
CHAPTER 3: MINIMAL SURFACES

DANNY CALEGARI

Abstract. These are notes on minimal surfaces, which are being transformed into Chap-
ter 3 of a book on 3-Manifolds. The emphasis is on the classical theory and its connection
to complex analysis, and the topological applications to 3-manifold geometry/topology.
These notes follow a course given at the University of Chicago in Spring 2014.
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1. Minimal surfaces in Euclidean space

In this section we describe the classical theory of minimal surfaces in Euclidean spaces,
especially in dimension 3. We emphasize throughout the connections to complex analysis.
The local theory of minimal surfaces in Riemannian manifolds is well approximated by the
theory of minimal surfaces in Euclidean space, so the theory we develop in this section has
applications more broadly.

1.1. Graphs. A smooth surface in R3 can be expressed locally as the graph of a real-valued
function defined on a domain in R2. For historical reasons, such graphs are sometimes
referred to as nonparametric surfaces.

Fix a compact domain Ω ⊂ R2 with boundary, and a smooth function f : Ω → R.
Denote by Γ(f) the graph of f in R3; i.e.

Γ(f) = {(x, y, f(x, y)) ∈ R3 such that (x, y) ∈ Ω}
Ignoring the last coordinate defines a projection from Γ(f) to Ω, which is a diffeomorphism.

An infinitesimal square in Ω with edges of length dx, dy is in the image of an infinitesimal
parallelogram in Γ(u) with edges (dx, 0, fxdx) and (0, dy, fydy) so

area(Γ(f)) =

∫
Ω

|(1, 0, fx)× (0, 1, fy)|dxdy =

∫
Ω

√
1 + |grad(f)|2dxdy
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Note that in this formula we are thinking of grad(f) as a vector field on Ω in the usual
way.

If g : Ω→ R is smooth and vanishes on ∂Ω we obtain a 1-parameter family of functions
f(t) := f + tg and a 1-parameter family of graphs Γ(t) := Γ(f(t)). The hypothesis that g
vanishes on ∂Ω ensures that these graphs all have the same boundary. We are interested
in how the area of Γ(t) varies as a function of t.

Since grad(f + tg) = grad(f) + t grad(g) we can compute
d

dt

∣∣∣
t=0

area(Γ(t)) =

∫
Ω

d

dt

∣∣∣
t=0

√
1 + |grad(f) + t grad(g)|2dxdy

=

∫
Ω

〈grad(f), grad(g)〉√
1 + |grad(f)|2

dxdy

Integrating by parts, and using the vanishing of g on ∂Ω, this equals∫
Ω

−g div

(
grad(f)√

1 + |grad(f)|2

)
dxdy

(formally, this is the observation that −div is an adjoint for grad).
Thus: f is a critical point for area (among all smooth 1-parameter variations with support

in the interior of Ω) if and only if f satisfies the minimal surface equation in divergence
form:

div

(
grad(f)√

1 + |grad(f)|2

)
= 0

In this case we also say that Γ is a minimal surface.
Expanding the minimal surface equation, and multiplying through by the factor (1 +
|grad(f)|2)3/2 we obtain the equation

(1 + f 2
y )fxx + (1 + f 2

x)fyy − 2fxfyfxy = 0

This is a second order quasi-linear elliptic PDE. We explain these terms:
(1) The order of a PDE is the degree of the highest derivatives appearing in the equa-

tion. In this case the order is 2.
(2) A PDE is quasi-linear if it is linear in the derivatives of highest order, with coeffi-

cients that depend on the independent variables and derivatives of strictly smaller
order. In this case the coefficients of the highest derivatives are (1 + f 2

y ), (1 + f 2
x)

and −2fxfy which depend only on the independent variables (the domain variables
x and y) and derivatives of order at most 1.

(3) A PDE is elliptic if the discriminant is negative; here the discriminant is the dis-
criminant of the homogeneous polynomial obtained by replacing the highest order
derivatives by monomials. In this case since the PDE is second order, the discrim-
inant is the polynomial B2 − 4AC, which is equal to

4f 2
xf

2
y − 4(1 + f 2

y )(1 + f 2
x) = −4(1 + f 2

x + f 2
y ) < 0

Solutions of elliptic PDE are as smooth as the coefficients allow, within the interior of the
domain. Thus minimal surfaces in R3 are real analytic in the interior.
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If f is constant to first order (i.e. if fx, fy ∼ ε) then this equation approximates fxx+fyy =
0; i.e. −∆f = 0, the Dirichlet equation, whose solutions are harmonic functions. Thus,
the minimal surface equation is a nonlinear generalization of the Dirichlet equation, and
functions with minimal graphs are generalizations of harmonic functions.

In particular, the qualitative structure of such functions — their singularities, how they
behave in families, etc. — very closely resembles the theory of harmonic functions.

1.2. Second fundamental form and mean curvature. A parametric surface Σ in Rn

is just a smooth map from some domain Ω in R2 to Rn. Let’s denote the map x : Ω→ Rn,
so Σ = x(Ω).

The second fundamental form II is the perpendicular part of the Hessian of x. In terms
of co-ordinates, let e1, e2 be vector fields on Ω linearly independent at p. Then write

IIp(ei, ej) := ei(ej(x))(p)⊥

i.e the component of the vector ei(ej(x))(p) ∈ Rn perpendicular to Σ at x(p).
It turns out that IIp is a symmetric quadratic form on TpΣ. To see this, observe first

that IIp depends only on the value of ei at p. Furthermore, since [ei, ej](x) = dx([ei, ej])
is tangent to Σ, it follows that IIp is symmetric in its arguments, and therefore it depends
only on the value of ej at p.

The mean curvature H is the trace of the second fundamental form; i.e.

H(p) =
∑

IIp(ei, ei)

where ei runs over an orthonormal basis for Tp.

Now let N be a unit normal vector field on Σ. By abuse of notation we write ei for
dx(ei) and think of it as a vector field on Σ. Then pointwise,

〈H,N〉 =
∑
〈ei(ei), N〉 = −

∑
〈ei, ei(N)〉

where we use the fact that N is everywhere perpendicular to each ei. An infinitesimal unit
square in Tp spanned by e1, e2 flows under the normal vector field N to an infinitesimal
parallelogram, and the derivative of its area under the flow is exactly

∑
〈ei, ei(N)〉. Thus

near any point p where H is nonzero we can change the area to first order by a normal
variation supported near p, and we see that Σ is critical for area if and only if the mean
curvature H vanishes identically. This observation is due to Meusnier.

For Σ a surface in R3 the unit normal field N is determined by Σ (up to sign). We
extend N smoothly to a unit length vector field in a neighborhood of Σ. Along Σ the
vectors e1, e2, N form an orthonormal basis, and the expression

∑
〈ei, ei(N)〉 is equal to

div(N) which in particular does not depend on the choice of extension.
Specializing to the case of a graph, the vector field

N :=
(−fx,−fy, 1)√
1 + |grad(f)|2
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is nothing but the unit normal field to Γ(f). We can extend N to a vector field on Ω× R
by translating it parallel to the z axis. We obtain the identity:

−divR3(N) = divR2

(
grad(f)√

1 + |grad(f)|2

)
where the subscript gives the domain of the vector field where each of the two divergences
are computed. Thus Γ is minimal if and only if the divergence of N vanishes.

1.3. Conformal parameterization. We consider a parametric surface x : Ω→ Rn. Let’s
denote the coordinates on R2 by u and v, and the coordinates on Rn by x1, · · · , xn. The
Jacobian is the matrix with column vectors ∂x

∂u
and ∂x

∂v
, and where this matrix has rank 2 the

image is smooth, and the parameterization is locally a diffeomorphism to its image. The
metric on Rn makes the image into a Riemannian surface, and every Riemannian metric
on a surface is locally conformally equivalent to a flat metric. Thus after precomposing x
with a diffeomorphism, we may assume the parameterization is conformal (one also says
that we have chosen isothermal coordinates). This means exactly that there is a smooth
nowhere vanishing function λ on Ω so that∣∣∣∣∂x∂u

∣∣∣∣2 =

∣∣∣∣∂x∂v
∣∣∣∣2 = λ2 and

∂x

∂u
· ∂x
∂v

= 0

We can identify Ω with a domain in C with complex coordinate ζ := u + iv, and for each
coordinate xj define

φj := 2
∂xj
∂ζ

=
∂xj
∂u
− i∂xj

∂v

Then we have the following lemma:

Lemma 1.1 (Conformal parameterization). Let Ω ⊂ C be a domain with coordinate ζ,
and x : Ω→ Rn a smooth immersion. Then x is a conformal parameterization of its image
(with conformal structure inherited from Rn) if and only if

∑
φ2
j = 0, where φj = 2∂xj/∂ζ.

Furthermore, functions φj as above with
∑
φ2
j = 0 define an immersion if and only if∑

|φj|2 > 0.

Proof. By definition,∑
φ2
j =

(∑
j

(
∂xj
∂u

)2

−
(
∂xj
∂v

)2
)
− i

(∑
j

∂xj
∂u

∂xj
∂v

)
whose real and imaginary parts vanish identically if and only if the parameterization is
conformal, where it is an immersion. Furthermore,∑

|φj|2 = λ2

so the map is an immersion everywhere if and only if
∑
|φj|2 > 0. �

If the parameterization x : Ω→ Rn is conformal, we can consider the orthonormal basis

e1 = λ−1 ∂

∂u
and e2 = λ−1 ∂

∂v
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Differentiating the defining equations for x to be conformal, we obtain

∂2x

∂u2
· ∂x
∂u

=
∂2x

∂u∂v
· ∂x
∂v

= −∂
2x

∂v2
· ∂x
∂u

and therefore ∆x is perpendicular to Σ. Thus the mean curvature H — i.e. the trace of
the second fundamental form — is the vector

H = λ−2

(
∂2x

∂u2
+
∂2x

∂v2

)
= −λ2∆x

Thus we obtain the following elegant characterization of minimal surfaces in terms of
conformal parameterizations:

Lemma 1.2 (Harmonic coordinates). Let Ω ⊂ C be a domain with coordinate ζ, and
x : Ω→ Rn a conformal parameterization of a smooth surface. Then the image is minimal
if and only if the coordinate functions xj are harmonic on Ω; equivalently, if and only if
the functions φj := 2

∂xj
∂ζ

are holomorphic functions of ζ.

Proof. All that must be checked is the fact that the equation −∆xj = 0 is equivalent to
the Cauchy–Riemann equations for φj:

−∆xj =
∂

∂u

(
∂xj
∂u
− i∂xj

∂v

)
+ i

∂

∂v

(
∂xj
∂u
− i∂xj

∂v

)
= 2

∂φj
∂ζ̄

�

Corollary 1.3 (Convex hull). Every compact minimal surface Σ in Rn lies in the convex
hull of its boundary.

Proof. Every linear function on Rn is harmonic on Σ. Therefore by the maximum principle,
if the boundary lies in a given half-space of Rn, so does Σ. �

A holomorphic reparameterization of Ω transforms the coordinate ζ and the functions
φj, but keeps fixed the 1-form φjdζ. Combining this observation with the two lemmas, we
obtain the following proposition, characterizing minimal surfaces in Rn parameterized by
arbitrary Riemann surfaces:

Proposition 1.4. Every minimal surface in Rn is obtained from some Riemann surface Ω
together with a family of n complex valued 1-forms φj satisfying the following conditions:

(1) (conformal):
∑
φ2
j = 0;

(2) (minimal): the φj are holomorphic;
(3) (regular):

∑
|φj|2 > 0; and

(4) (period): the integral of φj over any closed loop on Ω is purely imaginary.
The map x : Ω→ Rn may then be obtained uniquely up to a translation by integration:

xj = Re
(∫ ζ

0

φj

)
+ cj

Proof. All that remains is to observe that the period condition is both necessary and
sufficient to let us recover the coordinates xj by integrating the real part of the φj. �
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If the φj are holomorphic and not identically zero, then
∑
|φj|2 can equal zero only

at isolated points in Ω. Near such points the map from Ω to its image is branched. We
say that a surface is a generalized minimal surface if it is parameterized by some Ω as in
Proposition 1.4, omitting the condition of regularity.

1.4. Conjugate families. Let Ω be a Riemann surface, and φj a collection of n holomor-
phic 1-forms satisfying

∑
φ2
j = 0. Integrating the φj along loops in Ω determines a period

map H1(Ω;Z) → Cn, and an abelian cover Ω̄ corresponding to the kernel of the period
map.

Then we obtain a further integration map Φ : Ω̄ → Cn whose coordinates zj are given
by zj =

∫ ζ
0
φj. The standard (complex) orthogonal quadratic form has the value

∑
z2
j

on a vector z with coordinates zj; by Proposition 1.4 the image Φ(Ω̄) is isotropic for this
orthogonal form. Consequently we obtain a family of minimal surfaces in Rn parameterized
by the action of the complex affine group Cn o (C∗ × O(n,C)) where the first factor acts
on Cn by translation, and the second factor acts linearly.

The Cn action just projects to translation of the minimal surface in Rn, and R∗×O(n,R)
just acts by scaling and rotation; so this subgroup acts by ambient similarities of Rn. The
action of S1 ⊂ C∗ is more interesting; the family of minimal surfaces related by this action
are said to be a conjugate family. At the level of 1-forms this action is a phase shift
φj → eiθφj.

Lemma 1.5. Let x(θ) : Ω → Σθ be a conjugate family of generalized minimal surfaces in
Rn; i.e. their coordinates are given by integration

xj(θ)(p) = Re
∫ p

0

eiθφj

for some fixed family of 1-forms φj on Ω with
∑
φ2
j = 0. Then for any θ the composition

x(0)◦x(θ)−1 : Σθ → Σ0 is a local isometry, and each fixed point p ∈ Ω traces out an ellipse
x(·)(p) : S1 → Rn.

Proof. If we write φj = aj + ibj then
∑
a2
j =

∑
b2
j and

∑
ajbj = 0; i.e. the vectors a

and b are perpendicular with the same length, and this length is the length of dx(0)(∂u) in
Tx(0)(Ω). But the length of dx(θ)(∂u) in Tx(θ)(Ω) is just | cos(θ)a + sin(θ)b| = |a| = |b|
for all θ, so x(0) ◦ x(θ)−1 : Σθ → Σ0 is an isometry as claimed.

The second claim is immediate:

xj(θ)(p) = cos(θ)Re
(∫ p

0

φj

)
+ sin(θ)Re

(∫ p

0

iφj

)
�

Example 1.6 (catenoid and helicoid). If we write ζ := u+ iv then

φ1 = − sin(ζ), φ2 = cos(ζ), φ3 = −i
satisfies the conditions of Proposition 1.4. The surface obtained by integrating the real
part of the φj is the catenoid, with the parameterization

x = cosh(v) cos(u); y = cosh(v) sin(u); z = v
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Figure 1. A conjugate family of minimal surfaces interpolating between
the catenoid and the helicoid

Multipying the φj by i and integrating gives the helicoid, with the parameterization
x = sinh(v) sin(u); y = − sinh(v) cos(u); z = u

Interpolating between these two values gives an isometric deformation of one surface into
the other.

1.5. Weierstrass–Enneper parameterization. Let φj be three holomorphic functions
on a domain Ω satisfying the conditions of Proposition 1.4. Using the condition

∑
φ2
j = 0

we can eliminate one of the functions. If we write f = φ1 − iφ2 and g = φ3/f then

φ1 = f(1− g2)/2; φ2 = if(1 + g2)/2; φ3 = fg

Conversely, any pair of functions f, g where f is holomorphic, and g is meromorphic so that
f has a zero of order at least 2k wherever g has a pole of order k, define a (generalized)
minimal surface. This normalization is the so-called Weierstrass–Enneper parameteriza-
tion.

This parameterization is particularly nice because of its connection to the Gauss map.
For Σ an oriented surface in R3, the Gauss map N : Σ → S2 sends each point to its unit
normal. If we take Σ = x(Ω) then the unit normal field is given by N = (xu×xv)/|xu×xv|.
Now, by definition xu = Reφ and xv = −Imφ so xu × xv = (Imφ × φ)/2. Likewise,
since the parameterization is conformal, |xu × xv| = |xu| |xv| = |φ|2/2. It follows that
N = (Imφ× φ)/|φ|2.

Stereographic projection from the north pole sends S2 to C by
St : (a, b, c)→ (a+ ib)/(1− c)

Thus the composition G := St ◦N ◦ x : Ω→ C is given by the formula

G(u, v) =
2 Imφ2φ3 + 2i Imφ3φ1

|φ|2 − 2 Imφ1φ2

=
φ3

φ1 − iφ2

= g

Corollary 1.7 (Gauss map conformal). If Σ is a minimal surface in R3, the Gauss map
N : Σ→ S2 is conformal.

1.6. Finite total curvature. Now let us suppose x : Ω→ R3 with image Σ is a complete
minimal surface in R3. It is natural to impose finiteness conditions on x and Ω. Since Σ is
minimal, we have K ≤ 0 everywhere.

We say Σ has finite total curvature if∫
Σ

|K|darea =

∫
Σ

−Kdarea <∞
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The condition of finite total curvature imposes very strong constraints on Ω and x.

Lemma 1.8. Suppose Σ has finite total curvature. Then Ω is of finite type; i.e. it is
homeomorphic to a surface of finite genus with finitely many points removed.

Proof. Fix a point p ∈ Σ and let B(t) ⊂ Σ be the set of q with distance at most t
from p as measured intrinsically in Σ. Let `(t) = length(∂B(t)). Then by Gauss-Bonnet,
`′(t) = 2πχ(B(t))−

∫
B(t)

Kdarea. If Ω is not of finite type, then χ(B(t))→ −∞. But then
`(t) < 0 for large t which is absurd. �

Lemma 1.9. Suppose Σ has finite total curvature. Then Ω has parabolic ends; i.e. Ω is
conformally equivalent to a closed surface of finite genus with finitely many points removed.

Proof. We have already seen that Ω has finitely many cylindrical ends. For each of these
ends `′′(t) → 0 so `′(t) → constant ≥ 0. We estimate the modulus using the method of
extremal length. For simplicity suppose there is one annular component, namely B(t) −
B(s) for some fixed s.

Suppose lim `′(t) = constant > 0. Let Γ be the system of curves from ∂(B(s)) to ∂(B(t)).
Using ρ(t) = 1/`(t) gives

Lρ(Γ) := inf
γ∈Γ

∫
γ

ρ dlength ∼ log(t) and Aρ :=

∫
B(t)−B(s)

ρ2darea ∼ log(t)

The modulus of the annulus B(t)−B(s) is the supremum supρ Lρ(Γ)2/Aρ over all ρ; hence
as t→∞ the modulus goes to infinity, proving that the end is parabolic.

The case lim `′(t) = 0 is proved similarly using ρ = 1. �

Theorem 1.10 (Osserman). Suppose Σ has finite total curvature. Then Ω is conformally
equivalent to a closed surface Ω of finite genus, with finitely many points removed. Conse-
quently the Gauss map extends to a holomorphic map g : Ω→ CP1, and the total curvature
of Σ is an integer multiple of 4π.

Proof. The curvature K is the pullback of the area form on the unit sphere under the
Gauss map. Since Σ has finite total curvature, g does not have an essential singularity at
each of the punctures of Ω, and therefore it extends holomorphically over each puncture,
and g : Ω → CP1 is a branched cover. Thus the total curvature is the degree of g (which
is an integer) times the area of the unit sphere. �

2. First variation formula

In this section we derive the first variation formula, which characterizes those submani-
folds that are critical for the volume functional among compactly supported variations: the
critical submanifolds are precisely those with vanishing mean curvature. We also develop
some elements of the theory of Riemannian geometry in coordinate-free language (as far
as possible).

2.1. Grad, div, curl. There are many natural differential operators on functions, vector
fields, and differential forms on R3 which make use of many implicit isomorphisms between
various spaces. This can make it confusing to figure out the analogs of these operators on
Riemannian 3-manifolds (or Riemannian manifolds of other dimensions). In this section
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we recall the co-ordinate free definitions of some of these operators, which generalize the
familiar case of Euclidean R3.

2.1.1. Gradient. On a smooth manifoldM , there is a natural differential operator d, which
operates on functions and forms of all orders. By definition, if f is a smooth function, df
is the 1-form such that for all vector fields X, there is an identity

df(X) = Xf

Where f is nondegenerate, the kernel of df is a hyperplane field, which is simply the tangent
space to the level set of f through the given point.

If M is a Riemannian manifold with inner product denoted 〈·, ·〉, there are natural
isomorphisms between 1-forms and vector fields (called the sharp and the flat isomorphisms)
defined by

〈α], X〉 = α(X)

for a 1-form α and a vector field X, and

X[(Y ) = 〈X, Y 〉
for vector fields X and Y . Using these isomorphisms, for any function f on a Riemannian
manifold the gradient, denoted grad(f) or sometimes ∇f , is the vector field defined by the
formula

grad(f) := (df)]

In other words, grad(f) is the unique vector field such that, for any other vector field X,
we have

〈grad(f), X〉 = df(X)

For any 1-form α, the vector field α] is perpendicular to the hyperplane field ker(α); thus
grad(f) is perpendicular to the level sets of f , and points in the direction in which f
is increasing, with size proportional to the rate at which f increases. The zeros of the
gradient are the critical points of f ; for instance, grad(f) vanishes at the minimum and
the maximum of f .

2.1.2. Divergence. On an oriented Riemannian n-manifold there is a volume form dvol,
and a Hodge star ∗ taking k-forms to (n− k)-forms, satisfying

α ∧ ∗α = ‖α‖2dvol

This does not define ∗α uniquely; we must further add that ∗α is orthogonal (with respect
to the pointwise inner product on (n−k)-forms) to the subspace of forms β with α∧β = 0.
In other words, ∗α is the form of smallest (pointwise) norm subject to α ∧ ∗α = ‖α‖2ω.

With this notation, ∗dvol is the constant function 1; conversely for any smooth function
f , we have ∗f = fdvol. If X is a smooth vector field, then (at least locally and for short
time) flow along X determines a 1-parameter family of diffeomorphisms φ(X)t. The Lie
derivative of a (contravariant) tensor field α, denoted LXα, is by definition

LXα =
d

dt

∣∣∣
t=0
φ(X)∗tα

For forms α it satisfies the Cartan formula

LXα = ιXdα + dιXα
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where ιXβ is the interior product of X with a form β (i.e. the form obtained by contracting
β with X). The divergence of a vector field X, denoted div(X) (or sometimes −∇∗X or
∇ ·X), is the function defined by the formula

div(X) = ∗(LXdvol)

By Cartan’s formula, LXdvol = dιXdvol, because dvol is closed. Furthermore, for any
vector field X we have the identity

ιXdvol = ∗(X[)

which can be verified pointwise, since both sides depend only on the values at a point.
Thus we obtain the equivalent formula

div(X) = ∗ d ∗ (X[)

The operator − ∗ d ∗ on 1-forms is often denoted d∗; likewise we sometimes we denote the
operator −div(X) by ∇∗, on the grounds that ∇∗(X) = d∗(X[). If X is a vector field and
f is a compactly supported function (which holds automatically for instance ifM is closed)
then ∫

M

〈X,∇f〉dvol =

∫
M

df(X)dvol =

∫
M

df ∧ ιXdvol

Now,
d(fιXdvol) = df ∧ ιXdvol + fdιXdvol = df ∧ ιXdvol + fdiv(X)dvol

But if f is compactly supported,
∫
M
d(fιXdvol) = 0 and we deduce that∫

M

〈X,∇f〉dvol =

∫
M

−fdiv(X)dvol

So that −div (i.e. ∇∗) is a “formal” adjoint to grad (i.e. ∇), justifying the notation.
The divergence of a vector field vanishes where LXdvol = 0; i.e. where the flow generated

by X preserves the volume.

2.1.3. Laplacian. If f is a function, we can first apply the gradient and then the divergence
to obtain another function; this composition (or rather its negative) is the Laplacian, and
is denoted ∆. In other words,

∆f = −div grad(f) = d∗df

Thus formally, ∆ is a non-negative self-adjoint operator, so that we expect to be able
to decompose the functions on M into a direct sum of eigenspaces with non-negative
eigenvalues. Indeed, if M is closed, then L2(M) decomposes into an (infinite) direct sum
of the eigenspaces of ∆, which are finite dimensional, and whose eigenvalues are discrete
and non-negative. A function f with ∆f = 0 is harmonic; on a closed manifold, the only
harmonic functions are constants.

On Euclidean space, harmonic functions satisfy the mean value property: the value of f
at each point is equal to the average of f over any round ball (or sphere) centered at f .
In general, the value of a harmonic function f at each point is a weighted average of the
values on a ball centered at that point; in particular, a harmonic function on a compact
subset of any Riemannian manifold attains its maximum (or minimum) only at points on
the frontier.
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2.1.4. Curl. Now we specialize to an oriented Riemannian 3-manifold. The operator ∗d
takes 1-forms to 1-forms. Using the sharp and flat operators, it induces a map from vector
fields to vector fields. The curl of a vector field X, denoted curl(X) (or sometimes ∇×X),
is the vector field defined by the formula

curl(X) = (∗d(X[))]

Notice that this satisfies the identities

div curl(X) = ∗ d ∗ ∗ d(X[) = 0

(because ∗2 = ±1 and d2 = 0) and

curl grad(f) = (∗ddf)] = 0

On a Riemannian manifold of arbitrary dimension, it still makes sense to talk about the
2-form d(X[), which we can identify (using the metric) with a section of the bundle of
skew-symmetric endomorphisms of the tangent space. Identifying skew-symmetric endo-
morphisms with elements of the Lie algebra of the orthogonal group, we can define curl(X)
in general to be the field of infinitesimal rotations corresponding to d(X[). On a 3-manifold,
the vector field curl(X) points in the direction of the axis of this infinitesimal rotation, and
its magnitude is the size of the rotation.

2.1.5. Flows and parallel transport. On a Riemannian manifold, there is a unique torsion-
free connection for which the metric tensor is parallel, namely the Levi-Civita connection,
usually denoted ∇ (when we mix the connection with gradient in formulae, we will denote
the gradient by grad). If X is a vector field on M , we can generate a 1-parameter fam-
ily of automorphisms of the tangent space at each point by flowing by X, then parallel
transporting back along the flowlines of X by the connection. The derivative of this family
of automorphisms is a 1-parameter family of endomorphisms of the tangent space at each
point, denoted AX . In terms of differential operators, AX := LX −∇X , and one can verify
that AXY is tensorial in Y . Thus, X determines a section AX of the bundle End(TM).

On an oriented Riemannian manifold, the vector space End(TpM) = T ∗pM ⊗ TpM is an
o(n)-module in an obvious way, and it makes sense to decompose an endomorphism into
components, corresponding to the irreducible o(n)-factors. Each endomorphism decom-
poses into an antisymmetric and a symmetric part, and the symmetric part decomposes
further into the trace, and the trace-free part.

In this language,

(1) the divergence of X is the negative of the trace of AX . As a formula, this is given
pointwise by

div(X)(p) = trace of V → ∇VX on TpM

(2) the curl of X is the skew-symmetric part of AX ; and
(3) the strain of X (a measure of the infinitesimal failure of flow by X to be conformal)

is the trace-free symmetric part of AX .
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2.2. First variation formula. LetM be a Riemannian n-manifold, and let Ω be a smooth
bounded domain in Rk. Let f : Ω → M be a smooth immersion with image Σ, and let
F : Ω × (−ε, ε) → M be a one-parameter variation supported in the interior of Ω. Let t
denote the coordinate on (−ε, ε), and let T = dF (∂t), which we think of (at least locally)
as a vector field onM generating a family of diffeomorphisms φ(T )t (really we should think
of T as a vector field along F ; i.e. a section of the pullback of TM to Ω by F ∗). Under
this flow, Σ evolves to Σ(t), and at each time is equal to F (Ω, t).

The flow T determines an endomorphism field AT along f . This endomorphism de-
composes into a skew-symmetric part (which rotates the tangent space to Σ but preserves
volume) and a symmetric part. The derivative at t = 0 of the area of an infinitesimal plane
tangent to TΣ(t) is the negative of the trace of AT restricted to TΣ. As in § 2.1.5 this can
be expressed as the trace of V → ∇V T restricted to TΣ. If ei is an orthonormal frame field
along TΣ, we obtain a formula

d

dt

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

∑
i

〈∇eiT, ei〉dvol

The integrand on the right hand side of this formula is sometimes abbreviated to divΣ(T ).
If we decompose T into a normal and tangential part as T = T⊥ + T>, this can be

expressed as
d

dt

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

div(T>) +
∑
i

〈∇eiT
⊥, ei〉dvol

where div(T>) means the divergence in the usual sense on Σ of the vector field T>, thought
of as a vector field on Σ. But

〈∇eiT
⊥, ei〉 = ei〈T⊥, ei〉 − 〈T⊥,∇eiei〉 = −〈T⊥,∇eiei〉

by the metric property of the Levi-Civita connection, and the fact that T⊥ is orthogonal to
ei. Similarly,

∫
Σ
div(T>)dvol = 0 by Stokes’ formula, because T> is compactly supported in

the interior. The sum H :=
∑

i∇⊥eiei (where ∇
⊥ denotes the normal part of the covariant

derivative) is the mean curvature vector, which is the trace of the second fundamental form,
and is normal to Σ by definition; thus 〈T⊥,

∑
i∇eiei〉 = 〈T,H〉.

Putting this together, we obtain the first variation formula:

Proposition 2.1 (First Variation Formula). Let Σ be a compact immersed submanifold of
a Riemannian manifold, and let T be a compactly supported vector field on M along Σ. If
Σ(t) is a 1-parameter family of immersed manifolds tangent at t = 0 to the variation T ,
then

d

dt

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

−〈T,H〉dvol

Consequently, Σ is a critical point for volume among compactly supported variations if and
only if the mean curvature vector H vanishes identically.

This motivates the following definition:

Definition 2.2. A submanifold is said to be minimal if its mean curvature vector H
vanishes identically.
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The terminology “minimal” is widely established, but the reader should be warned that
minimal submanifolds (in this sense) are not always even local minima for volume.
Example 2.3 (Totally geodesic submanifolds). If Σ is 1-dimensional, the mean curvature is
just the geodesic curvature, so a 1-manifold is minimal if and only if it is a geodesic.

A totally geodesic manifold has vanishing second fundamental form, and therefore van-
ishing mean curvature, and is minimal. An equatorial sphere in Sn is an example which is
minimal, but not a local minimum for volume.
Warning 2.4. It is more usual to define the mean curvature of a k-dimensional submanifold
Σ to be equal to 1

k

∑
i∇⊥eiei. With this definition, the mean curvature is the average of the

principal curvatures of Σ — i.e. the eigenvalues of the second fundamental form — rather
than their sum. But the convention we adhere to seems to be common in the minimal
surfaces literature; see e.g. [3] p. 5 or [22] p. 5.
2.3. Calibrations. Now suppose that F is a codimension 1 foliation of a manifold M .
Locally we can coorient F, and let X denote the unit normal vector field to F. For each
leaf λ of the foliation we can consider a compactly supported normal variation fX, and
suppose that λ(t) is a 1-parameter family tangent at t = 0 to fX. Then

d

dt

∣∣∣
t=0

volume(λ(t)) =

∫
λ

divλ(fX)dvol

and because X is normal, this simplifies (by the Leibniz rule for covariant differentiation)
to

d

dt

∣∣∣
t=0

volume(λ(t)) =

∫
λ

fdivλ(X)dvol

Because X is a normal vector field of unit length, it satisfies div(X) = divλ(X). Thus we
obtain the lemma:
Lemma 2.5 (Normal field volume preserving). A cooriented codimension 1 foliation F has
minimal leaves if and only if the unit normal vector field X is volume-preserving.

Now, suppose F is a foliation with minimal leaves, and let X be the unit normal vector
field. It follows that the (n−1)-form ω := ιXdvol is closed. On the other hand, it evidently
satisfies the following two properties:

(1) the restriction of ω to TF is equal to the volume form on leaves; and
(2) the restriction of ω to any (n − 1) plane not tangent to TF has norm strictly less

than the volume form on that plane.
Such a form ω is said to calibrate the foliation.

Lemma 2.6. Let F be a foliation with minimal leaves. Then leaves of F are globally area
minimizing, among all compactly supported variations in the same relative homology class.

Proof. Let λ be a leaf, and let µ be obtained from λ by cutting out some submanifold and
replacing it by another homologous submanifold. Then

volume(µ) ≥
∫
µ

ω =

∫
λ

ω = volume(λ)

where the middle equality follows because ω is closed, and the inequality is strict unless µ
is tangent to F. But µ agrees with λ outside a compact part; so in this case µ = λ. �
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Example 2.7. Let Σ be an immersed minimal (n − 1)-manifold in Rn. Let p ∈ Σ be the
center of a round disk D in the tangent space TpΣ. Let C be the cylindrical region obtained
by translating D normal to itself. Then C ∩Σ is a graph over D, and we can foliate C by
parallel copies of C ∩Σ, translated in the normal direction. Thus there exists a calibration
ω defined on C, and we see that C ∩ Σ is least volume among all surfaces in C obtained
by a compactly supported variation. But C is convex, so the nearest point projection to C
is volume non-increasing. We deduce that any immersed minimal (n − 1)-manifold in Rn

is locally volume minimizing. This should be compared to the fact that geodesics in any
Riemannian manifold are locally distance minimizing.

2.4. Gauss equations. Recall that the second fundamental form on a submanifold Σ of
a Riemannian manifold M is the symmetric vector-valued bilinear form

II(X, Y ) := ∇⊥XY

and H is the trace of II; i.e. H =
∑

i II(ei, ei) where ei is an orthonormal basis for TΣ.
The Gauss equation for X, Y vector fields on Σ is the equation

KΣ(X, Y )|X ∧ Y |2 = KM(X, Y )|X ∧ Y |2 + 〈II(X,X), II(Y, Y )〉 − |II(X, Y )|2

where |X∧Y |2 := |X|2|Y |2−〈X, Y 〉2 is the square of the area of the parallelogram spanned
by X and Y , and

K(X, Y ) :=
〈R(X, Y )Y,X〉
|X ∧ Y |2

is the sectional curvature in the plane spanned by X and Y , where R(X, Y )Z := ∇X∇YZ−
∇Y∇XZ −∇[X,Y ]Z is the curvature tensor. The subscripts KΣ and KM denote sectional
curvature as measured in Σ and in M respectively; the difference is that in the latter case
curvature is measured using the Levi-Civita connection ∇ on M , whereas in the former it
is measured using the Levi-Civita connection on Σ, which is ∇> := ∇−∇⊥.

If Σ is a 2-dimensional surface in a 3-manifold M , then we can take X and Y to be the
directions of principal curvature on Σ (i.e. the unit eigenvectors for the second fundamental
form). If we coorient Σ, the unit normal field lets us express II as an R-valued quadratic
form, and the principal curvatures are real eigenvalues k1 and k2. Since H = k1 + k2, for
Σ a minimal surface we have k1 = −k2 and

(2.1) KΣ = KM −
|II|2

2

Where |II|2 :=
∑

i,j |II(ei, ej)|2. In other words, a minimal surface in a 3-manifold has
curvature pointwise bounded above by the curvature of the ambient manifold. So for
example, if M has non-positive curvature, the same is true of Σ.

3. Second variation formula

The first variation formula shows that minimal surfaces are critical for volume, among
smooth variations, compactly supported in the interior. To determine the index of these
critical surfaces requires the computation of the second variation. In this section, we derive
the second variation formula and some of its consequences.
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3.1. Second variation formula. We specialize to the case that Σ is a hypersurface in a
Riemannian manifold. We further restrict attention to variations in the normal direction
(this is reasonable, since a small variation of Σ supported in the interior will be transverse
to the exponentiated normal bundle). Denote the unit normal vector field along Σ by
N , and extend N into a neighborhood along normal geodesics, so that ∇NN = 0. Let
F : Ω × (−ε, ε) → M satisfy F (·, 0) : Ω → Σ, and if t parameterizes the interval (−ε, ε),
there is a smooth function f on Ω×(−ε, ε) with compact support so that T := dF (∂t) = fN .
Then define Σ(t) := F (Ω, t).

Let ei be vector fields defined locally on Ω so that dF (·, 0)(ei) are an orthonormal frame
on Σ locally, and extend them to vector fields on Ω× (−ε, ε) so that they are constant in
the t direction; i.e. they are tangent to Ω× t for each fixed t, and satisfy [ei, ∂t] = 0 for all
i. By abuse of notation we denote the pushforward of the ei by dF also as ei, and think of
them as vector fields on Σ(t) for each t.

For each point p ∈ Σ corresponding to a point q ∈ Ω the curve F (q×(−ε, ε)) is contained
in the normal geodesic to Σ through p, and is parameterized by t. Along this curve we
define g(t) to be the matrix whose ij-entry is the function 〈ei, ej〉 (where we take the inner
product in M).

The infinitesimal parallelepiped spanned by the ei at each point in Σ(t) has volume√
det(g(t)). Projecting along the fibers of the variation, we can push this forward to a

density on Σ(0) which may be integrated against the volume form to give the volume of
Σ(t); thus

volume(Σ(t)) =

∫
Σ(0)

√
det(g(t))dvol

We now compute the second variation of volume. Taking second derivatives, we obtain
d2

dt2

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

d2

dt2

∣∣∣
t=0

√
det(g(t))dvol

Suppose further that Σ is a minimal surface, so that det′(g)(0) = tr(g′(0)) = 0. Then since
det(g(0)) = 1, we have

d2

dt2

∣∣∣
t=0

√
det(g(t)) =

1

2

d2

dt2

∣∣∣
t=0

det(g(t))

By expanding g(t) in a Taylor series, we can compute
1

2

d2

dt2

∣∣∣
t=0

det(g(t)) =
1

2
tr(g′′(0)) + σ2(g′(0))

where tr means trace, and for a matrixM with eigenvalues κi we have σ2(M) =
∑

i<j κiκj.

First we compute σ2(g′(0)). By definition, g′ is the matrix with entries T 〈ei, ej〉 =
〈∇T ei, ej〉+ 〈ei,∇T ej〉. But

〈∇T ei, ej〉 = 〈∇eiT, ej〉 = −〈T,∇eiej〉 at t = 0

because T is perpendicular to ej along Σ(0), so ei〈T, ej〉 = 0 at t = 0. Note that 〈N,∇eiej〉
is the ij-entry of the second fundamental form II, which is symmetric, and therefore we
obtain the formula g′(0) = −2f II. Moreover, tr(g′(0)) = 0 so

0 = tr(g′(0))2 = |g′(0)|2 + 2σ2(g′(0))
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and therefore σ2(g′(0)) = −2f 2|II|2.
Next we compute tr(g′′(0))/2. By definition, g′′/2 is the matrix with diagonal entries

1

2
T (T 〈ei, ei〉) = 〈∇T ei,∇T ei〉+ 〈∇T∇T ei, ei〉

Expanding the first term gives

〈∇T ei,∇T ei〉 = 〈∇eiT,∇eiT 〉 = |ei(f)|2〈N,N〉+ 2fei(f)〈N,∇eiN〉+ f 2〈∇eiN,∇eiN〉
Since N has unit length, the first term is |ei(f)|2, and the second term vanishes, because
the vector field ∇eiN is perpendicular to N . The operator X → ∇XN along TΣ(0) is
the Weingarten operator, a symmetric bilinear form on TΣ(0) whose matrix is −II; thus∑

i〈∇eiN,∇eiN〉 = |II|2 at t = 0, and also at t = 0 we have
∑

i |ei(f)|2 = |gradΣ(0)(f)|2.
Thus ∑

i

〈∇T ei,∇T ei〉
∣∣∣
t=0

= |gradΣ(f)|2 + f 2|II|2

Expanding the second term gives

〈∇T∇T ei, ei〉 = 〈∇T∇eiT, ei〉 = 〈∇ei∇TT, ei〉 − 〈R(ei, T )T, ei〉
Now ∇TT = f∇NfN = fN(f)N + f 2∇NN . But the integral curves of N are geodesics,
so ∇NN = 0. Thus

〈∇ei∇TT, ei〉 = ei(fN(f))〈N, ei〉+ fN(f)〈∇eiN, ei〉
But 〈N, ei〉 = 0 at t = 0, and

∑
i〈∇eiN, ei〉 = H = 0 at t = 0, so∑

i

〈∇T∇T ei, ei〉
∣∣∣
t=0

= −f 2
∑
i

〈R(ei, N)N, ei〉 = −f 2Ric(N)

And therefore 1
2
tr(g′′(0)) = |gradΣ(f)|2 + f 2|II|2 − f 2Ric(N).

Putting this together gives
d2

dt2

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

−f 2|II|2 + |gradΣ(f)|2 − f 2Ric(N)dvol

Integrating by parts gives
d2

dt2

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

〈(∆Σ − |II|2 − Ric(N))f, f〉dvol

(remember our convention that ∆ = −div grad). If we define the stability operator L :=
∆Σ−|II|2−Ric(N) (also called the Jacobi operator), we obtain the second variation formula:

Proposition 3.1 (Second Variation Formula). Let Σ be a compact immersed codimension
one submanifold of a Riemannian manifold, and let T = fN where N in the unit normal
vector field along Σ, and f is smooth with compact support in the interior of Σ. Suppose
that Σ is minimal (i.e. that H = 0 identically). If Σ(t) is a 1-parameter family of immersed
manifolds tangent at t = 0 to the variation T , then

d2

dt2

∣∣∣
t=0

volume(Σ(t)) =

∫
Σ

L(f)fdvol

where L := ∆Σ − |II|2 − Ric(N) and ∆Σ := −divΣ gradΣ is the Laplacian on Σ.
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A critical point for a smooth function on a finite dimensional manifold is usually called
stable when the Hessian (i.e. the matrix of second partial derivatives) is positive definite.
This ensures that the point is an isolated local minimum for the function. However, in
minimal surface theory one says that minimal submanifolds are stable when the second
variation is merely non-negative:

Definition 3.2. A minimal submanifold Σ is stable if no smooth compactly supported
variation can decrease the volume to second order.

Example 3.3. A calibrated surface is locally least area and therefore stable. For example,
minimal graphs.

Integrating by parts gives rise to the so-called stability inequality:

Proposition 3.4 (Stability inequality). If Σ is a stable codimension 1 minimal submanifold
of M , then for every Lipschitz function f compactly supported in the interior of Σ, there
is an inequality ∫

Σ

(
Ric(N) + |II|2

)
f 2dvol ≤

∫
Σ

|gradΣf |2dvol

3.1.1. Spectral theory of L. Stability can also be expressed in spectral terms. The operator
L is morally the Hessian at Σ on the space of smooth compactly supported normal vari-
ations. Thus, as an operator on functions on Σ, it is linear, second order and self-adjoint
on the L2 completion of C∞0 (Σ), which we denote L2(Σ).

It is obtained from the second order operator ∆Σ by adding a 0th order perturbation
−|II|2−Ric(N). The spectrum of ∆Σ is non-negative and discrete, with finite multiplicity,
and L2(Σ) admits an orthogonal decomposition into eigenspaces. The eigenfunctions are
as regular as Σ, and therefore as regular as M (since Σ is minimal), so for instance they
are real analytic if M is.

When we obtain L from ∆Σ by perturbation, finitely many eigenvalues might become
negative, but the spectrum is still discrete and bounded below, so that the index (i.e. the
number of negative eigenvalues, counted with multiplicity) is finite.

Proposition 3.5. Let Σ be compact, possibly with boundary, with a trivial normal bundle,
and let λ be the least eigenvalue for L, and Vλ the associated eigenspace. Then any nonzero
u ∈ Vλ cannot change sign. In particular, Vλ is one dimensional.

Proof. By the Rayleigh-Ritz method, we have

λ = inf
f

〈Lf, f〉
‖f‖2

= inf
f

∫
Σ
|gradf |2 − (Ric(N) + |II|2)f 2dvol

‖f‖2

over all Lipschitz f . The infimum is achieved exactly by eigenfunctions u; but if u achieves
the infimum, so does |u| (note that this implies |u| is smooth). Since |u| is non-negative,
the Harnack inequality says there is a uniform bound on the logarithmic derivative of |u|
away from ∂Σ, and therefore |u| is never zero, and |u| = ±u.

If dimVλ > 1 we can find eigenfunctions u1, u2 for which some nonconstant linear
combination changes sign somewhere, contrary to the above. �

Eigenfunctions of L with different eigenvalues are orthogonal; consequently only the
eigenfunction of lease eigenvalue does not change sign.



18 DANNY CALEGARI

Corollary 3.6. If Σ is stable with trivial normal bundle, so is any cover π : Σ̃→ Σ.

Proof. If Σ̃ is unstable, there is some compactly supported f with 〈Lf, f〉 < 0, and by
Proposition 3.5 we can take f ≥ 0 everywhere. Define g on Σ by g(p) =

∑
q∈π−1(p) f(q).

Since f is compactly supported, g is finite and compactly supported, and 〈Lg, g〉 < 0 so Σ
is unstable. �

3.1.2. Stability controls area growth. Colding-Minicozzi [4] Thm. 2.1 derive a simple upper
bound on the area growth for a stable minimal surface in a Riemannian 3-manifold.

They considerD an immersed disk inM of intrinsic radius r, and a non-negative operator
of the form ∆Σ− ν + κ+ c1KΣ where c1 > (1 + κr2)/2, and then obtain an estimate of the
form

(3.1)
area(D)

r2
+

c2

2πc1

∫
D

ν
(

1− s

r

)2

ds ≤ c2

for c2 := 2πc1/(2c1 − 1− κr2) (here s is the intrinsic radial coordinate on the disk D).
To apply this to a stable minimal surface, we can take ν = Ric(N), κ ≥ 2|KM | and

c1 = 2, at least for r sufficiently small depending on κ. For M = R3 we have ν = κ = 0
and c1 = 2 works unconditionally. In this form the estimate of Colding-Minicozzi gives:

Proposition 3.7 (Colding-Minicozzi). Let D be a stable minimal disk in R3 of radius r
in its intrinsic metric. Then

πr2 ≤ area(D) ≤ 4/3 πr2

Proof. For any minimal surface in R3, stable or not, we have K ≤ 0 pointwise, so Gauss-
Bonnet gives πr2 ≤ area(D). The other bound needs stability.

For a stable minimal surface in R3 the operator ∆Σ + 2KΣ is non-negative; i.e. for any
compactly supported test function f on Σ we have

0 ≤
∫

Σ

|gradΣf |2darea + 2

∫
Σ

KΣf
2darea

Let f(s, θ) = η(s) be a test function on D depending only on the radius s. Since f is
constant as a function of θ, we integrate out the θ direction to obtain the inequality

0 ≤
∫ r

0

(η′(s))2`(s)ds+ 2

∫ r

0

K ′(s)η2(s)ds

where K(s) denotes the integral of K over the disk D(s) of radius s, and `(s) is the length
of its boundary ∂D(s).

Now, Gauss-Bonnet says that `′(s) = 2π −K(s). Thus integrating by parts we get

0 ≤
∫ r

0

(η′(s))2`(s)ds− 2

∫ r

0

(2π − `′(s))(η2(s))′ds

Make the explicit choice η(s) := 1 − s/r so that η′ = −1/r and (η2)′ = −2/r(1 − s/r).
Substituting gives

− 1

r2

∫ r

0

`(s)ds+
4

r

∫ r

0

`′(s)(1− s/r)ds ≤ 8π

r

∫ r

0

(1− s/r)ds = 4π
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Whereas integration by parts shows

LHS =
3

r2

∫ r

0

`(s)ds =
3

r2
area(D) ≤ 4π

�

3.2. Stable complete minimal surfaces in R3 are planes. Colding-Minicozzi’s esti-
mate can be used to give a short proof of a famous theorem of do Carmo and Peng [2]:

Theorem 3.8 (do Carmo-Peng). Let x : Ω → R3 be an oriented stable complete minimal
immersion. Then x(Ω) is a plane.

Proof. By Corollary 3.6, Stability passes to covering spaces, so we may assume Ω is topo-
logically a plane. Proposition 3.7 and the coarea formula implies that `′(t) ≤ 8/3π for big
t, so the total curvature is bounded by 2/3π, and is therefore finite. But Theorem 1.10
says that the total curvature is an integer multiple of 4π, so the only possibility is that K
is identically zero, so that g is constant and x(Ω) is a plane. �

Every graph is calibrated, and therefore stable. Thus this recovers in a special case a
theorem of Bernstein that the only complete minimal graph in R3 is a plane.

3.3. Schoen’s curvature inequality. All minimal surfaces satisfy a pointwise upper
curvature bound, by equation 2.4. In general there can be no pointwise lower curvature
bounds, even for stable minimal surfaces. For example, the graph of a complex polynomial
p : C→ C in C2 is calibrated, and therefore is always a stable minimal surface. By scaling
the graph by a homothety we can find a sequence of such surfaces with K → −∞.

However in dimension three, Schoen [19] derived lower pointwise curvature bounds for a
stable minimal surface at a point far from the boundary.

Theorem 3.9 (Schoen). Let M be a closed 3-manifold, and Σ a stable minimal surface.
Given r ∈ (0, 1] and p ∈ Σ such that Br(p)∩Σ has compact closure in Σ, there is a constant
C depending only on the supremum of |KM | and |∇KM | on Br(p), and on r, such that

|II|2(p) ≤ Cr−2

Moreover, there is a constant ε > 0 depending on the same data so that Σ ∩ Bεr(p) is a
union of embedded disks.

For stable minimal surfaces in R3 this simplifies as follows:

Theorem 3.10 (Schoen). There exists a positive constant C > 0 such that for any stable
minimal surface Σ in R3 and any point p ∈ Σ with distance at least r to ∂Σ, there is an
estimate

KΣ(p) ≥ −Cr−2

Theorem 3.9 can be derived from Colding-Minicozzi’s Equation 3.1. Theorem 3.10 follows
from Theorem 3.8 as follows: a sequence of stable minimal surfaces in R3 with Kr2 → −∞
can be rescaled so that K → −1 (say) and r → ∞. The limit is a proper stable minimal
surface which is not a plane; this is a contradiction.

Schoen’s Theorem implies a kind of compactness property for stable minimal surfaces,
and has many applications to the theory of 3-manifolds. It implies that in a fixed (closed)
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3-manifold M , any sequence of stable minimal surfaces Σi with points pi ∈ Σi at which
the Σi have injectivity radius ≥ r, has a subsequence that converges on compact subsets
to a stable minimal surface

4. Existence of minimal surfaces

In this section we discuss techniques to demonstrate the existence of minimal surfaces
satisfying certain geometric and topological conditions.

4.1. Björling’s Problem and the Schwarz surface. The following is known historically
as Björling’s Problem:
Problem 4.1 (Björling). Given a real analytic curve γ in R3 and a real analytic unit
normal vector field ν along γ, construct a minimal surface Σ containing γ, with normal
field extending ν.

This problem was solved by Hermann Schwarz, using techniques from complex function
theory. His solution is as follows. Suppose γ : I ⊂ R ⊂ C → R3 is parameterized to be
unit speed. Then ν × γ′ is a unit normal vector field along γ that must be tangent to such
a surface Σ and perpendicular to ν.

Now, since γ and ν are real analytic, they admit holomorphic extensions γC, νC : Ω→ C3

for some open neighborhood Ω of I in C. If we let z denote the complex coordinate on Ω,
and define

x(z) := Re
{
γC(z)− i

∫ z

0

νC(ω)× γ′C(ω)dω

}
then x has coordinates which are harmonic functions of z, and x(t) = γ(t) along I.

If we define
xC(z) := γC(z)− i

∫ z

0

νC(ω)× γ′C(ω)dω

then γ′(z) = Rex′C(z) = x′ and Imx′C(z) = −ν(z) × γ′(z) along γ(I). Hence 〈x′C, x′C〉
vanishes identically on I, and therefore also on Ω (because it is holomorphic). But if we
define x′C = (φ1, φ2, φ3) this implies the φj satisfy the minimal surface equation, and x
solves the Björling Problem.

In fact, if we run this argument in reverse, it is easy to see that x defines the most
general form of a solution to the Björling Problem. From this one obtains the following
corollaries:
Corollary 4.2 (Schwarz). (1) Every straight line contained in a minimal surface is an

axis of rotational symmetry of the surface; and
(2) if a minimal surface intersects a plane perpendicularly, then that plane is a plane

of reflectional symmetry of the surface.
These corollaries follow immediately from the symmetry of the surface and the Schwarz

reflection principle (which was invented historically in exactly this context).
This corollary motivates the search for real analytic minimal surfaces Σ bounded by a

Schwarz chain; i.e. a cyclic sequence of straight line segments and flat planes, where we
insist that ∂Σ should contain each straight line segment, and be perpendicular to each
flat plane. Such a surface can then be continued indefinitely by repeated reflection and
rotation in the planes and segments.
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Example 4.3 (Schwarz surface). We describe in detail a beautiful classical example discov-
ered by Schwarz.

Conider the quadrilateral in R3 composed of four straight segments between the four
vertices A,B,C,D in cyclic order of a regular tetrahedron. For example, we could take

A = (1, 1, 1), B = (1,−1,−1), C = (−1,−1, 1), D = (−1, 1,−1)

We seek a piece of minimal surface Q that is topologically a disk, and is bounded by this
quadrilateral. See Figure 2.

Figure 2. The quadrilateral Q

At each vertex the surface Q has a corner with an angle of 60◦. The surface may be
continued by rotating copies of Q around each boundary edge successively. Thus, six copies
of Q fit together around each vertex, three of them pointing ‘up’ and three pointing ‘down’.
By repeated applications of the reflection principle, Q may be continued to a triply periodic
properly embedded surface Σ̃ in R3 called the D surface. To say that it is triply periodic
means that there is a lattice Λ of translations in R3 leaving Σ̃ invariant. The quotient
Σ̃/Λ = Σ is a closed surface of genus 3, that we may think of as an embedded minimal
surface in the 3-torus R3/Λ. Note that Λ is isomorphic to Z3 as an abstract group.

The symmetries of Σ̃ and Σ will let us determine the functions g, f in the Weierstrass–
Enneper parameterization explicitly (see § 1.5).

First we consider g, which we think of as the Gauss map g : Q → S2 under the usual
stereographic identification of S2 with CP1. Because ∂Q is the union of four straight
segments AB,BC,CD,DA, the normals to Q along ∂Q are segments of great circles in
S2. In fact, these great circles are precisely four of the six great circles one obtains by
extending the (geodesic) edges of a spherical “cube”. Thus, the images of A,B,C,D under
g are the vertices of one face of a regular cube inscribed in S2, and g(Q) is a regular
spherical quadrilateral with angles of 120◦ at each vertex. By extension we get g : Σ→ S2,
which is a double branched cover, with branch points the eight vertices of an inscribed
cube. Four of these vertices are the images of A,B,C,D under g. They are the points

±
√

3− 1√
2

and ±
√

3− 1√
2

i
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The other four vertices are

±
√

3 + 1√
2

and ±
√

3 + 1√
2

i

We denote these eight points by ωj for j = 1, · · · , 8.
To simplify matters we use the Gauss map g itself to define holomorphic coordinates on

Σ, at least where it is nonsingular. By abuse of notation we write f = F (g) where f is
as in the Weierstrass–Enneper parameterization. Since ∞ is not a branch point for g, the
1-form F (g)dg should have a zero of order 2 at g =∞, and should therefore be of the form
F (ω) ∼ ω−4 near infinity. Since it has order 2 branch points at the ωj the only possibility
is

F (ω) :=
K∏

j(ω − ωj)1/2
=

K√
ω8 − 14ω4 + 1

for some as yet undetermined constant K.
To determine K we need to evaluate the periods of the one forms

φ1 =
K(1− ω2)

2
√
ω8 − 14ω4 + 1

dω, φ2 =
iK(1 + ω2)

2
√
ω8 − 14ω4 + 1

dω, φ3 =
Kω√

ω8 − 14ω4 + 1
dω

on the surface Σ.
Taking K real ensures that the periods of the φj are pure imaginary on three suitable

generators for the homology of Σ; taking K imaginary makes the period pure imaginary on
the other three generators, and produces a conjugate triply periodic surface, called the P
surface. In 1968, Alan Schoen [18], an engineer at NASA, discovered that taking K = eiθ

where θ ∼ 0.66348 gives another triply-periodic embedded surface, known as the gyroid,
or G surface, which contains neither straight lines nor planes of reflection symmetry.

Figure 3. Associates of Q in the P and G surfaces

4.2. Plateau problem. The Plateau problem asks for the surface of least area spanned
by a given closed Jordan curve Γ (in R3 if nothing more is specified). In this formulation
the topology of the surface is unspecified; also left in the air is the question whether the
surface should be embedded or not. Finally, unless Γ is rectifiable we cannot expect it to
bound any surface of finite area, in which case it seems meaningless to ask for one of ‘least’
area.
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Thus to simplify matters we insist first that Γ should be rectifiable, second that the
surface we are seeking should be topologically a disk, and thirdly that we do not insist that
the surface is embedded or even immersed. In other words we give the Plateau problem
the following formulation:

Problem 4.4 (Plateau). Given a rectifiable Jordan curve Γ in R3, construct a map

x : B → R3

from the closed unit disk to R3 so that x : ∂B → Γ is an orientation-preserving homeo-
morphism, and so that x is a generalized minimal surface on B.

Recall from Proposition 1.4 that x|B is a generalized minimal surface providing it is
conformal (i.e. xu ⊥ xv and |xu|2 = |xv|2 everywhere) and the coordinate functions are
harmonic (i.e. ∆x = 0).

The solution, due to Douglas [5] and independently to Rado [15], is to find a suitable
class C(Γ) of maps x : B → R3 with good compactness properties, and to show that the
minimizer of a certain functional in C(Γ) solves Plateau’s problem. The trick is to decide
on the correct functional. The function A(x) which assigns to a map the area of its image
is no good for several reasons. First of all, there are too many symmetries: any reparame-
terization of the domain produces a map with the same area. Second, the area functional
is too degenerate: a map of a disk can be modified dramatically by adding ‘hair’ with very
small 2-dimensional measure but very large diameter. Understanding and controlling the
geometric limits of such objects is subtle. Douglas’s idea was to use a different functional
D(x), which measures energy instead of area; the minimizer of this functional at once
finds the surface with the smallest area, and the most efficient parameterization. A similar
philosophy is familiar in the theory of Riemannian geometry, where we seek to minimize
energy rather than length to define geodesics.

4.2.1. The Dirichlet integral and the class C∗(Γ). Naively we could start by defining C(Γ)
to be the class of maps from the closed disk to R3, smooth in the interior, which restrict to
orientation-preserving homeomorphisms ∂B → Γ. However, limits of sequences of smooth
maps are rarely smooth, and limits of homeomorphisms are not always homeomorphisms.

Thus we extend the class C(Γ) in two ways: first we allow maps which on B are in L2;
this means the Dirichlet integral

D(x) :=
1

2

∫
B

|xu|2 + |xv|2dudv

is finite (where the derivatives are taken in the sense of distribution). The quantity D(x)
is called the energy of the map x, and formalizes the physical intuition of elastic energy of
a membrane. Second we allow maps for which ∂B → Γ is merely monotone; this means
that it is surjective, and the point preimages are connected. A monotone map between
circles might degenerate the cyclic order of triples of points, but it does not reverse them.
It will turn out that a generalized minimal surface whose boundary parameterization is
monotone is actually a homeomorphism; we return to this in the sequel.

A further source of noncompactness comes from the group of symmetries of D. The
integrand of D is invariant under conformal reparameterizations of the domain; thus if ϕ :
B → B is any (orientation-preserving) conformal automorphism, we have D(x) = D(x◦ϕ).
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The group of conformal automorphisms of the unit disk is noncompact. Therefore it makes
sense to break this symmetry by choosing three points p1, p2, p3 ∈ ∂B and three points
q1, q2, q3 ∈ Γ in the same cyclic order, and restricting to the class C∗(Γ) of maps as above
for which x(pj) = qj.

4.2.2. Harmonic extension of boundary values. Now, for a given monotone map x : ∂B → Γ
there is a unique extension to x : B → R3 which minimizes D(x), namely the harmonic
extension; i.e. the map for which all the coordinate functions are harmonic. If we identify
B with the hyperbolic plane, and ∂B with the circle at infinity, any measurable function
f on ∂B extends to a unique harmonic function on the interior as follows. At each point
p ∈ B exponentiation of geodesics defines a bijection between the unit tangent vectors
UTpB to p and ∂B. Under this identification the value of the extension at p is equal to
the average of f on ∂B with respect to the angular measure on UTpB.

If xi → x measurably on ∂B, their harmonic extensions converge also, and if by abuse
of notation we use the same symbol to denote these extensions, then D(xi)→ D(x) when
these quantities are finite.

Now there is one last source of potential non-compactness we must contend with. An
orientation-preserving homeomorphism y : ∂B → Γ determines its graph g(y) ⊂ ∂B×Γ. If
we think of ∂B×Γ as a torus, the graph g(y) is a (1, 1)-curve that intersects every meridian
and every longitude in exactly one point. Any sequence of homeomorphisms yj : ∂B → Γ
has a subsequence for which the graphs g(yj) converge to some (1, 1)-curve g, but g might
have horizontal or vertical segments; see Figure 4.

Figure 4. the black curve is the graph of a homeomorphism; the red curve
is the limit of a sequence of graphs but has both horizontal and vertical
segments

A horizontal segment is where the limiting map is monotone but not locally injective;
a vertical segment indicates a discontinuity. Note that because we have normalized our
boundary maps to take pj to qj, a limiting map cannot consist solely of the union of a
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meridian and a longitude. In other words, a vertical segment in the limit graph, if it exists,
has distinct endpoints.

Our concern is for the possible appearance of vertical segments in g, since such a g is not
the graph of a continuous function. So suppose we have a sequence of orientation-preserving
homeomorphisms xi : ∂B → Γ for which the graphs g(xi) accumulate on a vertical segment.
If we let x : ∂B → Γ denote the merely measurable map which is a pointwise limit of the
xi then the vertical segment indicates that there is some point q ∈ ∂B for which the left
and right limits x±(q) exist and are not equal.

Since x is measurable, it still has a harmonic extension. We claim that for such an x,
the harmonic extension has D(x) =∞, and therefore D(xi)→∞. To see this, we use the
conformal invariance of D. Let ϕ be a conformal automorphism of B which is a hyperbolic
isometry with attracting fixed point q and repelling fixed point r. Consider the harmonic
extensions of the sequence of maps xn := x ◦ ϕn. The boundary maps converge to a step
function taking the two values x± on the intervals of ∂B − {q, r}. Let y be the harmonic
extension of this step function. If we let B(1/2) denote the ball of radius 1/2, then

1

2

∫
B(1/2)

|yu|2 + |yv|2dudv = K > 0

Choose ϕ as above so that the translates ϕn(B(1/2)) are all disjoint. We can estimate

D(x) ≥
∑
n

1

2

∫
B(1/2)

|xnu|2 + |xnv |2dudv

But when n is big, each of the integrals has value close to K. Hence D(x) = ∞, proving
the claim.

Now let xj ∈ C∗(Γ) be a sequence of maps with D(xj) → infx∈C∗(Γ)D(x). By the
discussion above, there is a subsequence whose restriction to ∂B converges to a map x :
∂B → Γ which is continuous and monotone. For each xj, let yj denote the harmonic
extension of xj|∂B. Then D(yj) ≤ D(xj) and yj → y, the harmonic extension of x. Thus

D(y) = limD(yj) = inf
x∈C∗(Γ)

D(x)

4.2.3. Energy versus Area. What is the relation between D(x) and A(x), the area of the
surface x(B)? We can write

A(x) :=
1

2

∫
B

|xu × xv|dudv

Comparing integrands pointwise, we see that A(x) ≤ D(x) with equality iff xu ⊥ xv and
|xu| = |xv| everywhere; i.e. precisely if x is conformal.

From this it follows that any y which minimizes the Dirichlet integral in C∗(Γ) is confor-
mal and, since it is also harmonic, it is minimal. For, suppose y is not conformal. Then we
have A(y) < D(y). But we can pull back the conformal structure on the image y(B), and
using the fact that the resulting surface is conformally equivalent to the standard disk, we
can find a (quasiconformal) homeomorphism ϕ : B → B so that y ◦ ϕ is conformal, and
lies in C∗(Γ).



26 DANNY CALEGARI

Now, reparameterizing a surface does not change its area, so A(y ◦ ϕ) = A(y). On the
other hand, since y ◦ ϕ is conformal,

D(y ◦ ϕ) = A(y ◦ ϕ) < D(y)

contrary to the assumption that y minimized D.
We have almost solved Plateau’s problem, in that we have constructed a generalized

minimal surface y with boundary on Γ, except that a priori y|∂B might not be a home-
omorphism but merely monotone. It turns out this possibility cannot occur. If y were
constant on some interval I ⊂ ∂B we could apply the reflection principle to continue y
across I. But this would give a minimal surface which is constant on an interval in the
interior, which is impossible.

Note by this discussion that the map y we obtain is also a global minimizer for A.
Putting this together we deduce:

Theorem 4.5 (Douglas-Rado). Any rectifiable Jordan curve Γ in R3 is the boundary of
a generalized minimal surface with the topology of the disk, which furthermore minimizes
area among all disks with boundary Γ.

Figure 5. A minimal disk bounding an approximation of a Hilbert curve
in the boundary of a cube

4.2.4. Morrey’s theorem. The Douglas-Rado theorem was generalized in 1948 by Morrey
[11]. A Riemannian manifold M is said to be homogeneously regular if there is a uniform
upper bound on the sectional curvature KM , and a uniform lower bound on the injectiv-
ity radius (note that this implies M is complete). For example: any closed Riemannian
manifold, or any covering space of such a manifold, is homogeneously regular.

A proof of Morrey’s theorem parallel to Douglas’ argument can be carried out by intro-
ducing the energy E(f) of a map f : B →M with ∂f : ∂B → Γ, a quantity that generalizes
the Dirichlet integral whenM is Euclidean space. An f extending ∂f and minimizing E(f)
is said to be harmonic, and a map that is harmonic and conformal is minimal. Morrey’s
argument is more indirect than this sketch indicates, but a proof along these lines can be
obtained by the (more general) methods outlined in § 4.4.
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4.3. Branch points and Gulliver-Osserman’s Theorem. A generalized minimal sur-
face x : Ω → R3 is and immersion away from an isolated set of branch points where dx
vanishes. These branch points come in two kinds:

(1) p ∈ Ω is a false branch point if there is a neighborhood U of p so that x(U) is a
smooth embedded surface; and

(2) p ∈ Ω is a true branch point otherwise.
A false branch point is really an artefact of the parameterization.

We say a minimal surface is locally least area if its area cannot be strictly decreased by an
arbitrarily small compactly supported variation. A locally least area surface is necessarily
stable, but not conversely. In high dimensions locally least area surfaces can have branch
points, but for surfaces in dimension three, one has the following:

Theorem 4.6 (Gulliver-Osserman). A locally least area surface in a 3-manifold has no
interior branch points.

The history of this theorem is that Osserman [13] showed that a locally least area disk
in R3 has no true branch points, and then Gulliver [8] extended this result to all branch
points, and to all 3-manifolds.

The fundamental idea is as follows. Near a true branch point p, Osserman shows a
minimal surface must have a transverse arc α of self-intersection. Let us leave the proof of
this for the moment, and indicate how to modify the map along α near p.

The case of a branch point of ‘order 2’ is easiest to understand, and is indicated in
Figure 6. On the left is an immersed disk with an arc α of intersection emanating from
a single branch point p. On the right is a pair of embedded disks which osculate along a
single point on the boundary. We may cut out a neighborhood as in the left, replace it
with a neighborhood as on the right, and modify a map of a surface locally so as to reduce
area. One way to think of this modification is that we have taken the branch point p and
‘pushed’ it along the arc α where the single branch sheet crosses itself, unzipping the arc of
self-intersection and regluing to make two non-singular arcs on the top and bottom sheet.

Figure 6. Push the branch point along an arc of self-intersection and
smooth to reduce area

The modification of the domain is indicated in Figure 7. On the left we have the disk
whose diameter maps to α by a two-to-one map branched over the midpoint, which maps to
p. We cut open the disk along this diameter, and ‘buckle’ it outwards to form a diamond-
shaped hole, then collapse the diamond along the other axis to form two disks.

Note that this modification can be performed whenever there is a branch point p that
ends at an arc of intersection α with (at least) two disjoint preimages in the domain.
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Figure 7. A disk is cut along a diameter, to form a diamond-shape hole
which buckles out and then collapses to form two disks

To demonstrate the existence of a transverse arc of self-intersection, Osserman considers
the Weierstrass parameterization near a branch point in terms of holomorphic functions f
and g. Let the branch point be the origin (in the domain), and suppose that the order of
vanishing of f and g at the origin are l and m respectively. Then Osserman shows ([13],
eq. 3.13 and 3.14) that if we choose a local holomorphic co-ordinate w on the domain so
that g(w) = wm, the coordinates xj of the map have the form

(4.1) x1 + ix2 = alw
l + · · ·+ al+2m−1w

l+2m−1 +

(
al+2mw

l+2m − l

l + 2m
alw

l+2m

)
+ · · ·

and

(4.2) x3 = Re
{

l

l +m
alw

l+m + · · ·
}

for certain coefficients aj.
From the form of this equation one can show either that x multiply covers its image

(i.e. we are at a fake branch point) or there is a δ > 0 with the following property:
whenever 0 < |w1|, |w2| < δ are distinct points with the same image x(w1) = x(w2), then
g(w1) 6= g(w2); i.e. the surface intersects itself transversely.

It follows that sufficiently near the branch point, the subset where the surface intersects
itself consists of a discrete collection of pairs of real analytic arcs. For topological reasons
there must be self-intersections arbitrarily near the branch point; thus if we analytically
continue the (finitely many!) pairs of arcs of self-intersection within the disk |w| < δ, at
least one pair can be continued all the way to 0.

Thus the minimal surfaces constructed by Douglas have no interior branch points.

4.4. Minimal surfaces in Riemannian manifolds. Let M be a closed Riemannian
manifold, and let f : Σg → M be a continuous map where Σg is a closed oriented surface
of genus g. It is natural to ask: when is there a map h : Σg → M , homotopic to f , for
which h(Σg) is a minimal surface?

A rather satisfying answer was obtained independently by Schoen-Yau [20] and Sacks-
Uhlenbeck [17]:

Theorem 4.7 (Schoen-Yau, Sacks-Uhlenbeck). Let M be a closed Riemannian manifold.
Suppose that f : Σg → M is a continuous map such that f∗ : π1(Σg) → π1(M) has no
conjugacy class corresponding to an essential simple closed curve in the kernel. Then there
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is a map h : Σg → M for which h(Σg) is a branched minimal surface, and such that h
induces the same map as f on π1.

If π2(M) = 1 we may take h to be homotopic to f . Finally, if M has dimension 3 then
h can be chosen to have no branch points.

The basic strategy is very close to that of Douglas. If we fix a marked conformal structure
φ on Σg, we can look for a harmonic map fφ : Σg → M in the homotopy class of f . A
harmonic map is one which minimizes energy; a harmonic map which is conformal is
minimal.

To construct fφ we must understand convergence properties of sequences of maps with
energy bounds; a limit might ‘bubble off’ spheres; cutting off these spheres changes the
homotopy class of the map by an element of π2(M).

Varying the marked conformal structure leads us to confront the non-compactness of the
Teichmüller space T of marked conformal structure on Σg. It is here that we make use of
the hypothesis that f∗ should be injective on essential simple curves.

Finally we observe that the surface we obtain is locally least area; thus if M is 3-
dimensional, Theorem 4.6 of Gulliver-Osserman implies that h has no branch points.

4.4.1. Harmonic maps. We discuss briefly the setup for the theory of harmonic maps be-
tween Riemannian manifolds, as developed by Eells-Sampson [6].

For a smooth map f : N → M between Riemannian manifolds, the energy of f is the
functional

E(f) :=
1

2

∫
N

|df |2dvol

The integrand |df |2/2 is the energy density of f . Here we are thinking of df as a section
of the bundle T ∗N ⊗ f ∗(TM), so that if ei is an orthonormal basis for TN at a point p,
then |dfp|2 =

∑
|dfp(ei)|2. Scaling the metric on N at p by λ scales |df |2 by λ−2 and dvol

by λd where d is the dimension of N . Thus if N is a surface, E(f) depends only on the
conformal structure on the domain.

Let F : N × (−ε, ε)→M be a smooth 1-parameter family of maps with ft := F (·, t) so
that f0 = f and ft = f outside a compact set. Let X = dF (∂t) and if ei is an orthonormal
basis of TN locally, let Yi(t) := dft(ei). Note that X and the Yi are commuting sections of
F ∗TM and therefore ∇XYi = ∇YiX for each i, where ∇ is pulled back from the Levi-Civita
connection on TM .

By abuse of notation we use X and Yi to refer to the restrictions of these vector fields
in f ∗TM over N × 0.

We compute

d

dt

∣∣∣
t=0
E(ft) =

∫
N

∑
i

〈Yi,∇XYi〉dvol =

∫
N

∑
i

〈Yi,∇YiX〉dvol

Area is invariant under tangential variations, but energy is not. We define a 1-form α on
N which (up to the canonical identification of 1-forms and vector fields via the metric) is
the pullback of the tangential part of X. Thus: let α be the 1-form on N defined pointwise
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by α(V ) := 〈X, df(V )〉. Then α] is a vector field on N with divergence

divα] =
∑
i

ei(α(ei))− α(∇eiei) =
∑
i

ei〈X, Yi〉 − 〈X, df(∇eiei)〉

=
∑
i

〈∇YiX, Yi〉+ 〈X,∇YiYi − df(∇eiei)〉

Define the tension by the formula

τ(f) :=
∑
i

∇df(ei)df(ei)− df(∇eiei)

where the sum is taken over an orthonormal basis ei pointwise (more intrinsically we could
write τ(f) = tr∇df). Note that this is a vector field along f(N). Since X is compactly
supported, divα] integrates to zero, and we obtain the first variation formula

d

dt

∣∣∣
t=0
E(ft) = −

∫
N

〈X, τ(f)〉dvol

for any smooth compactly supported variation tangent to X. In particular, f is a critical
point for E if and only if τ = 0. Such a map is called harmonic.

Example 4.8. If N and M are Kähler manifolds (for example, if they are nonsingular
projective varieties with the induced metric), every holomorphic map f : N → M is
harmonic. To see this, observe that at a point p in N , if we choose geodesic normal co-
ordinates at p and f(p) the tension operator reduces (in local co-ordinates) to the usual
Laplacian. But for Kähler manifolds we can choose geodesic local co-ordinates which are
the same time holomorphic co-ordinates, and then use the fact that for a Kähler manifold
holomorphic functions are harmonic (in the usual sense).

For a conformal map f : N →M , if e′i is an orthonormal frame on M with df(ei) = λe′i
then

τ(f) =
∑
i

λ2∇e′i
e′i + λe′i(λ)e′i − df(∇eiei)

so the normal part toM of the tension field is pointwise proportional to the mean curvature.
Comparing with the first variation formula for area (i.e. Proposition 2.1) we see that a
harmonic map which is conformal is minimal.

Conversely, let us suppose that N = Σ is 2-dimensional. Let f : Σ → M be harmonic
but not conformal. There is another surface Σ′ with a Riemannian metric and an area-
preserving diffeomorphism h : Σ′ → Σ so that f ◦h : Σ′ →M is conformal. It is elementary
that wherever f fails to be conformal, the energy density of f ◦ h is strictly smaller than
that of f , and therefore E(f ◦ h) < E(f). In fact, one easily sees that for any f : Σ→M
the area of f is less than or equal to the energy, with equality if and only if f is conformal.

We conclude that a map f : Σ → M that minimizes energy in its homotopy class over
all choices of conformal structure on the domain is both harmonic and conformal, and
is consequently a (locally least area) minimal surface. As a special case, any harmonic
f : S2 →M is conformal and thus minimal.
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4.4.2. Bubbling off. For maps f : N → Rn the energy is the sum of the L2 norm of
the coordinate functions, and a map is harmonic if each coordinate function is harmonic
in the usual sense. If fi : N → R is a sequence of smooth functions with uniformly
bounded energy, a limit (if it exists) might be no more regular that L2. Rather than
attempt to adapt the theory of Sobolev spaces to maps between Riemannian manifolds,
it is convenient to appeal to a famous theorem of Nash that every Riemannian manifold
M can be isometrically embedded in some high dimensional Rn. Then for a smooth map
f : N → M the energy of f is the same as the energy of the composition N → M → Rn,
and it makes sense to talk about L2 limits of sequences of maps. Note that a map f : N →
M ⊂ Rn is harmonic (as a map to M) if the tension field (as a map to Rn) is normal to
M .

From now on we specialize to the case that the domain is Σ, a surface, mapping to a
compact Riemannian manifold M .

Let’s fix a homotopy class of map, and look for a sequence of maps fi : Σ → M in this
homotopy class whose energies converge to the infimum. Since E(fi) is bounded, there
is a subsequence which converges weakly and pointwise almost everywhere to an L2 map
f : Σ → M for which E(f) ≤ limE(fi). To say the subsequence converges weakly means
that for every L2 map g we have∫

Σ

〈dfi, dg〉dvol→
∫

Σ

〈df, dg〉dvol

Note that at this point we do not know if f is continuous, or in case it is, that it is in the
desired homotopy class.

Energy can go down in a limit if a definite amount of energy of fi becomes concen-
trated in a sequence of smaller and smaller regions Ui that shrink to a collection of points.
Conformally rescaling fi near such a limit point gives a sequence of maps whose domains
converge to C, and after reparameterization by a diffeomorphism we may assume (reducing
the energy in the process) these maps are themselves conformal. The energy density of the
resulting maps might blow up and we can iterate this process, obtaining a ‘tree’ of finite
energy harmonic maps from punctured spheres to M in the limit.

This situation is analyzed carefully by Sacks-Uhlenbeck. They show [16] Thm. 3.6 that
a finite area harmonic map from a punctured disk to a Riemannian manifold may be
extended smoothly to a harmonic map over the puncture, and thus the limit map fills in
over the punctures of each sphere to give a harmonic map S2 → M . They are able to
obtain therefore a limit f defined on a new domain Σ, called a bubble tree. It is built from
Σ by attaching ‘depth 1’ spheres at the points where the energy density blows up in Σ,
then attaching ‘depth 2’ spheres where the energy density blows up in the the depth 1
spheres, and so on. The spheres in Σ are the bubbles, and they carry the energy that has
‘bubbled off’ from Σ.

The restriction of f to each sphere S2 in Σ is a (nonconstant) harmonic map, and is
therefore a minimal surface. If M is compact, there is a uniform upper bound on KM and
therefore by Gauss-Bonnet a positive lower bound on the area — hence the energy — of
f restricted to each sphere in the tree. It follows that the number of bubbles in the tree is
finite, and Σ admits the natural structure of a nodal Riemann surface.
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Cutting off bubbles changes the map f by elements of π2. Thus the restriction f to Σ is
a harmonic map that might not be homotopic to the fi, but induces the same map on π1

(the details of the proof of this claim depend on a careful analysis of convergence to the
bubble tree, ruling out the possibility that each bubble might be attached to the next by
vanishingly thin ‘necks’ of positive diameter; see Parker [14]).

4.4.3. Variation in Teichmüller space. In the previous sections we have indicated the proof
that for any continuous f : Σ → M , and for each fixed marked conformal structure φ on
Σ, there is a harmonic map fφ : Σ→M inducing the same map on π1 as f . We may now
ask how fφ varies as a function of φ. If fφ is not conformal, we may reduce its energy by
a diffeomorphism of the domain whose composition with fφ is conformal. Thus we will
obtain a minimal surface if we can find a φ which realizes the infimum of E(fφ).

Let φi be a sequence of marked conformal structures on Σ; i.e. homotopy classes of
diffeomorphisms φi : Σ → Si where Si is a Riemann surface, and let fi : Si → M be
harmonic, so that φi ◦ fi induces the same map on π1 as f . Suppose further that E(fi)
converges to the infimum. We would like to argue that φi converges to some φ ∈ T(Σ), the
Teichmüller space of Σ.

There are two sources of non-compactness: that coming from the conformal structures
on Si, and that coming from the marking.

First we show that the Si lie in a compact subset of moduli space. This means that there
is a uniform upper bound on the moduli of embedded annuli in Si. Let A be an annulus
in some Si conformally equivalent to a Euclidean cylinder S1 × [0, R]. We want a bound
on R. Let’s denote the restriction of fi to A by h : S1 × [0, R] → M . By hypothesis, the
core circle of the annulus maps to a homotopically nontrivial loop in M ; therefore there
is a positive constant ` > 0 so that the map ht : S1 → M defined by ht(θ) = h(θ, t) has
length at least `, and therefore E(ht) ≥ `2/4π by Cauchy-Schwarz. Hence

E(fi) ≥ E(h) ≥
∫ R

0

E(ht)dt ≥ R`2/4π

so an upper bound for E(fi) gives an upper bound on R, and the claim is proved.
The noncompactness of Teichmüller space is more serious, since it can easily happen

that energy is not proper on T.
Example 4.9. Any α ∈ π1(M) which normalizes the image of π1(Σ) will induce an outer
automorphism of any marking of Σ. For example, ifM is a surface bundle over a circle with
fiber homeomorphic to Σ, dragging Σ around the circle direction induces the monodromy
action on the marking.

It turns out that the conjugation action of the normalizer of f∗π1(Σ) in π1(M) accounts
for all the non-properness of the energy functional E on T.

Returning to our family of marked conformal structures φi : Σ→ Si and harmonic maps
fi : Si → M with E(fi) converging to the infimum, we have already argued that the Si
must lie in a compact subset of moduli space. Fix a subsequence with Si → S in moduli
space. For each i there is a family of simple based loops Γi in Si that generate π1(Si),
and we can choose such loops so that Γi → Γ ⊂ S; this induces a family of homotopy
equivalences ϕi : Si → S; note that we do not assume these maps are consistent with the
markings φi; i.e. ϕi ◦ φi need not be homotopic to ϕj ◦ φj for i 6= j.
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As in § 4.4.2 some subsequence of the fi converges away from finitely many points (where
energy might bubble off in trees of spheres) to f : S → M . In particular, for large i, j
the maps fi ◦ ϕ−1

i and fj ◦ ϕ−1
j induce the same maps on π1(S) → π1(M), and a free

homotopy of the image of the basepoint under fi ◦ φi to the image under fj ◦ φj gives an
element of π1(M) normalizing f∗(π1(Σ)). It follows that we can find a new sequence of
markings (φ′i, Si) in a compact subset of Teichmüller space converging to (φ′, S) so that
f ◦ φ′ : Σ→M is a minimal surface satisfying the conclusion of Theorem 4.7.

5. Embedded minimal surfaces in 3-manifolds

Theorem 4.7 allows us to construct immersed minimal surfaces in 3-manifolds under very
general hypotheses on the fundamental group. However, for applications it is sometimes
important for surfaces to be embedded. In this section we describe results which guarantee
the existence of embedded minimal surfaces certain isotopy classes.

5.1. Embedded minimal disks with prescribed boundary. Let Γ ⊂ M be an em-
bedded Jordan curve in a closed 3-manifold M . If Γ is null-homotopic, Morrey’s theorem
shows that there is a least area f : D → M with f : ∂D → Γ a homeomorphism. Note
by Gulliver-Osserman f has no interior branch points. It is natural to ask: under what
conditions is f an embedding?

Even for Γ ⊂ R3 this is a subtle question. One necessary condition is that Γ should
be unknotted — i.e. it should bound some embedded disk. However this condition is not
sufficient.

Example 5.1 (Almgren-Thurston [1]). There is an unknotted Γ ⊂ R3 that does not bound
an embedded disk within its convex hull.

Proposition 5.2 (Total curvature ≤ 4π). Let Γ ⊂ R3 be a Jordan curve with total geodesic
curvature at most 4π. Then Γ bounds an embedded minimal disk.

5.2. Mean convex boundary.

Definition 5.3. LetM be a compact 3-manifold with smooth boundary ∂M . We say that
M is mean convex if the mean curvature field H along ∂M does not point out of M , and
M is strictly mean convex if H is nonzero everywhere on ∂M and points in to M .

For example, a convex subset of R3 is mean convex. Likewise, a small enough round ball
in any Riemannian manifold is mean convex.

Mean convexity is the right boundary condition to put on a manifold in order to ensure
the existence of minimal surfaces.

Theorem 5.4 (Meeks-Yau [10], Thm. 1). Let M be a mean convex 3-manifold, and let
Γ ⊂ ∂M be an embedded Jordan curve that is null-homotopic in M . Then Γ bounds a least
area disk in M , and any such disk is properly embedded.

Proof. The first step is to show that there is an immersed least area disk f : B →M with
f : ∂B → Γ. To do this we embed M as a codimension 0 submanifold of a Riemannian
manifold N that is homogeneously regular in the sense of Morrey (see § 4.2.4) so that there
is f : B → N with f : ∂B → Γ, and then reason a posteriori that f(B) ⊂M .
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By perturbing the metric on M very slightly near the boundary, we may assume ∂M
is strictly convex. We let N := M ∪∂M ∂M × [0,∞) where we put the product metric
on ∂M × [0,∞). This is a C0 Riemannian metric, and will not typically be smooth along
∂M = ∂M × 0. We give a collar neighborhood of ∂M in M the structure of a product
∂M × (−ε, 0] by exponentiating the unit normal field. Then the entire ∂M × (−ε,∞) ⊂ N
has a metric of the form g(t) ⊕ dt2 where g(t) is a C0 family of metrics on ∂M , and
g(t) = g(0) for t > 0. We define a new C∞ family of metrics h(t) on ∂M by averaging
g (pointwise as a function of t) with respect to a smoothly varying family of smooth
probability measures φt centered at t and with support equal to (−ε,∞). The mean
curvature of ∂M × t at each point (p, t) ∈ ∂M × (−ε,∞) with respect to the h(t) metric is
(to first order) a weighted average of the mean curvatures in the g(t) metric at nearby (p, s);
in particular, the end of N is foliated by strictly mean convex surfaces. Then if f : B → N
is minimal and not contained in M , it has an interior point of tangency with some strictly
mean convex surface, violating minimality. We conclude f : B → M . Since our metric on
M is as close to the original metric as desired, we can obtain minimal f : B → M (in the
original metric) as a suitable limit.

The second step is to show that any least area disk whose boundary is embedded is itself
embedded. If the manifold and the map are simplicial with respect to some triangulation,
one can build a tower as in Papakyriakopolos’ proof of Dehn’s Lemma, where the map
of the disk lifts to each step of the tower, and where at the top step the map has only
simple self-intersections; at this step one can perform cut-and-paste to build a new map
with the same area but which is singular along the self-intersections — such a map cannot
be minimal, thus a posteriori there could have been no self-intersections at the top of the
tower, and therefore none at all: i.e. the original map was an embedding.

If M and Γ are real analytic, so is the minimal surface, and everything can be taken
to be simplicial, and the argument goes through. Approximating the original metric and
curve by real analytic ones we obtain the desired result. �

The first step of the argument has nothing to do with disks per se, and can be used to
construct minimal surfaces in 3-manifolds with mean convex boundary.

A nice application is the so-called bridge principle:

Corollary 5.5 (Bridge Principle; Meeks-Yau [10]). If X and Y are two strictly stable
two-sided minimal surfaces in R3 and α is an arc joining their boundaries, there is a new
stable minimal surface Z that is close to X ∪ Y attached by a ‘bridge’ along α.

We indicate the idea of the proof. Suppose first that X and Y are embedded, and that
α is disjoint from both except at the endpoints. We round α at the endpoints so it is
normal to ∂X, ∂Y and then build a 3-manifoldM which is the union of rounded thickened
neighborhoods NX and NY of X and Y with a thickened neighborhood Nα of α.

Since X is minimal it has mean curvature 0. Let f be an eigenfunction for the stability
operator L of least eigenvalue, and recall that f is nowhere zero. We can push X in the
normal direction by a distance ±tf for small t to produce X(±t). Intuitively, since X is
stable and f is an eigenfunction, the variation increases area locally to second order every-
where; hence X(±ε) for small enough ε has mean curvature pointing in to X everywhere,
and together they bound NX which is mean convex (NY is constructed similarly).
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A sufficiently thin tube Nα around α has arbitrarily large principle curvatures along
the meridians into the tube, and therefore the entire boundary is mean convex. Finally,
the frontier where Nα meets NX and NY can be rounded and modeled on catenoids; the
result is the desired mean convex 3-manifold M .

We can build a Jordan curve Γ in ∂M by attaching a 1-handle along the tube from ∂X
to ∂Y , and then span this by a surface Z in the desired homotopy class; we can assume Z
is least area in M , and therefore Z is stable in R3.

If X and Y are not embedded we can nevertheless build M as above together with an
immersion into R3.

Using the bridge principle, Hall [9] showed that one cannot replace ‘least area’ with
‘stable’ in Theorem 5.4.

Example 5.6 (Hall [9]). There is an embedded Jordan curve on S2 that bounds an immersed
stable minimal disk that is not embedded. To see this, take two copies of the equator and
perturb them slightly. They bound a pair of (almost horizontal) disks; by the bridge
principle there is a stable minimal disk D1 obtained by attaching a small 1-handle to these
two disks. This stable minimal disk is not least area; a least area disk D2 is contained near
a narrow strip around the equator. Now perturb the boundaries of D1 and D2 slightly
so that D1 intersects D2 transversely, but their boundaries are disjoint in S2. By the
bridge principle we can tube these disks together to make D stable and not embedded,
with embedded boundary. See Figure 8.

Figure 8. A self-intersecting stable disk with embedded boundary on the
boundary of a convex set

5.3. Embedded incompressible surfaces and the roundoff trick.

Theorem 5.7 (Freedman-Hass-Scott [7] Thm. 5.1). Let M be a closed irreducible Rie-
mannian 3-manifold, and let Σ be a closed surface of non-positive Euler characteristic. Let
f : Σ → M be a least area immersion which is π1-injective, and such that f is homotopic
to a two-sided embedding g. Then either

(1) f is an embedding; or
(2) f double covers a one-sided minimal surface K embedded in M , and g(Σ) bounds

a twisted I-bundle over a surface isotopic to K.
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An irreducible 3-manifold has trivial π2, by the sphere theorem. If g : Σ → M is a
π1-injective embedding, Theorem 4.7 guarantees the existence of a homotopic immersed
minimal surface f : Σ → M in the same homotopy class. Conversely, a two-sided embed-
ding g : Σ → M which is injective on essential simple curves is π1-injective. Thus we can
find f satisfying the hypothesis of Theorem 5.7 under many circumstances.

In the sequel we give a brief outline of the argument, following [7] which should be
consulted for details.

5.3.1. Cut and paste and the roundoff trick. Let Σ be a 2-sided oriented immersed surface
in a Riemannian 3-manifoldM (we do not assume Σ is connected), and suppose Σ intersects
itself transversely in double curves and isolated triple points.

If there are no triple points, the self-intersection locus Γ is a union of circles, and we can
perform cut and paste along some circle γ. This means that we cut Σ along the preimage
of γ, and reattach the local sheets by a permutation compatible with the orientations. The
resulting surface is no longer immersed; it has a corner along the preimage of γ. This
corner can be rounded, reducing the number of self-intersections and reducing area; this
is called the roundoff trick. The resulting surface Σ′ then satisfies area(Σ′) < area(Σ), has
no triple points of self-intersection, and has fewer curves of self-intersection than Σ.

Under suitable topological conditions it might happen that Σ′ as above is homotopic to
Σ, so that we can deduce that any Σ as above is not least area in its homotopy class.

5.3.2. Intersections near a tangency. One of the subtleties of applying cut and paste and
the roundoff trick is that (self)-intersections of minimal surfaces in 3-manifolds need not
be in general position. Nevertheless one can give a normal form for the intersection near
points of tangency, which we now describe.

Let Σ be a 2-sided oriented immersed minimal surface in a 3-manifold and let Σ1, Σ2 be
two embedded sheets in Σ that intersect at a point p of common tangency.

It turns out there is a choice of local C1 coordinates x, y, z with p at the origin, in which
Σ1 is the x–y plane, and Σ2 looks like the graph of Re ((x+ iy)n) for some n.

For surfaces in R3 this can be deduced from the Weierstrass parameterization, and is
analagous to (but simpler than) Osserman’s model near an interior branch point; compare
§ 4.3. In an arbitrary Riemannian 3-manifold one must appeal to the general theory of
quasilinear second order elliptic PDE; see [7] Lemma 1.4 and 1.5.

Using this local model, we can perform cut and paste and roundoff for Σ as follows. First,
either Σ factors through a covering map, or the points of self-tangency are isolated (we
assume we are in the second case). Let p be a point where Σ intersects itself transversely,
and suppose there is a neighborhood N(p) with the property that cut and paste and
roundoff supported in N(p) will reduce area by at least ε > 0. We perturb Σ to Σ′ by
a perturbation supported outside N(p) in such a way as to remove all the points of self-
tangency; this can be done in such a way that area(Σ′) < area(Σ)+ε. Assuming there are no
triple points, we can now perform cut and paste and roundoff on Σ′, producing a new surface
Σ′′ with fewer double curves, where by hypothesis area(Σ′′) ≤ area(Σ′)− ε < area(Σ).

5.3.3. Embedded surfaces in homotopy equivalences. If M is closed and irreducible and
f : Σ→ M is π1-injective, we can lift f to fΣ : Σ→ MΣ, where MΣ is the covering space
of M with fundamental group equal to f∗π1(Σ). Then MΣ is noncompact, but is complete
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with respect to the metric pulled back from M , and fΣ is a homotopy equivalence (in fact,
MΣ is necessarily homeomorphic to Σ × R, but that is not essential for what follows). In
this context we have the following:

Proposition 5.8 ([7] Thm. 2.1). Let M be an oriented Riemannian 3-manifold without
boundary, and let f : Σ → M be a homotopy equivalence, where Σ is a closed oriented
surface other than S2. If f is least area in its homotopy class, then it is an embedding.

Proof. In the sequel we use homology with Z/2Z coefficients.
If Σ is embedded, we are done, so we suppose to the contrary that Σ is not embedded.
Since f is a homotopy equivalence, it is an isomorphism on homology, and therefore if N

is a regular neighborhood of f(Σ), the map Σ → N is injective on homology. Since M is
homotopic to Σ and without boundary, it has two ends, which are separated by the image
of Σ. Thus ∂N contains an ‘upper boundary’ A which cobounds one of the ends, and
B := ∂N −A contains the ‘lower boundary’ which cobounds the other end. In particular,
if g : M → Σ is a homotopy inverse to f , then A → M → Σ and B → M → Σ are both
degree one, and therefore A and B both have rank H1 at least as large as Σ.

We now argue separately depending on whether H1(Σ)→ H1(N) is surjective or not.

Case 1: H1(Σ)→ H1(N) is surjective.

For any compact 3-manifold, H1(∂N) → H1(N) kills a half-dimensional subspace. We
conclude that A and B have the same rank of H1 as Σ, and since A → M → Σ is degree
one, A is homeomorphic to A′ together with a collection of spheres, where A′ → M → Σ
is a homotopy equivalence. Likewise there is B′ ⊂ B where B′ → M → Σ is a homotopy
equivalence.

Since Σ is not embedded, by cut and paste and suitable roundoff we can find a neigh-
borhood N with area(∂N) < 2 area(Σ), so that either A′ or B′ violates the hypothesis that
Σ is least area in its homotopy class.

Case 2: H1(Σ)→ H1(N) is not surjective.

In this case we apply a tower argument. We relabel M , N and f : Σ → N as M0,
N0 and f0 : Σ → N0. Since f0 : H1(Σ) → H1(N0) is not surjective, there is a degree 2
cover p1 : M1 → N0 and a lift f1 : Σ → M1 with regular neighborhood N1 → M1. If
H1(Σ) → H1(N1) is not surjective, we pass to another cover, and repeat; each nontrivial
lift produces fj with fewer self-intersections than before, so that the tower terminates at
fk : Σ→Mk with neighborhood Nk and H1(Σ)→ H1(Nk) an isomorphism.

Some homological algebra ([7] Cor. 2.3) shows that ∂Nk = Ak ∪ Bk each homologous
to fk(Σ). Thus, as above, there are A′k ⊂ Ak and B′k ⊂ Bk each homeomorphic to Σ
and mapping down to M in the homotopy class of f . At least one has area less than Σ
unless fk is an embedding. But if fk is an embedding then since pk has degree 2, the map
pk ◦ fk : Σ→Mk−1 has no triple points, and after a small perturbation has only embedded
double curves of self-intersections. Thus as in § 5.3.2 we can do cut and paste and roundoff
to produce a surface in the same homotopy class with smaller area. This completes the
argument. �

5.3.4. Least area property under coverings.
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5.4. Sweepouts and index one surfaces.

5.5. Combinatorial minimal surfaces.
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