NOTES ON DIFFERENTIAL FORMS

DANNY CALEGARI

Abstract. These are notes on differential forms. They follow the last three weeks of a course given at the University of Chicago in Winter 2016.

Contents

1. Differential forms 1
2. Integration 12
3. Chern classes 17
4. Acknowledgments 24
References 24

1. Differential forms

1.1. Exterior algebra. Let V be a (real) vector space, and let V^{*} denote its dual. Then $\left(V^{*}\right)^{\otimes n}=\left(V^{\otimes n}\right)^{*}$. For $u_{i} \in V^{*}$ and $v_{i} \in V$ the pairing is given by

$$
u_{1} \otimes u_{2} \otimes \cdots \otimes u_{n}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=u_{1}\left(v_{1}\right) u_{2}\left(v_{2}\right) \cdots u_{n}\left(v_{n}\right)
$$

We denote by $T(V)$ the graded algebra $T(V):=\oplus_{n=0}^{\infty}\left(V^{\otimes n}\right)$ and call it the tensor algebra of V. Let $I(V) \subset T(V)$ be the 2-sided ideal generated by elements of the form $v \otimes v$ for $v \in V$. This is a graded ideal and the quotient inherits a grading.

Definition 1.1 (Exterior Algebra). The quotient $T(V) / I(V)$ is denoted $\Lambda(V)$. It is a graded algebra, and is called the exterior algebra of V.

The part of $\Lambda(V)$ in dimension j is denoted $\Lambda^{j}(V)$. If V is finite dimensional, and has a basis v_{1}, \cdots, v_{n} then a basis for $\Lambda^{j}(V)$ is given by the image of j-fold "ordered" products $v_{i_{1}} \otimes \cdots \otimes v_{i_{j}}$ with $i_{k}<i_{l}$ for $k<l$. In particular, the dimension of $\Lambda^{j}(V)$ is $n!/ j!(n-j)!$, and the total dimension of $\Lambda(V)$ is 2^{n}.

It turns out there is a natural isomorphism $(\Lambda(V))^{*}=\Lambda\left(V^{*}\right)$; equivalently, there is a nondegenerate pairing of $\Lambda\left(V^{*}\right)$ with $\Lambda(V)$. But in fact, there is more than one "natural" choice of pairing, so we must be more precise about which pairing we mean. If we think of $\Lambda(V)$ as a quotient of $T(V)$, then we could think of $\Lambda\left(V^{*}\right)$ as the subgroup of $T\left(V^{*}\right)$ consisting of tensors vanishing on the ideal $I(V)$. To pair $\alpha \in \Lambda\left(V^{*}\right) \subset T\left(V^{*}\right)$ with $\beta \in \Lambda(V)=T(V) / I(V)$ we choose any representative $\bar{\beta} \in T(V)$, and pair them by $\alpha(\beta):=\alpha(\bar{\beta})$ where the latter pairing is as above. Since (by definition) α vanishes on $I(V)$, this does not depend on the choice of $\bar{\beta}$.

[^0]1.2. Algebra structure. As a quotient of $T\left(V^{*}\right)$ by an ideal, the exterior algebra inherits an algebra structure. But as a subgroup of $T\left(V^{*}\right)$ it is not a subalgebra, in the sense that the usual algebra product on $T\left(V^{*}\right)$ does not take $\Lambda\left(V^{*}\right)$ to itself.
Example 1.2. Observe that $\Lambda^{1}\left(V^{*}\right)=V^{*}=\left(\Lambda^{1}(V)\right)^{*}$. But if $u \in V^{*}$ is nonzero, there is $v \in V$ with $u(v)=1$, and then $u \otimes u(v \otimes v)=1$ so that $u \otimes u$ is not in $\Lambda^{2}\left(V^{*}\right)$.

We now describe the algebra structure on $\Lambda\left(V^{*}\right)$ thought of as a subgroup of $T\left(V^{*}\right)$. Let S_{j} denote the group of permutations of the set $\{1, \cdots, j\}$. For $\sigma \in S_{j}$ the sign of σ, denoted $\operatorname{sgn}(\sigma)$, is 1 if σ is an even permutation (i.e. a product of an even number of transpositions), and -1 if σ is odd.
Definition 1.3 (Exterior product). Let $u_{1}, \cdots, u_{j} \in V^{*}$. We define

$$
u_{1} \wedge u_{2} \wedge \cdots \wedge u_{j}:=\sum_{\sigma \in S_{j}}(-1)^{\operatorname{sgn}(\sigma)} u_{\sigma(1)} \otimes u_{\sigma(2)} \otimes \cdots \otimes u_{\sigma(j)}
$$

We call the result the exterior product (or sometimes wedge product).
It is straightforward to check that this element of $T\left(V^{*}\right)$ does indeed vanish on $I(V)$, and therefore lies in $\Lambda^{j}\left(V^{*}\right)$, and that every element of $\Lambda^{j}\left(V^{*}\right)$ is a finite linear combination of such products (which are called pure or decomposable forms). The space $\Lambda^{j}\left(V^{*}\right)$ pairs with $\Lambda^{j}(V)$ by

$$
u_{1} \wedge \cdots \wedge u_{j}\left(v_{1} \otimes \cdots \otimes v_{j}\right)=\operatorname{det}\left(u_{i}\left(v_{j}\right)\right)
$$

on pure forms, and extended by linearity.
Let $S_{p, q}$ denote the set of p, q shuffles; i.e. the set of permutations σ of $\{1, \cdots, p+q\}$ with $\sigma(1)<\cdots<\sigma(p)$ and $\sigma(p+1)<\cdots<\sigma(p+q)$. It is a set of (canonical) coset representatives of the subgroup $S_{p} \times S_{q}$ in S_{p+q}. If $\alpha \in\left(\Lambda^{p}(V)\right)^{*}$ and $\beta \in\left(\Lambda^{q}(V)\right)^{*}$ then we can define $\alpha \wedge \beta \in\left(\Lambda^{p+q}(V)\right)^{*}$ by

$$
\alpha \wedge \beta\left(v_{1} \otimes \cdots \otimes v_{p+q}\right)=\sum_{\sigma \in S_{p, q}}(-1)^{\operatorname{sgn}(\sigma)} \alpha\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(p)}\right) \beta\left(v_{\sigma(p+1)} \otimes \cdots \otimes v_{\sigma(p+q)}\right)
$$

One can check that this agrees with the notation above, so that $\Lambda\left(V^{*}\right)$ is an algebra with respect to exterior product, generated by $\Lambda^{1}\left(V^{*}\right)$. This product is associative and skewcommutative: i.e.

$$
\alpha \wedge \beta=(-1)^{p q} \beta \wedge \alpha
$$

for $\alpha \in \Lambda^{p}\left(V^{*}\right)$ and $\beta \in \Lambda^{q}\left(V^{*}\right)$.
1.3. Smooth manifolds and functions. Let $U \subset \mathbb{R}^{n}$ be open. A map $\varphi: U \rightarrow \mathbb{R}^{m}$ is smooth if the coordinate functions are continuous and admit continuous mixed partial derivatives of all orders.
Definition 1.4 (Smooth Manifold). An n-manifold is a (paracompact Hausdorff) topological space in which every point has a neighborhood homeomorphic to an open subset of \mathbb{R}^{n}. An n-manifold is smooth if it comes equipped with a family of open sets $U_{\alpha} \subset M$ (called charts) and maps $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ which are homeomorphisms onto $\varphi_{\alpha}\left(U_{\alpha}\right) \subset \mathbb{R}^{n}$ open, so that for each pair α, β the transition maps

$$
\varphi_{\beta} \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

are smooth, as maps between open subsets of \mathbb{R}^{n}.

Example 1.5. \mathbb{R}^{n} is a smooth manifold. An open $U \subset \mathbb{R}^{n}$ is a smooth manifold. If M is smooth, an open $U \subset M$ is smooth.

Example 1.6. If M and N are smooth manifolds of dimensions m and n, then $M \times N$ is smooth of dimension $m+n$.

A function $f: M \rightarrow \mathbb{R}$ is smooth if it is smooth in local coordinates; i.e. if $f \varphi_{\alpha}^{-1}$: $\varphi_{\alpha}\left(U_{\alpha}\right) \rightarrow \mathbb{R}$ is smooth for each α. Pointwise addition and multiplication make the smooth functions on M into a ring, denoted $C^{\infty}(M)$.

A map $\varphi: M \rightarrow N$ between smooth manifolds is smooth if it is smooth in local coordinates; i.e. if

$$
\varphi_{\beta} \varphi \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha}\right) \rightarrow \varphi_{\beta}\left(V_{\beta}\right)
$$

is smooth for each pair of charts U_{α} on M and V_{β} on N. Smooth functions pull back; i.e. there is a ring homomorphism $\varphi^{*}: C^{\infty}(N) \rightarrow C^{\infty}(M)$ given by $\varphi^{*}(f)=f \varphi$.
1.4. Vectors and vector fields. A map $\gamma:[0, \epsilon] \rightarrow M$ for some positive ϵ is smooth if its composition $\varphi_{\alpha} \gamma$ is smooth for each chart, where defined. We define an equivalence relation on the class of such maps, and say that γ and σ are equivalent if $\gamma(0)=\sigma(0)$, and if

$$
\left.\frac{d}{d t}\right|_{t=0} \varphi_{\alpha} \gamma(t)=\left.\frac{d}{d t}\right|_{t=0} \varphi_{\alpha} \sigma(t)
$$

where defined. Note that γ is equivalent to the restriction $\left.\gamma\right|_{\left[0, \epsilon^{\prime}\right]}$ for any positive $\epsilon^{\prime} \leq \epsilon$; thus the equivalence class of γ depends only on the germ of γ at 0 .

Definition 1.7 (Tangent space). For $x \in M$, the set of equivalence classes of smooth maps $\gamma:[0, \epsilon] \rightarrow M$ for some positive ϵ with $\gamma(0)=x$ is called the tangent space to M at x, and is denoted $T_{x} M$.

The vector associated to the equivalence class of γ is usually denoted $\gamma^{\prime}(0)$. By abuse of notation we denote by $\gamma^{\prime}(t)$ the vector in $T_{\gamma(t)} M$ obtained by reparameterizing the domain of γ by a translation.

Definition 1.8 (Pushforward). Vectors can be pushed forward by smooth maps. If φ : $M \rightarrow N$ is smooth, and $\gamma:[0, \epsilon] \rightarrow M$ is in the equivalence class of some vector at x, then $\varphi \gamma:[0, \epsilon] \rightarrow N$ is in the equivalence class of some vector at $\varphi(x)$. Thus there is an induced $\operatorname{map} d \varphi_{x}: T_{x} M \rightarrow T_{\varphi(x)} N$.
Example 1.9. The identity map on $[0, \epsilon]$ determines the coordinate vector field ∂_{t}. Then $d \gamma_{t}\left(\partial_{t}\right)=\gamma^{\prime}(t)$ for any $\gamma:[0, \epsilon] \rightarrow M$.

A vector $v \in T_{x} M$ defines a linear map $v: C^{\infty}(M) \rightarrow \mathbb{R}$ as follows. If f is a smooth (real-valued) function on M, and $\gamma:[0, \epsilon] \rightarrow M$ is a smooth map with $\gamma^{\prime}(0)=v$, the composition $f \gamma$ is a smooth function on $[0, \epsilon]$, and we can define

$$
v(f):=\left.\frac{d}{d t}\right|_{t=0} f \gamma(t)
$$

By ordinary calculus, this satisfies the Leibniz rule $v(f g)=v(f) g(x)+f(x) v(g)$, and does not depend on the choice of representative γ.

Definition 1.10. A linear map $v: C^{\infty}(M) \rightarrow \mathbb{R}$ satisfying $v(f g)=v(f) g(x)+f(x) v(g)$ is called a derivation at x.

Every derivation at x arises from a unique vector at x, so the set of derivations is exactly $T_{x} M$. Note that this explains why this set has the structure of a vector space, of dimension n.

Each point $x \in M$ determines a unique maximal ideal \mathfrak{m}_{x} in $C^{\infty}(M)$ consisting of the functions in M that vanish at x. This is exactly the kernel of the surjective homomorphism $C^{\infty}(M) \rightarrow \mathbb{R}$ given by $f \rightarrow f(x)$.

Proposition 1.11 (Pairing). There is a natural pairing

$$
T_{x} M \otimes_{\mathbb{R}} \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2} \rightarrow \mathbb{R}
$$

given by $v \otimes f \rightarrow v(f)$. This pairing is nondegenerate, so that $T_{x} M=\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$.
Proof. If $f, g \in \mathfrak{m}_{x}$ then $v(f g)=v(f) g(x)+f(x) v(g)=0$ so the pairing is well-defined.
Note that every derivation vanishes on the constants, so if $v \in T_{x} M$ is nonzero, it is nonzero on \mathfrak{m}_{x}. Thus $T_{x} M \rightarrow\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$ is injective.

Conversely, any $\phi: \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2} \rightarrow \mathbb{R}$ extends to $\bar{\phi}: C^{\infty}(M) \rightarrow \mathbb{R}$ by $\bar{\phi}(f):=\phi(f-f(x))$, which is a derivation at x since

$$
f g-f(x) g(x)=(f-f(x))(g-g(x))+f g(x)+f(x) g-2 f(x) g(x)
$$

so that

$$
\phi(f g-f(x) g(x))=\phi(f-f(x)) g(x)+f(x) \phi(g-g(x))
$$

Derivations are natural: if $\varphi: M \rightarrow N$ and $v \in T_{x} M$ and $f \in C^{\infty}(N)$ then

$$
v\left(\varphi^{*} f\right)=d \varphi_{x}(v)(f)
$$

Definition 1.12 (Tangent bundle and vector fields). The collection of vector spaces $T_{x} M$ for various $x \in M$ are the fibers of a smooth vector bundle $T M$ called the tangent bundle. The fibers have dimension n, the same as the dimension of M. A smooth section of $T M$ is called a vector field, and the space of all vector fields on M is denoted $\mathfrak{X}(M)$.

A smooth map $\varphi: M \rightarrow N$ induces a smooth map $d \varphi: T M \rightarrow T N$.
Example 1.13. If $\varphi: M \rightarrow N$ is a diffeomorphism, $d \varphi$ is a bundle isomorphism.
Vector fields do not push forward under maps in general, but when $\varphi: M \rightarrow N$ is a diffeomorphism and $X \in \mathfrak{X}(M)$ then it makes sense to define $d \varphi(X) \in \mathfrak{X}(N)$.

If f is a smooth function and X is a vector field, we can apply X as a derivation pointwise to obtain a new smooth function $X(f)$. This defines a pairing $\mathfrak{X}(M) \otimes_{\mathbb{R}} C^{\infty}(M) \rightarrow C^{\infty}(M)$. This pairing is not a pairing of $C^{\infty}(M)$ modules. It satisfies the Leibniz rule $X(f g)=$ $X(f) g+f X(g)$.
1.5. Local coordinates. If x_{1}, \cdots, x_{n} are smooth coordinates on M near a point x, the partial differential operators

$$
\left.\partial_{i}\right|_{x}:=\left.\frac{\partial}{\partial x_{i}}\right|_{x}
$$

are derivations at x, and thereby can be thought of as elements of $T_{x} M$ (beware that the notation ∂_{i} ignores the dependence on the choice of local coordinates x_{1}, \cdots, x_{n}).

To translate this into geometric language, the subset of M near x where $x_{j}=x_{j}(x)$ for $j \neq i$ is a smooth 1-manifold, parameterized locally by x_{i}. Thus there is a smooth map $\gamma:[0, \epsilon] \rightarrow M$ uniquely defined (for sufficiently small ϵ) by $\gamma(0)=x$, by $x_{j}(\gamma(t))=x_{j}(x)$ for $j \neq i$, and $x_{i}(\gamma(t))=x_{i}(x)+t$. Then as vectors, $\left.\partial_{i}\right|_{x}=\gamma^{\prime}(0)$. Note that we need all n coordinates x_{j} to define any operator $\left.\partial_{i}\right|_{x}$.

The (local) sections ∂_{i} defined in a coordinate patch U span $\mathfrak{X}(M)$ (locally) as a free $C^{\infty}(U)$ module; i.e. any vector field may be expressed (throughout the coordinate patch) uniquely in the form

$$
X:=\sum X_{i} \partial_{i}
$$

1.6. Lie bracket. If $X, Y \in \mathfrak{X}(M)$ the operator $[X, Y]:=X Y-Y X$ on smooth functions, a priori of second order, turns out to be first order and to satisfy the Leibniz rule; i.e. it defines a vector field, called the Lie bracket of X and Y. The reason is that partial differentiation commutes (for functions which are at least C^{2}), so when we antisymmetrize, the second order terms cancel.

To see this, first observe that the claim is local, so we can work in a coordinate patch. Then take $X=\sum X_{i} \partial_{i}$ and $Y=\sum Y_{i} \partial_{i}$, and let f be a smooth function. Then

$$
\begin{aligned}
{[X, Y] f } & =X(Y(f))-Y(X(f))=\sum_{i} X_{i} \partial_{i}\left(\sum_{j} Y_{j} \partial_{j}(f)\right)-\sum_{i} Y_{i} \partial_{i}\left(\sum_{j} X_{j} \partial_{j}(f)\right) \\
& =\sum_{j}\left(\sum_{i}\left(X_{i} \partial_{i}\left(Y_{j}\right)-Y_{i} \partial_{i}\left(X_{j}\right)\right)\right) \partial_{j}(f)
\end{aligned}
$$

Proposition 1.14 (Lie algebra). Lie bracket is antisymmetric in X and Y, linear in each variable, and satisfies the Jacobi identity

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

for any three vector fields $X, Y, Z \in \mathfrak{X}(M)$.
The proof is by calculation. One says that bracket makes $\mathfrak{X}(M)$ into a Lie algebra.
Proposition 1.15 (Naturality). Lie bracket is natural; i.e. if $\varphi: M \rightarrow N$ is a diffeomorphism, and $X, Y \in \mathfrak{X}(M)$ then $d \varphi([X, Y])=[d \varphi(X), d \varphi(Y)]$

Since Lie bracket is defined without reference to coordinates, naturality under diffeomorphism follows.

Example 1.16 (Local coordinates). If x_{1}, \cdots, x_{n} are local coordinates with associated vector fields $\partial_{1}, \cdots, \partial_{n}$ then $\left[\partial_{i}, \partial_{j}\right]=0$ for all i, j (this is equivalent to the usual statement that "partial derivatives commute").
1.7. Flow of a vector field. Let X be a vector field on M. If we think of a vector as a(n equivalence class of) smooth map from $[0, \epsilon]$ to M, it is natural to ask for a smooth $\operatorname{map} \phi: M \times[0, \epsilon] \rightarrow M$ so that the vector $X(x)$ agrees with the equivalence class of $\phi(x, *):[0, \epsilon] \rightarrow M$. In fact, there is a canonical choice of the germ of such a ϕ along $M \times 0$, which furthermore satisfies $\phi(x, s+t)=\phi(\phi(x, s), t)$ for all sufficiently small (positive) s, t (depending on x).

If we denote $\phi(x, t)$ by $\phi_{t}(x)$ we can think of ϕ_{t} as a 1-parameter family of diffeomorphisms whose orbits are tangent to the vector field X. The existence and uniqueness of ϕ (for small enough positive ϵ on compact subsets of M) is just the fundamental theorem of ODE. We say that the family ϕ_{t} of diffeomorphisms is obtained by integrating X. The orbits of ϕ_{t} are the integral curves of the vector field X.

Formally we write ϕ_{-t} for t small and positive as the (time t) flow associated to the vector field $-X$. Thus we have ϕ_{t} defined for all $t \in[-\epsilon, \epsilon]$. Notice that $\phi_{s+t}=\phi_{s} \phi_{t}$ for any real s, t where defined.

If X and Y are vector fields, and ϕ_{t} is obtained by integrating X, we may form the family of vector fields $d \phi_{-t}(Y)$.
Definition 1.17 (Lie Derivative of vector fields). The Lie derivative $\mathcal{L}_{X}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is defined by

$$
\mathcal{L}_{X}(Y):=\lim _{t \rightarrow 0} \frac{d \phi_{-t}(Y)-Y}{t}
$$

Said another way, we think of Y as a vector field along the integral curves of X. The flow ϕ_{t} gives us a way to identify the vector spaces at different points along an integral curve so that we can "differentiate" Y.
Proposition 1.18 (Derivative is bracket). For $X, Y \in \mathfrak{X}(M)$ we have $\mathcal{L}_{X}(Y)=[X, Y]$.
The proof is by calculation.
Example 1.19 (Jacobi identity). Thinking of Lie bracket as a Lie derivative gives us another way to think about the Jacobi identity. For vector fields X, Y, Z the Jacobi identity is equivalent to the statement that

$$
\mathcal{L}_{X}([Y, Z])=\left[\mathcal{L}_{X}(Y), Z\right]+\left[Y, \mathcal{L}_{X}(Z)\right]
$$

in other words, \mathcal{L}_{X} acts as a "derivation" with respect to the (Lie) algebra structure on $\mathfrak{X}(M)$. One way to see this is to differentiate the identity

$$
d \phi_{-t}([Y, Z])=\left[d \phi_{-t}(Y), d \phi_{-t}(Z)\right]
$$

at $t=0$ (this latter identity is just naturality of Lie bracket).
Example 1.20 (Coordinate vector fields). If $\partial_{1}, \cdots, \partial_{n}$ are the vector fields associated to local coordinates x_{1}, \cdots, x_{n} then the flow ϕ_{t} associated to ∂_{1} is characterized by the properties $x_{i}\left(\phi_{t}(x)\right)=x_{i}(x)$ for $i>1$ and $x_{1}\left(\phi_{t}(x)\right)=x_{1}(x)+t$. In particular, the flows associated to the different $\partial_{i}, \partial_{j}$ commute. Differentiating this fact recovers the identity $\left[\partial_{i}, \partial_{j}\right]=0$.

In fact, if ϕ_{t}, ψ_{s} are the flows obtained by integrating vector fields X, Y then ϕ_{t} and ψ_{s} commute for all (small) t, s if and only if $[X, Y]=0$. To see this, differentiate $\phi_{t} \psi_{s}=\psi_{s} \phi_{t}$ with respect to s and t. This explains the geometric "meaning" of the Lie bracket.
1.8. Frobenius' Theorem. How can we recognize families of vector fields X_{1}, \cdots, X_{n} which are of the form $\partial_{1}, \cdots, \partial_{n}$ for some local coordinates? A necessary and sufficient condition is that the X_{i} span locally, and satisfy $\left[X_{i}, X_{j}\right]=0$. For, in this case, the flows ϕ_{t}^{i} generated by the X_{i} commute, and define the desired local coordinates (unique up to constants).

More generally, if X_{1}, \cdots, X_{p} for $p \leq n$ are independent and satisfy $\left[X_{i}, X_{j}\right]=0$ throughout U, then through any point in U we can find a smooth p-dimensional submanifold swept out by the orbits of the commuting flows ϕ_{t}^{j}, and these submanifolds decompose U locally into a product (i.e. they are the leaves of a foliation).

Frobenius' theorem gives necessary and sufficient conditions under which we can find such vector fields.

Theorem 1.21 (Frobenius). Let ξ be a p-dimensional sub-bundle of the tangent bundle $T M$ over an open set U. Then ξ is tangent to the leaves of a foliation if and only if the sections of ξ are closed under Lie bracket (thought of as vector fields on M).

Proof. One direction is easy. Locally, the leaves of a foliation are obtained by setting some subset x_{p+1}, \cdots, x_{n} of a system of local coordinates to a constant; thus sections of ξ are spanned by ∂_{i} for $i \leq p$, and are therefore closed under Lie bracket.

Conversely, choose p independent sections $X_{1}, \cdots X_{p}$ which span ξ locally. There is a sort of "Gram-Schmidt" process which replaces these sections with commuting ones, while staying linearly independent and living in ξ.

We have

$$
\left[X_{1}, X_{j}\right]=\sum_{k=1}^{p} c_{1 j}^{k} X_{k}
$$

Fix a point $x \in U$. We would like to replace X_{2} by $\hat{X}_{2}:=X_{2}+\sum f_{i} X_{i}$ for suitable smooth functions f_{i} so that $\left[X_{1}, X_{2}\right]=0$. If the f_{i} vanish at x, then \hat{X}_{2} and the other X_{i} will still span near x. Now,

$$
\left[X_{1}, X_{2}+\sum f_{i} X_{i}\right]=\sum_{k}\left(c_{12}^{k}+X_{1}\left(f_{k}\right)+\sum_{i} f_{i} c_{1 i}^{k}\right) X_{k}
$$

so we would like to solve the system of first order linear ODEs

$$
c_{12}^{k}+X_{1}\left(f_{k}\right)+\sum_{i} f_{i} c_{1 i}^{k}=0
$$

for the functions f_{i}. There is a unique solution along each integral curve of X_{1} if we specify the values of the f_{i} at a point. So choose a transversal to the integral curve of X_{1} through x, and let the f_{i} s be equal to zero on this transversal.

Doing this inductively, we obtain p commuting independent vector fields (near x) in ξ, whose associated flows sweep out the leaves of the desired foliation.
Alternate proof. Choose local coordinates x_{1}, \cdots, x_{n} and express each X_{i} as $X_{i}:=\sum X_{i}^{j} \partial_{j}$. Reorder coordinates if necessary so that the matrix $\left[X_{i}^{j}\right]_{i, j \leq p}$ is nonsingular near x. Then if we define $Y_{i}:=\bar{X}_{j}^{i} X_{i}$, where the matrix $\left[\bar{X}_{j}^{i}\right]_{i, j \leq p}$ is the inverse of $\left[X_{i}^{j}\right]_{i, j \leq p}$ pointwise, we have $Y_{i}=\partial_{i}+\sum_{j>p} Y_{i}^{j} \partial_{j}$. Then the Y_{i} are linearly independent, and $\left[Y_{i}, Y_{j}\right]$ is in the linear
span of the ∂_{k} for $k>p$. On the other hand, it is in the linear span of the Y_{l} for $l \leq p$, so it is identically zero.
1.9. 1-forms. For each $x \in M$ denote the dual space $\left(T_{x} M\right)^{*}$ by $T_{x}^{*} M$. The collection of $T_{x}^{*} M$ for various x are the fibers of a smooth vector bundle $T^{*} M$ whose sections are called 1 -forms, and denoted $\Omega^{1}(M)$. In a local coordinate patch, $\Omega^{1}(U)$ is spanned freely (as a $C^{\infty}(U)$-module) by sections $d x_{1}, \cdots, d x_{n}$ defined at each $x \in U$ by the condition

$$
\left.d x_{i}\right|_{x}\left(\left.\partial_{j}\right|_{x}\right)=\delta_{i j}
$$

There is thus for every open $U \subset M$ a pairing of $C^{\infty}(U)$ modules

$$
\Omega^{1}(U) \otimes_{C^{\infty}(U)} \mathfrak{X}(U) \rightarrow C^{\infty}(U)
$$

whose restriction to each coordinate patch U is nondegenerate.
A smooth map $\varphi: M \rightarrow N$ pulls back 1-forms $\varphi^{*}: \Omega^{1}(N) \rightarrow \Omega^{1}(M)$ by the defining property

$$
\left.\varphi^{*}(\alpha)\right|_{x}\left(\left.X\right|_{x}\right)=\left.\alpha\right|_{\varphi(x)}\left(d \varphi_{x}\left(\left.X\right|_{x}\right)\right)
$$

for each vector field X.
Now, for each smooth function f we can define a 1-form $d f$ to be the unique 1-form with the property that for all smooth vector fields X, we have

$$
d f(X)=X(f)
$$

The pairing in each coordinate patch defines $d f$ there uniquely (just take X to be the ∂_{i}), and the definitions agree in the overlaps, so this is well-defined. In each local coordinate patch, we can compute

$$
d f=\sum_{i} \partial_{i}(f) d x_{i}
$$

Notice that with this definition, the exterior derivatives of the coordinate functions $d\left(x_{i}\right)$ are precisely equal to the 1 -forms $d x_{i}$, so our notation is consistent. Thus the 1 -form $d x_{i}$ can be defined without specifying the other coordinate functions (unlike the operators ∂_{i}).

Since the definition is natural (i.e. does not depend on a choice of coordinates) it respects pullback. That is, $d\left(\varphi^{*} f\right)=\varphi^{*} d f$ for any smooth $\varphi: M \rightarrow N$.

Example 1.22. Recall that \mathfrak{m}_{x} is the maximal ideal in $C^{\infty}(M)$ consisting of functions that vanish at x. Observe that $d: \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2} \rightarrow T_{x}^{*} M$ defined by $d(f)=\left.d f\right|_{x}$ is an isomorphism. The pairing of $T_{x} M$ with $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ defined in Proposition 1.11 agrees with the pairing of vector fields and 1-forms pointwise.
1.10. Differential forms. Let $\Lambda^{j} T^{*} M$ denote the vector bundle whose fiber over each point x is $\Lambda^{j}\left(T_{x}^{*} M\right)$ which we identify with a subgroup of the tensor algebra of $T_{x}^{*} M$ as in $\S 1.1$ and $\S 1.2$, made into an algebra by exterior product. Denote by $\Omega^{j}(M)$ the smooth sections of $\Lambda^{j} T^{*} M$. Its elements are called j-forms. Denote $\oplus_{j} \Omega^{j}(M)$ by $\Omega^{*}(M)$. Its elements are forms. Exterior product fiberwise gives $\Omega^{*}(M)$ the structure of a graded (associative, skew-commutative) ring. If $\alpha \in \Omega^{p}$ and $\beta \in \Omega^{q}$ then $\alpha \wedge \beta \in \Omega^{p+q}$ and satisfies

$$
\alpha \wedge \beta=(-1)^{p q} \beta \wedge \alpha
$$

Note that $\Lambda^{0}\left(T_{x}^{*} M\right)=\mathbb{R}$ canonically for each x, so that $\Omega^{0}(M)=C^{\infty}(M)$.

Differential forms pull back under smooth maps. By naturality, this pullback respects exterior product:

$$
\varphi^{*}(\alpha) \wedge \varphi^{*}(\beta)=\varphi^{*}(\alpha \wedge \beta)
$$

Example 1.23 (Volume forms). If M is n-dimensional, $\Lambda^{n} T^{*} M$ is a line bundle, which is trivial if and only if M is orientable. Nowhere zero sections of $\Lambda^{n} T^{*} M$ are called volume forms. In every local coordinate patch x_{1}, \cdots, x_{n} a volume form can be expressed uniquely as $f d x_{1} \wedge \cdots \wedge d x_{n}$ where f is nowhere zero.

If y_{1}, \cdots, y_{n} are another system of local coordinates, we have

$$
d y_{1} \wedge \cdots \wedge d y_{n}=\operatorname{det}\left(\partial y_{i} / \partial x_{j}\right) d x_{1} \wedge \cdots \wedge d x_{n}
$$

The matrix $\left(\partial y_{i} / \partial x_{j}\right)$ is called the Jacobian of the coordinate change.
1.11. Exterior derivative. We already saw the existence of a natural differential operator

$$
d: C^{\infty}(M) \rightarrow \Omega^{1}(M)
$$

defined by $f \rightarrow d f$. We would like to extend this operator to all of $\Omega^{*}(M)$ in such a way that it satisfies the Leibniz rule

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta
$$

for $\alpha \in \Omega^{p}(M)$ and $\beta \in \Omega^{q}(M)$.
It is tricky to give a coordinate-free definition of exterior d in general (although it is possible). If we choose local coordinates x_{1}, \cdots, x_{n} every p-form α may be expressed locally in a unique way as a sum

$$
\alpha=\sum_{I} f_{I} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}
$$

where the sum is over multi-indices $I:=i_{1}<i_{2}<\cdots<i_{p}$.
Definition 1.24 (Exterior derivative). The exterior derivative of a p-form α is given in local coordinates by

$$
d \alpha=\sum_{I} \sum_{i} \partial_{i}\left(f_{I}\right) d x_{i} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}
$$

Proposition 1.25 (Properties of d). Exterior d satisfies $d d=0$ and the Leibniz rule

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta
$$

for $\alpha \in \Omega^{p}(M)$, and furthermore it is uniquely characterized by these two properties.
Proof. By definition,

$$
d(d \alpha)=\sum_{I} \sum_{i} \sum_{j} \frac{\partial^{2} f_{I}}{\partial x_{i} \partial x_{j}} d x_{i} \wedge d x_{j} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}
$$

But $d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}$ for all pairs i, j so everything cancels. This shows $d d=0$.
The Leibniz rule follows from the product rule for partial derivatives. Now apply associativity of wedge product to see that d is determined on all forms by its values on 1 -forms. But $d\left(d x_{i}\right)=0$ for all i and we are done.

The Leibniz rule makes no reference to local coordinates, and nor does the property $d d=0$. Thus the definition of exterior d given above is independent of local coordinates, and is well-defined on $\Omega^{*}(M)$.

The next proposition allows us to define d in a manifestly coordinate-free way by induction:

Proposition 1.26 (Inductive formula). For any $\alpha \in \Omega^{p}(M)$ and any $X_{0}, X_{1}, \cdots, X_{p} \in$ $\mathfrak{X}(M)$ there is a formula

$$
\begin{aligned}
d \alpha\left(X_{0}, \cdots, X_{p}\right) & =\sum_{i}(-1)^{i} X_{i}\left(\alpha\left(X_{0}, \cdots, \hat{X}_{i}, \cdots, X_{p}\right)\right) \\
& +\sum_{i<j}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \cdots, \hat{X}_{i}, \cdots, \hat{X}_{j}, \cdots, X_{p}\right)
\end{aligned}
$$

where the "hat" means omission.
Proposition 1.26 can be proved by induction, although we won't do it here. But note that in the special case that the X_{0}, \cdots, X_{p} are commuting vector fields (e.g. if they are equal to some subset of the coordinate vector fields ∂_{i}) this is essentially equivalent to the formula in Definition 1.24.

Example 1.27. If α is a 1 -form, and $X, Y \in \mathfrak{X}(M)$ then

$$
d \alpha(X, Y)=X(\alpha(Y))-Y(\alpha(X))-\alpha([X, Y])
$$

Example 1.28. If α is a 1 -form, and $X, Y, Z \in \mathfrak{X}(M)$ then

$$
\begin{aligned}
0 & =d(d \alpha)(X, Y, Z) \\
& =X(d \alpha(Y, Z))-Y(d \alpha(X, Z))+Z(d \alpha(X, Y))-d \alpha([X, Y], Z)+d \alpha([X, Z], Y)-d \alpha([Y, Z], X) \\
& =X(Y(\alpha(Z)))-X(Z(\alpha(Y)))-X(\alpha([Y, Z]))-Y(X(\alpha(Z)))+Y(Z(\alpha(X)))+Y(\alpha([X, Z])) \\
& +Z(X(\alpha(Y)))-Z(Y(\alpha(X)))-Z(\alpha([X, Y]))-[X, Y](\alpha(Z))+Z(\alpha([X, Y]))+\alpha([[X, Y], Z]) \\
& +[X, Z](\alpha(Y))-Y(\alpha([X, Z])-\alpha([[X, Z], Y])-[Y, Z](\alpha(X))+X(\alpha([Y, Z]))+\alpha([[Y, Z], X]) \\
& =\alpha([[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y])
\end{aligned}
$$

Since α is arbitrary, we deduce that $d d=0$ for 1-forms is equivalent to the Jacobi identity for vector fields.
1.12. Interior product and Cartan's formula. If X is a vector field we define the interior product

$$
\iota_{X}: \Omega^{*}(M) \rightarrow \Omega^{*-1}(M)
$$

for each p by contaction of tensors. In other words, if $\omega \in \Omega^{p}$ then

$$
\left(\iota_{X} \omega\right)\left(X_{1}, \cdots, X_{p-1}\right)=\omega\left(X, X_{1}, \cdots, X_{p-1}\right)
$$

for any $X_{1}, \cdots, X_{p-1} \in \mathfrak{X}(M)$. On 1-forms this reduces to $\iota_{X}(\alpha)=\alpha(X)$.
Proposition 1.29 (Properties of ι). Interior product satisfies $\iota_{X} \iota_{Y} \omega=-\iota_{Y} \iota_{X} \omega$ and the Leibniz rule

$$
\iota_{X}(\alpha \wedge \beta)=\left(\iota_{X} \alpha\right) \wedge \beta+(-1)^{p} \alpha \wedge\left(\iota_{X} \beta\right)
$$

whenever $\alpha \in \Omega^{p}$.

The proofs are immediate.
Now, let X be a vector field, generating a flow ϕ_{t} of diffeomorphisms. If α is a p-form we may form the family of p-forms $\phi_{t}^{*}(\alpha)$.

Definition 1.30 (Lie Derivative of forms). The Lie derivative $\mathcal{L}_{X}: \Omega^{*}(M) \rightarrow \Omega^{*}(M)$ is defined by

$$
\mathcal{L}_{X}(\alpha):=\lim _{t \rightarrow 0} \frac{\phi_{t}^{*}(\alpha)-\alpha}{t}
$$

The Lie derivative of forms can be expressed in terms of exterior derivative and interior product by Cartan's "magic formula":

Proposition 1.31 (Cartan's Magic Formula). For any $X \in \mathfrak{X}(M)$ and $\alpha \in \Omega^{p}(M)$ there is an identity

$$
\mathcal{L}_{X}(\alpha)=\iota_{X}(d \alpha)+d\left(\iota_{X}(\alpha)\right)
$$

In other words, as operators on forms,

$$
\mathcal{L}_{X}=\iota_{X} d+d \iota_{X}
$$

The proof is by calculation.
Example 1.32 (Lie derivative of functions). Since $\iota_{X} f=0$ for a function f we have $\mathcal{L}_{X} f=$ $\iota_{X} d f=d f(X)=X(f)$.
Example 1.33 (Leibniz formula for forms and vector fields). If X_{0}, \cdots, X_{p} are vector fields and α is a p-form, there is a "Leibniz formula" for $\mathcal{L}_{X_{0}}$:

$$
\mathcal{L}_{X_{0}}\left(\alpha\left(X_{1}, \cdots, X_{p}\right)\right)=\left(\mathcal{L}_{X_{0}}(\alpha)\right)\left(X_{1}, \cdots, X_{p}\right)+\sum \alpha\left(X_{0}, \cdots, \mathcal{L}_{X_{0}}\left(X_{i}\right), \cdots, X_{p}\right)
$$

To see this, we compute

$$
\begin{aligned}
\left(\mathcal{L}_{X_{0}}(\alpha)\right)\left(X_{1}, \cdots, X_{p}\right) & =d \alpha\left(X_{0}, \cdots, X_{p}\right)+d\left(\iota_{X_{0}}(\alpha)\right)\left(X_{1}, \cdots, X_{p}\right) \\
& =\sum_{i}(-1)^{i} X_{i}\left(\alpha\left(\cdots \hat{X}_{i} \cdots\right)\right)+\sum_{i<j}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], \cdots \hat{X}_{i} \cdots \hat{X}_{j} \cdots\right) \\
& +\sum_{0<i}(-1)^{i-1} X_{i}\left(\alpha\left(\cdots \hat{X}_{i} \cdots\right)\right)+\sum_{0<i<j}(-1)^{i+j-2} \alpha\left(X_{0},\left[X_{i}, X_{j}\right], \cdots \hat{X}_{i} \cdots \hat{X}_{j} \cdots\right) \\
& =X_{0}\left(\alpha\left(X_{1}, \cdots, X_{p}\right)\right)+\sum_{j}(-1)^{j} \alpha\left(\left[X_{0}, X_{j}\right], X_{1} \cdots \hat{X}_{j} \cdots\right)
\end{aligned}
$$

In the special case $p=1$ this reduces to

$$
X(\alpha(Y))=d \alpha(X, Y)+Y(\alpha(X))+\alpha([X, Y])
$$

1.13. de Rham cohomology. Since $d d=0$ the groups $\Omega^{*}(M)$ form a complex. The cohomology of this complex is the de Rham cohomology of M. That is,

$$
H_{d R}^{j}(M):=\left\{\alpha \in \Omega^{j}(M) \text { with } d \alpha=0\right\} / d \Omega^{j-1}(M)
$$

A smooth map $\varphi: M \rightarrow N$ induces pullback $\varphi^{*}: \Omega^{*}(N) \rightarrow \Omega^{*}(M)$. Since d is natural, this is a chain map, and we get induced homomorphisms

$$
\varphi^{*}: H_{d R}^{*}(N) \rightarrow H_{d R}^{*}(M)
$$

Thus de Rham cohomology is an invariant of the diffeomorphism type of M.
de Rham cohomology actually forms a graded (skew-commutative) ring. If $[\alpha] \in H_{d R}^{p}$ and $[\beta] \in H_{d R}^{q}$ are represented by forms α, β with $d \alpha=d \beta=0$ then $d(\alpha \wedge \beta)=0$ by the Leibniz rule, so there is a class $[\alpha \wedge \beta] \in H_{d R}^{p+q}$.
Proposition 1.34. The class of $[\alpha \wedge \beta]$ is well-defined, and thus there is an associative and skew-commutative multiplication on $H_{d R}^{*}$.
Proof. If we replace α by $\alpha+d \gamma$ with $\gamma \in \Omega^{p-1}$ then

$$
\begin{aligned}
(\alpha+d \gamma) \wedge \beta & =\alpha \wedge \beta+d \gamma \wedge \beta \\
& =\alpha \wedge \beta+d(\gamma \wedge \beta)
\end{aligned}
$$

since $d \beta=0$.
A form α with $d \alpha=0$ is closed. The forms $d \beta$ for some β are exact. Thus de Rham cohomology measures "closed forms modulo exact forms".

The de Rham Theorem says the following:
Theorem 1.35 (de Rham Theorem). There is a natural isomorphism

$$
H_{d R}^{*}(M)=H^{*}(M ; \mathbb{R})
$$

between de Rham cohomology and (ordinary) singular cohomology with real coefficients.
We will prove the de Rham Theorem in § 2.5.

2. Integration

2.1. Integration in \mathbb{R}^{p}. Let $K \subset U \subset \mathbb{R}^{p}$ where K is a compact polyhedron and U is open. Let $\alpha \in \Omega^{p}(U)$. Then there is a unique smooth function f_{α} on U so that $\alpha=f_{\alpha} d x_{1} \wedge \cdots \wedge d x_{p}$.

Let μ denote the restriction of (p-dimensional) Lesbesgue measure on \mathbb{R}^{p} to K, and define

$$
\int_{K} \alpha:=\int_{K} f_{\alpha} d \mu
$$

Note that this is zero if $\mu(K)=0$.
We can likewise define $\int_{U} \alpha=\int_{U} f_{\alpha} d \mu$ whenever f_{α} is in $L^{1}(U)$.
2.2. Smooth singular chains. For all p we identify the standard p-simplex Δ^{p} with the simplex in \mathbb{R}^{p} with vertices at 0 and at the coordinate vectors e_{i}. By abuse of notation we write $e_{0}=0$ and refer to each e_{i} as the " i th vertex". As a subset of \mathbb{R}^{p} it is determined by the inequalities $x_{i} \geq 0$ and $\sum x_{i} \leq 1$.

The i th face of Δ^{p} is the simplex of dimension $p-1$ spanned by all but the i th vertex of Δ^{p}. For each i there is a unique affine map $d_{i}: \Delta^{p-1} \rightarrow \Delta^{p}$ called the i th face map which takes the ordered vertices of Δ^{p-1} to the ordered vertices of the i th face of Δ^{p}.

A smooth singular p-simplex in M is a smooth map $\sigma: \Delta^{p} \rightarrow M$. Each smooth singular p-simplex σ determines $p+1$ smooth singular ($p-1$)-simplices by composition σd_{i}. The smooth singular p-simplices generate a free abelian group of smooth singular p-chains and these chain groups form a complex under ∂ defined by

$$
\partial \sigma=\sum_{i=0}^{p}(-1)^{i} \sigma d_{i}
$$

and the homology of this complex is the smooth singular cohomology $H^{*}(M ; \mathbb{R})$ of M. It is isomorphic to ordinary singular cohomology (in which we do not insist that the maps σ are smooth). This is more easy to see for homology: cycles can be approximated by smooth cycles, and homologies between them can be approximated by smooth homologies. Then apply the universal coefficient theorem.

If σ is a smooth singular p-simplex, and $\alpha \in \Omega^{p}(M)$ then $\sigma^{*}(\alpha)$ is a p-form on Δ^{p} and we can define

$$
\int_{\sigma} \alpha:=\int_{\Delta^{p}} \sigma^{*} \alpha
$$

2.3. Stokes' Theorem. The "simplest" version of Stokes' Theorem is the following:

Theorem 2.1 (Stokes' Theorem). Let $\sigma: \Delta^{p} \rightarrow M$ be a smooth singular p-simplex and let $\alpha \in \Omega^{p-1}(M)$ be a $(p-1)$-form. Then

$$
\int_{\partial \sigma} \alpha:=\sum_{i=0}^{p}(-1)^{i} \int_{\sigma d_{i}} \alpha=\int_{\sigma} d \alpha
$$

Proof. Let $\sigma^{*} \alpha=\sum f_{i} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{p}$ as a smooth $(p-1)$-form on $\Delta^{p} \subset \mathbb{R}^{p}$. Denote the individual terms by β_{i}. Note that $\sigma^{*}(d \alpha)=d \sigma^{*} \alpha$. Since d and \int are linear, it suffices to prove the theorem when $\sigma^{*} \alpha=\beta_{i}$.

Evidently $d_{j}^{*} \beta_{i}=0$ when $j>0$ and $j \neq i$, and $d_{i}^{*} \beta_{i}=\left(f_{i} d_{i}\right) d x_{1} \wedge \cdots \wedge d x_{p-1}$. Similarly, we calculate $d_{0}^{*} \beta_{i}=(-1)^{i}\left(f_{i} d_{0}\right) d x_{1} \wedge \cdots \wedge d x_{p-1}$. We assume $\alpha=\beta_{p}$ for simplicity (the other cases are similar). We need to show

$$
\int_{\Delta^{p}} \partial_{p}\left(f_{p}\right) d x_{1} \wedge \cdots \wedge d x_{p}=\int_{\Delta^{p-1}}\left(f_{p} d_{0}\right) d x_{1} \wedge \cdots \wedge d x_{p-1}-\int_{\Delta^{p-1}} f_{p} d x_{1} \wedge \cdots \wedge d x_{p-1}
$$

(we have cancelled factors of $(-1)^{p-1}$ that should appear on both sides). This reduces to the fundamental theorem of Calculus on each integral curve of ∂_{p}, plus Fubini's theorem.

Stokes' Theorem says that the map from differential forms to smooth singular (realvalued) cochains is a chain map. It therefore induces a map on cohomology. Consequently there is a pairing $H_{d R}^{p}(M) \times H_{p}(M ; \mathbb{R}) \rightarrow \mathbb{R}$ defined by taking a p-form α representing a de Rham cohomology class $[\alpha]$, and a smooth p-cycle $\sum t_{i} \sigma_{i}$ representing a homology class A, and defining

$$
[\alpha](A):=\sum t_{i} \int_{\sigma_{i}} \alpha
$$

By Stokes' Theorem and elementary homological algebra, this is independent of the choices involved.

Example 2.2. Let N be a compact smooth oriented p-manifold, possibly with boundary, let $\varphi: N \rightarrow M$ be a smooth map, and let α be a p-form on M. Then $\varphi^{*} \alpha$ is a p-form on N which is automatically closed, and we can pair it with the fundamental class of N in homology to obtain a number. We call this the result of integrating α over N, and denote it by $\int_{\varphi} \alpha$ or $\int_{N} \alpha$ if φ is understood. The most typical case will be that N is a smooth submanifold of M, and φ is inclusion.

Example 2.3. Let $\varphi: N^{p} \rightarrow M$ be as above, and let α be a $(p-1)$-form. Then α pulls back to a ($p-1$)-form on ∂N, and $d \alpha$ pulls back to a p-form on N, and Stokes' Theorem gives us

$$
\int_{\partial N} \alpha=\int_{N} d \alpha
$$

This is the more "usual" statement of Stokes' Theorem.
Stokes' Theorem can also be used (together with the Poincaré Lemma) to prove the de Rham Theorem. We will carry out the proof over the next few sections, but for now we explain the strategy. Choose a smooth triangulation of M and use this to identify the (ordinary) singular cohomology groups $H^{*}(M ; \mathbb{R})$ with the simplicial cohomology groups $H_{\Delta}^{*}(M ; \mathbb{R})$ associated to the triangulation. If we choose smooth characteristic maps for each simplex, we get natural maps $\Omega^{*}(M) \rightarrow C_{\Delta}^{*}(M ; \mathbb{R})$ obtained by integrating p-forms over the smooth singular characteristic maps associated to the p-simplices of the triangulation.

Stokes' Theorem says this is a map of chain complexes, so there is an induced map on cohomology $H_{d R}^{*}(M) \rightarrow H_{\Delta}^{*}(M ; \mathbb{R})$. It is easy to construct p-forms with compact support integrating to any desired value on a p-simplex, and forms defined locally can be smoothly extended throughout the manifold, so the map of chain complexes is surjective.

We need to show the induced map on cohomology is an isomorphism.
2.4. Poincaré Lemma. First we augment the complex Ω^{*} by $\epsilon: \mathbb{R} \rightarrow \Omega^{0}$ whose image is the constant functions. The comhomology of this augmented complex is the reduced de Rham cohomology, and denoted $\tilde{H}_{d R}(M)$.
Theorem 2.4 (Poincaré Lemma). $\tilde{H}_{d R}\left(\mathbb{R}^{n}\right)=0$. That is, any closed p-form on \mathbb{R}^{n} is exact if $p>0$ or a constant if $p=0$.

Proof. Define the radial vector field $X:=\sum x_{i} \partial_{i}$. This defines a flow ϕ_{t} on \mathbb{R}^{n} defined for all time. For $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$ let $\lambda \cdot x \in \mathbb{R}^{n}$ denote the point whose coordinates are obtained from those of x by multiplying them by λ. Then $\phi_{t}(x)=e^{t} \cdot x$. In other words, ϕ_{t} is the dilation centered at 0 that scales everything by e^{t}.

Now, we have

$$
\phi_{t}^{*}\left(f_{I}(x) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}\right)=e^{k t} f_{I}\left(e^{t} \cdot x\right) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}}
$$

for all multi-indices I with $|I|=k$. This converges (pointwise) to 0 as $t \rightarrow-\infty$ providing $k>0$ (this makes sense: if we "zoom in" near 0 any smooth form of positive dimension pairs less and less with the "unit" vectors).

Now, for any vector field X with associated flow ϕ_{t} on any manifold, and for any form α,

$$
\begin{aligned}
\int_{t=a}^{b} \phi_{t}^{*}\left(\mathcal{L}_{X}(\alpha)\right) d t & =\int_{t=a}^{b} \phi_{t}^{*}\left(\lim _{s \rightarrow 0} \frac{\phi_{s}^{*} \alpha-\alpha}{s}\right) d t \\
& =\lim _{s \rightarrow 0} \frac{1}{s}\left(\int_{t=a+s}^{b+s} \phi_{t}^{*} \alpha d t-\int_{t=a}^{b} \phi_{t}^{*} \alpha d t\right)=\phi_{b}^{*} \alpha-\phi_{a}^{*} \alpha
\end{aligned}
$$

and therefore for the radial vector field on \mathbb{R}^{n}, we have $\int_{-\infty}^{0} \phi_{t}^{*}\left(\mathcal{L}_{X}(\alpha)\right) d t=\alpha$ for any p-form with $p>0$, or $=\alpha-\alpha(0)$ if $p=0$ (i.e. if α is a function).

Define the operator $I: \Omega^{*}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{*}\left(\mathbb{R}^{n}\right)$ by

$$
I(\alpha):=\int_{-\infty}^{0} \phi_{t}^{*}(\alpha) d t
$$

Notice that I commutes with d, by linearity of integration, since ϕ_{t}^{*} does for any t.
We have shown $I \mathcal{L}_{X} \alpha=\alpha$ for p-forms with $p>0$, and $I \mathcal{L}_{X} f=f-f(0)$ on functions. But then if α is a closed p-form,

$$
\alpha=I \mathcal{L}_{X} \alpha=I\left(\iota_{X} d \alpha+d \iota_{X} \alpha\right)=d I \iota_{X} \alpha
$$

which exhibits α as an exact form (or a constant if $p=0$).
With Poincaré under our belt we can compute the (reduced) cohomology of several other spaces.

Proposition 2.5. Let β be a closed q-form on $S^{p} \times \mathbb{R}^{n-p}$. If $p \neq q$ then β is exact. Otherwise β is exact (in reduced cohomology) if and only if $\int_{S^{p} \times 0} \beta=0$.
Proof. We let $U_{ \pm}$be open collar neighborhoods of the upper and lower hemispheres $D_{ \pm}^{p}$ in S^{p}. Notice that each $U_{ \pm} \times \mathbb{R}^{n-p}$ is diffeomorphic to \mathbb{R}^{n}. The restriction of β to each piece is closed, and therefore exact by the Poincaré Lemma. Thus there are ($q-1$)-forms $\alpha_{ \pm}$on the two pieces with $d \alpha_{ \pm}=\beta$ where defined.

The intersection of the two pieces is diffeomorphic to $S^{p-1} \times \mathbb{R}^{n-p+1}$ and $\alpha_{+}-\alpha_{-}$is closed there.

If $p=q$, by Stokes' Theorem,

$$
\int_{S^{p-1} \times 0} \alpha_{+}-\alpha_{-}=\int_{D_{+}^{p} \cup D_{-}^{p} \times 0} \beta=0
$$

Therefore by induction $\alpha_{+}-\alpha_{-}$is exact. If $p \neq q$ then $\alpha_{+}-\alpha_{-}$is exact by induction unconditionally.

If $(q-1)=0$ this means $\alpha_{+}-\alpha_{-}$is constant, so we can adjust α_{-}by a constant on one piece to get a new function with $d \alpha_{ \pm}=\beta$ and $\alpha_{+}=\alpha_{-}$on the overlaps. These glue together to give α with $d \alpha=\beta$ as desired.

If $(q-1)>0$ then $\alpha_{+}-\alpha_{-}=d \gamma$ for some $(q-2)$-form γ. We extend γ smoothly over one of the pieces and substitute $\alpha_{-} \rightarrow \alpha_{-}+d \gamma$. Then $d \alpha_{ \pm}=\beta$ still, and $\alpha_{+}=\alpha_{-}$on the overlaps, so we can glue together to get α with $d \alpha=\beta$ everywhere.
2.5. Proof of de Rham's Theorem. We now prove de Rham's Theorem. We have chosen a smooth triangulation τ, and defined a map $\int: \Omega^{*}(M) \rightarrow C_{\Delta}^{*}(M ; \mathbb{R})$ by integration. Stokes' Theorem implies that this is a chain map, so that we have $H_{d R}^{*}(M) \rightarrow H_{\Delta}^{*}(M ; \mathbb{R})$.
Lemma 2.6. The map $H_{d R}^{*}(M) \rightarrow H_{\Delta}^{*}(M ; \mathbb{R})$ is injective.
Proof. Let α be a closed p-form whose image in $H_{\Delta}^{*}(M ; \mathbb{R})$ is trivial. Since the map on chain complexes is surjective, we can adjust α by an exact p-form so that it maps to the 0 -cochain; i.e. its integral over each p-simplex in the triangulation is zero. We now show, by induction on the skeleton, that we can adjust α by an exact form to make it vanish identically.

Suppose α vanishes in a neighborhood of the i-skeleton of the triangulation. Choose an $(i+1)$-simplex, and let $\varphi: \mathbb{R}^{n} \rightarrow M$ map diffeomorphically onto a thickened neighborhood of the interior of the simplex. We pull back α to $\varphi^{*} \alpha$ which is supported in $D^{i+1} \times \mathbb{R}^{n-i-1}$. The pullback is closed, and therefore exact on \mathbb{R}^{n} by the Poincaré Lemma, and is therefore equal to $d \beta$ for some $(p-1)$-form β. Notice that $\mathbb{R}^{n}-\left(D^{i+1} \times \mathbb{R}^{n-i-1}\right)$ is diffeomorphic to $S^{i} \times \mathbb{R}^{n-i}$ and $d \beta=\varphi^{*} \alpha=0$ there, so that β is closed there.

If $p=(i+1)$ then our hypothesis on α gives $\int_{S^{i} \times 0} \beta=0$ by Stokes' Theorem, so whether or not $p=(i+1)$, Proposition 2.5 says that $\beta=d \gamma$ for some $(p-2)$-form γ on $\mathbb{R}^{n}-\left(D^{i+1} \times \mathbb{R}^{n-i-1}\right)$. Extend γ smoothly throughout \mathbb{R}^{n} and substitute $\beta \rightarrow \beta-d \gamma$. Then $d \beta=\alpha$, and β vanishes where α does. Now multiply β by a bump function ϕ equal to 1 in a sufficiently big subset of \mathbb{R}^{n}, and substitute $\alpha \rightarrow \alpha-d(\phi \beta)$. The new α is smooth, cohomologous to the old, and vanishes in a neighborhood of the $(i+1)$-skeleton.

This shows that the map $H_{d R}^{*}(M) \rightarrow H_{\Delta}^{*}(M ; \mathbb{R})$ is injective.
Lemma 2.7. The $\operatorname{map} H_{d R}^{*}(M) \rightarrow H_{\Delta}^{*}(M ; \mathbb{R})$ is surjective.
Proof. This is proved by a direct and local construction, but the details are fiddly.
We claim that we can construct a map $\alpha: C_{\Delta}^{*} \rightarrow \Omega^{*}$ satisfying
(1) α is a chain map; i.e. $d(\alpha(\phi))=\alpha(\delta \phi)$ for all simplicial cochains ϕ; and
(2) α inverts \int; i.e. $\int_{\sigma} \alpha(\phi)=\phi(\sigma)$ for all simplices σ of τ.

This will prove the lemma. For, if ϕ is a p-cocycle, then $\alpha(\phi)$ is a closed p-form, and the cohomology class $[\alpha(\phi)]$ maps to the cohomology class $[\phi]$. It remains to construct α.

Assume for the moment that M is compact, so that the triangulation makes it into a finite simplicial complex. If we label the vertices from 0 to n then we can identify these vertices with the coordinate vertices $e_{0}:=(1,0, \cdots, 0)$ through $e_{n}:=(0, \cdots, 0,1)$ in \mathbb{R}^{n+1} with coordinates x_{0}, \cdots, x_{n}, and we can identify each p-simplex of τ with vertices i_{0}, \cdots, i_{p} with the simplex $0 \leq x_{i_{j}} \leq 1, \sum_{j=0}^{p} x_{i_{j}}=1$ in the subspace spanned by the $x_{i_{j}}$. Call $K \subset \mathbb{R}^{n+1}$ the union of these simplices; thus K is (in a natural way) a polyhedron on \mathbb{R}^{n+1}.

There is a smooth homeomorphism $\varphi: M \rightarrow K$ which takes each simplex of τ to the corresponding simplex of K. This might seem strange, but it is not hard to construct skeleton by skeleton: just make sure that the derivatives of φ vanish to all orders at the "corners" so that the map is smooth there.

For each p-simplex σ of τ, we let $\varphi(\sigma)$ denote the corresponding simplex of K. Let ϕ_{σ} denote the p-cochain taking the value 1 on σ and 0 everywhere else. We will define a form $\beta(\sigma)$ on \mathbb{R}^{n+1} and then define $\alpha\left(\phi_{\sigma}\right)=\varphi^{*} \beta(\sigma)$ on M.

Suppose $\varphi(\sigma)$ is the simplex spanned by e_{0}, \cdots, e_{p} for convenience. In our previous notation, $\varphi(\sigma)=d_{0}\left(\Delta^{p+1}\right)$, the 0th face of the "standard" $(p+1)$-simplex. Then we define

$$
\beta(\sigma)=p!\sum(-1)^{i} x_{i} d x_{0} \wedge \cdots \widehat{d x}_{i} \cdots \wedge d x_{p}
$$

as a form on all of \mathbb{R}^{n+1}.
Claim. α is a chain map.

Proof. It suffices to check on $\alpha\left(\phi_{\sigma}\right)$. We calculate

$$
d \beta(\sigma)=(p+1)!d x_{0} \wedge \cdots \wedge d x_{p}
$$

i.e. it is equal to $(p+1)$! times the pullback of the volume form on \mathbb{R}^{p+1} under the map $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{p+1}$ which projects out the other coordinates. We need to check that $d \beta(\sigma)=\sum_{\sigma^{\prime}} \pm \beta\left(\sigma^{\prime}\right)$ on K, where the sum is taken over $(p+1)$-simplices σ^{\prime} with σ as a face, and the sign comes from the difference between the orientations of σ and $\partial \sigma^{\prime}$. To check this, we check it on each $(p+q)$ simplex.

Let $\sigma^{\prime \prime}$ be a $(p+q)$-simplex of τ. If σ is not a face of $\sigma^{\prime \prime}$ then $d \beta(\sigma)$ and $\sum_{\sigma^{\prime}} \pm \beta\left(\sigma^{\prime}\right)$ are both identically zero on $\varphi\left(\sigma^{\prime \prime}\right)$. Likewise, even if σ is a face of $\sigma^{\prime \prime}$, then $\beta\left(\sigma^{\prime}\right)$ is zero on $\varphi\left(\sigma^{\prime \prime}\right)$ unless σ^{\prime} is a face of $\sigma^{\prime \prime}$.

So let $\sigma^{\prime \prime}$ be a $(p+q)$-simplex with σ as a face. Without loss of generality, we can suppose $\varphi\left(\sigma^{\prime \prime}\right)=d_{0}\left(\Delta^{p+q+1}\right)$; i.e. it is the simplex where $\sum_{i=0}^{p+q} x_{i}=1$. Thus $\sum_{j=1}^{q} x_{p+j}=$ $1-\sum_{i \leq p} x_{i}$ and $\sum_{j=1}^{q} d x_{p+j}=-\sum_{i \leq p} d x_{i}$ on $\varphi\left(\sigma^{\prime \prime}\right)$. But then

$$
\begin{aligned}
d \beta(\sigma) & =(p+1)!\left(\sum_{j=1}^{q} x_{p+j} d x_{0} \wedge \cdots \wedge d x_{p}+\sum_{i \leq p}(-1)^{i} x_{i} d x_{i} \wedge d x_{0} \wedge \cdots \widehat{d x_{i}} \cdots \wedge d x_{p}\right) \\
& =(p+1)!\left(\sum_{j=1}^{q} x_{p+j} d x_{0} \wedge \cdots \wedge d x_{p}+\sum_{j=1}^{q} \sum_{i \leq p}(-1)^{i+1} x_{i} d x_{p+j} \wedge d x_{0} \wedge \cdots \widehat{d x_{i}} \cdots \wedge d x_{p}\right) \\
& =\sum_{\sigma^{\prime}} \pm \beta\left(\sigma^{\prime}\right)
\end{aligned}
$$

on the simplex $\varphi\left(\sigma^{\prime \prime}\right)$.
It follows by linearity that $\alpha(\delta \phi)=d \alpha(\phi)$ for all cochains ϕ; i.e. that α is a chain map.

Claim. α inverts \int.
Proof. It suffices to check on $\alpha\left(\phi_{\sigma}\right)$. Evidently $\beta(\sigma)$ is zero on every p-simplex of K except $\varphi(\sigma)$. So it suffices to show $\int_{\varphi(\sigma)} \beta(\sigma)=1$. If we identify $\varphi(\sigma)=d_{0}\left(\Delta^{p+1}\right)$ then observe that $\beta(\sigma)$ vanishes on all the other faces of Δ^{p+1}. So by Stokes' Theorem,

$$
\int_{\varphi(\sigma)} \beta(\sigma)=\int_{\partial \Delta^{p+1}} \beta(\sigma)=\int_{\Delta^{p+1}}(p+1)!d x_{0} \wedge \cdots \wedge d x_{p}=1
$$

This completes the proof of the lemma when M is compact. But actually, we did not use anywhere the compactness of M. If M is noncompact so that K is infinite and lives in \mathbb{R}^{∞} it is nevertheless true that every construction or calculation above takes place in a finite dimensional subspace, and makes perfect sense there. So we are done in general.

This completes the proof of the de Rham Theorem.

3. Chern classes

3.1. Connections. Let $\pi: E \rightarrow M$ be a smooth n-dimensional vector bundle over M with fiber E_{x} over x (E could be real or complex). Denote smooth sections of E by $\Gamma(E)$. This is a $C^{\infty}(M)$-module (real or complex).

There is no canonical way to identify the fibers of E over different points. A connection on E is a choice of such an identification, at least "infinitesimally".

Definition 3.1. Let E be a smooth real vector bundle over M. A connection ∇ is a linear map (not a $C^{\infty}(M)$-module homomorphism)

$$
\nabla: \Gamma(E) \rightarrow \Omega^{1}(M) \otimes \Gamma(E)
$$

satisfying the Leibniz rule

$$
\nabla(f s)=d f \otimes s+f \nabla(s)
$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.
Such an operator ∇ is also (more usually) called a covariant derivative. We denote $\nabla(s)(X)=\nabla_{X}(s)$ for $X \in \mathfrak{X}(M)$. Note that $\nabla_{f X}(s)=f \nabla_{X} s$ for a smooth function f.
Example 3.2. The trivial bundle $E=M \times \mathbb{R}^{n}$ admits the "trivial connection" $\nabla(s)=d s$ where we identify sections of E with n-tuples of smooth functions by using the trivialization.

We sometimes use the notation $\Omega^{p}(M ; E):=\Omega^{p}(M) \otimes \Gamma(E)$ i.e. for the space of sections of $\Lambda^{p} T^{*} M \otimes E$. We can extend ∇ to operators

$$
\nabla: \Omega^{p}(M ; E) \rightarrow \Omega^{p+1}(M ; E)
$$

by

$$
\nabla(\alpha \otimes s)=d \alpha \otimes s+(-1)^{p} \alpha \wedge \nabla(s)
$$

It is not typically true that $\nabla^{2}=0$.
Proposition 3.3. Any smooth real vector bundle admits a connection. The space of connections on E is an affine space for $\Omega^{1}(M ; \operatorname{End}(E))$.

Proof. The first claim follows from the second by using partitions of unity to take convex combinations of connections defined locally e.g. from "trivial" connections with respect to local trivializations of the bundle.

To prove the second claim, let $\nabla, \tilde{\nabla}$ be two connections. Then

$$
(\nabla-\tilde{\nabla})(f s)=f(\nabla-\tilde{\nabla})(s)
$$

which shows that $(\nabla-\tilde{\nabla})$ is a $C^{\infty}(M)$-module homomorphism from $\Gamma(E)$ to $\Omega^{1}(M) \otimes \Gamma(E)$; i.e. an element of $\Omega^{1}(M ; \operatorname{End}(E))$.

3.2. Curvature and parallel transport.

Definition 3.4. A section s is parallel along a path $\gamma:[0,1] \rightarrow M$ if $\nabla_{\gamma^{\prime}(t)}(s)=0$ throughout [0, 1].

By the fundamental theorem of ODEs there is a unique parallel section over any path with a prescribed initial value. Thus a path $\gamma:[0,1] \rightarrow M$ determines an isomorphism $E_{\gamma(0)} \rightarrow E_{\gamma(1)}$ called the result of parallel transport along γ.

By abuse of notation we can think of the total space of E as a smooth manifold. A connection gives a unique way to lift a path in M to a parallel path in E. Taking derivatives, we get a map $\mathfrak{X}(M) \rightarrow \mathfrak{X}(E)$ which we call "tilde" and denote $X \rightarrow \tilde{X}$. The image consists of parallel vector fields.

The parallel vector fields span pointwise a distribution of n-plane fields ξ on E called the horizontal distribution.

For X a vector field on M, the lift \tilde{X} generates a flow of bundle automorphisms $\tilde{\phi}_{t}$ on E lifting the flow of diffeomorphisms ϕ_{t} of M generated by X. We can define

$$
\mathcal{L}_{\tilde{X}} s=\lim _{t \rightarrow 0} \frac{\tilde{\phi}_{-t}(s)-s}{t}
$$

The following is immediate from the definitions:
Proposition 3.5. With notation as above $\mathcal{L}_{\tilde{X}} s=\nabla_{X} s$.
If $X, Y \in \mathfrak{X}(M)$ then we can form $R(X, Y):=[\tilde{X}, \tilde{Y}]-[\tilde{X}, Y] \in \mathfrak{X}(E)$. This is a vertical vector field (i.e. it is tangent to the fibers of E).

If V is a vector space, there is a canonical identification $T_{v} V=V$ at every $v \in V$. Thus a vector field on V is the same thing as a smooth map $V \rightarrow V$. Since the parallel vector fields integrate to flows by bundle automorphisms, R respects the vector space structure in each fiber. So $R(X, Y)$ determines a linear endomorphism of each fiber E_{x}; i.e. $\left.R(X, Y)\right|_{E_{x}} \in \operatorname{End}\left(E_{x}\right)$ so that $R(X, Y) \in \Gamma(\operatorname{End}(E))$.

Proposition 3.6.

$$
R(X, Y)(s)=\nabla_{X} \nabla_{Y} s-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s
$$

for any $s \in \Gamma(E)$.
This is a calculation.
Definition 3.7. R is called the curvature of the connection. A connection is flat if R is identically zero.

If ∇ is flat, the parallel vector fields are closed under Lie bracket, and the horizontal distribution integrates to a foliation (by Frobenius' Theorem) whose leaves are everywhere parallel.

Proposition 3.8. $R \in \Omega^{2}(M ; \operatorname{End}(E))$.
Proof. The content of this proposition is that R is $C^{\infty}(M)$-linear in all three entries. We check

$$
\begin{aligned}
R(f X, Y)(s) & =f \nabla_{X} \nabla_{Y} s-\nabla_{Y} f \nabla_{X} s-\nabla_{[f X, Y]} s \\
& =f \nabla_{X} \nabla_{Y} s-Y(f) \nabla_{X} s-f \nabla_{Y} \nabla_{X} s-f \nabla_{[X, Y]} s+Y(f) \nabla_{X} s \\
& =f R(X, Y)(s)
\end{aligned}
$$

Since R is antisymmetric in X and Y, we get $C^{\infty}(M)$-linearity for Y too. Finally,

$$
\begin{aligned}
R(X, Y)(f s) & =f \nabla_{X} \nabla_{Y} s+X(f) \nabla_{Y} s+Y(f) \nabla_{X} s+X(Y(f)) s \\
& -f \nabla_{Y} \nabla_{X} s-Y(f) \nabla_{X} s-X(f) \nabla_{Y} s-Y(X(f)) s \\
& -[X, Y](f) s-f \nabla_{[X, Y]}=f R(X, Y)(s)
\end{aligned}
$$

and we are done.

3.3. Flat connections.

Proposition 3.9. There is an identity $(\nabla(\nabla(s)))(X, Y)=R(X, Y)(s)$. Thus $\Omega^{*}(M ; E)$ is a complex with respect to ∇ if and only if ∇ is flat.
Proof. By $C^{\infty}(M)$-linearity to prove the first claim it suffices to check this identity on coordinate vector fields $\partial_{i}, \partial_{j}$, where it is immediate.

In general we can compute

$$
\nabla(\nabla(\alpha \otimes s))=\alpha \otimes \nabla(\nabla(s))
$$

so $\nabla^{2}=0$ on $\Omega^{*}(M ; E)$ if and only if it is zero on $\Omega^{0}(M ; E)=\Gamma(E)$, and this is exactly the condition that $R=0$.

If ∇ is flat, parallel transport is homotopy invariant. That is, if $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow M$ are homotopic rel. endpoints, parallel transport along γ_{1} and along γ_{2} define the same isomorphism from $E_{\gamma_{i}(0)}$ to $E_{\gamma_{i}(1)}$. For, a homotopy between them lifts to a parallel homotopy of sections in the integral manifold of the horizontal distribution.

Thus a flat connection determines a holonomy representation $\rho: \pi_{1}(M, x) \rightarrow \operatorname{Aut}\left(E_{x}\right)$. Since ∇ is flat, the groups $\Omega(M ; E)$ form a complex with respect to ∇, and we denote the cohomology of this complex by $H_{d R}^{*}(M ; E)$.

The analog of the de Rham Theorem in this context is an isomorphism

$$
H_{d R}^{*}(M ; E)=H^{*}(M ; \rho)
$$

where the right hand side denotes (singular) cohomology with coefficients in the local system determined by ρ.
3.4. Invariant polynomials and Chern classes. Now let E be a real or complex n dimensional bundle over M.

If we trivialize E locally over $U \subset M$ as $U \times \mathbb{R}^{n}$ or $U \times \mathbb{C}^{n}$ we can identify $\operatorname{End}(E)$ with a bundle of $n \times n$ matrices. Thus, locally any $\alpha \in \Omega^{p}(M ; \operatorname{End}(E))$ can be expressed as a matrix of p-forms.

Example 3.10 (Change of trivialization). Let ∇ be a connection. If we trivialize E locally, we can express the covariant derivative (relative to this trivialization) as

$$
\nabla(s)=d s+\omega \otimes s
$$

for some $\omega \in \Omega^{1}(M ; \operatorname{End}(E))$ which we think of as a matrix of 1-forms. If we change the local trivialization by a section $h \in \Gamma(\operatorname{Aut}(E))$ then

$$
\nabla(h s)=d h \otimes s+h d s+h \omega \otimes s
$$

so ω transforms by $\omega \rightarrow d h \cdot h^{-1}+h \omega h^{-1}$.
"Matrix multiplication" defines a product on $\Omega^{*}(M ; \operatorname{End}(E))$:
Definition 3.11 (Wedge product). There is a product on $\Omega^{*}(M ; \operatorname{End}(E))$ that we denote by \wedge, which is wedge product on forms, and fiberwise composition of endomorphisms. On decomposable vectors

$$
(\alpha \otimes A) \wedge(\beta \otimes B)=(\alpha \wedge \beta) \otimes A B
$$

where $\alpha, \beta \in \Omega^{*}(M)$ and $A, B \in \Gamma(\operatorname{End}(E))$.

Definition 3.12 (Lie bracket). For any vector space V, we can make $\operatorname{End}(V)$ into a Lie algebra by the bracket $[A, B]:=A B-B A$. Doing this fiberwise defines a bracket on $\Gamma(\operatorname{End}(E))$, which extends to $\Omega^{*}(M ; \operatorname{End}(E))$ as follows: if $\alpha \in \Omega^{p}(M ; \operatorname{End}(E))$ and $\beta \in \Omega^{q}(M ; \operatorname{End}(E))$ then

$$
[\alpha, \beta]=\alpha \wedge \beta-(-1)^{p q} \beta \wedge \alpha
$$

Example 3.13. Let $\alpha \in \Omega^{1}(M ; \operatorname{End}(E))$. Then

$$
\alpha \wedge \alpha=\frac{1}{2}[\alpha, \alpha]
$$

Now, let ∇ be a connection. Trivialize E locally, and express the covariant derivative (relative to this trivialization) as

$$
\nabla(s)=d s+\omega \otimes s
$$

for some $\omega \in \Omega^{1}(M ; \operatorname{End}(E))$. We compute

$$
\nabla(\nabla(s))=\nabla(d s+\omega \otimes s)=\omega \wedge d s+d \omega \otimes s-\omega \wedge d s-\omega \wedge \omega \otimes s
$$

so that

$$
R=d \omega-\omega \wedge \omega=d \omega-\frac{1}{2}[\omega, \omega]
$$

as an honest identity in $\Omega^{2}(M ; \operatorname{End}(E))$.
Example 3.14 (Bianchi Identity). With notation as above,

$$
d R=[\omega, R]
$$

For,

$$
d R=-d \omega \wedge \omega+\omega \wedge d \omega=[\omega, d \omega]=[\omega, R]
$$

because $[\omega, \omega \wedge \omega]=0$.
Definition 3.15 (Invariant polynomial). Let V be a vector space (real or complex). An invariant polynomial of degree p is a function P from $\operatorname{End}(V)$ to the scalars, satisfying
(1) (degree p): $P(\lambda A)=\lambda^{p} P(A)$ for all scalars λ;
(2) (invariance): $P\left(g A g^{-1}\right)=P(A)$ for all $g \in \operatorname{Aut}(V)$.

If E is a bundle over M whose fibers are isomorphic to V, then any invariant polynomial P defines a map which we likewise denote P :

$$
P: \Omega^{q}(M ; \operatorname{End}(E)) \rightarrow \Omega^{p q}(M)
$$

by applying P fiberwise in any local trivialization. Invariance means that the result does not depend on the choice.

Definition 3.16 (Polarization). Suppose P is an invariant polynomial on $\operatorname{End}(V)$ of degree p. The polarization of P is a multilinear map from $\operatorname{End}(V)^{p}$ to the scalars (which, by abuse of notation, we also denote by P) which satisfies
(1) (specialization): $P(A, \cdots, A)=P(A)$;
(2) (symmetry): P is invariant under permutations of the entries; and
(3) (invariance): $P\left(g A_{1} g^{-1}, \cdots, g A_{p} g^{-1}\right)=P\left(A_{1}, \cdots, A_{p}\right)$ for all $g \in \operatorname{Aut}(V)$ and $A_{i} \in \operatorname{End}(V)$.

If P is an invariant polynomial, its polarization can be defined by setting $P\left(A_{1}, \cdots, A_{p}\right)$ equal to the coefficient of $t_{1} t_{2} \cdots t_{p}$ in $P\left(t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{p} A_{p}\right) / p$!

Differentiating the invariance property shows that

$$
\sum_{i} P\left(A_{1}, \cdots,\left[B, A_{i}\right] \cdots, A_{p}\right)=0
$$

for any invariant polarization, whenever $B, A_{i} \in \operatorname{End}(V)$.
Proposition 3.17. If $\alpha_{i} \in \Omega^{m_{i}}(M ; \operatorname{End}(E))$, and $\beta \in \Omega^{1}(M ; \operatorname{End}(E))$ then

$$
\sum_{i}(-1)^{m_{1}+\cdots+m_{i-1}} P\left(\alpha_{1}, \cdots,\left[\beta, \alpha_{i}\right], \cdots, \alpha_{p}\right)=0
$$

Proof. This is just the invariance property, and follows by differentiation (the sign comes from moving the 1 -form β past each m_{j}-form α_{j}.)

We explain how to apply invariant polynomials to curvature forms to obtain invariants of bundles.

Proposition 3.18. Let E be a real or complex vector bundle with fibers isomorphic to V, and let P be an invariant polynomial of degree p on $\operatorname{End}(V)$. Pick a connection ∇ on E with curvature $R \in \Omega^{2}(M ; \operatorname{End}(E))$. Then $P(R) \in \Omega^{2 p}(M)$ is closed, and its cohomology class does not depend on the choice of connection.
Proof. Let ∇_{0}, ∇_{1} be two connections. Their difference $\nabla_{1}-\nabla_{0}=\alpha$ is in $\Omega^{1}(M ; \operatorname{End}(E))$. Define a family of connections $\nabla_{t}:=\nabla_{0}+t \alpha$. Locally, in terms of a trivialization, we can write $\nabla_{t}=d+\omega_{t}$ where $\omega_{t}:=\omega_{0}+t \alpha$ for some $\omega_{0} \in \Omega^{1}(M ; \operatorname{End}(E))$ (depending on the trivialization), and then

$$
R_{t}=d \omega_{t}-\frac{1}{2}\left[\omega_{t}, \omega_{t}\right]=R_{0}+t\left(d \alpha-\left[\omega_{0}, \alpha\right]\right)-\frac{1}{2} t^{2}[\alpha, \alpha]
$$

Thus

$$
\frac{1}{p} \frac{d}{d t} P\left(R_{t}\right)=P\left(d \alpha-\left[\omega_{t}, \alpha\right], R_{t}, \cdots, R_{t}\right)
$$

Now, the Bianchi identity gives

$$
d P\left(\alpha, R_{t}, \cdots, R_{t}\right)=P\left(d \alpha, R_{t}, \cdots, R_{t}\right)-(p-1) P\left(\alpha,\left[\omega_{t}, R_{t}\right], R_{t}, \cdots, R_{t}\right)
$$

but invariance of P gives (by Proposition 3.17)

$$
P\left(\left[\omega_{t}, \alpha\right], R_{t}, \cdots, R_{t}\right)-(p-1) P\left(\alpha,\left[\omega_{t}, R_{t}\right], R_{t}, \cdots, R_{t}\right)=0
$$

So $d / d t P\left(R_{t}\right)$ is exact, and therefore (by integration) so is $P\left(R_{1}\right)-P\left(R_{0}\right)$.
Locally we can always choose a connection whose curvature vanishes pointwise. So any $P(R)$ is locally exact, which is to say it is closed.

We can now define Chern forms of connections on complex vector bundles:
Definition 3.19 (Chern classes). Let E be a complex vector bundle, and choose a connection. The Chern forms of the connection $c_{j} \in \Omega^{2 j}(M ; \mathbb{C})$ are the coefficients of the "characteristic polynomial" of $R / 2 \pi i$. That is,

$$
\operatorname{det}\left(\operatorname{Id}-t \frac{R}{2 \pi i}\right)=\sum c_{i} t^{i}
$$

Likewise we can define Pontriagin forms of connections on real vector bundles:
Definition 3.20 (Pontriagin classes). Let E be a real vector bundle, and choose a connection. The Pontriagin forms of the connection $p_{j} \in \Omega^{4 j}(M ; \mathbb{R})$ are the coefficients of the "characteristic polynomial" of $-R / 2 \pi$. That is,

$$
\operatorname{det}\left(\operatorname{Id}+t \frac{R}{2 \pi}\right)=\sum p_{j} t^{2 j}
$$

By Proposition 3.18 the forms c_{j} and p_{j} are closed, and give rise to well-defined cohomology classes which are invariants of the underlying bundles.

Theorem 3.21. With notation as above, $\left[c_{j}\right]$ and $\left[p_{j}\right]$ are the usual Chern and Pontriagin classes, and therefore lie in $H^{2 j}(M ; \mathbb{Z})$ and $H^{4 j}(M ; \mathbb{Z})$ respectively.

Proof. If E is a real vector bundle, $p_{j}(E)=(-1)^{j} c_{2 j}\left(E_{\mathbb{C}}\right)$ so it suffices to prove this theorem for the Chern classes. This can be done axiomatically.

Connections can be pulled back along with bundles, so the classes as defined above are certainly natural. If ∇_{1}, ∇_{2} are connections on bundles E_{1}, E_{2} then $\nabla_{1} \oplus \nabla_{2}$ is a connection on $E_{1} \oplus E_{2}$ with curvature $R_{1} \oplus R_{2}$. Thus the Whitney product formula follows.

This shows that the $\left[c_{j}\right]$ as defined above agree with the usual Chern classes up to a multiplicative constant. We compute on an example (this is by far the hardest part of the proof!) For $\mathbb{C P}^{1}$ we should have $c_{1}\left(T \mathbb{C P}^{1}\right)=\chi\left(\mathbb{C P}^{1}\right)=2$ for the right normalization, so to prove the theorem it suffices to check that

$$
\int_{\mathbb{C P}} \frac{-R}{2 \pi i}=2
$$

where R is the curvature of a connection on the tangent bundle (which is an honest 2-form, since $\operatorname{End}(E)$ is the trivial line bundle for any complex line bundle E).

We cover $\mathbb{C P}^{1}$ with two coordinate charts z and w, and have $w=z^{-1}$ on the overlap. Any vector field is of the form $f(z) \partial_{z}$ (on the z-coordinate chart).

The vector fields ∂_{z} and ∂_{w} give trivializations of the bundle on the two charts. We define a connection form as follows. Where z is finite, we can express the connection as

$$
\nabla \partial_{z}=\alpha \otimes \partial_{z}
$$

We choose the connection

$$
\alpha:=\frac{-2 \bar{z} d z}{|z|^{2}+1}
$$

Where w is finite, we can express the connection as

$$
\nabla \partial_{w}=\beta \otimes \partial_{w}
$$

Having the connections agree on the overlap will determine β, and we claim that β (defined implicitly as above) extends smoothly over $w=0$.

On the overlap we have $\partial_{w}=-z^{2} \partial_{z}$, so by the formula in Example 3.10 it follows that

$$
\beta=\alpha+\frac{d\left(-z^{2}\right)}{-z^{2}}=\left(\frac{-2 \bar{z}}{|z|^{2}+1}+\frac{2}{z}\right) d z=\left(\frac{2 \bar{w}^{-1}}{|w|^{-2}+1}-2 w\right) \frac{d w}{w^{2}}=\frac{-2 \bar{w} d w}{|w|^{2}+1}
$$

which extends smoothly over 0 (and explains the choice of α).

Then

$$
R=d \alpha=\partial_{\bar{z}}(\alpha) d \bar{z} \wedge d z=\frac{-4 i}{\left(x^{2}+y^{2}+1\right)^{2}} d x \wedge d y
$$

where we have used $z=x+i y$ so that $d z=d x+i d y$ and $d \bar{z}=d x-i d y$. Finally, we compute

$$
\int_{\mathbb{C P}^{1}} \frac{-R}{2 \pi i}=\frac{4}{2 \pi} \int_{\theta=0}^{2 \pi} \int_{0}^{\infty} \frac{r}{\left(1+r^{2}\right)^{2}} d r d \theta=-\left.\frac{4}{2\left(1+r^{2}\right)}\right|_{0} ^{\infty}=2
$$

4. Acknowledgments

Danny Calegari was supported by NSF grant DMS 1005246.

References

[1] S.-S. Chern, Complex Manifolds without Potential Theory, Springer-Verlag
[2] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, AMS Graduate Texts in Mathematics

University of Chicago, Chicago, Ill 60637 USA
E-mail address: dannyc@math.uchicago.edu

[^0]: Date: March 1, 2016.

