
Big Mapping Class Groups and Complex
Dynamics

Danny Calegari

University of Chicago, Chicago, Ill 60637 USA
E-mail address : dannyc@math.uchicago.edu

Preliminary version – July 31, 2019



Preliminary version – July 31, 2019



Contents

Preface 7

Part 1. Theory 9

Chapter 1. The Shift 11
1.1. Annuli 11
1.2. Pants, Slots, Shifts 13
1.3. Skinning and Realization 14
1.4. Multipliers 16
1.4.1. Multipliers 16
1.4.2. Dynamical cocycles 16
1.4.3. Multiplier inequalities 16
1.5. Multishifts and Splitting 16
1.5.1. Multishifts 16
1.5.2. Branched surfaces 17
1.5.3. Splitting 17
1.5.4. Splitting and Embedding 18
1.5.5. Building Multishifts 18
1.5.6. Extensions 19
1.5.7. Spherical extensions 20
1.5.8. Euclidean extensions 20
1.6. Topology of Teichmüller space 20
1.7. Moduli and MCG 20

Chapter 2. MCG of the plane minus a Cantor set 21
2.1. Embeddings of a Cantor set 21
2.2. Some closely related groups 23
2.3. Orderability 24
2.4. Trees, Coarsenings and Pantscades 25
2.4.1. The braid group of n-coarsenings 25
2.4.2. Rotation and Association 25
2.5. Braiding 25
2.6. Ray graphs 25
2.6.1. Definition and examples 25
2.6.2. Coarsening 26
2.6.3. Bavard’s Hyperbolicity Theorem 26
2.7. Some examples of dynamics 28

3

Preliminary version – July 31, 2019



4 CONTENTS

2.8. Gromov boundary of the Ray graph 28
2.8.1. Conical cover and the circle of geodesics 28
2.8.2. Cliques 30
2.8.3. Gromov boundary as a quotient 30
2.9. Inverse limits 30
2.10. Endomorphisms 31
2.11. Shift-invariant Cantor braids 31
2.11.1. Tuning 31

Chapter 3. Renormalization 33
3.1. Asymptotic self-similarity 33
3.2. Lei–Misiurewicz points 33
3.3. Cantor braids in the torus 33

Chapter 4. A Bestiary of Big Mapping Class Groups 35

Part 2. Examples and Applications 37

Chapter 5. The Shift Locus 39
5.1. Definition 39
5.2. Surfaces out of Böttcher Paper 39
5.2.1. Böttcher coordinates 39
5.2.2. Analytic continuation 40
5.2.3. Böttcher models 40
5.2.4. Böttcher space and realization 41
5.2.5. Laminations 42
5.2.6. Green coordinates and Squeezing 42
5.2.7. Examples in low degree 43
5.3. The topology of Sd 45
5.3.1. A CW complex structure on Sd/R 45
5.3.2. Low dimensional cells of the dual complex 47
5.3.3. Tuning 47
5.3.4. Xd(1) is a K(Bd, 1) 47
5.3.5. Colored shift space 48
5.3.6. N̂d as an iterated fibration 49
5.3.7. Monodromy representation 49
5.3.8. S3 as a link complement 49
5.3.9. Higher degree 51
5.3.10. Sd is a K(π, 1) 53
5.4. Algebraic geometry 53
5.4.1. Cactus shifts 53
5.4.2. Examples in low degree 55
5.4.3. Proof of Theorem 5.4.5 56
5.5. Monodromy 56
5.5.1. Representations to braid groups 56
5.5.2. The braid group of dn-coarsenings 57

Preliminary version – July 31, 2019



CONTENTS 5

5.5.3. The monodromy representation is injective 57
5.5.4. Landing rays and the action on the Ray graph 57
5.6. Real Shift locus 57
5.6.1. Examples 57
5.6.2. Local connectivity 58

Chapter 6. Linear IFS 59

Chapter 7. Holomorphic foliations 61
7.1. Holomorphic vector fields 61

Chapter 8. Schottky groups 63
8.1. Handlebodies 63

Chapter 9. Roots 65

Acknowledgments 67

Bibliography 69

Preliminary version – July 31, 2019



Preliminary version – July 31, 2019



Preface

7

Preliminary version – July 31, 2019



Preliminary version – July 31, 2019



Part 1

Theory

Preliminary version – July 31, 2019



Preliminary version – July 31, 2019



CHAPTER 1

The Shift

This section consists of the analysis of a very simple but fundamental family of complex
dynamical systems that we call shifts. Although the domain of definition of a shift is a
Riemann surface of infinite type (actually, a disk minus a Cantor set), every shift admits
a canonical extension to a dynamical system in D.

1.1. Annuli

Since the Riemann surfaces we consider are of infinite type, it’s important to get some
kind of control on their holomorpic geometry. One elementary method involves the moduli
of annuli.

Let 0 ≤ r < R ≤ ∞ and let A(r, R) denote the annulus in C∗ consisting of the set of z
with r < |z| < R. An annulus is round if it is of the form A(r, R). The modulus of A(r, R)
is

M(A(r, R)) :=

{
log(R/r) if 0 < r < R <∞
∞ otherwise

If A is any Riemann surface homeomorphic to an annulus, then it can be uniformized as
A(r, R) for some r, R and the modulus of A, denoted M(A), is by definition equal to the
modulus of A(r, R).

An annulus has infinite modulus if and only if at least one end is holomorphically
equivalent to a puncture. Two annuli with finite modulus are holomorphically equivalent
if and only if the moduli are the same.

The following Lemma is well-known:

Lemma 1.1.1 (Reverse triangle inequality). Let A be an annulus with M(A) finite,
and suppose A1, A2 are disjoint annuli contained in A so that each inclusion Ai → A
is a homotopy equivalence. Then M(A) ≥ M(A1) + M(A2) with equality if and only if
α := A− (A1 − A2) is a circle, and the uniformization of A takes α to a round circle.

Proof. This can be proved by extremal length. �

Definition 1.1.2. Let U be a planar connected Riemann surface, and let α ⊂ U be a
properly embedded arc. A holomorphic embedding U → A is essential on α if α is properly
embedded in A and intersects the core of A transversely in one point. Define

M(U, α) := inf
A

M(A)

where the infimum is taken over all essential holomorphic emdeddings U → A.

Definition 1.1.3 (Modulus of separation). Let Ω be a connected Riemann surface and
let X, Y ⊂ Ω be disjoint compact contractible subsets of Ω. Let [α] be a homotopy class of

11
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12 1. THE SHIFT

proper paths in Ω− (X ∪ Y ) from X to Y . The modulus of separation of X and Y along
[α], denoted MΩ(X, Y, [α]), is the supremum

MΩ(X, Y, [α]) := sup
(U,α)

M(U, α)

over all embedded arcs α in the class of [α] properly contained in planar open sets U ⊂
Ω− (X ∪ Y ). We omit the subscript Ω if it is understood.

The modulus of separation is monotone with respect to inclusion:

Lemma 1.1.4. If X ∪ Y ∪ α ⊂ Ω′ ⊂ Ω then

MΩ(X, Y, [α]) ≥MΩ′(X, Y, [α])

Proof. Every planar U in Ω′ is also in Ω. �

Corollary 1.1.5. If Ω is planar then

MΩ(X, Y, [α]) = M(Ω− (X ∪ Y ), α)

The following two lemmas give us techniques to estimate M(X, Y ).

Lemma 1.1.6 (disjoint annuli). Let X and Y be disjoint compact contractible subsets
of Ω, and suppose there is an embedded arc α from X to Y and a family of disjoint annuli
Ai so that α intersects each Ai transversely in a single point. Then

M(X, Y, [α]) ≥
∑
i

M(Ai)

Proof. The union of the Ai with a neighborhood of α is a planar surface U in which α
sits properly. If (U, α)→ A is a holomorphic embedding in an annulus, essential on α then
the Ai are all disjoint essential annuli in A. By Lemma 1.1.1 we have M(A) ≥

∑
M(Ai)

and therefore M(U, α) ≥
∑

M(Ai). �

Lemma 1.1.7 (two points finite). Let X and Y be disjoint compact contractible subsets
of Ω. If Ω̃ is the universal cover of Ω, and α̃ is a lift of α running between lifts X̃, Ỹ of
X, Y then

MΩ(X, Y, [α]) ≤MΩ̃(X̃, Ỹ , [α̃])

In particular, if X and Y both have at least two points, MΩ(X, Y, [α]) is finite for any
embedded α from X to Y .

Proof. Let U be open and planar in Ω − (X ∪ Y ) containing α, and let Ũ be the
cover of U in Ω containing α̃. Then Ũ is planar, because Ω̃ is either a plane or a sphere.
Now, Ω̃ − (X̃ ∪ Ỹ ) is already planar, so we can embed it holomorphically in Ĉ, and then
Ĉ− (X ∪ Y ) is an annulus with finite modulus (because X and Y both have at least two
points). �

Remark 1.1.8. Every finite type Riemann surface has a finite dimensional moduli
space, and Fenchel–Nielsen coordinates on its universal cover (i.e. Teichmüller space) are
the analog of moduli of annuli as we’ve defined them. For arbitrary Ω and contractible sub-
sets X, Y some proper homotopy classes [α] do not contain any embedded representative,
and in fact there may be no representative that’s contained in a planar subsurface of Ω.
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1.2. PANTS, SLOTS, SHIFTS 13

Nevertheless, sometimes some representative is contained in a subsurface Σ of finite type,
and one can define moduli of separation in terms of the uniformization of such subsurfaces.

However, in every case, the noncompactness of these finite dimensional moduli spaces
arises from the existence of embedded annuli of bigger and bigger moduli, and therefore it
can be detected by the more naive tools we’ve introduced here.

1.2. Pants, Slots, Shifts

We begin with the definitions of pants and slots.

Definition 1.2.1 (Pants). A k-pants P is a (marked) disk with k holes.The boundary
of the disk is called the waist, and the other k boundary components are called the cuffs.
We denote the waist by ∂0P or just ∂0 if P is understood, and the jth cuff by ∂jP or ∂j. A
k-pants is analytic if it has the structure of a Riemann surface with real analytic boundary.

A 2-pants is colloquially known as a pair of pants. One doesn’t want to think too hard
about this analogy when k > 2, but if one must, let’s call them monkey pants.

Definition 1.2.2 (Slot). For k ≥ 1 a k-slot is the data of an analytic k-pants P ,
and for 1 ≤ j ≤ k real analytic orientation-reversing diffeomorphisms fj : ∂0 → ∂j called
insertions.

A slot is like a kind of operad. We can build a Riemann surface from copies of P by
gluing new copies along the cuffs of the old by the insertions fj. We denote the set of fj
by the letter f where this does not cause ambiguity. Let’s formalize this.

Construction 1.2.3 (Slot to shift). Given a k-slot (P, f) we can build a Riemann
surface Ω as follows. Let Γ be the free semigroup on k fixed generators, and let’s fix an
identification between elements of Γ and finite strings γ on the alphabet {f1, · · · , fk}. We
take the product P × Γ and glue each P × γ to the k surfaces P × γfj by the maps fj.
Formally, Γ acts by right multiplication on the product P ×Γ and we let Ω be the quotient
under the identification (x, γfj) ∼ (fj(x), γ) for x ∈ ∂0 and γ ∈ Γ.

Since P is analytic and the fj are real-analytic diffeomorphisms, Ω admits the natural
structure of a Riemann surface. Furthermore, Ω is homeomorphic to a disk minus a Cantor
set. Let E := {1, · · · , k}N. This is a Cantor set, which may be canonically identified with
the space of ends of Γ, or equivalently with the space of ends of Ω.

Finally, the left action of Γ on itself gives an action on P × Γ which descends to an
action on Ω. By abuse of notation we denote the generators by fj : Ω → Ω and observe
that they are holomorphic injections with disjoint image.

We call the holomorphic dynamical system (Ω, f) the shift obtained from the slot (P, f),
and conversely we call (P, f) the fundamental domain for (Ω, f).

Which holomorphic dynamical systems (Ω, fj) arise as shifts obtained from slots? The
answer is given in the next lemma.

Lemma 1.2.4 (Fundamental domain is slot). Let Ω′ be a connected Riemann surface
with boundary ∂0. Let fj : Ω′ → Ω′ be holomorphic injections with disjoint image. Let P
denote the closure of Ω′−∪jfj(Ω′). Suppose P is a k-pants. Then the restriction (P, f) is
a slot, and if Ω ⊂ Ω′ is the shift obtained from P , then either
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14 1. THE SHIFT

(1) Ω′ = Ω; or
(2) Ω′ is a disk identified in a natural way with the (topological) end-completion of Ω.

In other words, Ω′ = Ω ∪ E.

Proof. The fj generate an action of a semigroup Γ. We claim first of all that this
action is free. Equivalently, the translates of P are interior disjoint. By induction, for each
γ ∈ Γ, the translates fjγ(Ω) are all disjoint and contained in γ(Ω) and the complement of
their union in γ(Ω) is γ(P ). This proves the claim.

Next we define Ω := ∪γγ(P ) ⊂ Ω′. We claim second of all that Ω′ − Ω is totally
disconnected.

Suppose not. Let Y be a small round ball in Ω′ − Ω and let X be a small round
ball in P near ∂0. Let α be an embedded arc from X to Y . By Lemma 1.1.7 we have
M(X, Y, [α]) <∞.

On the other hand, every end of Ω corresponds to an infinite sequence γi ∈ Γ. Any arc
α from X to Y must exit some end of Ω. If A is an annulus in P separating ∂0 from every
fj∂0 then any arc in the homotopy class of α from X to Y must intersect all the translates
γi(A). We can choose α embedded that intersects the core of every γi(A) transversely in
exactly one point. Then by Lemma 1.1.6

M(X, Y, [α]) ≥
∑
i

M(γi(A)) =
∑
i

M(A) =∞

This contradiction proves the claim.

It follows that Ω′ − Ω is totally disconnected, and may therefore be identified with a
subset of E. But the action of Γ on E is minimal, so Ω′ − Ω is either empty or equal to
E. �

1.3. Skinning and Realization

Let (Ω, f) be the k-shift obtained from a k-slot (P, f). For any proper extension (Ω′, f)
with ∂Ω′ = ∂Ω, Lemma 1.2.4 says that Ω′ is a disk, homeomorphic to the end completion
of Ω.

Now, the end completion of Ω always exists as a topological space, but it is not a priori
clear that it can be given the structure of a Riemann surface compatibly with the action
of the fj. However, it turns out that such an Ω′ always exists and is unique.

Let D denote the unit disk in C.

Definition 1.3.1 (Realization). A realization of a k-shift (Ω, f) is a holomorphic em-
bedding ψ : Ω→ D with complement a Cantor set Λ so that the fj extend to holomorphic
injections from D to D.

By abuse of notation we will denote the extensions of fj to D also by fj.
A realization of a k-shift is a dynamical system (D, f), and the Cantor set Λ is the limit

set (equivalently: the attractor, or the Julia set) of the dynamical system.

Theorem 1.3.2 (Realization Exists). Let (Ω, f) be a k-shift. Then there is a realization
ψ : Ω→ D, unique up to composition with a Möbius transformation of the disk.
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1.3. SKINNING AND REALIZATION 15

Proof. Existence is proved by skinning. Uniqueness is proved the same way.
Let (P, f) be the fundamental k-slot for (Ω, f). Choose once and for all three points

on ∂0P in cyclic order. Let T denote the set of holomorphic embeddings P → D sending
∂0 to S1 and the three marked points to the third roots of unity. Define a (Teichmüller)
distance on T as follows. Given two maps ψ1 : P → D, ψ2 : P → D then

dT(ψ1, ψ2) =
1

2
inf
φ

log(dilatation of φ)

where the infimum is taken over all quasiconformal maps φ from D to D such that φψ1 and
ψ2 agree on S1.

Define the skinning map σ : T → T as follows. Given ψ we define σ(ψ) by cutting out
the disks of D−ψ(P ), gluing back k new copies of D by the insertions fj, and uniformizing
the result. By construction the map σ(ψ) : P → D extends holomorphically to P ∪j fj(P ),
and we can push forward fj to holomorphic maps from ψ(P ) to D. By abuse of notation
we denote these pushforwards also by fj. Notice further that for any word τ of length at
most n in the fj the map τ pushes forward to τ : σn(ψ)(P )→ D.

We prove the following two claims:
(1) σ is strictly distance decreasing; and
(2) every orbit of σ is bounded.

Together these claims imply that σ is uniformly distance decreasing on every orbit, and
therefore has a unique fixed point Ψ, and for any other ψ the orbit σn(ψ) must converge
to Ψ at a geometric rate.

The first claim is standard. If φ : D → D is extremal for ψ1, ψ2 then we may obtain
σ(φ) : D → D by extending the identity map on P by φ on each of k disks glued to the
cuffs by the fj. Then σ(φ) and φ have the same dilatation, but the dilatation of σ(φ) may
be reduced slightly by relaxation.1

We now prove the second claim. The fj restrict to maps from the waist to the cuffs of
P . Pushing these maps forward by ψ gives maps fj from S1 to the images of the cuffs by
ψ. We construct Fj : D→ D with the following properties:

(1) Fj agrees with fj on S1;
(2) the maps Fj are quasiconformal;
(3) there is a uniform K for which every element of the semigroup generated by the

Fjs is K-quasiconformal.
Of course there is no difficulty in finding Fj satisfying the first two bullets; all the subtlety
is in the third bullet, that we can uniformly control the quasiconformality of any finite
composition.

Let Dj be the regions in D bounded by ψ(cuffs), and inductively for each word τ in Γ
let Dτj be the subdisks of Dτ equal to the images of Dj under τ as defined so far. Now,
for all words τ of length 2 let Dτ be a round disk, and let Fj restricted to Dτ be linear, i.e.
of the form z → αz + β for some |α| < 1 and β satisfying the topological requirements.
Evidently any composition in Fj is the composition of a word of length at most 2 with a
linear map, and therefore these are all uniformly quasiconformal.

1isometries of universal Teichmüller space
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16 1. THE SHIFT

Let L be the limit set of the Fj in D and let ∆ be the complement. Then ψ : P → D
extends uniquely to a map ψ : Ω → ∆ conjugating fj to Fj, and by construction ψ as
above is K-quasiconformal.

When we apply the skinning map to replace ψ by σ(ψ) we can construct new maps
F 1
j : D→ D as above by defining F 1

j to be equal to fj on P , and to be equal to the conjugate
of Fj by f on D − σ(ψ)(P ). The maps F 1

j have a new limit set L1 with complement ∆1

and get a new ψ1 : Ω→ ∆1 also K-quasiconformal, conjugating fj to F 1
j .

Continue by induction to define F n
j , L

n,∆n. Because each F n
j is actually linear on

a neighborhood of Ln, these limit sets all have Hausdorff dimension strictly less than 2
and therefore Lesbesgue measure 0. Consequently the maps ψn(ψm)−1 extend uniquely to
maps from D to D which are 2K-quasiconformal. Furthermore, these maps take σm(ψ) to
σn(ψ). In particular, the σn(ψ) all lie in a compact subset of T and therefore σ is a strict
contraction on the orbit of ψ. This proves the claim and the theorem. �

1.4. Multipliers

1.4.1. Multipliers. Let (Ω, f) be a k-shift. Fix some basepoint p ∈ ∂. By Theo-
rem 1.3.2 there is a canonical extension to (D, f) where D is a disk. For each j the map
fj : D → D has a unique fixed point pj, and we denote λj := f ′j(pj). The quotient of D−pj
by fj is an annulus, whose universal cover can be uniformized as C∗. This determines for
each j a unique holomorphic embedding ej : Ω → D → Ĉ taking pj to 0 and p to 1, and
conjugating fj to the map z → λjz. We call λ := {λj} the (set of) multipliers of the
k-shift. Note that 0 < |λj| < 1.

1.4.2. Dynamical cocycles.

1.4.3. Multiplier inequalities. The Schwarz Lemma says if f : D→ D is any holo-
morphic map, then at any interior fixed point p we have |f ′(p)| ≤ 1 with equality if and
only if f is an isomorphism. If f is a holomorphic injection, the Koebe 1/4 Theorem (due
to Bieberbach!) says that if we change coordinates so that p = 0 then the image f(D)
contains the disk of Euclidean radius at least |f ′(0)|/4.

If fj : D → D is a collection of holomorphic maps with disjoint images and (unique)
fixed points pj then each |f ′j(pj)| < 1 but otherwise these numbers can be arbitrary. On
the other hand, the functions |f ′j| are subject to several norm inequalities that we call
multiplier inequalities which can be thought of as a generalization of the Schwarz Lemma.

First of all, by disjointness of images we have
∫
D
∑

j |f ′j|2darea < 1. More subtly, if r
is the Hausdorff dimension of the limit set Λ then

∫
Λ

∑
j |f ′j|rdHr ≤ 1, where Hr denotes

r-dimensional Hausdorff measure.

1.5. Multishifts and Splitting

1.5.1. Multishifts.

Definition 1.5.1 (Multislot). A multislot is a real analytic surface P which is a finite
disjoint union of pants (called a multipants) and a collection of real analytic orientation-
reversing diffeomorphisms f from the waists of P to the cuffs of P (called insertions) so
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1.5. MULTISHIFTS AND SPLITTING 17

that every waist is the domain of at least one insertion, and every cuff is the range of
exactly one insertion.

The insertions f generate a free semigroupoid Γ, where two insertions f1 f2 are com-
posable if the range of f2 is in the pants containing the domain of f1. Parallel to Con-
struction 1.2.3 we can build a Riemann surface Ω by taking the product P × Γ and gluing
P × γ to P × γfj by (x, γfj) ∼ (fj(x), γ) when this makes sense. The Riemann surface Ω
is homeomorphic to a finite union of disks minus Cantor sets, one for each component of
P . The left action of Γ on itself gives an action on Ω, which we denote (Ω, f) and call the
result the multishift obtained from (P, f).

The Realization Theorem 1.3.2 holds for multishifts, and with the same proof via skin-
ning.

1.5.2. Branched surfaces. It is convenient to describe Multislots in the language of
branched surfaces. A branched surface is a certain kind of 2-complex assembled by gluing
surfaces (sheets) together along graphs (the branch locus) together with a choice of co-
orientation along the branch locus so that it makes sense to distinguish between the sheets
that are incoming and the sheets that are outgoing on either side. For an introduction to
the theory of branched surfaces, especially as used in 3-manifold topology, see e.g. [20] or
[11].

The branched surfaces that arise in this theory are very special in the context of the
general theory.

Definition 1.5.2 (Shift-like branched surface). A compact branched surface B whose
sheets are Riemann surfaces with real analytic branch locus is shift-like if it satisfies the
following properties:

(1) the branch locus is an embedded collection of cirles;
(2) each sheet is a planar surface with exactly one boundary component where the

co-orientation points inwards, and at least two boundary components where the
co-orientation points outwards;

(3) at each branch circle there is exactly one outgoing sheet and at least two incoming
sheets.

Given a multislot (P, f) we glue waists to cuffs by the maps f . The result is a shift-
like branched surface B. Conversely given a shift-like branched surface B we can cut it
open along the branch locus into its constituent sheets P . These sheets are pants, and the
co-orientation determines which is the waist. Remembering how these sheets were glued
together in B determines maps f giving (P, f) the structure of a multislot. Thus there is
a precise correspondence between multislots and shift-like branched surfaces.

Lemma 1.5.3. A branched surface B corresponds to a slot if and only if it has exactly
one branch circle.

Proof. There is a bijection between branch circles of B and components of P . �

1.5.3. Splitting. Since branched surfaces and multislots are equivalent, the advantage
of working with one over the other is more about psychology than mathematics.
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18 1. THE SHIFT

Construction 1.5.4 (Elementary Splitting). Let B be a shift-like branched surface,
and let γ be a component of the branch locus. Let S be the sheet on the outgoing side of
γ and let R ⊂ S be a subsurface with ∂R ∩ branch locus = γ; in other words, the surface
R is not allowed to have other boundary components in the branch locus.

The operation of elementary splitting B along R is a new branched surface B′ obtained
as follows. Suppose there are k > 1 incoming sheets Si along γ. Cut R out of B. Take
k disjoint copies of R and glue Si to the ith copy of R along γ. Then glue every other
boundary component of every copy of R to wherever it was originally glued in B.

For each subset of the Si with cardinality 1 we get a copy of γ with exactly one incoming
and one outgoing sheet, so we can erase this copy from the branch locus. On the other
hand, any component of ∂R that was not in the branch locus in B becomes part of the
branch locus in B′. The branched surface B′ is shift-like.

We denote this operation by B  R B
′.

If there is a sequence of elementary splittings

B0  R0 B1  R1 B2  R2 · · · Rn−1 Bn

then we write B0  Bn and say Bn is obtained from B0 by splitting.
Each sheet S of B is a pants, and each subsurface R of S is a subpants, which is to

say a sphere with at least two boundary components. If R has more than 3 boundary
components we can write it as a union of thrice-punctured pants Ri so that the result of
splitting along R is the composition of splitting along Ri.

1.5.4. Splitting and Embedding.

Lemma 1.5.5 (Splittings give embeddings). Suppose B and B′ are branched surfaces
associated to (Ω, f) and (Ω′, f ′) where B  B′. Then there is an embedding Ω′ → Ω so
that the restriction of f to Ω′ is f ′.

Proof. By induction we can assume B  R B
′. Let (P, f) be the multipants associated

to B, and let (Ω, f) be the associated multishift. Then R ⊂ P → Ω− f(Ω) and we can set
Ω′ = Ω−R. �

1.5.5. Building Multishifts. Let f be a collection of holomorphic embeddings fj :
D → D such that the closure of fj(D) is contained in D. Each fj is strictly contracting
for the hyperbolic metric, so there is some ε > 0 so that each fj is (1 − ε)-Lipschitz. Let
E denote the set of right infinite words in the fj; we may topologize this as a Cantor
set. Because of the strict contraction there is a continuous map φ : E → D, and left
multiplication by fj on E pushes forward to the action of fj on D.

Proposition 1.5.6 (Building a multishift). Let (D, f) be as above, and suppose E→ D
is an embedding. Denote the image by Λ. Then there is a finite union of closed disks K ⊂ D
containing Λ in the interior and each intersecting Λ, so that each fj(K) is contained in
the interior of K and fj(K) ∩ fi(K) is empty when i 6= j. In particular, (K − f(K), f) is
a multislot with associated multishift (K − Λ, f).

Furthermore, any two K, L with this property give rise to multislots with a common
splitting.
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1.5. MULTISHIFTS AND SPLITTING 19

Proof. For any t > 0 let Kt denote the closed t-neighborhood of Λ in the hyperbolic
metric. Since fj(Λ) ⊂ Λ, and each fj is (1 − ε)-Lipshitz it follows that each fj(Kt) is
contained in the interior of Kt.

We claim there is a positive t so that fi(Kt)∩ fj(Kt) is empty for all i 6= j. For, if not,
there’s a fixed i, j and a sequence of pairs of points pt, qt ∈ Λ with d(fi(pt), fj(qt)) ≤ 2t. By
compactness there’s p, q ∈ Λ with fi(p) = fj(q), but this contradicts the fact that E → Λ
is an embedding.

Now, each component of Kt has diameter at least 2t, so there are only finitely many
components. Let U be a hole of biggest diameter in some component J of Kt. Since each
fj(U) has strictly smaller diameter, and fj(Kt) ⊂ Kt it follows that fj(U) is disjoint from
U .

Suppose fi(U) and fj(U) intersect for some i, j. Since fi(Kt) is disjoint from fj(Kt),
without loss of generality we must have fi(J) ⊂ fj(U); in other words, some component of
some fi(Kt) is contained in some ‘hole’ of some fj(Kt). Since Kt has only finitely many
components, there are only finitely many holes U that arise in this way. Since Λ is totally
disonnected, there is s < t for which every such U is contained in the ‘big’ component
of D − Ks. For such an s it follows that for the hole V in a component of Ks of largest
diameter, the hole V and its images fj(V ) are all disjoint. So we can fill in the hole V , and
inductively all the smaller ones. At the end of this procedure we get K a finite union of
disks with each fj(K) strictly contained in the interior of K, and different fj(K) disjoint.
This proves the first part of the proposition.

For any two such subsets K, L as above their intersection K∩L is also a union of disks.
Inductively throw away components of the intersection that don’t contain any forward
images. The result is obtained from both K and L by restriction, and the associated
branched surfaces have a common splitting, by Lemma 1.5.5. �

1.5.6. Extensions.

Definition 1.5.7. Let (Ω, f) be a k-shift. An extension is an inclusion of (connected)
Riemann surfaces Ω→ ∆ together with holomorphic maps gj : ∆→ ∆ extending fj.

We do not insist that (∆, g) is a shift. The gj don’t need either to be injective nor to
have disjoint image.

Definition 1.5.8. Let Ω → ∆ be an extension. The precritical set K ⊂ ∆ is the set
of k for which v′(k) = 0 for some word v in the gj.

Lemma 1.5.9 (Precritical limit is wandering). Let Ω → ∆ be an extension, and let
K ⊂ ∆ denote the precritical set. Let K̄ and Ω̄ denote the closures of K and of Ω in ∆.
Let k be a nontrivial limit point in K̄. Then there is some infinite forward trajectory of k
that never enters Ω̄.

Proof. Let ki ∈ K converge to k. For each i there is vi with v′i(ki) = 0. Evidently,
wi(ki) is not in Ω̄ for any suffix wi of vi. Thus there is a sequence of longer and longer
words wi for which wi(k) is not in Ω̄. Now choose a subsequence of the wi for which each
word is a suffix of the next. �
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20 1. THE SHIFT

If Ω→ D is the canonical realization provided by Theorem 1.3.2, then for any extension
Ω→ ∆ there is a further (canonical) extension that factors through the realization Ω→ D.
We call such an extension real.

Lemma 1.5.10. Let Ω → D → ∆ be any real extension, and let π : ∆̃ → ∆ be the
universal cover. Then there is a real extension Ω → D → ∆̃, unique up to isomorphism,
lifting the original extension.

Proof. For any continuous function h : ∆→ ∆ the composition ∆̃→ ∆→ ∆ lifts to
h̃ : ∆̃ → ∆̃, uniquely up to composition with a deck transformation. Since D is simply-
connected, it admits a lift to ∆̃, and for any such lift, there is a unique lift of the maps gj
on ∆ extending fj that take the lift of D into itself. Thus the lift defines a real extension
Ω→ D→ ∆̃, unique up to composition with a deck transformation. �

Let ∆ be a simply-connected real extension. There are three possibilities for ∆ up
to isomorphism: Ĉ, C or H. We call the extension spherical, Euclidean and hyperbolic
respectively. The case of a spherical or Euclidean extension require a special analysis and
we’ll return to them in § 1.5.7 and § 1.5.8, but for now let’s restrict attention to hyperbolic
extensions.

Lemma 1.5.11 (Proper in the plane). Let Ω→ D→ H be a hyperbolic extension, i.e. a
simply-connected real extension for which H is the hyperbolic plane. Then for every p ∈ H
there is a d so that v(p) ∈ D for all words v in the gj of length at least d.

Proof. Every gj has a fixed point in D where the derivative has norm strictly less
than 1. By the Schwarz Lemma, every gj is strictly length decreasing for the hyperbolic
metric on H. Thus, for every t, the gj are uniformly contracting on the subset of points
within hyperbolic distance t of Λ; the proof follows. �

Corollary 1.5.12 (Critical discrete preimages). Let Ω → D → H be a hyperbolic
extension. Then the precritical set K is discrete.

Construction 1.5.13 (Extension by immersions). Let Ω → D → H be a hyperbolic
extension. The precritical set K is discrete, is disjoint from D, and is backward invariant
by definition. Therefore the difference H −K is also an extension, and so is its universal
cover. This universal cover of H−K is a hyperbolic extension with the additional property
that the maps gj are all holomorphic immersions.

Definition 1.5.14. A hyperbolic extension Ω → D → H is of immersion type if the
maps gj extending the fj are holomorphic immersions, and for any p ∈ ∆ there is a d so
that v(p) ∈ D for every word v of length at least d.

Construction 1.5.13 shows how to replace any hyperbolic extension by a canonical
hyperbolic extension of immersion type.

1.5.7. Spherical extensions.

1.5.8. Euclidean extensions.

1.6. Topology of Teichmüller space

1.7. Moduli and MCG
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CHAPTER 2

MCG of the plane minus a Cantor set

The most important and best studied example of a big mapping class group is the map-
ping class group of the plane minus a Cantor set. We denote this group ΓC, or sometimes
just Γ for brevity.

Notation 2.0.1. If S is a surface, and A,B are subsets, we denote by Homeo+(S,A;B)
the subgroup of the group of orientation-preserving homeomorphisms of S that fix A set-
wise, and fix B pointwise. If B or A is empty, we write Homeo+(S,A) or Homeo+(S;B)
respectively. These are all groups with the compact-open topology.

Thus, Homeo+(C,C) the group of orientation-preserving homeomorphisms of the plane
fixing C setwise. We define

ΓC := π0(Homeo+(C,C))

Equivalently, ΓC is the quotient of Homeo+(C,C) by the normal subgroup of homeomor-
phisms of the plane isotopic to the identity rel. C.

In this chapter we begin the systematic algebraic and geometric study of ΓC.

2.1. Embeddings of a Cantor set

Let C denote a Cantor set. For now we could think of this as an abstract topological
space, e.g. as the infinite product {L,R}N, or as a concrete Cantor set, e.g. the middle-
third Cantor set in [0, 1]. Each τ ∈ C determines an element of the middle-third Cantor
set as follows. Think of τ as an infinite word in L and R. Then let ν(τ) be obtained from
τ by replacing each L by 0 and each R by 2. The string ·ν(τ) can then be read as the base
three expansion of a number in [0, 1].

Proposition 2.1.1 (Embeddings of C). For any connected oriented surface S, let
Emb(C, S) denote the space of embeddings C → S with the compact-open topology, and
for any n let Emb(n, S) denote the space of n ordered distinct points in S. If we pick three
distinct points in C, the forgetful map Emb(C, S) → Emb(3, S) is a Serre fibration whose
homotopy fiber has vanishing πk for k 6= 1.

Proof. Fix in advance a conformal structure on S.
Let X be a countable dense subset of C, and for any integer n let Xn denote the

first n elements of X in some enumeration. For any n there’s a forgetful projection from
Emb(C, S) to the configuration space Emb(n, S) of n marked distinct points in S, and
these projections are compatible with composition:

Emb(C, S)→ Emb(n+ 1, S)→ Emb(n, S)

Note that for every n, the map Emb(n+1, S)→ Emb(n, S) is an honest fibration whose
fibers are copies of S minus n points. Likewise, for every m > n the map Emb(m,S) →

21
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22 2. MCG OF THE PLANE MINUS A CANTOR SET

Emb(n, S) is a fibration. Furthermore, when n is at least 3, every fiber admits a canonical
hyperbolic metric coming from the conformal structure on S.

Now, any map α : Sk → Emb(C, S) determines a family of maps αn : Sk → Emb(n, S),
and each αn+1 is a lift of αn.

We show that the homotopy fiber has vanishing πk for k 6= 1; a similar argument gives
homtopy lifting for disks, and proves the Serre fibration property.

Let k > 1 and suppose for some n ≥ 3 that αn : Sk → Emb(n, S) extends to ᾱn :
Dk+1 → Emb(n, S). Using the radial structure on Dk+1 and the map ᾱn we can canonically
trivialize the pullback of the bundle over Sk and metrize it with the hyperbolic metric on
the fiber over the origin. In this trivialization a lift αn+1 : Sk → Emb(n+ 1, S) is the same
as a map from Sk to S minus n points; this fills in canonically (e.g. by heat flow) to a map
from Dk+1 to S minus n points (i.e. a lift ᾱn+1 of ᾱn).

In the compact open topology, finite sets of points that are sufficiently close in C stay
close in compact families of embeddings. Heat flow of maps of spheres to negatively curved
spaces are uniformly strictly energy decreasing. It follows that this canonical sequence of
iterated lifts of homotopies converges to a map ᾱ : Dk+1 → Emb(C, S). �

The group Homeo(C) of self-homeomorphisms of C acts freely on Emb(C, S) by pre-
composition. Let UEmb(C, S) denote the quotient. Then we have a fibration

Homeo(C)→ Emb(C, S)→ UEmb(C, S)

where Homeo(C) is totally disconnected.
It’s reasonable to think of Emb(C, S) and UEmb(C, S) as marked and unmarked con-

figuration spaces respectively, although one should be careful, as the following remark
clarifies.

Remark 2.1.2. It is not true that UEmb(C, S) is homeomorphic to the space of (un-
parameterized) Cantor sets in S with the Hausdorff metric. That’s because a family of
injective maps from C to S can limit to a non-injective map whose image is nevertheless
homeomorphic to a Cantor set.

Now let’s fix a specific Cantor set C in S, for instance, the middle-third Cantor set
in the plane. Let Homeo+(S) denote the group of self-homeomorphisms of S, and let
Homeo(S;C) denote the subgroup fixing C pointwise.

Proposition 2.1.3 (Fibration). For any connected oriented surface S there are fibra-
tions

Homeo+(S;C)→ Homeo+(S)→ Emb(C, S)

and
Homeo+(S,C)→ Homeo+(S)→ UEmb(C, S)

Proof. The group Homeo+(S) acts on Emb(C, S) by composition, and the kernel is
evidently Homeo+(S;C). The content of the proposition is that the action on Emb(C, S) is
transitive. This is the combination of two well-known facts: that any embedding of a Cantor
set in a connected surface is tame (i.e. it is contained in a tamely embedded interval), and
that every homeomorphism of a tame Cantor set extends to a homeomorphism of an open
neighborhood.

The same argument applies to the action of Homeo+(S) on UEmb(C, S). �
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Remark 2.1.4. There are compactly-supported variants

Homeoc(S;C)→ Homeoc(S)→ Emb(C, S)

and
Homeoc(S,C)→ Homeoc(S)→ UEmb(C, S)

of Proposition 2.1.3, proved in the same way.

Proposition 2.1.5 (Contractible components). Let S be any connected oriented sur-
face. Then the identity component of Homeo+(S;C) (equivalently, the identity component
of Homeo+(S;C)) is contractible.

Proof. First note that the identity component of Homeo+(S,C) is evidently equal to
the identity component of Homeo+(S;C), and both are equal to the identity component
of Homeo+(S − C). This is a surface of hyperbolic type, and the usual proofs of the
contractibility of its identity component hold. �

The long exact sequence of homotopy groups for the fibration in Proposition 2.1.3 thus
breaks up into isomorphisms πk(Homeo+(S)) = πk(Emb(C, S)) for k > 2, and a 4-term
sequence

0→ π1(Homeo+(S))→ π1(Emb(C, S))→ π0(Homeo+(S;C))→ MCG(S)→ 0

where we use the identification π0(Homeo+(S)) is equal to the mapping class group MCG(S)
by definition, and the fact that π0(Emb(C, S)) = 0.

Likewise we have

0→ π1(Homeo+(S))→ π1(UEmb(C, S))→ π0(Homeo+(S,C))→ MCG(S)→ 0

and the short exact sequence

0→ π0(Homeo+(S;C))→ π0(Homeo+(S,C))→ Homeo(C)→ 0

Taking S = C we obtain a central extension

0→ Z→ π1(UEmb(C,C))→ ΓC → 0

In Proposition 2.2.2 we shall identify π1(UEmb(C,C)) with the so-called ‘Cantor braid
group’.

2.2. Some closely related groups

The group ΓC does not exist in isolation. It is closely related to two other big mapping
class groups, namely Γ̂C, the mapping class group of the sphere minus a Cantor set, and
BC, the mapping class group of the disk minus a Cantor set. Explicitly, if we denote by
Homeo+(S2,C) the group of orientation-preserving homeomorphisms of the sphere fixing
C setwise, then

Γ̂C := π0(Homeo+(S2,C))

and if we denote by Homeoc(C,C) the group of compactly supported homeomorphisms of
the plane fixing C setwise, then

BC := π0(Homeoc(C,C))
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24 2. MCG OF THE PLANE MINUS A CANTOR SET

We refer to this last group colloquially as the ‘Cantor braid group’. Note that we can also
write

BC = π0(Homeo(D,C; ∂D))

where Homeo(D,C; ∂D) denotes the group of homeomorphisms of the unit disk, fixing C

setwise, and fixing ∂D pointwise.
These groups enjoy the following relations:

Proposition 2.2.1 (Birman exact sequence). There is a short exact sequence (the
Birman ‘point-pushing’ sequence)

π1(S2 − C)→ ΓC → Γ̂C

Proof. A homeomorphism of the plane fixing C setwise extends canonically to a home-
omorphism of the sphere fixing C setwise and ∞ pointwise. There is a map

Homeo+(S2,C)→ S2 − C

sending a homeomorphism φ to the point φ(∞). This map is a fibration, and the fiber
over ∞ is Homeo+(S2,C;∞) = Homeo+(C,C). Now take the homotopy exact sequence of
the fibration. Since the identity component of Homeo+(S2,C) is contractible by Proposi-
tion 2.1.5, the proposition follows. �

Proposition 2.2.2 (Central extension). There is a central extension

Z→ BC → ΓC

whose kernel is generated by a Dehn twist around ∞.

Proof. The standard argument for finite-type mapping class groups goes through
without modification. �

Notice by comparing short exact sequences that we obtain the identification BC =
π1(UEmb(C,C)). One can also see this from the fibrations (see Remark 2.1.4)

Homeoc(C;C)→ Homeoc(C)→ Emb(C,C)

and
Homeoc(C,C)→ Homeoc(C)→ UEmb(C,C)

and using the fact that Homeoc(C) is contractible, which follows by the Alexander trick of
coning to a point.

2.3. Orderability

Lemma 2.3.1 (Center is twist). The center of the Cantor Braid group is Z, generated
by a Dehn twist at infinity. The quotient is the mapping class group (in the usual sense)
of the plane minus a Cantor set.

Theorem 2.3.2 (Orderability). The mapping class group of the plane minus a Cantor
set is circularly orderable, and the Cantor Braid group is consequently left orderable. The
Pure Cantor Braid group is bi-orderable.
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Proof. The sphere minus a Cantor set is hyperbolizable, and its universal cover is
compactified by a circle at infinity. By the Birman exact sequence, the mapping class
group of the plane minus a Cantor set may be represented by lifts of mapping classes of
S2− C to the universal cover fixing a base point. There is a natural induced action on the
circle at infinity by homeomorphisms. This action is faithful, and defines a circular order
on the mapping class group of C− C, and a left order on BC. �

2.4. Trees, Coarsenings and Pantscades

Definition 2.4.1 (Coarsening). A coarsening of C is an isotopy class of a finite collec-
tion of disjoint closed disks in C, each of which intersects C, and such that C is contained
in the union of the interiors of the disks.

If D is a coarsening, |D| is the cardinality of the set. By abuse of notation, we let
D denote the unique trivial coarsening consisting of a single disk (e.g. the unit disk)
containing C in its interior.

Definition 2.4.2 (Refinement and k-refinement). Let D and E be two coarsenings.
We say D refines E, denoted D ≺ E, if after an isotopy rel. C we can arrange that the
disks of D are contained in the disks of E.

For any integer k > 1 we say D k-refines E, denoted D ≺k E, if after an isotopy rel.
C, each disk of E contains exactly k disks of D.

The relation ≺ is transitive, but ≺k isn’t. If D ≺k E then |D| = k|E|.

Definition 2.4.3 (Pantscade). A k-pantscade (or just pantscade for short if k is un-
derstood) is an infinite inverse sequence of k-refinements,

C→ · · · ≺k Dn ≺k Dn−1 ≺k · · · ≺k D2 ≺k D1 ≺k D

for which the Cantor set is in bijection with the inverse limit of π0 of the components of
the refinement.

An infinite inverse sequence of k-refinements determines a k-regular rooted tree T , and
if this sequence is a pantscade, there is a natural bijection between C and the set of ends
of this tree.

2.4.1. The braid group of n-coarsenings.

2.4.2. Rotation and Association.

2.5. Braiding

2.6. Ray graphs

2.6.1. Definition and examples.

Definition 2.6.1. The ray graph, denoted R, is the graph whose vertices are isotopy
classes of properly embedded rays from C to infinity, and whose edges are pairs of rays that
may be made disjoint by an isotopy, except possibly at a common endpoint.
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26 2. MCG OF THE PLANE MINUS A CANTOR SET

For any finite subset X of C there is a ray graph RX . The isomorphism type of RX

depends only on the cardinality n := |X| and we sometimes write Rn for RX by abuse of
notation if the particular isomorphism of some fixed Rn to RX is unimportant.

Example 2.6.2 (|X| = 1, 2, 3). R1 is a single point, and R2 is two points joined by an
edge.

The double cover of the Riemann sphere branched over four points is a torus. The
preimage of an isotopy class of ray is an isotopy class of simple closed curve through a
marked point. Two rays are disjoint (adjacent in R3) if and only if their preimage loops
intersect at most once or twice. The graph R3 is therefore quasi-isometric to the Farey
graph. This graph has infinite diameter, and is quasi-isometric to a tree.

2.6.2. Coarsening.

Construction 2.6.3 (Coarsening map). A coarsening of C is a finite collection D of
disjoint closed disks in C, each of which intersects C, and such that C is contained in the
union of the interiors of the disks.

There is a quotient map πD : C → C/D obtained by crushing every component of D
to a point. Note that C/D is homeomorphic to C. By abuse of notation we think of D as
a finite subset of C/D, and we let RD denote the ray graph of this finite set.

There is a coarsening map πD : R → RD defined as follows. Given an embedded ray
r, eliminate bigons of intersection of r with ∂D so that r meets ∂D efficiently. Then take
r to the tail component of r −D; i.e. the connected component containing infinity. This
map is well-defined on isotopy classes of rays.

Lemma 2.6.4 (Coarsening map is Lipschitz). The map πD is surjective and 1-Lipschitz,
and there are (many) isometric sections RD → R.

Proof. The first two claims follow from the definition.
There is a hyperbolic structure on C−C, and any coarsening D determines a canonical

collection of disks — those bounded by hyerpbolic geodesics. Every ray in RD determines
a canonical geodesic ray in C−D meeting ∂D perpendicularly. There are countably many
endpoints of such rays, and the countably many endpoints may be extended (arbirarily)
to disjoint rays in D, thereby giving a section. �

Remark 2.6.5. Coarsening is a special case of subsurface projection.

Remark 2.6.6. It makes sense to define ray graphs and coarsenings in much more
generality. For example, there is a ray graph RX whenever X is compact and totally
disconnected, and there are coarsening maps πXD for suitable decompositions D containing
X. We shall not develop this more general theory here.

2.6.3. Bavard’s Hyperbolicity Theorem.

Theorem 2.6.7 (Bavard’s hyperbolicity theorem [1]). The graph R is connected, hy-
perbolic, and has infinite diameter.

We prove the first and third statements now, and defer the proof of hyperbolicity.

Proof. If two rays start at different points in C, then by general position we can
arrange for them to intersect transversely, and then we can comb all but finitely many
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intersections to infinity. If two rays intersect in finitely many points, by cut and paste we
can find a new ray that intersects each in at least one fewer points. Thus R is connected.

To see the diameter is infinite, let C ⊂ D be a coarsening with at least three components.
The coarsening map πD : R→ RD is surjective and 1-Lipschitz by Lemma 2.6.4, and since
|D| ≥ 3 the diameter of RD (and therefore also R) is infinite, by Example 2.6.2. �

2.6.3.1. Slim Unicorns. Hyperbolicity can be proved using the slim unicorn method
of Hensel–Przytycki–Webb [21] which is indifferent about the topology of the underlying
surface, and even indifferent about whether it is of infinite type or not. We give a brief
exposition of this argument; for details see [21] and [1].

The argument of HPW applies most directly to the arc complex, whose vertices are
isotopy classes of arcs between pairs of marked or boundary points. Given a pair of oriented
arcs α, β they construct a path I ′(α, β) of intermediate arcs between α and β as follows.
First, put α and β in minimal position. For each point p ∈ α ∪ β form µ from two initial
subpaths of α and β. If the result is embedded, it goes in I ′(α, β); otherwise it doesn’t.

This finite set of paths is ordered by how big an initial path they share with α, the
bigger the earlier in the ordering. Then I(α, β) is the ordered path α, I ′(α, β), β. Note
that the result is symmetric in α and β, although both must be oriented.

Lemma 2.6.8. I(α, β) is a path; i.e. adjacent vertices have distance 1.

Proof. Let p and q be successive points on α associated to adjacent µ, ν in I(α, β).
Write µ = µα ∪ µβ and ν = να ∪ νβ where µα ⊂ να and νβ ⊂ µβ. Let γ be the segment of
α between p and q so that να = µα ∪ γ, and let δ be the segment of β between p and q so
that µα = να ∪ δ.

We simply need to show that δ and γ are disjoint (except at their endpoints). But if
not, we could take a rightmost point of intersection and build a new element of I(α, β)
strictly between µ and ν. �

Proposition 2.6.9 (HPW [21], Lemma 3.3). For any α, β, γ every point on I(α, β)
is within distance 1 of I(β, γ) ∪ I(γ, α).

In fact, it turns out that one can find a triple of points on the three sides at pairwise
distance at most 1.

Proof. In other words, for every µ ∈ I(α, β) there is a disjoint ν in I(β, γ) or I(γ, α).
This is trivial for µ = α or β, so suppose µ ∈ I ′(α, β).

The curve µ is associated to a point p ∈ α∪ β, and is the union of two initial segments
αµ, βµ of α, β meeting only at the point p. Consider the curve γ; if it’s disjoint from µ we’re
already done. Otherwise it meets one of αµ, βµ first at q. Then ν is the curve associated
to q. �

2.6.3.2. Guess the geodesics. From Proposition 2.6.9 hyperbolicity of the arc complex
follows, by a theorem of Masur–Schleimer:

Theorem 2.6.10 (Masur–Schleimer, Guess the Geodesics [25] Thm. 3.15). Suppose X
is a connected graph, and suppose there is a constant M , and for every pair of vertices x,
y a connected subgraph I(x, y) ⊂ X satisfying

(1) if d(x, y) ≤ 1 then I(x, y) has diameter at most M ; and
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(2) for all x, y, z the graph I(x, y) is contained in the M-neighborhood of I(y, z) ∪
I(z, x).

Then X is δ-hyperbolic for some δ(M).

Bavard applies [21] in the following way. She defines a lasso to be a properly embedded
line ` in R2 − C, dividing C nontrivially into two parts. There is a lasso complex L with
isotopy classes of lassos for vertices, and those pairs with disjoint representatives as edges.

If ` is a lasso, any two rays disjoint from ` are distance at most 2 from each other.
Conversely, if ` and `′ are disjoint non-isotopic lassos, there is a ray disjoint from both.
It follows that R and L are quasi-isometric. Actually, it is possible to think of a ray as a
kind of completion of a sequence of lassos as follows: any maximal clique in L determines
a tree; noncompact ends of such a tree are rays, and every ray arises in this way.

The slim unicorns proof works without modification to prove hyperbolicity of the lasso
graph. Hyperbolicity of the ray graph follows, completing the proof of Theorem 2.6.7.

2.7. Some examples of dynamics

Bavard [1] gives some elegant examples of mapping classes that act loxodromically on
R.

2.8. Gromov boundary of the Ray graph

Bavard–Walker [4] gave an elegant description of the Gromov boundary of R. From
their description certain dynamical conclusions follow, which we shall now explain.

2.8.1. Conical cover and the circle of geodesics. To discuss long rays it’s conve-
nient to take one of two equivalent points of view.

Let Ω denote the plane minus a Cantor set, and fix a complete hyperbolic structure.
The conical cover Ω̂ is the covering space associated to the Z subgroup of π1(Ω) of loops
around infinity. Thus Ω̂ is conformally equivalent to the punctured open disk. By abuse
of notation we refer to the puncture in Ω̂ as infinity. There is a circle S1(G) compactifying
the disk, which is in natural bijection with the set of complete geodesics in Ω̂ with one
endpoint at infinity. By lifting we may also identify this circle with the set of complete
(not necessarily simple) geodesics in Ω with one end at infinity. As in Theorem 2.3.2 the
mapping class group M(Ω) acts on S1(G) by orientation-preserving homeomorphisms.

In this notation it makes sense to pick out a subset S ⊂ S1(G) that we call the simple
set. This is precisely the set of complete simple geodesics in Ω with one end at infinity.
This set decomposes into three subsets:

(1) Proper simple geodesics with one end at infinity and one end on the Cantor set;
these are exactly the vertices in the ray graph. We call its elements short rays.
This set is uncountable; we denote it R. Note that M(Ω) acts transitively on R.

(2) Proper simple geodesics with both ends at infinity; these are exactly the oriented
lassos. This set is countable; we denote it L. Note that M(Ω) acts transitively on
L.

(3) Non-proper simple geodesics with one end at infinity; Bavard–Walker call these
long rays. We denote this set by X.
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The main theorem in this section describes the structure of S.

Theorem 2.8.1. The following describes the structure of S and the action of M(Ω) on
it.

(1) The simple set S is compact and its complement is dense.
(2) R ∪X is a Cantor set, and is the unique minimal set for the action of M(Ω) on

S1(G).
(3) Every complementary interval to R ∪ X contains exactly one point of L, so that

M(Ω) acts transitively on this set of intervals.
(4) The boundary points of R ∪ X are in X, and consist precisely of long rays that

spiral around a finite (simple) geodesic in Ω.
(5) Every long ray which does not spiral around a simple geodesic is accumulated on

both sides by short rays.

Proof. The complement of S is dense, for any long geodesic from infinity either al-
ready intersects itself, or can be perturbed slightly so that it runs into itself in the future.
Evidently the first self-intersection point of a geodesic is stable under perturbation, so the
complement of S is open. This proves (1).

Next we show that every orbit accumulates on a simple ray. To see this, let γ be
an arbitrary geodesic from infinity. Then γ must cross some closed simple geodesic α
separating part of the Cantor set from the other part. Take a sequence of mapping classes
that shrinks α down to a single point p of the Cantor set; the images of γ accumulate on a
simple ray from infinity to p. It follows that every minimal set must contain some simple
ray, and therefore every simple ray; i.e. the whole set R. Since the closure R is invariant,
it is the unique minimal set.

Now let’s let p ∈ S1(G) be an arbitrary point corresponding to a self-intersecting geo-
desic γ. The part of γ up to its first intersection point is shaped like the letter ρ. Sliding
the vertex of the ρ up or down defines an open interval I containing p in the complement
of S which limits on one side to an oriented lasso, and on the other side to a long ray x
spiralling around a finite simple geodesic α in Ω which is in the isotopy class of the loop
of the ρ. The oriented lasso arises from exactly two complementary intervals this way;
the other interval corresponds to ρs with the opposite orientation whose loop is isotopic to
some simple geodesic α′. The geodesics α and α′ cobound a once-punctured annulus, and
the lasso is the ‘punctured equator’ of this punctured annulus.

Note that α, being a geodesic, must separate infinity from some of the Cantor set. Thus
we can find a point in the Cantor set on the far side of α, and join it by a simple arc to
α, and then drag this simple arc around α so it becomes a simple spiralling geodesic y.
Perturb x ∪ y so that each of them spirals only finitely many times around α and then
joins up with the other; the result is a short ray approximating x. Thus x is not isolated
in R ∪X. This shows R ∪X is perfect.

Since p and the interval I that contained it was arbitrary, we see that R∪X is perfect
(and therefore a Cantor set) whose complementary intervals all contain a unique lasso.
This proves (3) and (4).

Since boundary points of R ∪X are accumulated by short rays on one side, and since
non-boundary points of a Cantor set are accumulated by boundary points on both sides, it
follows that every long ray which does not spiral around a simple geodesic is accumulated
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by short rays on both sides. This proves (5), and it also shows that R = R ∪ X. In
particular, R ∪X is the unique minimal set, proving (2). �

2.8.2. Cliques. Following Bavard–Walker we define a ‘simple graph’ whose vertices
are simple geodesics from infinity, two of which are joined by an edge if they are disjoint.
Thus the simple graph extends the ray-lasso graph.

Proposition 2.8.2. The simple graph has one unbounded component called the big
component, namely the component containing the ray-lasso graph. The inclusion of the
ray-lasso graph into the big component is a quasi-isometry. The big component is contained
in the 2-neighborhood of its image. Every other component is a clique and therefore has
diameter one.

Proof. Say a long ray is filling if it is not disjoint from any short ray. Any long ray
which is not filling is distance 1 from the ray-lasso subgraph. Let x be a filling long ray,
and suppose x is disjoint from y and z. We claim y is disjoint from z. For, otherwise, we
can make a bigon from initial segments of y and z by extending them from infinity until
they intersect and throwing away arcs beyond the intersection. Such a bigon necessarily
has Cantor set on both sides. Since x is disjoint from y ∪ z it is contained on one side of
the bigon. Therefore we can join infinity to a point in the Cantor set on the other side to
create a short ray disjoint from x, contrary to the hypothesis that x is filling. This proves
the claim.

This claim shows that the big component is contained in the 2-neighborhood of its
image, and also that every component disconnected from the big component is a clique.
It remains to show that the inclusion of the ray-lasso graph into the big component is a
quasi-isometry. �

2.8.3. Gromov boundary as a quotient.

2.9. Inverse limits

The collection of coarsenings D of C up to isotopy rel. C is an inverse system. We write
D ≺ E if D refines E; i.e. if E is a further coarsening of D, and πDE : RD → RE.

Lemma 2.9.1 (Inverse limit). The graph R is the inverse limit of the RD. In other
words, a compact graph Γ embeds in R if and only if it embeds in Rn for some n.

Proof. Lemma 2.6.4 explains how to produce isometric embeddings of Rn in R for
any n. Conversely, let r1, · · · , rk be a finite collection of isotopy classes of rays in C, and
let Γ be the induced subgraph of R they span. We must find a coarsening D so that πD|Γ
is an isomorphism.

Two rays are connected by an edge if and only if their geodesic representatives are
interior disjoint. If two rays ri, rj intersect, this is witnessed by their restriction to some
planar subsurface Si,j of finite type with totally geodesic boundary. If ri and rj don’t
intersect but are not isotopic, this is also witnessed by their restriction to some Si,j as
above. We may enlarge each Si,j if necessary so that it contains ∞. Let S be the union of
the Si,j. Then D := C− S is a coarsening with the property that ri ∩ Si,j is contained in
the tail of ri −D for all i, j. Thus πD|Γ is an isomorphism. �
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Each braid group BD acts on RD and also on the collection of all RE where D ≺ E.
The Cantor braid group BC acts on the entire directed system.

If D and E are coarsenings, the stabilizer of E in BD is denoted BE
D, and there is an

induced homomorphism BE
D → BE. By abuse of notation, we allow the case that D = C

even though this is not strictly speaking a coarsening, so that the stabilizer of E in BC is
denoted BE

C , and there is an induced homomorphism BE
C → BE.

Construction 2.9.2 (Inverse limit). Let A be a directed set indexing a family Dα

of coarsenings. When A has additional structure — for instance if A is invariant under a
family of endomorphisms — there is a corresponding structure on the inverse limit of the
braid groups BDα , thought of as a subgroup of BC.

2.10. Endomorphisms

Finite type mapping class groups are very rigid — they rarely admit any interesting
automorphisms. Infinite type mapping class groups also have a tendency to be rigid. The
situation looks very boring. But automorphisms are the wrong thing to look at: infinite
type mapping class groups admit very interesting endomorphisms.

The distinction is largely moot in the finite type world, because finite type mapping
class groups are Hopfian and (nearly) co-Hopfian. A group is Hopfian if every surjective
endomorphism is an isomorphism, and co-Hopfian if every injective endomorphism is an
isomorphism.

Finite Braid groups are Hopfian because they are finitely generated and residually finite.
Furthermore, they are almost co-Hopfian by a theorem of Bell–Margalit [6]: every injective
endomorphism is an isomorphism modulo the center (which is Z and generated by a Dehn
twist at infinity).

Bell–Margalit prove that braid groups are boring in a very interesting way: they show
that injective endomorphisms between finite type braid groups are geometric — they are
induced by homeomorphisms between punctured disks. This geometric fact has its analog
for Cantor braid groups, but the implications are very different, as we shall see in § 2.11

2.11. Shift-invariant Cantor braids

2.11.1. Tuning.
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CHAPTER 5

The Shift Locus

In this chapter we study the space of shift polynomials, complex polynomials for which
every critical point is in the attractive basin of infinity. Every such polynomial has a Cantor
Julia set, and there is a natural representation from the fundamental group of the shift
locus to the mapping class group of the plane minus a Cantor set. This is ground zero for
the relationship between complex dynamics and big mapping class groups.

The point of view taken in this chapter was partly developed in the preprint [3] and
there are substantial connections to the earlier pioneering work of DeMarco et. al. (see
[14, 13, 15]) not to mention Branner–Hubbard [8, 9], Blanchard–Devaney–Keen [7] and
many others.

On the other hand, I believe that most of the theorems presented here are new (as far
as I know), and for some of those which are not, the proofs are new or hold in greater
generality than have appeared elsewhere.

5.1. Definition

For each integer d let Polyd denote the space of complex polynomials of degree ≤ d.
Taking coefficients gives a natural identification Polyd = Cd+1. The affine group z → αz+β
gives a natural conjugation action on Polyd. This action is generically free, and the reduced
quotient is a complex variety birational to Cd−1.

The Shift Locus Sd ⊂ Polyd is the subset of polynomials of degree exactly d for which
every critical point is in the basin of attraction of ∞. We write S if d is understood.

Lemma 5.1.1. A polynomial f is in the Shift Locus if and only if Jf is a Cantor set
and the dynamics of f on Jf is uniformly expanding.

In particular, the action of f on Jf is conjugate to the shift on d letters, explaining the
name. If f has degree 2, then f is in the Shift Locus if and only if Jf is a Cantor set. But
for f of higher degree it’s possible for Jf to be a Cantor set and at the same time contain
some critical point.

Example 5.1.2. The polynomial f : z → z3 − 6z + 2
√

2 is not in S3 since the critical
point

√
2 is fixed by f . However, Jf is a Cantor set.

5.2. Surfaces out of Böttcher Paper

5.2.1. Böttcher coordinates. A polynomial f of positive degree fixes infinity, and
if the degree is at least two, the derivative vanishes at infinity; one calls such a fixed point
superattractive. Böttcher famously proved that holomorphic functions have trivial moduli
near superattractive fixed points — the only invariant is the degree. This means there are

39
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canonical holomorphic coordinates near a superattractive fixed point, known as Böttcher
coordinates.

Theorem 5.2.1 (Böttcher coordinates). Let d > 1 and suppose f ∈ Sd. Then there
are open neighborhoods Uf , UB of infinity in Ĉ and a holomorphic isomorphism ψf : Uf →
UB conjugating f on Uf to z → zd on UB. Furthermore, the map ψf is unique up to
multiplication by a (d− 1)st root of unity.

Proof. Let f(z) = azd + bzd−1 + · · · where a 6= 0 but b might be. If we conjugate by
z → αz + β then we get a new map f̂ given by

f̂(z) = α−1(a(αz + β)d + b(αz + β)d−1 + · · · )− α−1β = aαd−1zd + (adβ + b)αd−2zd−1 + · · ·
Setting α = a−1/(d−1) and β = −b/ad puts f̂ in the form z → zd + O(zd−2). The new f̂ is
the unique polynomial (up to a (d−1)st root of unity) holomorphically conjugate to z → zd

to second order at infinity. Hensel’s Lemma gives a formal power series conjugating f̂ to
z → zd at infinity, and this power series converges uniformly on an open neighborhood. �

5.2.2. Analytic continuation. The attracting basin of ∞ under the map z → zd is
C−D, a punctured disk. If f ∈ Sd and ψf : Uf → UB is a conjugacy between f and z → zd

near infinity, we can analytically continue ψf to any simply-connected open set U ⊂ Ĉ
satisfying

Uf ⊂ U ⊂ Ĉ− Jf
Conversely, we can analytically continue ψ−1

f along any ray of constant argument from ∞
until we meet a precritical point; i.e. a point p ∈ C for which (fn)′(p) = 0 for some n.

The union of these maximal open rays defines a canonical open dense subset VB ⊂ C−D
which is the complement of countably many half-open segments of the form `(v,θ) := {z :
arg(z) = θ, 1 < |z| ≤ ev} for some (v, θ) ∈ R+×R/2πZ, where there are only finitely many
`(v,θ) for v greater than any given positive number. The set VB is forward invariant under
z → zd, and the map ψ−1

f is injective on VB and conjugates z → zd to f . We refer to the
` as semi-leaves.

5.2.3. Böttcher models. For ` of the form `(v,θ) let ∂` denote the unique endpoint
of `; i.e. ∂`(v,θ) = ev+iθ. We may extend ψ−1

f over the set ∂`, but it fails to be injective. If
c is a critical point of f where f ′(c) vanishes to order k then there are k + 1 semi-leaves `
with the same v, and with θ values that differ by a multiple of 2π/d. These ` all map to
the same semi-leaf under z → zd, and their endpoints all map to ψff(c) ∈ VB, the image
of the critical value f(c) associated to c.

We may build a Riemann surface Ωf by cutting C − D open along the semi-leaves `,
and then regluing the result in the unique way for which the result is compatible with the
dynamics `(v,θ) → `(dv,dθ) and with the map ψ−1

f . In particular, regluing preserves the v
coordinate and changes the θ coordinate by some fixed multiple of 2π/d. If `j are the k+ 1
semi-leaves whose endpoints all map to a precritical point c under ψ−1

f , we can reorder
them so that the indices j mod k + 1 agree with the cyclic order of the arguments in
R/2πZ. Cutting replaces each `j with two copies `Lj and `Rj which can be thought of as
lying infinitesimally to the ‘left’ and the ‘right’ of `j in C−D. We reglue by identifying `Rj
with `Lj+1.
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Lemma 5.2.2 (Böttcher inverse is isomorphism). The map ψ−1
f extends to an isomor-

phism from Ωf to C− Jf . The Riemann surface Ωf has genus 0.

Proof. By construction, ψ−1
f extends uniquely over Ωf and conjugates z → zd to

f . The map z → zd on Ωf is critical exactly when f is and with the same degree and
combinatorics, so ψ−1

f is an immersion. Since it is proper it is a covering map, and since it
is degree 1 near infinity, it is an isomorphism. �

Corollary 5.2.3 (No linking). If ` and `′ are two families of semi-leaves whose end-
points correspond to precritical points c, c′ of f then the arguments of ` and `′ do not link
in R/2πZ.

Proof. If there were linking, the genus of Ωf would be positive. �

We call the pair (Ωf , z → zd) the Böttcher model for f .

5.2.4. Böttcher space and realization. We can now define the space FSd of formal
d-shifts to be certain dynamical systems of the form (Ω, z → zd) where Ω is obtained from
C− D by cut-and-paste along a backwards-invariant collection of semi-leaves {`}, and for
which the map z → zd has d− 1 critical points on Ω, counted with multiplicity.

Such an Ω is given by the following data:
(1) a choice of d−1 semi-leaves (with multiplicity) corresponding to the critical values

of z → zd;
(2) for each critical value semi-leaf, a partition of its preimage leaves into subsets,

where the subsets of cardinality greater than 1 correspond to the critical semi-
leaves; and such that

(3) no two critical subsets have pairs of arguments that link in R/2πZ.
Every Ωf gives rise to data of this form by Corollary 5.2.3, and conversely this data gives
rise to a canonical collection of pre-critical semi-leaves by pulling back the partitions under
the dynamics. The condition of no linking propagates backwards, so the semi-leaves of Ω
satisfy the conclusion of Corollary 5.2.3.

The space of formal d-shifts has the structure of a complex variety of dimension d− 1.
Where the critical points are distinct, their values in C − D define local holomorphic
coordinates. Where k ≤ d − 1 critical points coalesce, the local model is Cd−k × (Ck/Sk)
where the symmetric group Sk acts on Ck by permuting coordinates. As is well-known, the
quotient Ck/Sk is biholomorphic to Ck; think of the map that takes a monic polynomial
to its unordered set of roots.

Theorem 5.2.4 (Formal shift is realizable). Let (Ω, z → zd) be a formal d-shift. Then
there is a (unique) f ∈ Sd up to conjugacy for which Ω = Ωf .

Proof. Let 0 < v0 be smaller than the altitude of any critical point. Then the level
set v = v0 is a collection of circles that separates Ω. Since the semi-leaves satisfy no
linking, the genus of Ω is zero, so each circle in the level set bounds a subset of Ω for which
the inverse z → z1/d has d well-defined branches making this subset into a shift. The
Realization Theorem 1.3.2 says that there is a canonical Riemann surface structure on the
union Ω̂ :=∞∪ Ω ∪ E making it biholomorphic to Ĉ, so that z → zd extends over Ω̂ to a
proper holomorphic map of degree d with ∞ as a superattracting fixed point of degree d.
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Such a map is necessarily a polynomial of degree d, and by construction it is in the Shift
Locus. �

Remark 5.2.5. Essentially the same theorem is proved as [14], Thm. 7.1, although
the method of proof is a little different, and non-constructive. One advantage of our proof
of the Realization Theorem 1.3.2 is that it finds a fixed point by a quickly converging
algorithm; this is useful e.g. for computer implementation. We discuss this further in the
sequel.

Corollary 5.2.6. The Böttcher map Sd → FSd taking (Ĉ, f) to (Ω̂f , z → zd) is a
biholomorphic isomorphism.

5.2.5. Laminations. It is convenient to encode the cutting and pasting of semi-leaves
by extra data. If ` is a set of semi-leaves with endpoints mapping to the same precritical
point of f , we may extend them to closed segments in C by adding endpoints on the unit
circle, and then join endpoints consecutive in the circular order by semicircular arcs in the
unit disk. These arcs (and their extensions to a pair of semi-leaves) are called leaves.

The no linking property — i.e. Corollary 5.2.3 — implies that no two leaves will cross,
so the union of the leaves are embedded. We call this structure the Böttcher lamination
and denote it L. Laminations of this sort were introduced by Thurston, and they are
omnipresent in 1-dimensional complex dynamics. Some people add leaves that arise as
limits so that the collection of all leaves is closed; we don’t see an obvious advantage to
this in the current context, but feel free to do so.

As far as I know, DeMarco and Pilgrim were the first to introduce laminations for the
analysis of shift polynomials; see [13, 15].

5.2.6. Green coordinates and Squeezing. We have been implicitly using the co-
ordinates coming from the Green’s function log(z) on C − D. This function takes values
in R+ × R/2πZ. We call the first coordinate the altitude and the second coordinate the
argument, and we continue to denote these coordinates v and θ respectively. The dynam-
ical map z → zd multiplies altitude and argument by d. There is a holomorphic 1-form
ϕ := d(v + iθ) on C− D, and the map z → zd pulls back ϕ to dϕ.

Let f be in Sd, and let Ωf be obtained from C − D by cut and paste. The coordi-
nate v continues to make sense on Ωf , but θ is only defined as an element of R/2πZ[1

d
].

Nevertheless, ϕ makes sense on Ωf , and it is still true that z → zd pulls back ϕ to dϕ.
There is a smooth (actually, holomorphic) vector field on C− D which is given by v∂v

in v, θ coordinates. Flowing critical points and their preimages by this vector field defines
a holomorphic vector field V on Sd whose flow defines a free proper action of R on Sd. The
Hausdorff dimension of Jf decreases1 under this flow to zero.

The orbits of this flow are dynamical systems that are topologically conjugate but
not holomorphically conjugate; the conjugacy is given by an f -invariant quasiconformal
deformation of Ω which is a Teichmüller geodesic associated to the canonical holomorphic
differential ϕ2 on C− D. Deforming f under this flow is called squeezing.

1monotonically?
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5.2.7. Examples in low degree.

Example 5.2.7 (Mandelbrot is connected). A degree 2 polynomial up to conjugacy is
of the form f : z → z2 + c. The set M of c ∈ C for which Jf is connected is the Mandelbrot
set, first defined and studied by Brooks and Matelski [10]. The complement is identified
with the shift locus S2 (up to conjugacy). From the Böttcher model we see that S2 is
biholomorphic to a punctured disk, which uniformizes the complement of M. Thus, M is
connected with connected complement. See Figure 5.1.

Figure 5.1. M is the complement of S2 in C.

The connectivity of M was proved by Douady–Hubbard [17] using essentially this
argument. They studied the Böttcher map C − M → C − D and proved that it was
proper and an isomorphism near infinity, and therefore invertible. However, they did not
directly construct an inverse (in particular, they did not prove any analog of the Realization
Theorem).

Example 5.2.8 (Multibrots and degenerately critical shifts). Let S∆
3 be the space of

degree 3 polynomials in the shift locus for which f ′ has a single root of order 2, up to
conjugacy. All such polynomials may be written in the form z → z3 + c. From the
Böttcher model we see that S∆

3 is biholomorphic to a punctured disk. It uniformizes the
complement ofM∆

3 , the space of degree 3 polynomials of the form z → z3+c with connected
Julia set. See Figure 5.2.

The same argument works for any d: if S∆
d denotes the space of degree d shift poly-

nomials of the form z → zd + c then S∆
d is biholomorphic to a punctured disk, and the

complement M∆
d in the c-plane is connected; these complements are called Multibrot sets.

Example 5.2.9 (Real degree 3). Let S+
3 (R) denote the space of degree 3 shift polynomi-

als of the form z → z3 +az+b where a and b are real. See Figure 5.3. Not every real degree
3 polynomial is conjugate to one of this form; there is also the family z → −z3 + az + b
which we denote S−3 (R); see Figure 5.4. From these figures it is evident that S±3 (R) are
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Figure 5.2. M∆
3 is the complement of S∆

3 in C.

Figure 5.3. M+
3 (R) is the complement of S+

3 (R) in R2.

both homotopic to countably infinitely many proper rays, and that M±3 (R) are not locally
connected.

We may see this in the Böttcher model: a polynomial f is real if and only if it is
invariant under complex conjugation. There is a Böttcher map to z → ±z3 depending on
the sign of the leading coefficient of f , and this map respects complex conjugation. Thus,
the Böttcher lamination L corresponds to a real polynomial if and only if it is invariant
under complex conjugation. We’ll expand on this in § 5.6.
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Figure 5.4. M−3 (R) is the complement of S−3 (R) in R2.

5.3. The topology of Sd

In this section we give several different descriptions of Sd: as a CW complex, as a limit
of quasiprojective varieties, as a (singular) iterated fiber bundle, and so on. These descrip-
tions are quite explicit. One application is that we can write down a simple (recursive)
description of π1(Sd).

5.3.1. A CW complex structure on Sd/R. Since Sd is homeomorphic (in fact,
biholomorphic) to FSd, we can study the topology of the former by an analysis of the
latter. This is very convenient, because there is a natural CW complex structure on the
quotient FSd/R by the orbits of the squeezing flow.

A (formal) shift f in FSd is encoded by a certain lamination Lf of the disk, together
with an assignment of numbers (altitudes) to the leaves, and such that all but finitely many
altitudes are bigger than any given positive ε; pictorially we denote this by extending a
leaf of altitude v radially beyond the disk so that the endpoints have absolute value ev.

In fact, we don’t need the entire lamination Lf to recover f . Call a precritical leaf
intermediate if its altitude is at least as big as some critical leaf; all other precritical leaves
are short. Given a choice of critical leaves, the precritical leaves are uniquely determined
by the no linking property, so technically all we need to keep track of are the critical
leaves. However, the location of these critical leaves depends on continuous moduli (v and
θ), and the combinatorics of L depends in a complicated (discontinuous) way on these
moduli. Understanding the discontinuities in the combinatorics of L is tantamount to
understanding the topology of FSd.

Let’s suppose we’re given Lf . We restrict attention to the sublamination consisting
only of the critical leaves and the intermediate precritical leaves. This is a finite set of
leaves. We call this subset the intermediate lamination.
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Definition 5.3.1. Let v1 ≤ v2 ≤ · · · ≤ vd−1 be the critical altitudes. The height is the
vector of positive integers h1, h2, · · · , hd−2 where hj is the smallest integer strictly bigger
than log(vd−1/vj)/ log d.

The dynamics z → zd multiplies altitudes v by d, so the height measures the number
of orbits of the dynamical map separating the altitudes of a pair of critical points.

The number of leaves in the intermediate lamination is
∑

j(1 − dhj)/(1 − d) of which
d− 1 are critical. Height is invariant under the squeezing flow. There is a partial order ≺
on the set of heights given by the termwise order.

Among the set of values of v and θ achieved by the (semi)-leaves in the intermediate
lamination there are equalities and inequalities. The signature of p, denoted σ(p), is the
information of the order structure on the set {v of semileaves}, and the circular order
structure on the set {θ of semileaves} ∪ 0. We denote by FSd(σ) the subspace of FSd with
a particular signature σ. We can and do think of σ as a refinement of h.

Definition 5.3.2 (Primitive equality). A primitive equality between altitudes or argu-
ments is one that is not a dynamical consequence of an equality between preimage leaves.

We denote the number of primitive equalities by e(σ), or just e if σ is understood.

Example 5.3.3. (1) Two precritical leaves with the same image leaf will have
equal altitudes; this is a non-primitive equality.

(2) If the argument of a critical semi-leaf is zero, it will have a preimage also with
argument zero; the first equality is primitive but not the second.

(3) If two precritical leaves `, `′ have the same altitude, the same is true of their
forward images. If ` is critical but `′ is strictly precritical this is a primitive
equality; otherwise not.

Theorem 5.3.4 (CW complex structure). For each σ in the image of FSd, the subset
FSd(σ) is invariant under the squeezing flow, and each is homeomorphic to a product
R×Dk where the first factor parameterizes squeezing orbits, and where Dk is an open disk
of dimension k = 2d − 3 − e for e the number of primitive equalities. Furthermore the
quotients under the squeezing flow FSd(σ)/R are the open cells in a CW complex structure
on FSd/R.

Proof. The critical altitudes and arguments vary continuously in a stratum FSd(σ),
and each argument is either identically zero, or varies in (0, 2π). The log of the ratio of any
two critical altitudes is bounded from above by dheighte and is fixed by the action of the
squeezing flow. Each primitive equality is either an equality of arguments or an equality
of the ratio of altitudes (one is equal to the other times a power of d). Every orbit of
the squeezing flow has a unique point for which the biggest critical altitude is equal to 1;
therefore fixing vmax = 1 gives a section from FSd/R to FSd. The altitude and argument
coordinates on this section define a characteristic map from D2d−3−e to FSd(σ)/R which
evidently extends to the closed disk. �

In particular, FSd is homeomorphic to the product of R with a CW complex of dimen-
sion 2d− 3, and the subspace with height ≤ n is homeomorphic to the product of R with
a finite CW complex. Denote this complex Xd and denote its cells by Xd(σ). Let Xd(h)
denote the subcomplex with heights bounded by h (in the partial order ≺).
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5.3.2. Low dimensional cells of the dual complex. Since Xd is a manifold, and
the cells are embedded balls, there is a dual CW structure Yd, with cells of complementary
dimension. The advantage of working with the dual complex is that we may compute π1

from low dimensional cells (those of dimension ≤ 2) that correspond to cells of the original
complex with low co-dimension. In other words, these correspond to signatures σ that are
very generic — they satisfy at most two primitive equalities — corresponding pictures that
are easy to draw and reason about. This leads to a natural groupoid presentation for π1

whose generators and relations are very easy to understand and enumerate.
Let’s give a precise description of the cells of Yd of low codimension.
(1) Codimension 0: There are no primitive altitude or argument equalities; leaves are

distinct and share no endpoints, arguments are all different from zero, and the
altitudes are ordered with no equalities except that preimages of the same leaf
have the same altitude.

(2) Codimension 1: The strata fall into three kinds:
(a) a critical argument goes to zero;
(b) a critical leaf increases or decreases altitude until its altitude is equal to that

of another precritical leaf; or
(c) one edge of a critical leaf bumps into an edge of a taller precritical leaf.

(3) Codimension 2: The strata fall into two kinds:
(a) two codimension 1 conditions occur simultaneously; or
(b) a critical point runs into a precritical point.

Dualizing gives the 2-skeleton of the dual complex, from which we can read off π1.

5.3.3. Tuning. As everybody knows, baby Mandelbrots are born in cauliflowers [16].
Douady defined the operation of tuning . . .

5.3.4. Xd(1) is a K(Bd, 1). We denote by Xd(1) the union of cells with height h a
vector of 1s. This means exactly that the ratio of the critical altitudes is < d, or in other
words that every critical leaf has altitude strictly bigger than every strictly precritical leaf.

Theorem 5.3.5 (Xd(1) is a configuration space). There is a homeomorphism from
R × Xd(1) to the configuration space C\(Cd − ∆)/Sd of unordered d-tuples of distinct
complex numbers up to translation.

This theorem can be proved directly by an elementary cut-and-paste argument. How-
ever we give a slightly more subtle argument which teases out the (asymptotic) holomorphic
relationship between the two sides.

Proof. Let Ωf be the Riemann surface associated to a formal shift. Altitude defines
a map v : Ωf → R+, and we let vmax be the biggest critical altitude. Then all other critical
altitudes are in the interval (vmax/d, vmax]. Let ΩD

f be obtained from Ωf by cutting out
the subspace v−1(0, 1/vmax] and gluing back d punctured round disks using θ coordinates
to glue in their boundaries. Then ΩD

f is conformally isomorphic to C minus d distinct
complex numbers, and we get a map in one direction.

The squeezing flow acts on Xd(1) by multiplying the critical v coordinates by a real
number et. There is a different R+ action which adds t to the critical v coordinates. This
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is not well-defined on all of Sd, but it is defined on R×Xd(1). We call this action additive
squeezing. It takes R×Xd(1) properly inside itself.

Conversely, associated to any distinct d-tuple {zj} summing to zero we can form the
polynomial z → zd + a2z

d−2 + · · · with the zj as roots. There is an action of R on the
configuration space given by

{z1 · · · zd} → {etz1 · · · etzd}

This R action is free, and for t� 1 its image lies in R×Xd(1). Furthermore, the pushfor-
ward of this R action on the image converges (uniformly on compact subsets) to additive
squeezing. Taking vmax →∞ the compositions of these two maps converge to the identity
on compact subsets and we can construct the desired homeomorphism as a limit. �

Remark 5.3.6. Note that (Cd − ∆)/Sd is isomorphic to the space of degree d monic
polynomials with distinct roots and the quotient C\(Cd−∆)/Sd can be identified with the
subspace of the form z → zd + a2z

d−2 + · · · . In this formalism, the homotopy class of

R×Xd(1) ⊂ Sd → C\(Cd −∆)/Sd

is represented by the map that takes a shift polynomial f to the polynomial f − z whose
roots are the fixed points of f . This map is a holomorphic inclusion, and is homotopic
(though not properly homotopic) to a homeomorphism.

For every compact subset K of C\(Cd−∆)/Sd there is an R so that for any |λ| ≥ R the
map f → λf embeds K holomorphically in R×Xd(1) ⊂ Sd, and this map is a homotopy
inverse to f → (f − z). For sufficiently big λ the Julia set of the polynomial λf is ε-close
to {z1, · · · , zd} in the Hausdorff metric; this elegant observation is due to Oleg Ivrii [22].
Evidently any braiding of these roots in C may be accomplished by a loop in Xd(1).

One definition of Bd, the braid group on d strands, is that it is the fundamental group
of (Cd −∆)/Sd. It follows that π1(Xd(1)) is isomorphic to Bd. In fact, this isomorphism
factors through the monodromy representation ρ : π1(Sd)→ BC.

Corollary 5.3.7. The monodromy representation ρ : π1(Xd(1))→ BC preserves a d-
element coarsening D and the composition ρ : π1(Xd(1))→ BC → BD is an isomorphism.

5.3.5. Colored shift space. One key source of combinatorial complexity comes from
the fact that there is no way to distinguish globally between different critical leaves. Be-
cause of this it’s easier to work in a closely related space, the colored shift space.

Let ∆(f ′) ⊂ Sd denote the collection of shift polynomials with a critical point of degree
> 1, and let Nd := Sd − ∆(f ′) denote the complement. ∆(f ′) is the discriminant variety
of the derivative f ′. We call Nd the space of nondegenerate shift polynomials. There is
a degree (d − 1)! regular cover N̂d of Nd whose elements correspond to nondegenerate
shift polynomials together with a bijection (a coloring) of the critical points with the
{1, · · · , d− 1}.

The colored shift space Ŝd is the completion of N̂d. It maps to Sd as a cover branched
over ∆(f ′). An element of Ŝd is a shift polynomial together with a bijection between the
critical points and the elements in an equivalence relation on {1, · · · d−1} so that a critical
point which is a root of f ′ of multiplicity j corresponds to a subset of cardinality j.
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The discriminant ∆(f ′) is smooth and complex codimension 1 in Sd away from a subset
of complex codimension 2. At a generic point on ∆ two critical values coalesce. There are(
d
3

)
components of ∆ corresponding to the distinct combinatorial ways the critical points

can map to the critical values. These are parameterized by a choice of 3 preimages of a
point in S1 under the d-fold covering map.

In particular, π1(Sd) is a quotient of π1(Nd) by a subgroup normally generated by
(
d
3

)
relations. These relations are of braid type.

5.3.6. N̂d as an iterated fibration. We want to argue that the space N̂d is an iterated
fibration: since the critical points are (by fiat) distinct and labeled, we can just “put them
in one at a time.” Each successive choice is parameterized by the fiber of a tautological
fibration, which is an explicit finite cover of a Riemann surface intermediate between C−D
and Ωf , obtained by cut and paste along the preimages of some subset of the critical leaves.

We start with C − D. A choice of critical leaf can be made as follows. First choose a
critical value, and then choose exactly two preimages (out of the d possibilities) to be the
endpoints of the critical leaf.

The set of choices of pairs of preimages is a
(
d
2

)
-fold cover of the punctured disk. It’s

connected if d = 2 or d = 3 and disconnected otherwise. The choice of the first critical
point determines a canonical Riemann surface Ω, a plane minus a Cantor set, the result of
cut-and-paste and pullback as in § ??.

Next we choose the second critical point. Again, we first need to choose a critical value
v2. This critical value is a point in Ω. It’s not completely arbitrary though: by fiat the
critical value is not allowed to be equal to the first critical value we chose. So the second
criticial value is a point in Ω − v1. Here’s the important observation: the topology of the
space of choices for v2 is independent of the choice of v1, and varies continuously as a
function of it. In other words, there is a fiber bundle over the space of choices for c1 (which
is a finite cover of the punctured disk) and the fibers are homeomorphic to C− C. Having
chosen v2, choosing c2 is equivalent to choosing a pair of preimages of v2 in Ω, which again
amounts to passing to a finite cover (connected if d < 5 but not otherwise). This procedure
can be iterated.

5.3.7. Monodromy representation. To complete the description of N̂d as a fiber
bundle we must give the monodromy representation; i.e. how the fundamental group of
configurations for v1, · · · , vk acts on the k-th fiber Ω. Since Ω is a K(π, 1), the homotopy
type of the bundle is completely determined by the action of the fundamental group of
the base on the fundamental group of the fiber, which is isomorphic to F∞, the free group
on countably infinitely many generators. The answer is rather simple and elegant: the
monodromy of the generators is by powers of Dehn twists in a the (disjoint) loops arising
in an iterated pants decomposition of Ω.

5.3.8. S3 as a link complement. Let’s return to the special case of X3 := FS3/R.
This is a real 3-manifold. In degree 3, the height h is a single positive integer, and X3 =
∪nX3(n). Let’s describe X3 explicitly.

Let’s call the two critical altitudes v1 and v2, normalized by squeezing so that v1 ≤ v2 =
1. The critical leaves `1 and `2 aren’t distinguished globally, but at least when v1 < v2

we can label them unambiguously. Each critical leaf has two critical semi-leaves whose
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arguments differ by 2π/3; we let θj be the ‘bigger’ of the two arguments in R/2πZ, in the
sense that the other argument is equal to θj − 2π/3. Since critical leaves don’t intersect
we have θ1 ∈ [θ2 + 2π/3, θ2 + 4π/3].

Lemma 5.3.8 (X3 by cut and paste). Let v1 : X3 → (0, 1] denote the shorter critical
altitude, and for each t ∈ (0, 1] let Θ(t) ⊂ X3 denote the preimage. Let Θ be the torus of
pairs (θ1, θ2) where θ2 ∈ R/2πZ and θ1 ∈ [θ2 + 2π/3, θ2 + 4π/3]/ ∼.

Then
(1) for v1 = 1 the space Θ(1) is obtained from Θ by the relations (θ1, θ2) ∼ (θ2, θ1)

and (θ2 + 2π/3, θ2) ∼ (θ2 + 4π/3, θ2);
(2) for 1/3 < v1 < 1 the space Θ(v1) is naturally identified with Θ by the critical

arguments (θ1, θ2); and
(3) for 3−1−n < v1 <= 3−n, n > 0, the space Θ(v1) is obtained from Θ by successively

cutting θ2 = constant into intervals at the points θ2/3
n + p2π/3n and θ2/3

n −
2π/3n+1 + p2π/3n mod 2π for 0 ≤ p < 3n, and regluing these intervals up into
disjoint circles.

Proof. This is completely formal, and comes from the CW complex structure on X3.
For each n the precritical leaves of `2 at depth n have arguments which are equal to θ2/3

n

and (θ2 − 2π/3)/3n mod (2/3n)π. If we are in X3(n), equivalently if 3−1−n < v1 ≤ 3−n,
then for each m < n in turn, and for each fixed θ2, we must cut the circle of θ1 values θ2 =
constant along the precritical arguments at depth m and reglue, realizing the discontinuity
of θ2 when we push `1 over a bigger precritical leaf of `2. �

Theorem 5.3.9 (X3 as a union of iterated cable complements). Let L1 denote the right
handed trefoil in S3. Let Ln be obtained from Ln−1 by iterated cables as follows:

(1) The components fall into types, indexed by powers of 2. The trefoil is of type 1.
(2) The link Ln is obtained from Ln−1 as follows: for every component K of Ln−1 of

type 2k we keep the same component in Ln but change its type to 2k+1, and we also
add a (−1, 2k) cable of type 1.

Let’s think of each Ln as being contained in successive tubular neighborhoods N(Ln−1) of
the previous Ln−1.

Then with this notation, X3(n) = S3 −N(Ln), and X3 = S3 − ∩N(Ln).

Proof. This theorem is really just a restatement of Lemma 5.3.8 in 3-manifold ter-
minology. Recall the notation Θ to denote the torus with parameters (θ1, θ2) where
θ2 ∈ R/2πZ and θ1 ∈ [θ2 + 2π/3, θ2 + 4π/3]/ ∼. We think of Θ as being obtained from
a pair of trapezes in the square [0, 2π]2. The quotient (θ1, θ2) ∼ (θ2, θ1) identifies these
two trapezes with one, and under the natural identifications this trapeze glues up to a
Möbius band whose core is double-covered by the circle θ1 = θ2 + π, and whose boundary
θ1 = θ2 + 2π/3 triple-covers its image. If we think of S3 as the join S1 ∗ S1 of these two
singular circles, then the circles become the Hopf link, and the complement of (Θ/ ∼)
is (a neighborhood of) a (3, 2) torus link — i.e. a right-handed trefoil. Thus X3(1) is
homeomorphic to S3 minus a (neighborhood of a) trefoil. The circles θ2 = constant are
meridians of the trefoil, and the circles θ1 = constant are longitudes.

Inductively the meridians of Ln correspond to circles of length 2k · 3−nπ for type 2k,
obtained from segments in the circles θ2 = constant by cutting along precritical arguments,
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gluing up the smallest segments into circles of type 1, and the longer segments into a single
circle of type 2k+1. As we wind around the θ2 circle, the precritical arugments also wind
positively, but each is 3 times as slow as the previous one. Thus for type 2k it gives rise to
a core of type 2k+1 and a cable (−1, 2k) torus knot of type 1. Figure 5.5 depicts the links
Lj for j = 1, 2, 3. �

Figure 5.5. X3(j) for j = 1, 2, 3 are the complements of the links Lk in S3.

5.3.9. Higher degree. We’re now in a position to give a completely explicit descrip-
tion of Ŝd and Sd, and associated CW complexes X̂d and Xd.

The shift space Sd is a quotient of Ŝd by the symmetric group Sd−1. The squeezing flow
commutes with this action, and we can write Ŝd = X̂d×R where X̂d is a locally finite CW
complex mapping cellularly to Xd.

5.3.9.1. The altitude plane. The altitudes vj, being the logarithms of the absolute value
of the critical Böttcher coordinates, are well-defined positive functions on Ŝd, and their
logarithms are the coordinates of a surjection logd v : Ŝd → Rd−1.

Note that we use logd — i.e. the logarithm in base d— so that the natural stratification
by singularities of log v is concentrated on hyperplanes with integral coordinates. Anyway,
we suppress the subscript in the sequel.

The squeezing flow factors through log v, and translates Rd−1 in the direction of the
vector (1, 1, · · · , 1). It’s convenient to normalize coordinates so that log v : X̂d → Rd−2

maps to the subspace with coefficients summing to zero (equivalently, the product of the
vj is 1). We call Rd−2 the altitude plane.

In these coordinates we may identify Rd−2 as the root space of the Lie algebra sl(d−1)

and Sd−1 as the Weyl group. Passing from X̂d to Xd corresponds to quotienting out
Rd−2 by the Weyl group, so we can think of log v as a map from Xd to a Weyl chamber
v1 ≤ v2 ≤ · · · ≤ vd−1 whose faces have been orbifolded; i.e. they are decorated by the
stabilizer subgroup.

5.3.9.2. Triangulation by walls. Let Φ∗ be the dual root lattice, and letH be the system
of hyperplanes (‘walls’) defined by φ∗ ∈ Z for some (dual) root φ∗. The hyperplanes in H
fall into (d − 1)(d − 2)/2 distinct parallelism classes, and each hyperplane corresponds to
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an equality of the form log vj − log vk = n for some j > k and some integer n. We can
write such a hyperplane Hj,k(n); the Hj+1,j(0) cut out the walls of the Weyl chamber.

The hyperplanes Hj,k(n) cut up the Weyl chamber v1 ≤ · · · vd−1 into simplices, the cells
in a CW decomposition Zd, and the map log v : X̂d → Z is cellular. Each simplex of Zd is
defined by a finite number of equalities of the form log vj − log vk = n and inequalities of
the form n < log vk − log vj < n+ 1. The preimage of each cell is evidently a subcomplex
of X̂d.

5.3.9.3. Fibers of singular tori. Over each open simplex σ of Z the preimage in X̂d

is a product of σ with a space that may be thought of as a mildly singular flat (d − 2)-
torus. This latter space is itself a (d− 2)-fold iterated fiber bundle. If we denote the total
space E1 we can write F1 → E1 → E2 and successively Fj → Ej → Ej+1 until we get
to Fd−2 → Ed−2 → B. The base space B is always a circle of length 2π which we may
canonically identify with R/2πZ parameterized by the θd−1 coordinate. Likewise, each Fj
is ‘parameterized’ by the θj coordinate, and is obtained from a circle of length 2jπ/d by
iterated operations we call pinch and cut. These operations occur when passing through
the walls Hj,k(n).

When no log vk − log vj is an integer but log vd−1 − log vj < n, the jth fiber Fj is a
disjoint union of circles each with length of the form 2pπ/dn for various integers p, and
summing to 2jπ/d.

In some family where t := log vk− log vj increases from n− ε to n+ ε some components
of the fiber Fj pinch at t = n to real cacti (i.e. a tree of circles glued at isolated points),
and when t > n these cacti are cut apart into their constituent circles.

5.3.9.4. Wall complements and recursive factorization. We’ve seen that when we pass
through a wall Hj,k(n) the fibers of log v become disconnected. The ‘big’ wall of the Weyl
chamber is Hd−2,d−1(0), i.e. the one where vd−2 = vd−1. Its preimage disconnects X̂d (and
Xd for that matter); the complement is where vd−1 is the unique biggest altitude. This
complement has bd/2c components, corresponding to the difference in the two arguments
of the tallest critical leaf `d−1; this difference is of the form p2π/d for some 0 < p < d and
there is no distinction between p and d− p. Denote these components X ′d(p).

Lemma 5.3.10 (Wall complements are fiber products). There is a natural homeomor-
phism from X ′d(p) to the fiber product X ′p+1(1)×S1 X ′d−p+1(1) respecting the combinatorial
structure, where the S1 action on either side acts fiberwise (as above) by rotating each circle
in the base space at constant speed.

Thus, for instance, X ′4(2) = X ′3(1)×S1 X ′3(1) = X3 ×S1 X3.

Proof. All the combinatorial complexity of each Xd comes from the way in which
fibers pinch and break as we pass through hyperplanes φ ∈ Z. At the level of laminations,
this occurs when some critical leaf collides with a precritical leaf at the same height. But
in the stratum X ′d(p) the big critical leaf `d−1 separates p− 1 of the smaller critical leaves
from the other d − p − 1 of them, and inductively, the preimages of the big critical leaf
separate p−1 of the smaller critical leaves from the preimages of the other d−p−1 of them.
There are no interactions, and the two factors decompose into an independent X ′p+1(1) and
X ′d−p+1(1). The circle action on either side comes from rotating the same θd−1 argument,
so we obtain an identification of the given stratum with the fiber product. �
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It follows recursively that there is only one really ‘new’ component of Xd for each d,
namely X ′d(1), where the arguments of the biggest critical leaf differ by exactly 2π/d.

There is an analog of Lemma 5.3.10 for every Hj,k(n) . . .

5.3.10. Sd is a K(π, 1). From the explicit description of Xd we can immediately de-
duce:

Theorem 5.3.11 (Sd is a K(π, 1)).

Proof. We first show that Ŝd is a K(π, 1). This follows from the iterated singular
fibration picture for X̂d, which should be thought of as a kind of ‘horotorus slice’ of Ŝd.
Away from the singular hyperplanes the space X̂d looks like a bundle over Rd−1 with fibers
which are disjoint unions of Euclidean tori, and the metric is locally flat. Passing through
a critical hyperplane causes the fibers to pinch along parallel subspaces, which are then cut
open. At the level of the universal cover this can be accomplished by taking a collection of
parallel codimension two Euclidean subspaces, and for each cutting out the product with
a ray and inserting a new Euclidean halfspace. The codimension two subspaces become
singular in the new metric with cone angle 3π.

Another topologically equivalent but less obviously geometric way to see this is to
consider the iterated fibration structure on N̂d discussed in § 5.3.6 and apply the long
exact sequence in homotopy, since the fibers are all surfaces of infinite type.

Passing from Ŝd to Sd is achieved by quotienting by the action of the symmetric group.
This acts in the Euclidean space model in the standard way — i.e. by identifying the
Euclidean space with Cd−1, and quotienting out by the permutation action of Sd−1 on the
coordinates. Topologically, the permutation action is the same before and after taking
branched covers and lifting to the universal cover: the singular locus for the permutation
action is a union of linear subspaces, and when we take double branched covers these are
covered by Euclidean spaces in the same topological configuration.

The usual observation that the quotient of Cd−1 by Sd−1 is homeomorphic (actually
biholomorphic!) to Cd−1 completes the proof. �

5.4. Algebraic geometry

The Shift space Sd embeds naturally as an open subset of Cd−1, and is therefore a com-
plex analytic manifold in a natural way. However, this embedding is highly transcendental.
It turns out that there is a more algebraic way to see Sd, at least up to homeomorphism.
In this section we’ll see that each Xd(h) × R is homeomorphic to a quasiprojective vari-
ety, and these quasiprojective varieties arise in a natural way as subsets from an algebraic
compactification (com-cacti-fication?) of shift space by cactus shifts.

5.4.1. Cactus shifts. Spaces of rational maps can be naturally compactified by dy-
namics on nodal curves called cacti. This is analogous to the Deligne-Mumford compacti-
fication of moduli spaces of Riemann surfaces. These cacti are typically not compact, nor
are their moduli. However the space of cacti is naturally exhibited as an increasing union of
pieces, each of which is a quasiprojective variety, and (although reducible) each finite union
can be deformed (not canonically) to an irreducible quasiprojective variety homeomorphic
to some Xd(h)× R.
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Let’s start with the definition of a cactus.

Definition 5.4.1 (Cactus). A cactus K is a locally finite rooted tree of CP1s. This
means that

(1) there is a rooted tree T , and
(2) for each vertex v ∈ T there is a copy of CP1 which we denote CP1

v, and
(3) for each edge e ∈ T with parent v there is a distinguished value z(e) ∈ CP1

v −∞
with distinct edges ej beginning at v corresponding to distinct z(ej) in CP1

v.

We think of the union of CP1s as being glued together into a (locally finite) nodal curve,
where for each edge e with parent v and child w we attach ∞ ∈ CP1

w to z(e) ∈ CP1
v.

So much for cacti. Now let’s talk about dynamics.

Definition 5.4.2 (Cactus polynomial). Let K be a cactus with associated tree T . A
cactus polynomial p of degree d is the following data:

(1) for every vertex v there is a polynomial pv of the form pv : z → zn + a2z
n−2 +

a3z
n−3 + · · · an (i.e. the polynomial is in Böttcher form);

(2) there is a simplicial map of T . It collapses each root edge to the root vertex, and
is injective on every other edge.

(3) if v is the root vertex, the degree of pv is d and the distinguished values in CP1
v

are the roots of pv;
(4) for every vertex v the sum of the degrees of the pw over the preimages w of v is

equal to d; and
(5) for every vertex v and every preimage w the distinguished values in CP1

w are
exactly the preimages of the distinguished values in CP1

v under pw.
A critical point of some pw is genuine if it is not equal to a distinguished value. A cactus
polynomial of degree d is a shift if it has exactly d−1 genuine critical points, counted with
multiplicity.

The pv define a map p : K → K as follows. If e is an edge with parent v and child
w then we think of pw as a map from CP1

w to CP1
v, so that by bullet (4) the map p takes

distinguished values to distinguished values. In the special case that v is the root vertex,
we let p|CP1

v be the constant map to ∞ ∈ CP1
v.

With this convention p determines an honest map from K to itself. The dynamics is
very simple: ∞ in the root node is fixed, and every other point converges to ∞ in finite
time. More interesting is the action of p on the space of ends of K, which is (except in
some very degenerate cases) a Cantor set on which p acts as a quotient of a shift; this
Cantor set is, if you like, the Julia set of p.

Every cactus polynomial of degree d has at most d − 1 critical points counted with
multiplicity. We may extend a cactus polynomial by adding a new root vertex, an edge
from the new root to the old, putting the unique distinguished value in the new root CP1 at
0, and defining pv on the new root CP1

v to be the polynomial z → zd. A cactus polynomial
is reduced if there are at least two distinguished values in the root CP1, equivalently if
for v the root vertex, the polynomial has at least two roots. Every cactus polynomial is
obtained from a reduced one in a unique way by iterated extension, except for the unique
cactus polynomial in any fixed degree whose underlying tree is an infinite ray.
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The critical subcactus is the cactus associated to the minimal (finite) subtree of T
containing all the genuine critical points.

The cactus polynomials as we define them above are the nondegenerate ones. Define the
class of generalized cacti by allowing the possibility that more than one child CP1 shares
the same distinguished value in a parent CP1.

For a degenerate cactus polynomial if p is a distinguished value of multiplicity n we
also think of it as a genuine critical point of multiplicity n− 1.

Definition 5.4.3 (height). The height of a cactus polynomial is the vector whose
components are equal with multiplicity to 1 plus the combinatorial distance (measured in
number of edges) from the genuine critical points to the root. If a cactus polynomial is not
a shift, this vector is padded by a ∗ symbol to have d− 1 entries.

For a generalized cactus polynomial we add 1 to the distance for those genuine critical
points that occur as distinguished values of multiplicity at least 2.

We define a partial order on heights componentwise, except that ∗ is considered incom-
parable. With this convention,

Lemma 5.4.4. For any h the set of generalized cactus polynomials of degree d and height
≤ h is a (highly reducible) quasiprojective variety of (complex) dimension d − 1, and the
subset of nondegenerate cactus polynomials is an open dense subvariety.

Proof. The key point is that once we have the finite subset of the cactus containing
all the genuine critical points, the remainder of the cactus is completely determined. Each
genuine critical point contributes one degree of freedom, and the total number is d − 1.
Since the height is bounded there are only finitely many combinatorial possibilities for the
critical subcactus. �

In the sequel we shall prove the following theorem:

Theorem 5.4.5 (Quasiprojective). Let CSd(h) denote the variety of generalized cac-
tus shifts of degree d and height ≤ h. Then CSd(h) can be deformed to a nonsingular
quasiprojective variety homeomorphic to Xd(h)× R.

5.4.2. Examples in low degree. Let’s work out some explicit examples in low de-
gree. We restrict attention to reduced cacti, so that the root CP1 must contain at least
one critical point.

Example 5.4.6 (Degree 2). A reduced cactus K of degree 2 has root polynomial pv :
z → z2 + c for some nonzero c. The distinguished points are ±

√
c and at each of these

points the subcactus is a copy of K (whose underlying tree is, by induction, a two-valent
rooted tree), and every child polynomial pw is the identity map z → z. Thus every reduced
cactus of degree 2 is a shift, and the space of reduced cacti is C∗.

Example 5.4.7 (Degree 3). A reduced cactus K of degree 3 has root polynomial pv :
z → z3 + az + b where at least one of a or b is nonzero. The height is 1 if and only if pv
has three distinct roots; equivalently if and only if its discriminant −4a3− 27b2 is nonzero.
Let ∆ be the discriminant locus in C2 with coordinates a, b.

If the discriminant of pv is zero, pv has two distinct roots α and β where β is a double
root and α + 2β = 0 so that α = −β/2. These two distinguished values are associated to
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two child vertices x and y where px is the degree one map px : z → z and py is a degree
two map py : z → z2 + c. The distinguished values in CP1

y are the preimages of α and β
under py. The height is 2 if and only if α and β are regular values, equivalently if c is not
equal to α or β. Thus we can think of the space of reduced cacti of degree 3 and height
exactly 2 as a bundle over ∆− 0 whose fibers are copies of C− two points.

If the discriminant of pv is zero there are two ways for py to be degenerate: either
py : z → z2 + α or py : z → z2 + β. In either case there are three distinguished points in
CP1

y. In the first case these are at 0 and at ±
√
β − α, and in the second case these are at 0

and at ±
√
α− β. Two of these distinguished points are attached to a CP1 which maps by

degree 1, and zero is attached to a CP1 which maps by a degree 2 map z → z2 + d. This
special CP1 has distinguished points, at the square roots of −d and ±

√
α− β − d in the

first case and ±
√
β − α− d in the second case. The height is 3 if and only if these square

roots are all distinct.
It’s clear how to continue this pattern. The cactus maps of a particular height are

the complement of a certain discriminant, and those of the next height are a bundle over
this discriminant with fiber a copy of the complement of the distinguished points at the
previous level. Over every point in ∆ − 0 the union of the shift cacti is itself an infinite
cactus . . .

5.4.3. Proof of Theorem 5.4.5. We now give the proof of Theorem 5.4.5.

Proof. In fact, the correspondence between CSd and FSd is quite direct. A reduced
cactus K admits a pair of measured singular foliations defined as follows. For the root
vertex v the foliations of CP1

v are the preimage under pv of the (singular) foliations of CP1

by lines of constant argument, and circles of constant absolute value; and then for every
non root vertex w which is a child of v we define the foliations on CP1

w to be the preimage
of the foliations on CP1

v under pw. These foliations are singular on each CP1 at infinity,
at the distinguished points, and at the genuine critical points. If we remove infinity and
the distinguished points we get a pair of foliations of an open planar surface that can be
completed to compact surfaces by adding circle leaves as boundaries. These foliations give
altitude and argument functions on each subsurface. Reparameterize log of the altitude
function by a homeomorphism R→ (0, 1) (for instance, the normal cumulative distribution
function is a natural choice) and glue these subsurfaces together with the added boundary.
The result is an infinite type surface Ω together with a single self-map p : Ω → Ω which
is evidently a formal shift; reversing this procedure takes a formal shift to a cactus shift
providing none of the critical values have log altitude equal to an integer.

This shows a few things: firstly that each end of each component of the space of cactus
maps is a product, homeomorphic to the corresponding end of the component it attaches
to, and that the result of gluing the components together by this product structure is
homeomorphic to FSd. It remains to show that this topological gluing can be accomplished
algebraically by a deformation. �

5.5. Monodromy

5.5.1. Representations to braid groups. For f in the Shift locus, the action of f
on Jf is uniformly expanding, and the dynamics is structurally stable in a neighborhood
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of Jf . We therefore get natural representations of π1(Sd) to various braid groups. Here is
a (non-exhaustive) list:

(1) the representation to BC given by the braiding of Jf in C;
(2) the representation to Bdn given by the braiding of the periodic orbits of Jf of

period dividing n in C;
(3) for every periodic point p of period dividing n, the kernel of π1(Sd)→ Bdn → Sdn

admits a representation to M(T 2 − C) given by the braiding of (Jf − p)/〈fn〉 in
the torus (C− p)/〈fn〉; . . .

5.5.2. The braid group of dn-coarsenings.

5.5.3. The monodromy representation is injective. We are now in a position to
prove:

Theorem 5.5.1 (Monodromy is injective). The monodromy representation ρ : π1(Sd)→
BC is injective.

5.5.4. Landing rays and the action on the Ray graph. For a shift polynomial
f the landing rays are proper rays from Jf to infinity which are the images of the vertical
segments θ = constant in Böttcher coordinates containing no critical or precritical leaf. As
we move around in shift space, the isotopy class of a landing ray will change when it passes
over a critical leaf. Nevertheless there is a coarse map from the universal cover of Sd to the
Cantor ray graph RC.

Of course, this is an orbit map for the monodromy action of BC. But the point is we
don’t need to choose an orbit — the complex structure picks one out for us canonically,
and there is a close connection between the holomorphic geometry of a family in Sd and
the metric geometry of RC.

5.6. Real Shift locus

A real degree d polynomial f(z) = a0z
d + a1z

d−1 + · · · + ad is always conjugate to a
polynomial of the form zd + O(zd−2), but this polynomial is not necessarily real, because
a0 may not have a real (d − 1)st root. If d is even, then of course any real a0 has a
(unique) real (d − 1)st root; if d is odd, then either a0 or −a0 has such a root. Thus
for d even it makes sense to define Sd(R) to be the space of real polynomials of the form
z → zd + O(zd−2), whereas for d odd we define S±d (R) to be the space of real polynomials
of the form z → ±zd + O(zd−2) respectively. We denote the image of these subspaces in
FS by FSd(R) for d even and FS±d (R) for d odd.

The Böttcher map commutes with complex conjugation, because this is evidently true
near infinity. A polynomial is real if and only if it is invariant under complex conjugation.
It follows that a formal shift is in FSd(R) if and only if the lamination L is invariant
under complex conjugation. This means we can read off the topology of FSd(R) from the
combinatorics of symmetric laminations in the Böttcher model.

5.6.1. Examples.

Example 5.6.1 (Degree 2). Let R be the space of degree two polynomials z → z2 + c
with c real. M2(R) is equal to the interval [−2, 1/4], and S2(R) is the union of two open
rays.
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Example 5.6.2 (Degree 3).

5.6.2. Local connectivity.
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CHAPTER 6

Linear IFS

For 1 ≤ j ≤ k pick complex numbers αj, βj with 0 < |αj| < 1 and define fj : C → C
by fj(z) = αjz + βj. The dynamical system (C, fj) is usually called a (complex linear)
iterated function system, or IFS for short.

Because the generators are uniform contractions, there is a continuous endpoint map
e : E → C with image the attractor Λ. We say (C, fj) is Schottky if e : E → Λ is a
homeomorphism.

59
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CHAPTER 7

Holomorphic foliations

7.1. Holomorphic vector fields

Let V be a complex surface and let X be a holomorphic vector field on V . The integral
curves of X define a one (complex) dimensional singular foliation F. This foliation is
singular at the zeroes of X which form a subvariety Σ ⊂ V .

Let Ω be the open subset of the projective space PH0(V ; Θ) consisting of vector fields
for which F contains an exceptional minimal set.
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CHAPTER 8

Schottky groups

8.1. Handlebodies
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CHAPTER 9

Roots
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