RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 6

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 23rd.

Problem 1. Let G be a Lie group. Show that there is some open neighborhood U of the identity element e so that any subgroup Γ of G (closed or not, discrete or not) contained in U is equal to e. (Bonus question: give an example of a locally compact topological group which fails to have this property).

Problem 2. Describe precisely the image of the map $X \to e^X$ in the group $SL(2,\mathbb{R})$.

Problem 3. Consider the standard symplectic form ω on \mathbb{R}^{2n} , and let W be the space of polynomial functions on \mathbb{R}^{2n} of degree ≤ 2 . The *Poisson bracket* of two smooth functions f, g is defined as follows. First, given a function f on \mathbb{R}^{2n} (actually any symplectic manifold) there is a unique smooth vector field X_f defined by $df(Y) = \omega(X_f, Y)$ for every smooth vector field Y. Then the Poisson bracket is defined by

$$\{f,g\} := \omega(X_f, X_g)$$

Show that this bracket makes W into a Lie algebra, and identify this Lie algebra.

Problem 4. A submersion is a differentiable map between smooth manifolds $\pi : M^{n+k} \to N^n$ such that at each point $d\pi$ has rank n (i.e. it is surjective on tangent spaces). It follows that for each $p \in N$ the preimage $\pi^{-1}(p)$ is a smooth k-dimensional submanifold of M. Let V_q denote the tangent space to $\pi^{-1}(p)$ at some point $q \in \pi^{-1}(p)$. If M is a Riemannian metric, set H_q to be the subspace of $T_q M$ perpendicular to V_q , so that $TM = V \oplus H$.

The map π is said to be a *Riemannian submersion* if $d\pi|H$ is an isometry. Suppose $\pi: M \to N$ is a Riemannian submersion.

(i): Show for each vector field X on N there is a unique vector field \bar{X} on M so that \bar{X} is everywhere contained in H, and $d\pi(\bar{X}) = X$.

(ii): If X, Y, Z are vector fields on N, show that

$$\langle [\bar{X}, \bar{Y}], \bar{Z} \rangle = \langle [X, Y], Z \rangle$$

Conclude that

$$\langle \bar{\nabla}_{\bar{X}} \bar{Y}, \bar{Z} \rangle = \langle \nabla_X Y, Z \rangle$$

where $\overline{\nabla}$ denotes the Levi-Civita connection on M, and ∇ the Levi-Civita connection on N. (iii): If X and Y are vector fields on N and T is vertical (i.e. is a section of V), show

$$\langle [\bar{X}, T], \bar{Y} \rangle = 0$$

Conclude that

$$\langle \bar{\nabla}_{\bar{X}} \bar{Y}, T \rangle = \frac{1}{2} \langle [\bar{X}, \bar{Y}], T \rangle$$

and therefore deduce $\overline{\nabla}_{\bar{X}}\bar{Y} = \overline{\nabla}_{X}\bar{Y} + \frac{1}{2}[\bar{X},\bar{Y}]^{V}$. where the superscript V denotes the vertical component of a vector field.

(iv): Deduce that if $\pi : M \to N$ is a Riemannian submersion, and $\gamma : [0,1] \to N$ is a smooth curve and $\bar{\gamma} : [0,1] \to M$ is a horizontal lift (i.e. $\bar{\gamma}'$ is horizontal and satisfies $\pi \circ \bar{\gamma} = \gamma$) then γ is a geodesic if and only if $\bar{\gamma}$ is. (Bonus question: give a completely different proof of this fact).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637 E-mail address: dannyc@math.uchicago.edu