
NOTES ON DIFFERENTIAL FORMS

DANNY CALEGARI

Abstract. These are notes on differential forms. They follow the last three weeks of a
course given at the University of Chicago in Winter 2016.
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1. Differential forms

1.1. Exterior algebra. Let V be a (real) vector space, and let V ∗ denote its dual. Then
(V ∗)⊗n = (V ⊗n)∗. For ui ∈ V ∗ and vi ∈ V the pairing is given by

u1 ⊗ u2 ⊗ · · · ⊗ un(v1 ⊗ v2 ⊗ · · · ⊗ vn) = u1(v1)u2(v2) · · ·un(vn)

We denote by T (V ) the graded algebra T (V ) := ⊕∞n=0(V ⊗n) and call it the tensor algebra
of V . Let I(V ) ⊂ T (V ) be the 2-sided ideal generated by elements of the form v ⊗ v for
v ∈ V . This is a graded ideal and the quotient inherits a grading.

Definition 1.1 (Exterior Algebra). The quotient T (V )/I(V ) is denoted Λ(V ). It is a
graded algebra, and is called the exterior algebra of V .

The part of Λ(V ) in dimension j is denoted Λj(V ). If V is finite dimensional, and has a
basis v1, · · · , vn then a basis for Λj(V ) is given by the image of j-fold “ordered” products
vi1 ⊗ · · · ⊗ vij with ik < il for k < l. In particular, the dimension of Λj(V ) is n!/j!(n− j)!,
and the total dimension of Λ(V ) is 2n.

It turns out there is a natural isomorphism (Λ(V ))∗ = Λ(V ∗); equivalently, there is a
nondegenerate pairing of Λ(V ∗) with Λ(V ). But in fact, there is more than one “natural”
choice of pairing, so we must be more precise about which pairing we mean. If we think
of Λ(V ) as a quotient of T (V ), then we could think of Λ(V ∗) as the subgroup of T (V ∗)
consisting of tensors vanishing on the ideal I(V ). To pair α ∈ Λ(V ∗) ⊂ T (V ∗) with
β ∈ Λ(V ) = T (V )/I(V ) we choose any representative β̄ ∈ T (V ), and pair them by
α(β) := α(β̄) where the latter pairing is as above. Since (by definition) α vanishes on
I(V ), this does not depend on the choice of β̄.
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1.2. Algebra structure. As a quotient of T (V ∗) by an ideal, the exterior algebra inherits
an algebra structure. But as a subgroup of T (V ∗) it is not a subalgebra, in the sense that
the usual algebra product on T (V ∗) does not take Λ(V ∗) to itself.
Example 1.2. Observe that Λ1(V ∗) = V ∗ = (Λ1(V ))∗. But if u ∈ V ∗ is nonzero, there is
v ∈ V with u(v) = 1, and then u⊗ u(v ⊗ v) = 1 so that u⊗ u is not in Λ2(V ∗).

We now describe the algebra structure on Λ(V ∗) thought of as a subgroup of T (V ∗).
Let Sj denote the group of permutations of the set {1, · · · , j}. For σ ∈ Sj the sign of
σ, denoted sgn(σ), is 1 if σ is an even permutation (i.e. a product of an even number of
transpositions), and −1 if σ is odd.
Definition 1.3 (Exterior product). Let u1, · · · , uj ∈ V ∗. We define

u1 ∧ u2 ∧ · · · ∧ uj :=
∑
σ∈Sj

(−1)sgn(σ)uσ(1) ⊗ uσ(2) ⊗ · · · ⊗ uσ(j)

We call the result the exterior product (or sometimes wedge product).
It is straightforward to check that this element of T (V ∗) does indeed vanish on I(V ),

and therefore lies in Λj(V ∗), and that every element of Λj(V ∗) is a finite linear combination
of such products (which are called pure or decomposable forms). The space Λj(V ∗) pairs
with Λj(V ) by

u1 ∧ · · · ∧ uj(v1 ⊗ · · · ⊗ vj) = det(ui(vj))

on pure forms, and extended by linearity.
Let Sp,q denote the set of p, q shuffles; i.e. the set of permutations σ of {1, · · · , p + q}

with σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(p + q). It is a set of (canonical) coset
representatives of the subgroup Sp × Sq in Sp+q. If α ∈ (Λp(V ))∗ and β ∈ (Λq(V ))∗ then
we can define α ∧ β ∈ (Λp+q(V ))∗ by

α ∧ β(v1 ⊗ · · · ⊗ vp+q) =
∑
σ∈Sp,q

(−1)sgn(σ)α(vσ(1) ⊗ · · · ⊗ vσ(p))β(vσ(p+1) ⊗ · · · ⊗ vσ(p+q))

One can check that this agrees with the notation above, so that Λ(V ∗) is an algebra with
respect to exterior product, generated by Λ1(V ∗). This product is associative and skew-
commutative: i.e.

α ∧ β = (−1)pqβ ∧ α
for α ∈ Λp(V ∗) and β ∈ Λq(V ∗).

1.3. Smooth manifolds and functions. Let U ⊂ Rn be open. A map ϕ : U → Rm

is smooth if the coordinate functions are continuous and admit continuous mixed partial
derivatives of all orders.
Definition 1.4 (Smooth Manifold). An n-manifold is a (paracompact Hausdorff) topo-
logical space in which every point has a neighborhood homeomorphic to an open subset
of Rn. An n-manifold is smooth if it comes equipped with a family of open sets Uα ⊂ M
(called charts) and maps ϕα : Uα → Rn which are homeomorphisms onto ϕα(Uα) ⊂ Rn

open, so that for each pair α, β the transition maps

ϕβϕ
−1
α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are smooth, as maps between open subsets of Rn.
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Example 1.5. Rn is a smooth manifold. An open U ⊂ Rn is a smooth manifold. If M is
smooth, an open U ⊂M is smooth.

Example 1.6. If M and N are smooth manifolds of dimensions m and n, then M × N is
smooth of dimension m+ n.

A function f : M → R is smooth if it is smooth in local coordinates; i.e. if fϕ−1
α :

ϕα(Uα)→ R is smooth for each α. Pointwise addition and multiplication make the smooth
functions on M into a ring, denoted C∞(M).

A map ϕ : M → N between smooth manifolds is smooth if it is smooth in local coordi-
nates; i.e. if

ϕβϕϕ
−1
α : ϕα(Uα)→ ϕβ(Vβ)

is smooth for each pair of charts Uα on M and Vβ on N . Smooth functions pull back; i.e.
there is a ring homomorphism ϕ∗ : C∞(N)→ C∞(M) given by ϕ∗(f) = fϕ.

1.4. Vectors and vector fields. A map γ : [0, ε] → M for some positive ε is smooth if
its composition ϕαγ is smooth for each chart, where defined. We define an equivalence
relation on the class of such maps, and say that γ and σ are equivalent if γ(0) = σ(0), and
if

d

dt

∣∣∣
t=0
ϕαγ(t) =

d

dt

∣∣∣
t=0
ϕασ(t)

where defined. Note that γ is equivalent to the restriction γ|[0,ε′] for any positive ε′ ≤ ε;
thus the equivalence class of γ depends only on the germ of γ at 0.

Definition 1.7 (Tangent space). For x ∈M , the set of equivalence classes of smooth maps
γ : [0, ε]→M for some positive ε with γ(0) = x is called the tangent space to M at x, and
is denoted TxM .

The vector associated to the equivalence class of γ is usually denoted γ′(0). By abuse of
notation we denote by γ′(t) the vector in Tγ(t)M obtained by reparameterizing the domain
of γ by a translation.

Definition 1.8 (Pushforward). Vectors can be pushed forward by smooth maps. If ϕ :
M → N is smooth, and γ : [0, ε]→M is in the equivalence class of some vector at x, then
ϕγ : [0, ε]→ N is in the equivalence class of some vector at ϕ(x). Thus there is an induced
map dϕx : TxM → Tϕ(x)N .

Example 1.9. The identity map on [0, ε] determines the coordinate vector field ∂t. Then
dγt(∂t) = γ′(t) for any γ : [0, ε]→M .

A vector v ∈ TxM defines a linear map v : C∞(M) → R as follows. If f is a smooth
(real-valued) function on M , and γ : [0, ε] → M is a smooth map with γ′(0) = v, the
composition fγ is a smooth function on [0, ε], and we can define

v(f) :=
d

dt

∣∣∣
t=0
fγ(t)

By ordinary calculus, this satisfies the Leibniz rule v(fg) = v(f)g(x) + f(x)v(g), and does
not depend on the choice of representative γ.
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Definition 1.10. A linear map v : C∞(M) → R satisfying v(fg) = v(f)g(x) + f(x)v(g)
is called a derivation at x.

Every derivation at x arises from a unique vector at x, so the set of derivations is exactly
TxM . Note that this explains why this set has the structure of a vector space, of dimension
n.

Each point x ∈ M determines a unique maximal ideal mx in C∞(M) consisting of the
functions inM that vanish at x. This is exactly the kernel of the surjective homomorphism
C∞(M)→ R given by f → f(x).

Proposition 1.11 (Pairing). There is a natural pairing

TxM ⊗R mx/m
2
x → R

given by v ⊗ f → v(f). This pairing is nondegenerate, so that TxM = (mx/m
2
x)
∗.

Proof. If f, g ∈ mx then v(fg) = v(f)g(x) + f(x)v(g) = 0 so the pairing is well-defined.
Note that every derivation vanishes on the constants, so if v ∈ TxM is nonzero, it is

nonzero on mx. Thus TxM → (mx/m
2
x)
∗ is injective.

Conversely, any φ : mx/m
2
x → R extends to φ̄ : C∞(M) → R by φ̄(f) := φ(f − f(x)),

which is a derivation at x since

fg − f(x)g(x) = (f − f(x))(g − g(x)) + fg(x) + f(x)g − 2f(x)g(x)

so that

φ(fg − f(x)g(x)) = φ(f − f(x))g(x) + f(x)φ(g − g(x))

�

Derivations are natural: if ϕ : M → N and v ∈ TxM and f ∈ C∞(N) then

v(ϕ∗f) = dϕx(v)(f)

Definition 1.12 (Tangent bundle and vector fields). The collection of vector spaces TxM
for various x ∈M are the fibers of a smooth vector bundle TM called the tangent bundle.
The fibers have dimension n, the same as the dimension of M . A smooth section of TM
is called a vector field, and the space of all vector fields on M is denoted X(M).

A smooth map ϕ : M → N induces a smooth map dϕ : TM → TN .

Example 1.13. If ϕ : M → N is a diffeomorphism, dϕ is a bundle isomorphism.

Vector fields do not push forward under maps in general, but when ϕ : M → N is a
diffeomorphism and X ∈ X(M) then it makes sense to define dϕ(X) ∈ X(N).

If f is a smooth function andX is a vector field, we can applyX as a derivation pointwise
to obtain a new smooth functionX(f). This defines a pairing X(M)⊗RC

∞(M)→ C∞(M).
This pairing is not a pairing of C∞(M) modules. It satisfies the Leibniz rule X(fg) =
X(f)g + fX(g).
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1.5. Local coordinates. If x1, · · · , xn are smooth coordinates on M near a point x, the
partial differential operators

∂i|x :=
∂

∂xi

∣∣∣
x

are derivations at x, and thereby can be thought of as elements of TxM (beware that the
notation ∂i ignores the dependence on the choice of local coordinates x1, · · · , xn).

To translate this into geometric language, the subset of M near x where xj = xj(x) for
j 6= i is a smooth 1-manifold, parameterized locally by xi. Thus there is a smooth map
γ : [0, ε] → M uniquely defined (for sufficiently small ε) by γ(0) = x, by xj(γ(t)) = xj(x)
for j 6= i, and xi(γ(t)) = xi(x) + t. Then as vectors, ∂i|x = γ′(0). Note that we need all n
coordinates xj to define any operator ∂i|x.

The (local) sections ∂i defined in a coordinate patch U span X(M) (locally) as a free
C∞(U) module; i.e. any vector field may be expressed (throughout the coordinate patch)
uniquely in the form

X :=
∑

Xi∂i

1.6. Lie bracket. If X, Y ∈ X(M) the operator [X, Y ] := XY −Y X on smooth functions,
a priori of second order, turns out to be first order and to satisfy the Leibniz rule; i.e. it
defines a vector field, called the Lie bracket of X and Y . The reason is that partial
differentiation commutes (for functions which are at least C2), so when we antisymmetrize,
the second order terms cancel.

To see this, first observe that the claim is local, so we can work in a coordinate patch.
Then take X =

∑
Xi∂i and Y =

∑
Yi∂i, and let f be a smooth function. Then

[X, Y ]f = X(Y (f))− Y (X(f)) =
∑
i

Xi∂i
(∑

j

Yj∂j(f)
)
−
∑
i

Yi∂i
(∑

j

Xj∂j(f)
)

=
∑
j

(∑
i

(Xi∂i(Yj)− Yi∂i(Xj))
)
∂j(f)

Proposition 1.14 (Lie algebra). Lie bracket is antisymmetric in X and Y , linear in each
variable, and satisfies the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for any three vector fields X, Y, Z ∈ X(M).

The proof is by calculation. One says that bracket makes X(M) into a Lie algebra.

Proposition 1.15 (Naturality). Lie bracket is natural; i.e. if ϕ : M → N is a diffeomor-
phism, and X, Y ∈ X(M) then dϕ([X, Y ]) = [dϕ(X), dϕ(Y )]

Since Lie bracket is defined without reference to coordinates, naturality under diffeo-
morphism follows.

Example 1.16 (Local coordinates). If x1, · · · , xn are local coordinates with associated vector
fields ∂1, · · · , ∂n then [∂i, ∂j] = 0 for all i, j (this is equivalent to the usual statement that
“partial derivatives commute”).
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1.7. Flow of a vector field. Let X be a vector field on M . If we think of a vector as
a(n equivalence class of) smooth map from [0, ε] to M , it is natural to ask for a smooth
map φ : M × [0, ε] → M so that the vector X(x) agrees with the equivalence class of
φ(x, ∗) : [0, ε]→M . In fact, there is a canonical choice of the germ of such a φ alongM×0,
which furthermore satisfies φ(x, s+ t) = φ(φ(x, s), t) for all sufficiently small (positive) s, t
(depending on x).

If we denote φ(x, t) by φt(x) we can think of φt as a 1-parameter family of diffeomor-
phisms whose orbits are tangent to the vector field X. The existence and uniqueness of
φ (for small enough positive ε on compact subsets of M) is just the fundamental theorem
of ODE. We say that the family φt of diffeomorphisms is obtained by integrating X. The
orbits of φt are the integral curves of the vector field X.

Formally we write φ−t for t small and positive as the (time t) flow associated to the
vector field −X. Thus we have φt defined for all t ∈ [−ε, ε]. Notice that φs+t = φsφt for
any real s, t where defined.

If X and Y are vector fields, and φt is obtained by integrating X, we may form the
family of vector fields dφ−t(Y ).

Definition 1.17 (Lie Derivative of vector fields). The Lie derivative LX : X(M)→ X(M)
is defined by

LX(Y ) := lim
t→0

dφ−t(Y )− Y
t

Said another way, we think of Y as a vector field along the integral curves of X. The
flow φt gives us a way to identify the vector spaces at different points along an integral
curve so that we can “differentiate” Y .

Proposition 1.18 (Derivative is bracket). For X, Y ∈ X(M) we have LX(Y ) = [X, Y ].

The proof is by calculation.

Example 1.19 (Jacobi identity). Thinking of Lie bracket as a Lie derivative gives us another
way to think about the Jacobi identity. For vector fields X, Y, Z the Jacobi identity is
equivalent to the statement that

LX([Y, Z]) = [LX(Y ), Z] + [Y,LX(Z)]

in other words, LX acts as a “derivation” with respect to the (Lie) algebra structure on
X(M). One way to see this is to differentiate the identity

dφ−t([Y, Z]) = [dφ−t(Y ), dφ−t(Z)]

at t = 0 (this latter identity is just naturality of Lie bracket).

Example 1.20 (Coordinate vector fields). If ∂1, · · · , ∂n are the vector fields associated to
local coordinates x1, · · · , xn then the flow φt associated to ∂1 is characterized by the prop-
erties xi(φt(x)) = xi(x) for i > 1 and x1(φt(x)) = x1(x) + t. In particular, the flows
associated to the different ∂i, ∂j commute. Differentiating this fact recovers the identity
[∂i, ∂j] = 0.

In fact, if φt, ψs are the flows obtained by integrating vector fields X, Y then φt and ψs
commute for all (small) t, s if and only if [X, Y ] = 0. To see this, differentiate φtψs = ψsφt
with respect to s and t. This explains the geometric “meaning” of the Lie bracket.
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1.8. Frobenius’ Theorem. How can we recognize families of vector fields X1, · · · , Xn

which are of the form ∂1, · · · , ∂n for some local coordinates? A necessary and sufficient
condition is that the Xi span locally, and satisfy [Xi, Xj] = 0. For, in this case, the flows
φit generated by the Xi commute, and define the desired local coordinates (unique up to
constants).

More generally, ifX1, · · · , Xp for p ≤ n are independent and satisfy [Xi, Xj] = 0 through-
out U , then through any point in U we can find a smooth p-dimensional submanifold swept
out by the orbits of the commuting flows φjt , and these submanifolds decompose U locally
into a product (i.e. they are the leaves of a foliation).

Frobenius’ theorem gives necessary and sufficient conditions under which we can find
such vector fields.

Theorem 1.21 (Frobenius). Let ξ be a p-dimensional sub-bundle of the tangent bundle
TM over an open set U . Then ξ is tangent to the leaves of a foliation if and only if the
sections of ξ are closed under Lie bracket (thought of as vector fields on M).

Proof. One direction is easy. Locally, the leaves of a foliation are obtained by setting some
subset xp+1, · · · , xn of a system of local coordinates to a constant; thus sections of ξ are
spanned by ∂i for i ≤ p, and are therefore closed under Lie bracket.

Conversely, choose p independent sections X1, · · ·Xp which span ξ locally. There is a
sort of “Gram-Schmidt” process which replaces these sections with commuting ones, while
staying linearly independent and living in ξ.

We have

[X1, Xj] =

p∑
k=1

ck1jXk

Fix a point x ∈ U . We would like to replace X2 by X̂2 := X2 +
∑
fiXi for suitable smooth

functions fi so that [X1, X2] = 0. If the fi vanish at x, then X̂2 and the other Xi will still
span near x. Now,

[X1, X2 +
∑

fiXi] =
∑
k

(ck12 +X1(fk) +
∑
i

fic
k
1i)Xk

so we would like to solve the system of first order linear ODEs

ck12 +X1(fk) +
∑
i

fic
k
1i = 0

for the functions fi. There is a unique solution along each integral curve of X1 if we specify
the values of the fi at a point. So choose a transversal to the integral curve of X1 through
x, and let the fis be equal to zero on this transversal.

Doing this inductively, we obtain p commuting independent vector fields (near x) in ξ,
whose associated flows sweep out the leaves of the desired foliation.

Alternate proof. Choose local coordinates x1, · · · , xn and express each Xi as Xi :=
∑
Xj
i ∂j.

Reorder coordinates if necessary so that the matrix [Xj
i ]i,j≤p is nonsingular near x. Then

if we define Yi := X̄ i
jXi, where the matrix [X̄ i

j]i,j≤p is the inverse of [Xj
i ]i,j≤p pointwise, we

have Yi = ∂i+
∑

j>p Y
j
i ∂j. Then the Yi are linearly independent, and [Yi, Yj] is in the linear
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span of the ∂k for k > p. On the other hand, it is in the linear span of the Yl for l ≤ p, so
it is identically zero. �

1.9. 1-forms. For each x ∈ M denote the dual space (TxM)∗ by T ∗xM . The collection of
T ∗xM for various x are the fibers of a smooth vector bundle T ∗M whose sections are called
1-forms, and denoted Ω1(M). In a local coordinate patch, Ω1(U) is spanned freely (as a
C∞(U)-module) by sections dx1, · · · , dxn defined at each x ∈ U by the condition

dxi|x(∂j|x) = δij

There is thus for every open U ⊂M a pairing of C∞(U) modules

Ω1(U)⊗C∞(U) X(U)→ C∞(U)

whose restriction to each coordinate patch U is nondegenerate.
A smooth map ϕ : M → N pulls back 1-forms ϕ∗ : Ω1(N) → Ω1(M) by the defining

property
ϕ∗(α)|x(X|x) = α|ϕ(x)(dϕx(X|x))

for each vector field X.
Now, for each smooth function f we can define a 1-form df to be the unique 1-form with

the property that for all smooth vector fields X, we have

df(X) = X(f)

The pairing in each coordinate patch defines df there uniquely (just take X to be the ∂i),
and the definitions agree in the overlaps, so this is well-defined. In each local coordinate
patch, we can compute

df =
∑
i

∂i(f)dxi

Notice that with this definition, the exterior derivatives of the coordinate functions d(xi)
are precisely equal to the 1-forms dxi, so our notation is consistent. Thus the 1-form dxi
can be defined without specifying the other coordinate functions (unlike the operators ∂i).

Since the definition is natural (i.e. does not depend on a choice of coordinates) it respects
pullback. That is, d(ϕ∗f) = ϕ∗df for any smooth ϕ : M → N .

Example 1.22. Recall that mx is the maximal ideal in C∞(M) consisting of functions that
vanish at x. Observe that d : mx/m

2
x → T ∗xM defined by d(f) = df |x is an isomorphism.

The pairing of TxM with mx/m
2
x defined in Proposition 1.11 agrees with the pairing of

vector fields and 1-forms pointwise.

1.10. Differential forms. Let ΛjT ∗M denote the vector bundle whose fiber over each
point x is Λj(T ∗xM) which we identify with a subgroup of the tensor algebra of T ∗xM
as in § 1.1 and § 1.2, made into an algebra by exterior product. Denote by Ωj(M) the
smooth sections of ΛjT ∗M . Its elements are called j-forms. Denote ⊕jΩj(M) by Ω∗(M).
Its elements are forms. Exterior product fiberwise gives Ω∗(M) the structure of a graded
(associative, skew-commutative) ring. If α ∈ Ωp and β ∈ Ωq then α∧β ∈ Ωp+q and satisfies

α ∧ β = (−1)pqβ ∧ α
Note that Λ0(T ∗xM) = R canonically for each x, so that Ω0(M) = C∞(M).
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Differential forms pull back under smooth maps. By naturality, this pullback respects
exterior product:

ϕ∗(α) ∧ ϕ∗(β) = ϕ∗(α ∧ β)

Example 1.23 (Volume forms). If M is n-dimensional, ΛnT ∗M is a line bundle, which is
trivial if and only if M is orientable. Nowhere zero sections of ΛnT ∗M are called volume
forms. In every local coordinate patch x1, · · · , xn a volume form can be expressed uniquely
as fdx1 ∧ · · · ∧ dxn where f is nowhere zero.

If y1, · · · , yn are another system of local coordinates, we have

dy1 ∧ · · · ∧ dyn = det(∂yi/∂xj)dx1 ∧ · · · ∧ dxn
The matrix (∂yi/∂xj) is called the Jacobian of the coordinate change.

1.11. Exterior derivative. We already saw the existence of a natural differential operator

d : C∞(M)→ Ω1(M)

defined by f → df . We would like to extend this operator to all of Ω∗(M) in such a way
that it satisfies the Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

for α ∈ Ωp(M) and β ∈ Ωq(M).
It is tricky to give a coordinate-free definition of exterior d in general (although it is

possible). If we choose local coordinates x1, · · · , xn every p-form α may be expressed
locally in a unique way as a sum

α =
∑
I

fIdxi1 ∧ · · · ∧ dxip

where the sum is over multi-indices I := i1 < i2 < · · · < ip.

Definition 1.24 (Exterior derivative). The exterior derivative of a p-form α is given in
local coordinates by

dα =
∑
I

∑
i

∂i(fI)dxi ∧ dxi1 ∧ · · · ∧ dxip

Proposition 1.25 (Properties of d). Exterior d satisfies dd = 0 and the Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

for α ∈ Ωp(M), and furthermore it is uniquely characterized by these two properties.

Proof. By definition,

d(dα) =
∑
I

∑
i

∑
j

∂2fI
∂xi∂xj

dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip

But dxi ∧ dxj = −dxj ∧ dxi for all pairs i, j so everything cancels. This shows dd = 0.
The Leibniz rule follows from the product rule for partial derivatives. Now apply asso-

ciativity of wedge product to see that d is determined on all forms by its values on 1-forms.
But d(dxi) = 0 for all i and we are done. �
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The Leibniz rule makes no reference to local coordinates, and nor does the property
dd = 0. Thus the definition of exterior d given above is independent of local coordinates,
and is well-defined on Ω∗(M).

The next proposition allows us to define d in a manifestly coordinate-free way by induc-
tion:

Proposition 1.26 (Inductive formula). For any α ∈ Ωp(M) and any X0, X1, · · · , Xp ∈
X(M) there is a formula

dα(X0, · · · , Xp) =
∑
i

(−1)iXi(α(X0, · · · , X̂i, · · · , Xp))

+
∑
i<j

(−1)i+jα([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xp)

where the “hat” means omission.

Proposition 1.26 can be proved by induction, although we won’t do it here. But note
that in the special case that the X0, · · · , Xp are commuting vector fields (e.g. if they are
equal to some subset of the coordinate vector fields ∂i) this is essentially equivalent to the
formula in Definition 1.24.

Example 1.27. If α is a 1-form, and X, Y ∈ X(M) then

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ])

Example 1.28. If α is a 1-form, and X, Y, Z ∈ X(M) then
0 = d(dα)(X,Y, Z)

= X(dα(Y, Z))− Y (dα(X,Z)) + Z(dα(X,Y ))− dα([X,Y ], Z) + dα([X,Z], Y )− dα([Y, Z], X)

= X(Y (α(Z)))−X(Z(α(Y )))−X(α([Y, Z]))− Y (X(α(Z))) + Y (Z(α(X))) + Y (α([X,Z]))

+ Z(X(α(Y )))− Z(Y (α(X)))− Z(α([X,Y ]))− [X,Y ](α(Z)) + Z(α([X,Y ])) + α([[X,Y ], Z])

+ [X,Z](α(Y ))− Y (α([X,Z])− α([[X,Z], Y ])− [Y, Z](α(X)) +X(α([Y, Z])) + α([[Y, Z], X])

= α([[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ])

Since α is arbitrary, we deduce that dd = 0 for 1-forms is equivalent to the Jacobi identity
for vector fields.

1.12. Interior product and Cartan’s formula. If X is a vector field we define the
interior product

ιX : Ω∗(M)→ Ω∗−1(M)

for each p by contaction of tensors. In other words, if ω ∈ Ωp then

(ιXω)(X1, · · · , Xp−1) = ω(X,X1, · · · , Xp−1)

for any X1, · · · , Xp−1 ∈ X(M). On 1-forms this reduces to ιX(α) = α(X).

Proposition 1.29 (Properties of ι). Interior product satisfies ιXιY ω = −ιY ιXω and the
Leibniz rule

ιX(α ∧ β) = (ιXα) ∧ β + (−1)pα ∧ (ιXβ)

whenever α ∈ Ωp.
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The proofs are immediate.
Now, let X be a vector field, generating a flow φt of diffeomorphisms. If α is a p-form

we may form the family of p-forms φ∗t (α).

Definition 1.30 (Lie Derivative of forms). The Lie derivative LX : Ω∗(M) → Ω∗(M) is
defined by

LX(α) := lim
t→0

φ∗t (α)− α
t

The Lie derivative of forms can be expressed in terms of exterior derivative and interior
product by Cartan’s “magic formula”:

Proposition 1.31 (Cartan’s Magic Formula). For any X ∈ X(M) and α ∈ Ωp(M) there
is an identity

LX(α) = ιX(dα) + d(ιX(α))

In other words, as operators on forms,

LX = ιXd+ dιX

The proof is by calculation.

Example 1.32 (Lie derivative of functions). Since ιXf = 0 for a function f we have LXf =
ιXdf = df(X) = X(f).

Example 1.33 (Leibniz formula for forms and vector fields). If X0, · · · , Xp are vector fields
and α is a p-form, there is a “Leibniz formula” for LX0 :

LX0(α(X1, · · · , Xp)) = (LX0(α))(X1, · · · , Xp) +
∑

α(X0, · · · ,LX0(Xi), · · · , Xp)

To see this, we compute
(LX0

(α))(X1, · · · , Xp) = dα(X0, · · · , Xp) + d(ιX0
(α))(X1, · · · , Xp)

=
∑
i

(−1)iXi(α(· · · X̂i · · · )) +
∑
i<j

(−1)i+jα([Xi, Xj ], · · · X̂i · · · X̂j · · · )

+
∑
0<i

(−1)i−1Xi(α(· · · X̂i · · · )) +
∑

0<i<j

(−1)i+j−2α(X0, [Xi, Xj ], · · · X̂i · · · X̂j · · · )

= X0(α(X1, · · · , Xp)) +
∑
j

(−1)jα([X0, Xj ], X1 · · · X̂j · · · )

In the special case p = 1 this reduces to

X(α(Y )) = dα(X, Y ) + Y (α(X)) + α([X, Y ])

1.13. de Rham cohomology. Since dd = 0 the groups Ω∗(M) form a complex. The
cohomology of this complex is the de Rham cohomology of M . That is,

Hj
dR(M) := {α ∈ Ωj(M) with dα = 0}/dΩj−1(M)

A smooth map ϕ : M → N induces pullback ϕ∗ : Ω∗(N) → Ω∗(M). Since d is natural,
this is a chain map, and we get induced homomorphisms

ϕ∗ : H∗dR(N)→ H∗dR(M)

Thus de Rham cohomology is an invariant of the diffeomorphism type of M .
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de Rham cohomology actually forms a graded (skew-commutative) ring. If [α] ∈ Hp
dR

and [β] ∈ Hq
dR are represented by forms α, β with dα = dβ = 0 then d(α ∧ β) = 0 by the

Leibniz rule, so there is a class [α ∧ β] ∈ Hp+q
dR .

Proposition 1.34. The class of [α ∧ β] is well-defined, and thus there is an associative
and skew-commutative multiplication on H∗dR.
Proof. If we replace α by α + dγ with γ ∈ Ωp−1 then

(α + dγ) ∧ β = α ∧ β + dγ ∧ β
= α ∧ β + d(γ ∧ β)

since dβ = 0. �

A form α with dα = 0 is closed. The forms dβ for some β are exact. Thus de Rham
cohomology measures “closed forms modulo exact forms”.

The de Rham Theorem says the following:
Theorem 1.35 (de Rham Theorem). There is a natural isomorphism

H∗dR(M) = H∗(M ;R)

between de Rham cohomology and (ordinary) singular cohomology with real coefficients.
We will prove the de Rham Theorem in § 2.5.

2. Integration

2.1. Integration in Rp. Let K ⊂ U ⊂ Rp where K is a compact polyhedron and U
is open. Let α ∈ Ωp(U). Then there is a unique smooth function fα on U so that
α = fαdx1 ∧ · · · ∧ dxp.

Let µ denote the restriction of (p-dimensional) Lesbesgue measure on Rp to K, and
define ∫

K

α :=

∫
K

fαdµ

Note that this is zero if µ(K) = 0.
We can likewise define

∫
U
α =

∫
U
fαdµ whenever fα is in L1(U).

2.2. Smooth singular chains. For all p we identify the standard p-simplex ∆p with the
simplex in Rp with vertices at 0 and at the coordinate vectors ei. By abuse of notation we
write e0 = 0 and refer to each ei as the “ith vertex”. As a subset of Rp it is determined by
the inequalities xi ≥ 0 and

∑
xi ≤ 1.

The ith face of ∆p is the simplex of dimension p− 1 spanned by all but the ith vertex of
∆p. For each i there is a unique affine map di : ∆p−1 → ∆p called the ith face map which
takes the ordered vertices of ∆p−1 to the ordered vertices of the ith face of ∆p.

A smooth singular p-simplex in M is a smooth map σ : ∆p →M . Each smooth singular
p-simplex σ determines p + 1 smooth singular (p − 1)-simplices by composition σdi. The
smooth singular p-simplices generate a free abelian group of smooth singular p-chains and
these chain groups form a complex under ∂ defined by

∂σ =

p∑
i=0

(−1)iσdi
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and the homology of this complex is the smooth singular cohomology H∗(M ;R) of M . It is
isomorphic to ordinary singular cohomology (in which we do not insist that the maps σ are
smooth). This is more easy to see for homology: cycles can be approximated by smooth
cycles, and homologies between them can be approximated by smooth homologies. Then
apply the universal coefficient theorem.

If σ is a smooth singular p-simplex, and α ∈ Ωp(M) then σ∗(α) is a p-form on ∆p and
we can define ∫

σ

α :=

∫
∆p

σ∗α

2.3. Stokes’ Theorem. The “simplest” version of Stokes’ Theorem is the following:

Theorem 2.1 (Stokes’ Theorem). Let σ : ∆p →M be a smooth singular p-simplex and let
α ∈ Ωp−1(M) be a (p− 1)-form. Then∫

∂σ

α :=

p∑
i=0

(−1)i
∫
σdi

α =

∫
σ

dα

Proof. Let σ∗α =
∑
fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxp as a smooth (p − 1)-form on ∆p ⊂ Rp.

Denote the individual terms by βi. Note that σ∗(dα) = dσ∗α. Since d and
∫

are linear, it
suffices to prove the theorem when σ∗α = βi.

Evidently d∗jβi = 0 when j > 0 and j 6= i, and d∗iβi = (fidi)dx1 ∧ · · · ∧ dxp−1. Similarly,
we calculate d∗0βi = (−1)i(fid0)dx1 ∧ · · · ∧ dxp−1. We assume α = βp for simplicity (the
other cases are similar). We need to show∫

∆p

∂p(fp)dx1 ∧ · · · ∧ dxp =

∫
∆p−1

(fpd0)dx1 ∧ · · · ∧ dxp−1 −
∫

∆p−1

fpdx1 ∧ · · · ∧ dxp−1

(we have cancelled factors of (−1)p−1 that should appear on both sides). This reduces to the
fundamental theorem of Calculus on each integral curve of ∂p, plus Fubini’s theorem. �

Stokes’ Theorem says that the map from differential forms to smooth singular (real-
valued) cochains is a chain map. It therefore induces a map on cohomology. Consequently
there is a pairing Hp

dR(M) × Hp(M ;R) → R defined by taking a p-form α representing a
de Rham cohomology class [α], and a smooth p-cycle

∑
tiσi representing a homology class

A, and defining

[α](A) :=
∑

ti

∫
σi

α

By Stokes’ Theorem and elementary homological algebra, this is independent of the choices
involved.

Example 2.2. Let N be a compact smooth oriented p-manifold, possibly with boundary,
let ϕ : N → M be a smooth map, and let α be a p-form on M . Then ϕ∗α is a p-form on
N which is automatically closed, and we can pair it with the fundamental class of N in
homology to obtain a number. We call this the result of integrating α over N , and denote
it by

∫
ϕ
α or

∫
N
α if ϕ is understood. The most typical case will be that N is a smooth

submanifold of M , and ϕ is inclusion.
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Example 2.3. Let ϕ : Np → M be as above, and let α be a (p − 1)-form. Then α pulls
back to a (p− 1)-form on ∂N , and dα pulls back to a p-form on N , and Stokes’ Theorem
gives us ∫

∂N

α =

∫
N

dα

This is the more “usual” statement of Stokes’ Theorem.

Stokes’ Theorem can also be used (together with the Poincaré Lemma) to prove the de
Rham Theorem. We will carry out the proof over the next few sections, but for now we
explain the strategy. Choose a smooth triangulation of M and use this to identify the
(ordinary) singular cohomology groups H∗(M ;R) with the simplicial cohomology groups
H∗∆(M ;R) associated to the triangulation. If we choose smooth characteristic maps for each
simplex, we get natural maps Ω∗(M) → C∗∆(M ;R) obtained by integrating p-forms over
the smooth singular characteristic maps associated to the p-simplices of the triangulation.

Stokes’ Theorem says this is a map of chain complexes, so there is an induced map on
cohomology H∗dR(M)→ H∗∆(M ;R). It is easy to construct p-forms with compact support
integrating to any desired value on a p-simplex, and forms defined locally can be smoothly
extended throughout the manifold, so the map of chain complexes is surjective.

We need to show the induced map on cohomology is an isomorphism.

2.4. Poincaré Lemma. First we augment the complex Ω∗ by ε : R → Ω0 whose image
is the constant functions. The comhomology of this augmented complex is the reduced de
Rham cohomology, and denoted H̃dR(M).

Theorem 2.4 (Poincaré Lemma). H̃dR(Rn) = 0. That is, any closed p-form on Rn is
exact if p > 0 or a constant if p = 0.

Proof. Define the radial vector field X :=
∑
xi∂i. This defines a flow φt on Rn defined for

all time. For λ ∈ R and x ∈ Rn let λ · x ∈ Rn denote the point whose coordinates are
obtained from those of x by multiplying them by λ. Then φt(x) = et · x. In other words,
φt is the dilation centered at 0 that scales everything by et.

Now, we have

φ∗t (fI(x)dxi1 ∧ · · · ∧ dxip) = ektfI(e
t · x)dxi1 ∧ · · · ∧ dxip

for all multi-indices I with |I| = k. This converges (pointwise) to 0 as t→ −∞ providing
k > 0 (this makes sense: if we “zoom in” near 0 any smooth form of positive dimension
pairs less and less with the “unit” vectors).

Now, for any vector field X with associated flow φt on any manifold, and for any form
α, ∫ b

t=a

φ∗t (LX(α))dt =

∫ b

t=a

φ∗t

(
lim
s→0

φ∗sα− α
s

)
dt

= lim
s→0

1

s

(∫ b+s

t=a+s

φ∗tα dt−
∫ b

t=a

φ∗tα dt

)
= φ∗bα− φ∗aα

and therefore for the radial vector field on Rn, we have
∫ 0

−∞ φ
∗
t (LX(α))dt = α for any

p-form with p > 0, or = α− α(0) if p = 0 (i.e. if α is a function).
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Define the operator I : Ω∗(Rn)→ Ω∗(Rn) by

I(α) :=

∫ 0

−∞
φ∗t (α)dt

Notice that I commutes with d, by linearity of integration, since φ∗t does for any t.
We have shown ILXα = α for p-forms with p > 0, and ILXf = f − f(0) on functions.

But then if α is a closed p-form,

α = ILXα = I(ιXdα + dιXα) = dIιXα

which exhibits α as an exact form (or a constant if p = 0). �

With Poincaré under our belt we can compute the (reduced) cohomology of several other
spaces.

Proposition 2.5. Let β be a closed q-form on Sp × Rn−p. If p 6= q then β is exact.
Otherwise β is exact (in reduced cohomology) if and only if

∫
Sp×0

β = 0.

Proof. We let U± be open collar neighborhoods of the upper and lower hemispheres Dp
± in

Sp. Notice that each U± ×Rn−p is diffeomorphic to Rn. The restriction of β to each piece
is closed, and therefore exact by the Poincaré Lemma. Thus there are (q− 1)-forms α± on
the two pieces with dα± = β where defined.

The intersection of the two pieces is diffeomorphic to Sp−1 × Rn−p+1 and α+ − α− is
closed there.

If p = q, by Stokes’ Theorem,∫
Sp−1×0

α+ − α− =

∫
Dp

+∪D
p
−×0

β = 0

Therefore by induction α+ − α− is exact. If p 6= q then α+ − α− is exact by induction
unconditionally.

If (q − 1) = 0 this means α+ − α− is constant, so we can adjust α− by a constant on
one piece to get a new function with dα± = β and α+ = α− on the overlaps. These glue
together to give α with dα = β as desired.

If (q − 1) > 0 then α+ − α− = dγ for some (q − 2)-form γ. We extend γ smoothly over
one of the pieces and substitute α− → α− + dγ. Then dα± = β still, and α+ = α− on the
overlaps, so we can glue together to get α with dα = β everywhere. �

2.5. Proof of de Rham’s Theorem. We now prove de Rham’s Theorem. We have chosen
a smooth triangulation τ , and defined a map

∫
: Ω∗(M) → C∗∆(M ;R) by integration.

Stokes’ Theorem implies that this is a chain map, so that we have H∗dR(M)→ H∗∆(M ;R).

Lemma 2.6. The map H∗dR(M)→ H∗∆(M ;R) is injective.

Proof. Let α be a closed p-form whose image in H∗∆(M ;R) is trivial. Since the map on
chain complexes is surjective, we can adjust α by an exact p-form so that it maps to the
0-cochain; i.e. its integral over each p-simplex in the triangulation is zero. We now show,
by induction on the skeleton, that we can adjust α by an exact form to make it vanish
identically.
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Suppose α vanishes in a neighborhood of the i-skeleton of the triangulation. Choose an
(i+ 1)-simplex, and let ϕ : Rn →M map diffeomorphically onto a thickened neighborhood
of the interior of the simplex. We pull back α to ϕ∗α which is supported in Di+1×Rn−i−1.
The pullback is closed, and therefore exact on Rn by the Poincaré Lemma, and is therefore
equal to dβ for some (p− 1)-form β. Notice that Rn− (Di+1×Rn−i−1) is diffeomorphic to
Si × Rn−i and dβ = ϕ∗α = 0 there, so that β is closed there.

If p = (i + 1) then our hypothesis on α gives
∫
Si×0

β = 0 by Stokes’ Theorem, so
whether or not p = (i + 1), Proposition 2.5 says that β = dγ for some (p − 2)-form γ on
Rn − (Di+1 × Rn−i−1). Extend γ smoothly throughout Rn and substitute β → β − dγ.
Then dβ = α, and β vanishes where α does. Now multiply β by a bump function φ equal
to 1 in a sufficiently big subset of Rn, and substitute α→ α−d(φβ). The new α is smooth,
cohomologous to the old, and vanishes in a neighborhood of the (i+ 1)-skeleton.

This shows that the map H∗dR(M)→ H∗∆(M ;R) is injective. �

Lemma 2.7. The map H∗dR(M)→ H∗∆(M ;R) is surjective.

Proof. This is proved by a direct and local construction, but the details are fiddly.
We claim that we can construct a map α : C∗∆ → Ω∗ satisfying
(1) α is a chain map; i.e. d(α(φ)) = α(δφ) for all simplicial cochains φ; and
(2) α inverts

∫
; i.e.

∫
σ
α(φ) = φ(σ) for all simplices σ of τ .

This will prove the lemma. For, if φ is a p-cocycle, then α(φ) is a closed p-form, and the
cohomology class [α(φ)] maps to the cohomology class [φ]. It remains to construct α.

Assume for the moment that M is compact, so that the triangulation makes it into
a finite simplicial complex. If we label the vertices from 0 to n then we can identify
these vertices with the coordinate vertices e0 := (1, 0, · · · , 0) through en := (0, · · · , 0, 1) in
Rn+1 with coordinates x0, · · · , xn, and we can identify each p-simplex of τ with vertices
i0, · · · , ip with the simplex 0 ≤ xij ≤ 1,

∑p
j=0 xij = 1 in the subspace spanned by the xij .

Call K ⊂ Rn+1 the union of these simplices; thus K is (in a natural way) a polyhedron on
Rn+1.

There is a smooth homeomorphism ϕ : M → K which takes each simplex of τ to the
corresponding simplex of K. This might seem strange, but it is not hard to construct
skeleton by skeleton: just make sure that the derivatives of ϕ vanish to all orders at the
“corners” so that the map is smooth there.

For each p-simplex σ of τ , we let ϕ(σ) denote the corresponding simplex of K. Let φσ
denote the p-cochain taking the value 1 on σ and 0 everywhere else. We will define a form
β(σ) on Rn+1 and then define α(φσ) = ϕ∗β(σ) on M .

Suppose ϕ(σ) is the simplex spanned by e0, · · · , ep for convenience. In our previous
notation, ϕ(σ) = d0(∆p+1), the 0th face of the “standard” (p+ 1)-simplex. Then we define

β(σ) = p!
∑

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxp

as a form on all of Rn+1.

Claim. α is a chain map.
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Proof. It suffices to check on α(φσ). We calculate

dβ(σ) = (p+ 1)!dx0 ∧ · · · ∧ dxp
i.e. it is equal to (p + 1)! times the pullback of the volume form on Rp+1 under the
map Rn+1 → Rp+1 which projects out the other coordinates. We need to check that
dβ(σ) =

∑
σ′ ±β(σ′) on K, where the sum is taken over (p + 1)-simplices σ′ with σ as a

face, and the sign comes from the difference between the orientations of σ and ∂σ′. To
check this, we check it on each (p+ q) simplex.

Let σ′′ be a (p+ q)-simplex of τ . If σ is not a face of σ′′ then dβ(σ) and
∑

σ′ ±β(σ′) are
both identically zero on ϕ(σ′′). Likewise, even if σ is a face of σ′′, then β(σ′) is zero on
ϕ(σ′′) unless σ′ is a face of σ′′.

So let σ′′ be a (p + q)-simplex with σ as a face. Without loss of generality, we can
suppose ϕ(σ′′) = d0(∆p+q+1); i.e. it is the simplex where

∑p+q
i=0 xi = 1. Thus

∑q
j=1 xp+j =

1−
∑

i≤p xi and
∑q

j=1 dxp+j = −
∑

i≤p dxi on ϕ(σ′′). But then

dβ(σ) = (p+ 1)!
( q∑
j=1

xp+jdx0 ∧ · · · ∧ dxp +
∑
i≤p

(−1)ixidxi ∧ dx0 ∧ · · · d̂xi · · · ∧ dxp
)

= (p+ 1)!
( q∑
j=1

xp+jdx0 ∧ · · · ∧ dxp +
q∑
j=1

∑
i≤p

(−1)i+1xidxp+j ∧ dx0 ∧ · · · d̂xi · · · ∧ dxp
)

=
∑
σ′

±β(σ′)

on the simplex ϕ(σ′′).
It follows by linearity that α(δφ) = dα(φ) for all cochains φ; i.e. that α is a chain

map. �

Claim. α inverts
∫
.

Proof. It suffices to check on α(φσ). Evidently β(σ) is zero on every p-simplex of K except
ϕ(σ). So it suffices to show

∫
ϕ(σ)

β(σ) = 1. If we identify ϕ(σ) = d0(∆p+1) then observe
that β(σ) vanishes on all the other faces of ∆p+1. So by Stokes’ Theorem,∫

ϕ(σ)

β(σ) =

∫
∂∆p+1

β(σ) =

∫
∆p+1

(p+ 1)!dx0 ∧ · · · ∧ dxp = 1

�

This completes the proof of the lemma when M is compact. But actually, we did not
use anywhere the compactness of M . If M is noncompact so that K is infinite and lives
in R∞ it is nevertheless true that every construction or calculation above takes place in a
finite dimensional subspace, and makes perfect sense there. So we are done in general. �

This completes the proof of the de Rham Theorem.

3. Chern classes

3.1. Connections. Let π : E → M be a smooth n-dimensional vector bundle over M
with fiber Ex over x (E could be real or complex). Denote smooth sections of E by Γ(E).
This is a C∞(M)-module (real or complex).



18 DANNY CALEGARI

There is no canonical way to identify the fibers of E over different points. A connection
on E is a choice of such an identification, at least “infinitesimally”.

Definition 3.1. Let E be a smooth real vector bundle over M . A connection ∇ is a linear
map (not a C∞(M)-module homomorphism)

∇ : Γ(E)→ Ω1(M)⊗ Γ(E)

satisfying the Leibniz rule
∇(fs) = df ⊗ s+ f∇(s)

for f ∈ C∞(M) and s ∈ Γ(E).

Such an operator ∇ is also (more usually) called a covariant derivative. We denote
∇(s)(X) = ∇X(s) for X ∈ X(M). Note that ∇fX(s) = f∇Xs for a smooth function f .

Example 3.2. The trivial bundle E = M × Rn admits the “trivial connection” ∇(s) = ds
where we identify sections of E with n-tuples of smooth functions by using the trivialization.

We sometimes use the notation Ωp(M ;E) := Ωp(M)⊗Γ(E) i.e. for the space of sections
of ΛpT ∗M ⊗ E. We can extend ∇ to operators

∇ : Ωp(M ;E)→ Ωp+1(M ;E)

by
∇(α⊗ s) = dα⊗ s+ (−1)pα ∧∇(s)

It is not typically true that ∇2 = 0.

Proposition 3.3. Any smooth real vector bundle admits a connection. The space of con-
nections on E is an affine space for Ω1(M ;End(E)).

Proof. The first claim follows from the second by using partitions of unity to take convex
combinations of connections defined locally e.g. from “trivial” connections with respect to
local trivializations of the bundle.

To prove the second claim, let ∇, ∇̃ be two connections. Then

(∇− ∇̃)(fs) = f(∇− ∇̃)(s)

which shows that (∇−∇̃) is a C∞(M)-module homomorphism from Γ(E) to Ω1(M)⊗Γ(E);
i.e. an element of Ω1(M ;End(E)). �

3.2. Curvature and parallel transport.

Definition 3.4. A section s is parallel along a path γ : [0, 1] → M if ∇γ′(t)(s) = 0
throughout [0, 1].

By the fundamental theorem of ODEs there is a unique parallel section over any path
with a prescribed initial value. Thus a path γ : [0, 1] → M determines an isomorphism
Eγ(0) → Eγ(1) called the result of parallel transport along γ.

By abuse of notation we can think of the total space of E as a smooth manifold. A
connection gives a unique way to lift a path inM to a parallel path in E. Taking derivatives,
we get a map X(M)→ X(E) which we call “tilde” and denote X → X̃. The image consists
of parallel vector fields.
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The parallel vector fields span pointwise a distribution of n-plane fields ξ on E called
the horizontal distribution.

For X a vector field on M , the lift X̃ generates a flow of bundle automorphisms φ̃t on
E lifting the flow of diffeomorphisms φt of M generated by X. We can define

LX̃s = lim
t→0

φ̃−t(s)− s
t

The following is immediate from the definitions:

Proposition 3.5. With notation as above LX̃s = ∇Xs.

If X, Y ∈ X(M) then we can form R(X, Y ) := [X̃, Ỹ ]− ˜[X, Y ] ∈ X(E). This is a vertical
vector field (i.e. it is tangent to the fibers of E).

If V is a vector space, there is a canonical identification TvV = V at every v ∈ V .
Thus a vector field on V is the same thing as a smooth map V → V . Since the parallel
vector fields integrate to flows by bundle automorphisms, R respects the vector space
structure in each fiber. So R(X, Y ) determines a linear endomorphism of each fiber Ex;
i.e. R(X, Y )|Ex ∈ End(Ex) so that R(X, Y ) ∈ Γ(End(E)).

Proposition 3.6.
R(X, Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

for any s ∈ Γ(E).

This is a calculation.

Definition 3.7. R is called the curvature of the connection. A connection is flat if R is
identically zero.

If ∇ is flat, the parallel vector fields are closed under Lie bracket, and the horizontal
distribution integrates to a foliation (by Frobenius’ Theorem) whose leaves are everywhere
parallel.

Proposition 3.8. R ∈ Ω2(M ;End(E)).

Proof. The content of this proposition is that R is C∞(M)-linear in all three entries. We
check

R(fX, Y )(s) = f∇X∇Y s−∇Y f∇Xs−∇[fX,Y ]s

= f∇X∇Y s− Y (f)∇Xs− f∇Y∇Xs− f∇[X,Y ]s+ Y (f)∇Xs

= fR(X, Y )(s)

Since R is antisymmetric in X and Y , we get C∞(M)-linearity for Y too. Finally,

R(X, Y )(fs) = f∇X∇Y s+X(f)∇Y s+ Y (f)∇Xs+X(Y (f))s

− f∇Y∇Xs− Y (f)∇Xs−X(f)∇Y s− Y (X(f))s

− [X, Y ](f)s− f∇[X,Y ] = fR(X, Y )(s)

and we are done. �
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3.3. Flat connections.

Proposition 3.9. There is an identity (∇(∇(s)))(X, Y ) = R(X, Y )(s). Thus Ω∗(M ;E)
is a complex with respect to ∇ if and only if ∇ is flat.

Proof. By C∞(M)-linearity to prove the first claim it suffices to check this identity on
coordinate vector fields ∂i, ∂j, where it is immediate.

In general we can compute

∇(∇(α⊗ s)) = α⊗∇(∇(s))

so ∇2 = 0 on Ω∗(M ;E) if and only if it is zero on Ω0(M ;E) = Γ(E), and this is exactly
the condition that R = 0. �

If ∇ is flat, parallel transport is homotopy invariant. That is, if γ1, γ2 : [0, 1] → M are
homotopic rel. endpoints, parallel transport along γ1 and along γ2 define the same isomor-
phism from Eγi(0) to Eγi(1). For, a homotopy between them lifts to a parallel homotopy of
sections in the integral manifold of the horizontal distribution.

Thus a flat connection determines a holonomy representation ρ : π1(M,x) → Aut(Ex).
Since ∇ is flat, the groups Ω(M ;E) form a complex with respect to ∇, and we denote the
cohomology of this complex by H∗dR(M ;E).

The analog of the de Rham Theorem in this context is an isomorphism

H∗dR(M ;E) = H∗(M ; ρ)

where the right hand side denotes (singular) cohomology with coefficients in the local
system determined by ρ.

3.4. Invariant polynomials and Chern classes. Now let E be a real or complex n-
dimensional bundle over M .

If we trivialize E locally over U ⊂M as U ×Rn or U ×Cn we can identify End(E) with
a bundle of n × n matrices. Thus, locally any α ∈ Ωp(M ;End(E)) can be expressed as a
matrix of p-forms.

Example 3.10 (Change of trivialization). Let ∇ be a connection. If we trivialize E locally,
we can express the covariant derivative (relative to this trivialization) as

∇(s) = ds+ ω ⊗ s
for some ω ∈ Ω1(M ;End(E)) which we think of as a matrix of 1-forms. If we change the
local trivialization by a section h ∈ Γ(Aut(E)) then

∇(hs) = dh⊗ s+ hds+ hω ⊗ s
so ω transforms by ω → dh · h−1 + hωh−1.

“Matrix multiplication” defines a product on Ω∗(M ;End(E)):

Definition 3.11 (Wedge product). There is a product on Ω∗(M ;End(E)) that we denote
by ∧, which is wedge product on forms, and fiberwise composition of endomorphisms. On
decomposable vectors

(α⊗ A) ∧ (β ⊗B) = (α ∧ β)⊗ AB
where α, β ∈ Ω∗(M) and A,B ∈ Γ(End(E)).
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Definition 3.12 (Lie bracket). For any vector space V , we can make End(V ) into a
Lie algebra by the bracket [A,B] := AB − BA. Doing this fiberwise defines a bracket
on Γ(End(E)), which extends to Ω∗(M ;End(E)) as follows: if α ∈ Ωp(M ;End(E)) and
β ∈ Ωq(M ;End(E)) then

[α, β] = α ∧ β − (−1)pqβ ∧ α

Example 3.13. Let α ∈ Ω1(M ;End(E)). Then

α ∧ α =
1

2
[α, α]

Now, let ∇ be a connection. Trivialize E locally, and express the covariant derivative
(relative to this trivialization) as

∇(s) = ds+ ω ⊗ s
for some ω ∈ Ω1(M ;End(E)). We compute

∇(∇(s)) = ∇(ds+ ω ⊗ s) = ω ∧ ds+ dω ⊗ s− ω ∧ ds− ω ∧ ω ⊗ s
so that

R = dω − ω ∧ ω = dω − 1

2
[ω, ω]

as an honest identity in Ω2(M ;End(E)).

Example 3.14 (Bianchi Identity). With notation as above,

dR = [ω,R]

For,
dR = −dω ∧ ω + ω ∧ dω = [ω, dω] = [ω,R]

because [ω, ω ∧ ω] = 0.

Definition 3.15 (Invariant polynomial). Let V be a vector space (real or complex). An
invariant polynomial of degree p is a function P from End(V ) to the scalars, satisfying

(1) (degree p): P (λA) = λpP (A) for all scalars λ;
(2) (invariance): P (gAg−1) = P (A) for all g ∈ Aut(V ).

If E is a bundle overM whose fibers are isomorphic to V , then any invariant polynomial
P defines a map which we likewise denote P :

P : Ωq(M ;End(E))→ Ωpq(M)

by applying P fiberwise in any local trivialization. Invariance means that the result does
not depend on the choice.

Definition 3.16 (Polarization). Suppose P is an invariant polynomial on End(V ) of degree
p. The polarization of P is a multilinear map from End(V )p to the scalars (which, by abuse
of notation, we also denote by P ) which satisfies

(1) (specialization): P (A, · · · , A) = P (A);
(2) (symmetry): P is invariant under permutations of the entries; and
(3) (invariance): P (gA1g

−1, · · · , gApg−1) = P (A1, · · · , Ap) for all g ∈ Aut(V ) and
Ai ∈ End(V ).
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If P is an invariant polynomial, its polarization can be defined by setting P (A1, · · · , Ap)
equal to the coefficient of t1t2 · · · tp in P (t1A1 + t2A2 + · · ·+ tpAp)/p!

Differentiating the invariance property shows that∑
i

P (A1, · · · , [B,Ai] · · · , Ap) = 0

for any invariant polarization, whenever B,Ai ∈ End(V ).

Proposition 3.17. If αi ∈ Ωmi(M ;End(E)), and β ∈ Ω1(M ;End(E)) then∑
i

(−1)m1+···+mi−1P (α1, · · · , [β, αi], · · · , αp) = 0

Proof. This is just the invariance property, and follows by differentiation (the sign comes
from moving the 1-form β past each mj-form αj.) �

We explain how to apply invariant polynomials to curvature forms to obtain invariants
of bundles.

Proposition 3.18. Let E be a real or complex vector bundle with fibers isomorphic to V ,
and let P be an invariant polynomial of degree p on End(V ). Pick a connection ∇ on E
with curvature R ∈ Ω2(M ;End(E)). Then P (R) ∈ Ω2p(M) is closed, and its cohomology
class does not depend on the choice of connection.

Proof. Let ∇0,∇1 be two connections. Their difference ∇1−∇0 = α is in Ω1(M ;End(E)).
Define a family of connections ∇t := ∇0 + tα. Locally, in terms of a trivialization, we can
write ∇t = d + ωt where ωt := ω0 + tα for some ω0 ∈ Ω1(M ;End(E)) (depending on the
trivialization), and then

Rt = dωt −
1

2
[ωt, ωt] = R0 + t(dα− [ω0, α])− 1

2
t2[α, α]

Thus
1

p

d

dt
P (Rt) = P (dα− [ωt, α], Rt, · · · , Rt)

Now, the Bianchi identity gives
dP (α,Rt, · · · , Rt) = P (dα,Rt, · · · , Rt)− (p− 1)P (α, [ωt, Rt], Rt, · · · , Rt)

but invariance of P gives (by Proposition 3.17)
P ([ωt, α], Rt, · · · , Rt)− (p− 1)P (α, [ωt, Rt], Rt, · · · , Rt) = 0

So d/dtP (Rt) is exact, and therefore (by integration) so is P (R1)− P (R0).
Locally we can always choose a connection whose curvature vanishes pointwise. So any

P (R) is locally exact, which is to say it is closed. �

We can now define Chern forms of connections on complex vector bundles:

Definition 3.19 (Chern classes). Let E be a complex vector bundle, and choose a con-
nection. The Chern forms of the connection cj ∈ Ω2j(M ;C) are the coefficients of the
“characteristic polynomial” of R/2πi. That is,

det

(
Id− t R

2πi

)
=
∑

cit
i
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Likewise we can define Pontriagin forms of connections on real vector bundles:

Definition 3.20 (Pontriagin classes). Let E be a real vector bundle, and choose a con-
nection. The Pontriagin forms of the connection pj ∈ Ω4j(M ;R) are the coefficients of the
“characteristic polynomial” of −R/2π. That is,

det

(
Id + t

R

2π

)
=
∑

pjt
2j

By Proposition 3.18 the forms cj and pj are closed, and give rise to well-defined coho-
mology classes which are invariants of the underlying bundles.

Theorem 3.21. With notation as above, [cj] and [pj] are the usual Chern and Pontriagin
classes, and therefore lie in H2j(M ;Z) and H4j(M ;Z) respectively.

Proof. If E is a real vector bundle, pj(E) = (−1)jc2j(EC) so it suffices to prove this theorem
for the Chern classes. This can be done axiomatically.

Connections can be pulled back along with bundles, so the classes as defined above are
certainly natural. If ∇1,∇2 are connections on bundles E1, E2 then ∇1⊕∇2 is a connection
on E1 ⊕ E2 with curvature R1 ⊕R2. Thus the Whitney product formula follows.

This shows that the [cj] as defined above agree with the usual Chern classes up to a
multiplicative constant. We compute on an example (this is by far the hardest part of the
proof!) For CP1 we should have c1(TCP1) = χ(CP1) = 2 for the right normalization, so to
prove the theorem it suffices to check that∫

CP1

−R
2πi

= 2

where R is the curvature of a connection on the tangent bundle (which is an honest 2-form,
since End(E) is the trivial line bundle for any complex line bundle E).

We cover CP1 with two coordinate charts z and w, and have w = z−1 on the overlap.
Any vector field is of the form f(z)∂z (on the z-coordinate chart).

The vector fields ∂z and ∂w give trivializations of the bundle on the two charts. We
define a connection form as follows. Where z is finite, we can express the connection as

∇∂z = α⊗ ∂z
We choose the connection

α :=
−2z̄ dz

|z|2 + 1

Where w is finite, we can express the connection as

∇∂w = β ⊗ ∂w
Having the connections agree on the overlap will determine β, and we claim that β (defined
implicitly as above) extends smoothly over w = 0.

On the overlap we have ∂w = −z2∂z, so by the formula in Example 3.10 it follows that

β = α +
d(−z2)

−z2
=

(
−2z̄

|z|2 + 1
+

2

z

)
dz =

(
2w̄−1

|w|−2 + 1
− 2w

)
dw

w2
=
−2w̄ dw

|w|2 + 1

which extends smoothly over 0 (and explains the choice of α).
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Then
R = dα = ∂z̄(α)dz̄ ∧ dz =

−4i

(x2 + y2 + 1)2
dx ∧ dy

where we have used z = x + iy so that dz = dx + idy and dz̄ = dx − idy. Finally, we
compute ∫

CP1

−R
2πi

=
4

2π

∫ 2π

θ=0

∫ ∞
0

r

(1 + r2)2
drdθ = − 4

2(1 + r2)

∣∣∣∞
0

= 2

�
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