RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 5

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 16th.

Problem 1. Let M be a manifold with strictly negative sectional curvature $K \leq C < 0$ everywhere for some constant C. Let γ be a finite *closed* geodesic (i.e. a nonconstant map $\gamma : S^1 \to M$ with $\nabla_{\gamma'} \gamma' = 0$). Show that γ admits no normal Jacobi fields.

Problem 2. Suppose M is compact, orientable, even dimensional and satisfies $K \ge C > 0$ for some constant C, where K is the sectional curvature.

(i): Let γ be a closed geodesic in M, and let ν be the normal bundle of γ . Fix $p \in \gamma$ and let $P : \nu(p) \to \nu(p)$ be the result of parallel transport around γ . Show that P fixes a nonzero vector v.

(ii): Let V be the parallel vector field along γ with V(p) = v. Show (by using the second variation formula or otherwise) that if γ_s is a smooth variation of γ with $\partial_s \gamma_s = V$ then $\frac{d}{ds^2} \text{length}(\gamma_s)|_{s=0} < 0$. Deduce that γ is not a local minimum for length in its free homotopy class.

(iii): Show (e.g. by using the Arzela-Ascoli theorem) that if M is a compact manifold (with no assumptions on the curvature), every nontrivial conjugacy class in $\pi_1(M)$ contains a distance-minimizing geodesic. Deduce Synge's Theorem, which says that a compact, orientable, even dimensional manifold with $K \ge C > 0$ for some constant C is simply-connected.

Problem 3. Given an example of a compact manifold M with strictly positive scalar curvature $s \ge C > 0$ everywhere, but for which $\pi_1(M)$ is infinite.

Problem 4. Let M be a complete simply-connected Riemannian manifold with non-positive sectional curvature, and consider a geodesic triangle in M whose side lengths are a, b, c with opposite angles A, B, C respectively. Then $a^2 + b^2 - 2ab \cos C \le c^2$ and $A + B + C \le \pi$.

Problem 5 (Challenging). Throughout this problem assume that M is a compact, connected manifold.

(i): Let h be a smooth symmetric 2-form (i.e. a section of S^2T^*M). Let g be a Riemannian metric on M (so that g is a smooth symmetric 2-form which is positive definite everywhere). Show that g + th defines a Riemannian metric g_t for all sufficiently small t.

(ii): Let $\operatorname{vol}_{g_t}(M)$ denote the volume of M with respect to the g_t metric for $g_t = g + th$ as above. Show that $\frac{d}{dt}\operatorname{vol}_{g_t}(M)|_{t=0} = 0$ if and only if $\int_M \operatorname{tr}(h) d\operatorname{vol}_g = 0$.

(iii): Recall that the scalar curvature s is the trace of the Ricci curvature of a Riemannian manifold. If we want to emphasize how s depends on the metric g we write s_g . The total scalar curvature of the metric g, denoted $\mathbb{S}(g)$, is the integral

$$\mathbb{S}(g) := \int_M s_g d\mathrm{vol}_g$$

Show that

$$\frac{d}{dt}\mathbb{S}(g+th)|_{t=0} = \int_{M} \langle (s_g/2)g - \operatorname{Ric}_g, h \rangle_g d\operatorname{vol}_g$$

where $\langle \cdot, \cdot \rangle_g$ denotes the inner product on $S^2 T_p^* M$ for each p induced by the Riemannian metric g. (iv): (Hilbert) Suppose that M is of dimension at least 3. Let \mathcal{M}_1 denote the space of smooth metrics g on M for which $\operatorname{vol}_g(M) = 1$. Deduce that (M, g) is a critical point for $\mathbb{S}(\cdot)$ in \mathcal{M}_1 if and only if it is Einstein (i.e. if and only if $\operatorname{Rie}_g = \lambda g$ for some constant λ).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637 *E-mail address:* dannyc@math.uchicago.edu