \frac{\partial}{\partial z}$$

Show that [X, Y] = Z and [X, Z] = [Y, Z] = 0. Use this to construct an identification of Nil with \mathbb{R}^3 . (iv): Let θ denote the 1-form $\theta := dz - \frac{1}{2}(xdy - ydx)$. The 2-plane field $\xi = \ker(\theta)$ is a distribution spanned locally by X and Y. Show that for any points p and q there is a smooth path γ from p to q with $\theta(\gamma') = 0$. In fact, show that for any continuous path δ from p to q there is a smooth path γ which is C^0 close to δ (i.e. arbitrarily close in the C^0 topology), satisfies $\theta(\gamma') = 0$, and runs from p to q.

(v): Forgetting the z coordinate defines a projection $\mathbb{R}^3 \to \mathbb{R}^2$, where we think of the image as the x-y plane. Show that if $\gamma : [0,1] \to \mathbb{R}^2$ is a smooth curve in the x-y plane, and $p \in \mathbb{R}^3$ is any point that projects to $\gamma(0)$, there is a unique smooth curve $\tilde{\gamma} : [0,1] \to \mathbb{R}^3$ with $\theta(\tilde{\gamma}') = 0$ which projects to γ and starts at p. If $\gamma(0) = \gamma(1)$ (so that the image is a smooth, immersed circle in \mathbb{R}^2) show that the difference $z(\tilde{\gamma}(1)) - z(\tilde{\gamma}(0))$ is equal to half the *algebraic area* enclosed by γ .

Note: for a smooth map $\gamma: S^1 \to \mathbb{R}^2$, the algebraic area enclosed by γ is defined as follows. For each point $p \in \mathbb{R}^2 - \gamma(S^1)$, join p to infinity by a smooth ray δ_p , and define wind (γ, p) to be the algebraic intersection number of δ_p with $\gamma(S^1)$. Then the algebraic area enclosed by γ is just $\int_{\mathbb{R}^2} \operatorname{wind}(\gamma, p) d\operatorname{area}(p)$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637

E-mail address: dannyc@math.uchicago.edu