RIEMANNIAN GEOMETRY, SPRING 2019, HOMEWORK 1

DANNY CALEGARI

Homework is assigned on Thursdays; it is due at the start of class the week after it is assigned. So this homework is due April 11th.

Problem 1. If ∇ is a connection on a smooth bundle E, covariant differentiation $\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E)$ is tensorial in the first term, but not in the second. However, if ∇_{1}, ∇_{2} are two connections on E, show that the difference $\nabla_{1}-\nabla_{2}$ is a tensor in the second term. Thus, if we choose a local trivialization of E, deduce that any covariant derivative on E can be expressed locally (in terms of this trivialization) as $d+\omega$, where ω is a matrix of 1 -forms. I.e. if s_{i} are local sections of E, we can write

$$
\nabla\left(\sum_{i} f_{i} s_{i}\right)=\sum_{i} d f_{i} \otimes s_{i}+\sum_{i, j} f_{i} \omega_{i j} \otimes s_{j}
$$

Problem 2. For the round unit sphere in \mathbb{E}^{3} with its induced Riemannian metric, express the Levi-Civita connection on the sphere in terms of local polar coordinates.

Problem 3. Check that the definition of the Levi-Civita connection given (implicitly) by the formula

$$
2\left\langle\nabla_{X} Y, Z\right\rangle=X\langle Y, Z\rangle+Y\langle X, Z\rangle-Z\langle X, Y\rangle+\langle[X, Y], Z\rangle-\langle[X, Z], Y\rangle-\langle[Y, Z], X\rangle
$$

satisfies the properties of a connection.
Problem 4. Let ∇ be a connection on $T M$, which thereby induces a connection on $T^{*} M$ in the usual way. Show that ∇ on $T M$ is torsion-free if and only if the composition

$$
\Gamma\left(T^{*} M\right) \xrightarrow{\nabla} \Gamma\left(T^{*} M \otimes T^{*} M\right) \xrightarrow{\pi} \Gamma\left(\Lambda^{2} T^{*} M\right)
$$

is equal to exterior d, where Γ denotes the space of smooth sections, and π is the antisymmetrizing map.
Problem 5. Show that a connection ∇ on $T M$ preserves the metric if and only if the metric 2-tensor $g \in \Gamma\left(S^{2} T^{*} M\right)$ is parallel; i.e. $\nabla g=0$.

Problem 6 (harder). Let S be the surface in \mathbb{R}^{3} defined by the equation $z=x^{2}-y^{2}$ (this is called a hyperbolic paraboloid). Let $\gamma: S^{1} \rightarrow S$ be the circle $\gamma(\theta)=\left(\cos (\theta), \sin (\theta), \cos ^{2}(\theta)-\sin ^{2}(\theta)\right)$. Let $p=(1,0,1)$ be a point on γ. Compute the effect of parallel transport around γ on the tangent space $T_{p} S$. Remember that parallel transport for a surface in \mathbb{R}^{3} is the effect of continuously translating a vector space in \mathbb{R}^{3} and then orthogonally projecting it to $T S$ as we move along the curve γ.

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637
E-mail address: dannyc@math.uchicago.edu

