RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 4

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due May 2nd.
Problem 1. Let M be a Riemannian manifold, and suppose that the sectional curvature K is constant (i.e. it takes the same value on every 2-plane through every point). Show that there is a formula

$$
\langle R(X, Y) Z, W\rangle=-K \cdot(\langle X, Z\rangle\langle Y, W\rangle-\langle Y, Z\rangle\langle X, W\rangle)
$$

Deduce that (under the assumption that M has constant sectional curvature K), if $\gamma(t)$ is a geodesic and $e_{i}(t)$ are parallel orthonormal vector fields along γ giving a basis for the normal bundle $\left.\nu\right|_{\gamma}$, every Jacobi field V along γ with $\left\langle V(0), \gamma^{\prime}(0)\right\rangle=0$ and $\left\langle V^{\prime}(0), \gamma^{\prime}(0)\right\rangle=0$ can be written uniquely in the form

- $V(t)=\sum_{i}\left(a_{i} \sin (t \sqrt{K})+b_{i} \cos (t \sqrt{K})\right) e_{i}(t)$ if $K>0$;
- $V(t)=\sum_{i}\left(a_{i} t+b_{i}\right) e_{i}(t)$ if $K=0$; and
- $V(t)=\sum_{i}\left(a_{i} \sinh (t \sqrt{-K})+b_{i} \cosh (t \sqrt{-K})\right) e_{i}(t)$ if $K<0$
for suitable constants a_{i}, b_{i}.
Problem 2. If we think of S^{3} as the unit sphere in \mathbb{C}^{2} (with its standard Hermitian metric), multiplication of the coordinates by $e^{i \theta}$ exhibits S^{3} as a principal S^{1} bundle over S^{2} (this is usually known as the Hopf fibration). Let ξ be the 1-dimensional (real) subbundle of $T S^{3}$ tangent to the S^{1} fibers, and let ξ^{\perp} denote the orthogonal complement, so that $T S^{3}=\xi \oplus \xi^{\perp}$. If g denotes the round metric on S^{3}, define a 1-parameter family of Riemannian metrics g_{t} by

$$
g_{t}:=\left.\left.g\right|_{\xi^{\perp}} \oplus t^{2} g\right|_{\xi}
$$

In other words, the length of vectors tangent to ξ are scaled by t (relative to the g metric), while the length of vectors perpendicular to ξ is the same as in the g metric. Compute the sectional curvature as a function of t. How does the sectional curvature behave in the limit as $t \rightarrow 0$ or $t \rightarrow \infty$?
(Note: a 3 -sphere with one of the metrics g_{t} is sometimes called a Berger sphere)
Problem 3. Let M be a Riemannian manifold and let X be a vector field with the property that for any two vector fields Y and Z we have

$$
\left\langle\nabla_{Y} X, Z\right\rangle+\left\langle\nabla_{Z} X, Y\right\rangle=0
$$

Show that the restriction of X to every geodesic is a Jacobi field.
(Bonus question: write down a nontrivial example of such an X for M the round 2-sphere.)
Problem 4. A surface of revolution is a smooth surface in \mathbb{E}^{3} obtained by rotating a smooth curve (called the generatrix) in the $x-z$ plane around the z axis. The generatrix, and the other curves on S obtained by rotating it, are called the meridians. Let S be a surface of revolution.
(i): (Clairaut's theorem) Let $\gamma(t)$ be a geodesic on S. Show that the angular momentum of $\gamma(t)$ about the z axis is constant; i.e. if r is the distance to the z-axis, and $\theta(t)$ is the angle between $\gamma^{\prime}(t)$ and the meridian through $\gamma(t)$, then $r \sin (\theta)$ is constant as a function of t.
(ii): For S the torus obtained by rotating the curve $(x-3)^{2}+z^{2}=1$ about the z-axis, give an explicit formula for the geodesics.
(Bonus question: if you want to solve an ODE, why is it helpful to find a conserved quantity - i.e. a function of the dependent variables that is constant on each solution?)

Problem 5. Find a complete noncompact surface properly embedded in \mathbb{R}^{3} whose sectional curvature is strictly positive everywhere. Is there an example which is complete and noncompact and where $K \geq C>0$ everywhere for some positive constant C ?

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
E-mail address: dannyc@math.uchicago.edu

