RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 5

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 16th.

Problem 1. Let M be a manifold with strictly negative sectional curvature $K \leq C<0$ everywhere for some constant C. Let γ be a finite closed geodesic (i.e. a nonconstant map $\gamma: S^{1} \rightarrow M$ with $\nabla_{\gamma^{\prime}} \gamma^{\prime}=0$). Show that γ admits no normal Jacobi fields.
Problem 2. Suppose M is compact, orientable, even dimensional and satisfies $K \geq C>0$ for some constant C, where K is the sectional curvature.
(i): Let γ be a closed geodesic in M, and let ν be the normal bundle of γ. Fix $p \in \gamma$ and let $P: \nu(p) \rightarrow \nu(p)$ be the result of parallel transport around γ. Show that P fixes a nonzero vector v.
(ii): Let V be the parallel vector field along γ with $V(p)=v$. Show (by using the second variation formula or otherwise) that if γ_{s} is a smooth variation of γ with $\partial_{s} \gamma_{s}=V$ then $\left.\frac{d}{d s^{2}} \operatorname{length}\left(\gamma_{s}\right)\right|_{s=0}<0$. Deduce that γ is not a local minimum for length in its free homotopy class.
(iii): Show (e.g. by using the Arzela-Ascoli theorem) that if M is a compact manifold (with no assumptions on the curvature), every nontrivial conjugacy class in $\pi_{1}(M)$ contains a distance-minimizing geodesic. Deduce Synge's Theorem, which says that a compact, orientable, even dimensional manifold with $K \geq$ $C>0$ for some constant C is simply-connected.

Problem 3. Given an example of a compact manifold M with strictly positive scalar curvature $s \geq C>0$ everywhere, but for which $\pi_{1}(M)$ is infinite.
Problem 4. Let M be a complete simply-connected Riemannian manifold with non-positive sectional curvature, and consider a geodesic triangle in M whose side lengths are a, b, c with opposite angles A, B, C respectively. Then $a^{2}+b^{2}-2 a b \cos C \leq c^{2}$ and $A+B+C \leq \pi$.

Problem 5 (Challenging). Throughout this problem assume that M is a compact, connected manifold.
(i): Let h be a smooth symmetric 2-form (i.e. a section of $S^{2} T^{*} M$). Let g be a Riemannian metric on M (so that g is a smooth symmetric 2-form which is positive definite everywhere). Show that $g+t h$ defines a Riemannian metric g_{t} for all sufficiently small t.
(ii): Let $\operatorname{vol}_{g_{t}}(M)$ denote the volume of M with respect to the g_{t} metric for $g_{t}=g+t h$ as above. Show that $\left.\frac{d}{d t} \operatorname{vol}_{g_{t}}(M)\right|_{t=0}=0$ if and only if $\int_{M} \operatorname{tr}(h) d \operatorname{vol}_{g}=0$.
(iii): Recall that the scalar curvature s is the trace of the Ricci curvature of a Riemannian manifold. If we want to emphasize how s depends on the metric g we write s_{g}. The total scalar curvature of the metric g, denoted $\mathbb{S}(g)$, is the integral

Show that

$$
\mathbb{S}(g):=\int_{M} s_{g} d \mathrm{vol}_{g}
$$

$$
\left.\frac{d}{d t} \mathbb{S}(g+t h)\right|_{t=0}=\int_{M}\left\langle\left(s_{g} / 2\right) g-\operatorname{Ric}_{g}, h\right\rangle_{g} d \operatorname{vol}_{g}
$$

where $\langle\cdot, \cdot\rangle_{g}$ denotes the inner product on $S^{2} T_{p}^{*} M$ for each p induced by the Riemannian metric g.
(iv): (Hilbert) Suppose that M is of dimension at least 3. Let \mathcal{M}_{1} denote the space of smooth metrics g on M for which $\operatorname{vol}_{g}(M)=1$. Deduce that (M, g) is a critical point for $\mathbb{S}(\cdot)$ in \mathcal{M}_{1} if and only if it is Einstein (i.e. if and only if $\operatorname{Ric}_{g}=\lambda g$ for some constant λ).

[^0]
[^0]: Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
 E-mail address: dannyc@math.uchicago.edu

