RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 6

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 23rd.

Problem 1. Let G be a Lie group. Show that there is some open neighborhood U of the identity element e so that any subgroup Γ of G (closed or not, discrete or not) contained in U is equal to e. (Bonus question: give an example of a locally compact topological group which fails to have this property).
Problem 2. Describe precisely the image of the map $X \rightarrow e^{X}$ in the group $\operatorname{SL}(2, \mathbb{R})$.
Problem 3. Consider the standard symplectic form ω on $\mathbb{R}^{2 n}$, and let W be the space of polynomial functions on $\mathbb{R}^{2 n}$ of degree ≤ 2. The Poisson bracket of two smooth functions f, g is defined as follows. First, given a function f on $\mathbb{R}^{2 n}$ (actually any symplectic manifold) there is a unique smooth vector field X_{f} defined by $d f(Y)=\omega\left(X_{f}, Y\right)$ for every smooth vector field Y. Then the Poisson bracket is defined by

$$
\{f, g\}:=\omega\left(X_{f}, X_{g}\right)
$$

Show that this bracket makes W into a Lie algebra, and identify this Lie algebra.
Problem 4. A submersion is a differentiable map between smooth manifolds $\pi: M^{n+k} \rightarrow N^{n}$ such that at each point $d \pi$ has rank n (i.e. it is surjective on tangent spaces). It follows that for each $p \in N$ the preimage $\pi^{-1}(p)$ is a smooth k-dimensional submanifold of M. Let V_{q} denote the tangent space to $\pi^{-1}(p)$ at some point $q \in \pi^{-1}(p)$. If M is a Riemannian metric, set H_{q} to be the subspace of $T_{q} M$ perpendicular to V_{q}, so that $T M=V \oplus H$.

The map π is said to be a Riemannian submersion if $d \pi \mid H$ is an isometry. Suppose $\pi: M \rightarrow N$ is a Riemannian submersion.
(i): Show for each vector field X on N there is a unique vector field \bar{X} on M so that \bar{X} is everywhere contained in H, and $d \pi(\bar{X})=X$.
(ii): If X, Y, Z are vector fields on N, show that

$$
\langle[\bar{X}, \bar{Y}], \bar{Z}\rangle=\langle[X, Y], Z\rangle
$$

Conclude that

$$
\left\langle\bar{\nabla}_{\bar{X}} \bar{Y}, \bar{Z}\right\rangle=\left\langle\nabla_{X} Y, Z\right\rangle
$$

where $\bar{\nabla}$ denotes the Levi-Civita connection on M, and ∇ the Levi-Civita connection on N. (iii): If X and Y are vector fields on N and T is vertical (i.e. is a section of V), show

$$
\langle[\bar{X}, T], \bar{Y}\rangle=0
$$

Conclude that

$$
\left\langle\bar{\nabla}_{\bar{X}} \bar{Y}, T\right\rangle=\frac{1}{2}\langle[\bar{X}, \bar{Y}], T\rangle
$$

and therefore deduce $\bar{\nabla}_{\bar{X}} \bar{Y}=\bar{\nabla}_{X} Y+\frac{1}{2}[\bar{X}, \bar{Y}]^{V}$. where the superscript V denotes the vertical component of a vector field.
(iv): Deduce that if $\pi: M \rightarrow N$ is a Riemannian submersion, and $\gamma:[0,1] \rightarrow N$ is a smooth curve and $\bar{\gamma}:[0,1] \rightarrow M$ is a horizontal lift (i.e. $\bar{\gamma}^{\prime}$ is horizontal and satisfies $\pi \circ \bar{\gamma}=\gamma$) then γ is a geodesic if and only if $\bar{\gamma}$ is. (Bonus question: give a completely different proof of this fact).

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
E-mail address: dannyc@math.uchicago.edu

