RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 2

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due April 18th.

Problem 1. Let C be the cone $x^2 + y^2 = z^2$ in Euclidean \mathbb{E}^3 , which is smooth away from the point (0, 0, 0). Determine the geodesics on this cone (as smooth curves in \mathbb{E}^3) by directly solving the geodesic equations. Now slit the cone open along the ray x = z and lay it flat in the plane (by "unrolling" it); what do the geodesics look like when the cone is laid flat in the plane?

Problem 2. If Σ is a smooth (2-dimensional) oriented surface in \mathbb{E}^3 , the Gauss map is a map $G: \Sigma \to S^2$ (the unit sphere in \mathbb{E}^3) defined uniquely by the property that $T_p\Sigma$ and $T_{G(p)}S^2$ are parallel (in \mathbb{E}^3) as oriented planes. Show that $T\Sigma$ can be naturally identified with the pullback G^*TS^2 . Derive the following consequence: the pullback of the Gauss map commutes with parallel transport; i.e. if $\gamma: [0,1] \to \Sigma$ is a smooth curve, and $V \in \Gamma(TS^2)$ is parallel along $G \circ \gamma$ (i.e. $\nabla_{(G \circ \gamma)'}(V) = 0$) then the pullback G^*V (as a section of $T\Sigma$) is parallel along γ .

Problem 3. If the Riemannian metric is expressed locally in coordinates x_i in the form $g := \sum g_{ij} dx_i dx_j$, derive a formula for the Christoffel symbols Γ_{ij}^k (in the same coordinates) in terms of the g_{ij} .

Problem 4. Let x_i be geodesic normal coordinates centered at a point p (i.e. obtained from the exponential map by exponentiating orthonormal linear coordinates on T_pM). Show that the metric $g_{ij}dx_idx_j$ in these coordinates satisfies

$$g_{ij}(p) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$$

and $(\partial_k g_{ij})(p) = 0$ for all i, j, k. In other words, the metric "osculates" the Euclidean metric to first order (at p).

Problem 5. Let S be the flat torus $\mathbb{R}^2/\mathbb{Z}^2$ with its Euclidean metric minus a point. Compute the maximal domain of definition of the exponential map \exp_p at each point $p \in S$, and describe how this domain varies with p (note: we may use the flat structure to canonically identify the tangent space at each point with \mathbb{R}^2).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637 *E-mail address*: dannyc@math.uchicago.edu