
CHAPTER 1: COMBINATORIAL FOUNDATIONS

DANNY CALEGARI

Abstract. These are notes on 3-manifolds, with an emphasis on the combinatorial theory
of immersed and embedded surfaces, which are being transformed to Chapter 1 of a book
on 3-Manifolds. These notes follow a course given at the University of Chicago in Winter
2014.
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1. Dehn’s Lemma and the Loop Theorem

The purpose of this section is to give proofs of the following theorem and its corollary:

Theorem 1.1 (Loop Theorem). Let M be a 3-manifold, and B a compact surface contained
in ∂M . Suppose that N is a normal subgroup of π1(B), and suppose that N does not contain
the kernel of π1(B) → π1(M). Then there is an embedding f : (D2, S1) → (M,B) such
that f : S1 → B represents a conjugacy class in π1(B) which is not in N .

Corollary 1.2 (Dehn’s Lemma). Let M be a 3-manifold, and let f : (D,S1) → (M,∂M)
be an embedding on some collar neighborhood A of ∂D. Then there is an embedding
f ′ : D →M such that f ′ and f agree on A.

Proof. Take B to be a collar neighborhood in ∂M of f(∂D), and take N to be the trivial
subgroup of π1(B). The Loop Theorem produces an embedding f ′ : (D,S1) → (M,B)
whose boundary is nontrivial in π1(B). The only embedded essential loop in an annulus
is its core, so the boundary is isotopic to f(S1) in B, and after an isotopy (and change of
orientation if necessary) we can assume that f ′ = f on a collar neighborhood of S1. □

Dehn’s Lemma was first stated by Dehn in 1910 [8], with an erroneous proof (the error
was not detected until 1929 by Kneser), and the first rigorous proof was given by Pa-
pakyriakopoulos in 1957 [29]. The version of the Loop Theorem stated above was first
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formulated by Stallings, and we give Stallings’ proof [46], using Papakyriakopoulos’ tower
construction.

The proof of these, and many other theorems in 3-manifold topology, depend on com-
binatorial arguments; in the smooth category, such arguments depend on first putting a
surface (or some other object) into general position; in the PL category, such arguments
depend on simplicial approximation. To apply either tool one must first know that the
domain and target have (unique) smooth or PL structures; for 2-manifolds this fact is due
to Radó, and for 3-manifolds it is due to Moise [25].

Before beginning the proof of the Loop Theorem we make a few remarks about general
position and simplicial approximation, especially as it applies to maps from surfaces to
3-manifolds.

1.1. General position. It is often very convenient in low dimensional topology to replace
an arbitrary map between manifolds with a nearby (i.e. C0 close) smooth map that is as
“generic as possible”. We are generally interested in one of the following two cases:

(1) a map γ : L→ S from a 1-manifold L to a surface S
(2) a proper map of pairs Γ : S, ∂S →M,∂M from a surface S to a 3-manifold M

It is straightforward to show that any map from a 1-manifold L to a surface S may
be C0 approximated by a smooth map in general position — i.e. for which the map is
an immersion with finitely many isolated double points, and no other singularities. What
about maps from surfaces to 3-manifolds? Any immersion S →M can be perturbed to be
in general position — i.e. with finitely many transverse double curves, meeting in finitely
many triple points, and no other singularities. But when can an arbitrary map of pairs be
approximated by an immersion? And if the map is already an immersion on the boundary,
when can this immersion of the boundary be extended to an immersion of the interior? It
turns out one more kind of singularity is necessary.

Example 1.3 (Order 2 branch point). Let f : D2 → D2 × [−1, 1] be given in polar coordi-
nates by (r, θ) → (r, 2θ, r sin(θ)). The map is an immersion away from the point 0 ∈ D2,
and an embedding away from a proper arc J ′ ⊂ D2 with 0 as its midpoint, which is folded
at 0 onto its image arc J . See Figure 1.

Figure 1. An order 2 branch point joined by an arc of singularity to a
transverse double point of the boundary circle.

If f : (S, ∂S) → (M,∂M) is a proper immersion in general position, let L denote the
singular subset of f(S) and L′ its preimage in S. Then L′ is an immersed 1-manifold,
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whose components map in pairs to the double curves and double arcs of L. Each arc of
L′ has 2 endpoints on ∂S, and since arcs of L′ map to L in pairs, the number of singular
points on ∂S must be divisible by 4. These points map in pairs to double points of f(∂S);
hence we deduce that f(∂S) must have an even number of double points.

In general, any proper map f restricting to a generic immersion f : ∂S → ∂M may be
C0 approximated by a map with finitely many transverse double curves meeting in finitely
many triple points, and order 2 branch points; and (as we have just shown) the number of
order 2 branch points has the same parity as the number of double points of f(∂S).

1.2. Simplicial approximation. If K and L are compact simplicial complexes and f :
K → L is any map, then after subdividing K sufficiently many times, the map f may be
replaced by a homotopic simplicial map. For, if we subdivide K sufficiently many times,
each simplex of K is taken entirely into the star of some simplex of L, and then we may
just take each vertex v of K to a vertex of L closest to f(v), and extend the result linearly.

If L is a polyhedron in a 3-manifold M , a regular neighborhood of L is a closed neigh-
borhood N of L, homeomorphic to a 3-manifold (usually with boundary unless L is empty
or all of M), which contains L as a “spine” to which N deformation retracts. For example,
we may take N to be the union of the stars of simplices in L in a barycentric subdivision.
The manifold N is well-defined up to homeomorphism and up to isotopy in M .

1.3. Tower construction. We now begin the proof of the Loop Theorem. By hypothesis
we start with a proper map f : (D,S1) → (M,B) for which the conjugacy class of f(S1)
in π1(B) is not contained in N . We then replace f with a simplicial map f0, and let M0

denote a closed regular neighborhood of the image K0. We also let B0 denote B ∩M0, so
that B is a surface in ∂M0, and we let N0 be the normal subgroup of π1(B0) mapping to
π1(B). Note that the conjugacy class of f0(S1) in π1(B0) is not contained in N0.

Suppose that M0 admits a nontrivial double cover (equivalently: a connected double
cover) M ′

0. We can lift f0 to f1 : (D,S1) → (M ′
0, B

′
0). Let K ′0 denote the preimage of K0

in M ′
0, and let K1 = f1(D

2) ⊂ K ′0. Then define M1 to be a closed regular neighborhood
of K1. We repeat this construction inductively, whenever Mi admits a nontrivial double
cover, thus obtaining a tower of maps:
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The first step is to prove that the tower is finite, and that every component of ∂Mi is a
sphere.

Lemma 1.4. The tower is finite. That is, there is some finite i for which Mi does not
admit a nontrivial double cover.

Proof. Define the complexity of fi to be the number of simplices of D minus the number
of simplices of Ki. This complexity is non-negative, and by construction it must decrease
under each covering step. □

Lemma 1.5. Suppose some component of ∂Mi is not a sphere. Then Mi admits a non-
trivial double cover.

Proof. Double covers are parameterized by H1(Mi;Z/2Z). If this group vanishes, so must
H1(Mi;Z/2Z) and H2(Mi, ∂Mi;Z/2Z) (by Poincaré duality). But in the long exact se-
quence of homology we have

H2(Mi, ∂Mi;Z/2Z) → H1(∂Mi;Z/2Z) → H1(Mi;Z/2Z)

so that H1(∂Mi;Z/2Z) = 0 and therefore every component of ∂Mi is a sphere. □

Now, at every stage of the tower (including the last stage) the conjugacy class of fi(S1)
in π1(Bi) is not contained in Ni. But Bi is a planar surface, and therefore its fundamental
group is normally generated by boundary loops. It follows that some boundary component
of Bi is not contained in Ni. This boundary component is an embedded loop bounding an
embedded disk in the corresponding sphere component of ∂Mi. So we obtain an embedding
gi : (D,S

1) → (Mi, Bi) with gi(S1) not contained in Ni.
The crux of the matter is to investigate the composition of gi with the covering projection

from Mi ⊂ M ′
i−1 to Mi−1; call this composition g′i : (D,S

1) → (Mi−1, Bi−1). Since the
covering has degree 2, after perturbing it to be in general position, we may assume that
g′i is an immersion whose only singularities are arcs and loops of double points; in other
words there are no triple points.

We claim that we can modify the map g′i to replace it by an embedding. This is done
by inductively simplifying g′i by surgering it along double arcs or double circles. First we
consider a double curve J . The preimage of this double curve in D is J ′, which is either
a single curve mapping to J by a degree 2 map, or two curves mapping to J by degree 1
maps. In the latter case, the two components of J ′ might bound disjoint interiors, or be
nested. See Figure 2.

In the first case J ′ is a single loop. We cut along this loop, twist the boundary by angle
π, and then reglue. The result is a new map of a disk with the same image, except that
now we can perturb the map to eliminate the loop J ′.

In the second or third cases, assume that one of the disks is innermost. Cut the other
disk out and replace it with a copy of the innermost disk. In the third case this eliminates
at least two circles of intersection. In the second case, we can perturb the result and
eliminate at least two circles of intersection. So after finitely many moves of this kind we
can eliminate every double circle.

Next we consider a double arc J . The preimage of this arc in D is J ′, a pair of embedded,
disjoint proper arcs. There are two possibilities, depicted in Figure 3.
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Figure 2. Three possible configurations of double curves on D with the
same image
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Figure 3. Two possible configurations of double arcs on D with the same image

As before, assume one of the lunes is innermost. We form two disks: one obtained by
gluing the two lunes together, and the other by replacing one lune by the innermost one
and pushing them apart. In the notation implied by the figure, the homotopy classes of
these boundary loops are αβγβ± and β∓δ (without loss of generality). Since their product
αβγδ is not in Ni−1 (by hypothesis), at least one of these simpler loops is not in Ni−1.

Thus after finitely many simplifications, we obtain an embedding gi−1 : (D,S1) →
(Mi−1, Bi−1) with gi−1(S

1) not contained in Ni−1. Induct until i = 0, in this way ob-
taining an embedded disk and proving the Loop Theorem and Dehn’s Lemma.

1.4. Incompressible surfaces. One crucial application of the Loop Theorem is the fol-
lowing proposition, called Kneser’s Lemma:

Lemma 1.6 (Kneser’s Lemma). Let S be a 2-sided embedded surface in a 3-manifold M .
If S is not π1-injective, there is some properly embedded disk (D,S1) in (M −S, ∂(M −S))
whose boundary is essential in S.

Proof. Let γ be a loop in S which is essential in S, and inessential in M . Then γ bounds
a disk f : D → M . Since S is 2-sided, γ can be pushed off S on one side; since S is
embedded, we can perturb f so that the intersection of the interior of D with S is a system
of disjoint simple curves in D. If an innermost curve has boundary inessential in S, we can
swap it for a disk in S and push it off, eliminating a curve of intersection. Thus eventually
we find a disk D whose interior maps to M −S and whose boundary is essential in S. Cut
open M along S and apply the Loop Theorem. □
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Let S be a surface satisfying the hypothesis of Kneser’s Lemma, and let D be an em-
bedded disk as promised by the conclusion. The surface S can be compressed along D,
cutting S open along ∂D and gluing in two disjoint parallel copies of D. The result is
a new embedded surface S ′ (possibly disconnected even if S was), each of whose compo-
nents has smaller genus than S. Informally, one calls a surface incompressible if it can’t be
compressed. It is convenient to extend this definition to spheres, for which the analog of a
compression is to simply throw away a sphere that bounds a 3-ball:

Definition 1.7. A connected embedded surface S in a 3-manifold is incompressible if one
of the following conditions holds:

(1) S is a sphere which does not bound a ball; or
(2) S is not a sphere, and no essential simple closed curve on S bounds an embedded

disk in M − S.

Kneser’s Lemma says that a 2-sided incompressible (embedded) surface is π1-injective.
As we have seen, 2-sidedness is essential for the proof, since otherwise we can’t arrange for
D to have a collar neighborhood of the boundary disjoint from S.

Example 1.8 (Lens space). For coprime (p, q) with 0 ≤ q < p let P be a regular p-gon,
and let Q(p) be the polyhedron which is the join of P with an interval. Then Q(p) is
topologically a 3-ball, an looks like a polyhedral “lens”, with p triangles on the “top” side
and p triangles on the “bottom”. See Figure 4 for an example with p = 6.

Figure 4. A polyhedral lens, obtained as the join of a 6-gon with an interval

The Lens space L(p, q) is obtained from Q(p) by gluing each triangle on the top to the
triangle on the bottom after rotating q units about the central axis. The peripheral circle P
covers a loop in L(p, q) with degree p, and the interval I closes up to form a complementary
loop; the lens space is the union of two solid torus neighborhoods of these loops, glued up
along their boundary in such a way that the meridian of one solid torus becomes the (p, q)
curve on the boundary of the other. The space L(p, q) has (cyclic) fundamental group
Z/pZ, as can be seen by taking p copies of Q(p) and gluing the top of one to the bottom
of the next (in cyclic order) with a twist of q units; the result is evidently S3, and admits
a natural covering map to L(p, q).

If p is even, we can draw an embedded loop γ on ∂Q(p) (indicated in red in Figure 4)
which bounds a disk D in Q(p). Now, let q = 1. When we glue up Q(p) to L(p, 1), the
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boundary of this disk is glued to itself, and the result is a nonorientable 1-sided surface
S with Euler characteristic 1 − p/2. Compress S as much as possible. Each compression
produces a surface with at least one component S ′ which is still 1-sided and nonorientable.
Since π1(L(p, 1)) = Z/pZ, the end result can’t be π1-injective unless S ′ is a projective
plane. But a 1-sided projective plane has a neighborhood whose boundary is a separating
sphere; by Seifert van-Kampen this sphere gives rise to a decomposition of π1(L(p, 1)) as
a free product G ∗ Z/2Z for some G. But this is impossible for p even and bigger than 2.
Thus S ′ is embedded and incompressible but not π1-injective.

2. Stallings’ theorem on ends, and the Sphere Theorem

The purpose of this section is to prove the following theorem of Stallings on the structure
of groups with more than one end:

Theorem 2.1 (Ends of groups). A finitely generated group G has more than one end
if an only if it is a nontrivial amalgamated free product or HNN extension over a finite
subgroup; equivalently, if G admits an action without global fixed points on a simplicial
tree, with finite edge stabilizers and without edge inversions.

From this theorem and the Loop Theorem, we will deduce Papakyriakopoulos’ Sphere
Theorem:

Theorem 2.2 (Sphere Theorem). Let M be a compact 3-manifold with π2(M) nontrivial.
Then M contains a 2-sided embedded sphere or projective plane whose fundamental class
in π2 is nontrivial in M .

2.1. Groups acting on trees. We summarize elements of the theory of group actions on
trees that we need in the sequel. The main reference is [41].

Let T be a (simplicial) tree, and let G act on T simplicially. An element g acts with
an edge inversion if there is some edge e of T so that g takes e to itself with the opposite
orientation — i.e. it exchanges the two endpoints. If there are no such elements, we say G
acts without edge inversions. This can always be achieved by first subdividing the edges
of T if necessary.

We usually make the simplifying assumption that G acts minimally — i.e. that it does
not preserve any proper nonempty subtree. Thus, for every vertex v the convex hull of
the orbit Gv is equal to T . Equivalently, for any two vertices v and w there are elements
g, g′ ∈ G so that w is on the unique embedded path from gv to g′v.

Suppose G acts on T without inversions. Then the quotient T/G is a simplicial graph.
It is often convenient to simplify T and the action so that the quotient is as simple as
possible.

Lemma 2.3. A group G admits a nontrivial decomposition as an amalgamated product
G = A ∗B C or HNN extension G = A∗B if and only if it acts minimally on a nontrivial
tree T without inversions in such a way that B = Ge, the stabilizer of some edge e.

Proof. First suppose G acts on T minimally and without inversions. Let e be an open edge,
and define T ′ to be the quotient of T where every component of T − Ge is collapsed to a
point. Then T ′ is a tree, and T ′/G is a graph with exactly one edge. Thus T ′/G is either
an interval, or a loop. Let u, v be the vertices of e in T ′. In the first case, u and v map
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to the two distinct vertices of T ′/G; otherwise there is some g with gu = v. If A = Gu,
C = Gv and B = Ge then G has a decomposition of the desired form.

To see that this decomposition is nontrivial, suppose otherwise, so that Gv = Ge (say).
Since G acts without inversions, and the quotient has a single edge, the group Gv must
act transitively on the edges incident to v. But Gv fixes e and therefore e must be the
unique edge incident to v. This already contradicts the case that T ′/G is a loop; if T ′/G
is an interval, then all vertices which are neighbors of u are translates of v, so they are
1-valent; but then u is fixed by G, contrary to the hypothesis that G acts minimally on T
(and therefore also on T ′).

Conversely, suppose G admits the structure of a nontrivial amalgamated product A∗BC.
By Seifert van-Kampen we can build a K(G, 1) from a K(A, 1), K(C, 1) and K(B, 1) by
attaching the K(B, 1) to the other factors by the mapping cylinders associated to the
inclusion monomorphisms. The universal cover contains copies of the universal covers of
the K(A, 1) and K(C, 1) factors, separated by copies of the universal covers of the K(B, 1)
factors. The pattern of attachment in the universal cover is a tree. The case of an HNN
extension is similar. □

Example 2.4 (PSL(2, K)). The quintessential example of a group acting on a tree is
PSL(2, K) when K is a field with a discrete valuation v : K∗ → Z. In K we find the
ring O (consisting of elements with non-negative valuation), which is a local ring with
maximal ideal m the set of elements with positive valuation, and quotient field k := O/m.
Note that m is a principal ideal, and any element π with v(π) = 1 is a generator (π is
called a uniformizer).

There is a tree T whose vertices correspond to projective equivalence classes of O-modules
Λ ⊂ K2 isomorphic to O2, where two lattices Λ, Λ′ are equivalent if there is α ∈ K∗ with
αΛ = Λ′. Two equivalence classes of lattices Λ and Λ′ are joined by an edge if there is
some α ∈ K∗ so that αΛ ⊂ Λ′ and Λ′/αΛ = k. The group PSL(2, K) acts on T , and the
stabilizer of each vertex is isomorphic to PSL(2,O).

If we identify Λ/πΛ = k2, equivalence classes of lattices Λ′ joined by an edge to Λ
correspond to lines in the plane k2. Thus, the set of neighbors of each vertex is identified
with the projective line over k, and the action of the stabilizer PSL(2,O) on this projective
line is by its image in PSL(2, k) under the quotient map O → k.

Thus PSL(2, K) acts transitively on the neighbors of each vertex, and the quotient of T
is an interval, giving rise to a decomposition of PSL(2, K) as an amalgamated product

PSL(2, K) = PSL(2,O) ∗P PSL(2,O)B

where superscript denotes conjugation by the matrix B := ( π 0
0 1 ), and P is the “parabolic”

subgroup of PSL(2,O) consisting of matrices congruent to ( 1 ∗
0 1 ) mod m. The noncompact

tree can be compactified by adding a Cantor set of “ends”, corresponding to the points in
the projective line over Km, the m-adic completion of K.

See Serre [41] for details.

As an application of Lemma 2.3 we deduce the Kurosh Subgroup Theorem:

Theorem 2.5 (Kurosh Subgroup Theorem). Suppose B is a subgroup of a free product
A1 ∗A2. Then B is a free product B = B0 ∗B1 ∗B2 ∗ · · · where B0 is free, and for all i > 0,
the group Bi is conjugate into one of A1 or A2.
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Proof. Associated to the decomposition G := A1∗A2 there is a minimal action of G without
edge inversions on a tree T such that T/G is an interval, and such that for some edge e of
T the vertex stabilizers are A1 and A2, and the edge stabilizer is trivial. Now let B act on
T . Edge stabilizers are contained in edge stabilizers of G and are therefore trivial. Vertex
stabilizers are contained in vertex stabilizers of G and are therefore conjugate into one of
the Ai. The quotient Γ := T/B is a graph, and let Γ′ be a maximal tree in Γ. The graph
of groups decomposition associated to Γ′ is a group B′ exhibited as a free product of the
vertex groups (since all edge groups are trivial). The graph of groups decomposition of B
is obtained from B′ by iterated HNN extensions associated to the edges of Γ − Γ′; each
of these has trivial amalgamating subgroup, so contributes a free generator to B. Thus
B = F ∗B′ where F = π1(Γ) and B′ is a free product of subgroups Bj each conjugate into
some Ai. □

2.2. Ends of groups. We now define ends of groups, and give the proof of Theorem 2.1,
following [46], § 4.B.

If X is a locally finite graph, define the set of ends E(X) as the inverse limit

E(X) := lim
←
π0(X −K)

taken over the (directed) system of all compact subsets K of X. Note that each π0(X−K)
is itself a finite set, so this inverse limit can be naturally topologized as a compact totally
disconnected space.

Suppose G is a finitely generated group, and let S be a finite generating set. Form the
Cayley graph CS(G) and define E(G), the space of ends of G, to be E(G) := E(CS(G)). It
is straightforward to see that E(G) = E(X) for any proper connected graph X on which G
acts properly and cocompactly, so this definition is independent of the choice of generating
set S.

We can also give a homological definition of the number of ends, as follows: if C∗ denotes
(simplicial) cochains onX with values in Z/2Z, and C∗f denotes cochains with finite support
(which form a complex, because X is locally finite) then define C∗e by the exact sequence

0 → C∗f → C∗ → C∗e → 0

and then the number of ends is the dimension of H0
e (X). There is an exact sequence in

cohomology:
H0
f (X) → H0(X) → H0

e (X) → H1
f (X) → H1(X)

If X is connected and infinite, then H0
f (X) = 0 and H0(X) = Z/2Z. Thus X has more

than one end if and only if H1
f (X) → H1(X) has nontrivial kernel.

If X is a graph, we consider Z/2Z-valued cochains on X. A subset V of vertices is
identified with the support of a unique 0-cochain; by abuse of notation we also write this
cochain as V . Thus δV is a 1-cocycle, which is also identified with its support, which
is a union of edges. With this language, if X is the Cayley graph of G with respect to
any finite generating set, then if we define A to be the G-module consisting of all subsets
of G modulo finite subsets (where subsets are identified as above with 0-cochains) then
H0
e (X) ∼= H0(G;A); see e.g. Epstein [9] for details. This gives another way to see that the

number of ends is independent of the choice of generating set.
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Let Q(X) denote the set of subsets of vertices (equivalently 0-cochains) V for which
δV is finite. A set V ∈ Q(X) is said to be connected if the complete subgraph it spans
is connected. It is nontrivial if δV is not equal to δF for any finite F . If V is in Q(X),
so is its complement V ∗. Notice that as 0-cochains, there are formulae V ∗ = 1 − V and
V ∩W = VW . For V ∈ Q(X), we say that an end η ∈ E(X) is contained in V if for each
compact set K containing δV , the component of X −K corresponding to η is contained
in V . Thus, a nontrivial V determines a nontrivial partition of E(X) into V ∩ E(X) and
V ∗ ∩ E(X) = (V ∩ E(X))∗; notice that both of these subsets are closed.

A nontrivial V ∈ Q(X) is narrow if |δV | is minimal; call this minimal value k the width
of X. It is easy to verify that any narrow V is connected. Let · · ·Vn ⊂ · · · ⊂ V2 ⊂ V1 be
an infinite decreasing family of narrow sets, and suppose W = ∩nVn is nonempty. Then
every edge in δW is contained in δVi for all sufficiently large i, and therefore all of δW is
contained in δVn for some n. On the other hand, W ∩E(X) = ∩n(Vn∩E(X)) is nonempty,
whereas V ∗n ∩ E(X) ⊂ W ∗ ∩ E(X) for any n; thus W is nontrivial and contained in Q(X),
and is therefore narrow. It follows that for any vertex v ∈ X we may find a minimal narrow
V containing v.

The key lemma is the following:

Lemma 2.6 (Nested narrow sets). Let V be a minimal narrow set containing v, and let
W be any other narrow set. Then at least one of VW, V ∗W,VW ∗, V ∗W ∗ is finite.

Proof. We estimate
|δV W |+ |δV ∗W |+ |δV W ∗|+ |δV ∗W ∗| ≤ 4k

since each of the boundary components is made up of pieces of the boundary of V and
W , and each piece occurs on at most two sides. If |δV W | < k (say) then δV W = δF for
some finite F . But then VW +F = 1 or VW +F = 0; the first case is impossible because
VW is contained in V , and V ∗ is infinite; thus VW = F and we are done. So we deduce
that each of the four sets above is narrow. But then one of VW or VW ∗ contains v and is
properly contained in V , contrary to the hypothesis that V is minimal. □

Now let V be any minimal narrow set containing v, and consider the family of its
translates gV for g ∈ G. Each of these translates is narrow and minimal for gv, so this
system of sets induces a nested partition of E(X). We may therefore build a tree T whose
edges are equivalence classes of gδV , where gδV and hδV are equivalent if they separate
E(X) in the same way. The group G acts on T minimally.

If X has more than 2 ends, then since X is locally finite, any two translates gδV and hδV
which are not sufficiently close have at least one end “between” them, and are therefore
inequivalent, so that edge stabilizers are finite. If X has 2 ends, then it is straightforward
to see (and was anyway known by Freudenthal) that G is virtually cyclic. In either case
this proves the theorem.

2.3. 3-manifold groups acting on trees.

Proposition 2.7 (Action on tree). Let M be a compact 3-manifold with fundamental group
G, and suppose G acts minimally on a tree T without inversions. Let B be a conjugacy
class of edge stabilizer. Then M contains a 2-sided essential embedded surface S whose
fundamental group injects into B.
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Proof. As above we can assume that G acts transitively on the edges of T . We can write G
as A ∗B C or A∗B where B is an edge stabilizer, and build a space K by gluing a K(A, 1)
and K(C, 1) along a K(B, 1) (in the first case), or attaching a K(B, 1) in two ways to a
K(A, 1) (in the second case). We therefore obtain a homotopy class of map f : M → K;
choose a map in this homotopy class which is transverse to K(B, 1), so that the preimage
of K(B, 1) is an embedded 2-sided surface S in M . If some component of S is not π1-
injective, we can repeatedly compress it by applying Kneser’s Lemma (i.e. Lemma 1.6);
this compression can be achieved by a homotopy of the map, and reduces the complexity of
S, so after finitely many such compressions, we can assume that π1(S) injects into B. □

2.4. Proof of the Sphere Theorem. We now prove the sphere theorem, following
Stallings. Suppose that M is a compact 3-manifold with π2(M) nontrivial. If ∂M contains
a sphere or projective plane which is contractible in M , then M is itself contractible, con-
trary to hypothesis; any other sphere or projective plane component of ∂M satisfies the
conclusion of the theorem, so we assume there are no such components. If some compo-
nent of ∂M is not injective, then by the Loop Theorem we can compress it to produce a
new, simpler manifold. Since M is homotopy equivalent to a wedge of the form M ′ ∨M ′′

or M ′ ∨ S1, we deduce that π2(M ′) is nontrivial for at least one factor if π2(M) is. So
after finitely many compressions we obtain M ′′ ⊂ M with incompressible boundary, no
component of which is a sphere or projective plane, and π2(M ′′) ̸= 0.

Thus if M̃ ′′ denotes the universal cover of M ′′, every component of ∂M̃ ′′ is contractible,
and therefore

π2(M
′′) = π2(M̃

′′) = H2(M̃
′′) = H2(M̃

′′, ∂M̃ ′′) = H1
c (M̃

′′)

On the other hand, H1(M̃ ′′) = 0 because M̃ ′′ is simply connected, and H0
c (M̃

′′) = 0
because M̃ ′′ is noncompact, and therefore M̃ ′′ has more than one end. So we deduce that
π1(M) acts nontrivially on a tree without inversions, and with finite edge stabilizers.

By Proposition 2.7, M admits a 2-sided essential embedded surface S whose fundamental
group injects into the edge stabilizer; but this implies that S is a sphere or projective plane.

3. Prime and free decompositions, and the Scott Core Theorem

Definition 3.1. If M,M ′ are connected, oriented 3-manifolds, the oriented connect sum
M#M ′ is obtained by removing a small open ball from both M and M ′, and gluing the
resulting boundary spheres by an orientation-reversing homeomorphism.

A priori it might appear that connect sum depends on the choice of the small balls we
remove, and on the choice of the homeomorphism used to glue the resulting boundary
spheres. However, there is no ambiguity, since firstly any two balls in the same component
are isotopic, and secondly there is only one orientation-reversing homeomorphism of the
2-sphere up to isotopy.

Example 3.2. Connect sum with S3 gives back the same manifold; i.e. M#S3 =M .

Definition 3.3. Connect sum is nontrivial if neither of the factors is S3. A 3-manifold
is prime if it cannot be written as a nontrivial connect sum. A decomposition of M is a
factorization M =M1#M2# · · ·#Mn where no Mi is S3 unless i = 1 and M = S3.
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Example 3.4. If ∂M has sphere components, we denote by M̂ the result of capping off
these components. Then for any 3-manifold, M = M̂#nB3 where n is the number of
sphere components of ∂M .

The first purpose of this section is to prove the Prime Decomposition Theorem:

Theorem 3.5 (Prime Decomposition Theorem). Let M be a closed, oriented 3-manifold.
Then M admits a finite decomposition into prime factors. Furthermore this decomposition
is unique (up to order of the factors).

The existence of a finite decomposition is due to Kneser, and the uniqueness is due to
Milnor. Along the way we explain the connection between connect sum decompositions of
manifolds and free decompositions of (fundamental) groups, and prove Grushko’s Theorem
and Kneser’s Conjecture, following Stallings. This group-theoretic work in turn lets us give
a proof of the Scott Core Theorem [39]:

Theorem 3.6 (Scott Core Theorem). Let M be a (possibly noncompact) 3-manifold with
π1(M) finitely generated. Then there is a compact 3-submanifold C ⊂ M , called a Scott
core, such that the inclusion induces an isomorphism π1(C) → π1(M). In particular,
π1(M) is finitely presented.

3.1. Grushko’s Theorem. By Seifert–van Kampen, if M = M1#M2 then π1(M) =
π1(M1) ∗ π1(M2). If G is a finitely generated group, the rank of G is the minimal number
of generators for G. Grushko’s Theorem says the following:

Theorem 3.7 (Grushko’s Theorem). Let G be a finitely generated group, and suppose
G = A ∗B. Then rank(G) = rank(A) + rank(B).

A group with rank 0 is the trivial group; thus Grushko’s Theorem immediately implies
that in any decomposition of a 3-manifold with factors that are not simply connected the
number of factors is bounded by the rank of π1(M). Thus existence of a prime decompo-
sition follows from Grushko’s Theorem once one knows:

Theorem 3.8 (Poincaré Conjecture). Let M be a closed, simply-connected 3-manifold.
Then M = S3.

The Poincaré Conjecture is a theorem of Perelman [30, 31, 32], and is proved using PDE
methods — i.e. Ricci flow — together with a very subtle analysis of the finite and infinite
time singularities. On a Riemannian manifold, both the metric tensor g and the Ricci
curvature R are symmetric 2-forms; i.e. they are sections of the same tensor bundle. So it
makes sense to evolve the metric by ∂tg = −2R. This has the effect of spreading out the
manifold in directions where it is negatively curved, and shrinking it where it is positively
curved. With arbitrary initial data, one has short time existence and uniqueness, and a
singularity can occur in finite time only by the manifold shrinking to a point (in which
case the metric becomes asymptotically round and the manifold is exhibited as a quotient
of S3 by a finite group of isometries) or by the curvature blowing up to +∞ along some
embedded sphere which becomes pinched. In the first case one sees that the manifold is
finitely covered by S3, so if it is simply-connected it must be S3. In the second case, before
the singularity occurs, one can cut this sphere and plug in rounded balls, exhibiting the
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original manifold as a (possibly trivial) connect sum of new manifolds on which the Ricci
flow can be continued. Only finitely many singularities of the second kind can develop in
finite time, and if π3 of the original manifold is nontrivial, the same is true for each of the
factors that is produced. A 3-manifold with nontrivial π3 admits a nontrivial “minimax
sweepout” by immersed spheres, and in [32] it is shown that the diameter of the critical
sphere must go to zero at a definite rate. Thus each of the factors shrinks to a point in
finite time, and the original manifold is certified as a connect sum of finitely many copies
of S3.

It would be perverse to invoke the Poincaré Conjecture to prove the Prime Decomposition
Theorem, and we eschew this strategy. But we give a proof of Grushko’s Theorem following
Stallings [43] in order to explain its close relation to 3-manifold topology.

Proof. Every subgroup of a free group is free, and the rank of a free group is equal to the
rank of H1, which is additive under free product. Thus Grushko’s theorem is true for free
groups.

Evidently rank(G) ≤ rank(A) + rank(B), so it suffices to find a surjection ϕ : F → G
where F is a free group with rank(F ) = rank(G), and a decomposition F = F1 ∗ F2 where
ϕ(F1) = A and ϕ(F2) = B.

A handlebody is a regular neighborhood of a graph Γ in S3 (for a precise definition, look
ahead to Definition 3.21). The double of a handlebody is a closed manifold M . Note that
M retracts onto Γ, and this retraction induces an isomorphism on π1, so π1(M) = F is
free of prescribed rank. Choose a surjection ϕ : F → G where rank(F ) = rank(G). Let
K = K(A, 1) ∨ K(B, 1), and build a map f : M → K realizing ϕ. As in the proof of
Proposition 2.7, we can make this map transverse to the basepoint p of the wedge, and
compress f−1(p) until it consists of a separating union S of 2-sided spheres. Suppose the
collection S has as few components as possible. We claim S consists of a single component.
This will prove the theorem, since S will exhibit M as M =M1#M2, and by construction,
ϕ : π1(M1) → A and ϕ : π1(M2) → B will be surjective.

So suppose S contains at least two spheres. The union S is separating, so let α be an arc
properly contained in M −S from one component to a different one, and such that f(α) is
a loop in K. Let β be a loop in M ending at the endpoint of α, so that if γ = α ∗ β, then
f(γ) is homotopically trivial in K. Make γ transverse to S and with the minimal number of
intersections, so that it is decomposed into segments γi. By minimality, each γi is essential
in M rel. endpoints, and f(γi) is a loop in K on one side. Since an alternating product
of nontrivial elements in a free product is nontrivial, some f(γi) is trivial in A or B; if the
preimage starts and ends on the same component of S, it represents a loop in M in the
kernel of F → G, and we may cut the arc γi out and reduce the number of intersections.
So at the end we obtain an arc γ properly contained in M − S from one component of S
to a different one, and such that f(γ) is homotopically trivial in K(A, 1) (say). A tubular
neighborhood C of γ has boundary an annulus D running from component S0 to S1 (say); if
D′ is obtained by pushing the interior of D slightly into C, then D∪D′ is a torus bounding
a solid torus (just a thickened neighborhood of ∂C in C). Let C ′ be the neighborhood of γ
bounded by D′. Define a new map f ′ : M → K which agrees with f outside C, and such
that f ′(C ′) = p. The meridian of the torus D ∪ D′ maps to a homotopically trivial loop
in K(A, 1), so we can extend f ′ over a compressing disk for this meridian. Then we can
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extend f ′ over the remaining 3-ball of the solid torus, using the fact that π2(K(A, 1)) = 0.
The result is a new map f ′ for which the preimage of p has one fewer component, and
one component is C ′ ∪ S0 ∪ S1; now we can push the interior of C ′ into B to produce f ′′
transverse to p and such that the preimage of p is a union of strictly fewer spheres. So we
are done by induction. □

Essentially the same argument proves Kneser’s Conjecture, as was observed by Stallings
[43]:

Theorem 3.9 (Kneser’s Conjecture). Let M be a 3-manifold, and suppose π1(M) = G1 ∗
G2. Then there is a connect sum decomposition M =M1#M2 where π1(Mi) = Gi.

Proof. Build K = K(G1, 1) ∨ K(G2, 1) and f : M → K and S = f−1(p) consisting of
a nonseparating union of spheres as above. If S has more than one component, then by
the same argument as above we can replace f by f ′ so that (f ′)−1(p) consists of fewer
spheres. □

3.2. Alexander’s Theorem. Since M =M#S3, to have any hope of proving the Prime
Decomposition Theorem (without assuming the Poincaré Conjecture!) we must be sure
that S3 itself does not admit a nontrivial decomposition.

An embedded sphere in S3 is necessarily separating, since H2(S
3;Z/2Z) = 0. In fact,

Alexander duality shows that H1 of the complement must vanish. On the other hand, if
one allows arbitrary (i.e. wild) embeddings, the complement of the sphere can be very
complicated.

Example 3.10 (Alexander’s horned sphere). The sphere indicated in Figure 5 is smooth
away from a Cantor set, and does not bound a ball on the “outside”; in fact, the fundamental
group of the exterior is not finitely generated.

Figure 5. Alexander’s horned sphere does not bound a ball on one side;
the construction can be modified so that the sphere does not bound a ball
on either side.
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The spheres arising in a direct sum decomposition are locally flat (i.e. they have an
I-bundle collar neighborhood) and locally flat surfaces in 3-manifolds may be taken to be
smooth (or PL). So it is just as well that every smooth (or PL) sphere in S3 is standard:

Theorem 3.11 (Alexander). Every smooth embedded sphere in S3 bounds a ball (on either
side).

Proof. By removing a point from a complementary region, it suffices to show that every
smooth embedded sphere in R3 bounds a ball on one side. By an isotopy, put the sphere S
in general position with respect to the foliation of R3 by horizontal planes. This means that
there are finitely many nondegenerate critical points, and these occur at distinct levels, and
away from the critical points, the level sets of S are finite unions of circles.

There are three kinds of critical points — local maxima, local minima, and saddles.
Maxima and minima contribute 1 to χ and saddles contribute −1. We prove the theorem
by induction on the number of saddles. If there are no saddles, there must be exactly
one maximum and one minimum, and each intermediate level set consists of a single circle
bounding a disk in its level plane; the union of these disks is a ball, and the theorem is
proved.

Suppose some nonsingular level set consists of a union of circles. Choose an innermost
circle γ which bounds a disk D in its level set. We can compress S along γ to produce two
new (disjoint) smooth spheres S1, S2 each with the same critical points as γ, except for a
new minimum and maximum coming from D. So either S1 and S2 both have fewer saddles
than S (in which case they are both standard by induction), or else S1 (say) has no saddles;
but then S1 bounds a ball, and we see that S2 is isotopic to S and with the same number
of saddles, and we have eliminated the circle γ. If S has at least two saddles, we can find
some circle α with at least one saddle on both sides. By eliminating innermost circles as
above we can find ourself (after finitely many steps) at a point where α is innermost. Then
compressing along α produces two spheres with definitely fewer saddles.

So we are reduced to the case of a single saddle. Just above this saddle (without loss
of generality) S intersects the level set in two circles γ1, γ2, which bound disks D1, D2 in
their level set, and disjoint disks E1, E2 in S each with a single maximum. Each of the
spheres D1 ∪ E1 and D2 ∪ E2 thus bounds a ball; suppose D2 ∪ E2 is innermost. Then
the ball bounded by D2 ∪ E2 is disjoint from S and we can push E2 across this ball to
D2, and cancel the maximum with the saddle. This eliminates the saddle, and proves the
theorem. □

Alexander’s Theorem shows that S3 is prime; in fact it is irreducible, which means
that every (smoothly) embedded sphere bounds a ball. The difference between prime and
irreducible is that for a prime manifold, one only knows that every (smoothly) embed-
ded separating sphere bounds a ball. The following proposition shows that nonseparating
spheres all arise for the same reasons:

Proposition 3.12. Let M closed and oriented contain a nonseparating sphere. Then there
is a (possibly trivial) decomposition M = M ′#S2 × S1. Thus, a prime (closed, oriented)
3-manifold is irreducible unless it is S2 × S1.

Proof. Let S be a nonseparating sphere, and let γ be an embedded circle which meets
S transversely in one point. Set N to be a regular neighborhood of S ∪ γ. Then N is
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homeomorphic to S2 × S1 −B3, and ∂N is a separating sphere which exhibits the desired
connect sum decomposition of M . □

3.3. Existence of prime decomposition. We now prove the existence of a prime de-
composition, following Kneser. In fact, we will show that there is a (readily computable)
quantity k(M) so that any decomposition of M into more than k(M) factors has some S3

summand:

Theorem 3.13 (Kneser bound for connect sum decompositions). Let M admit a triangu-
lation with t 3-simplices, and let k(M) = 6t+ rank(H1(M ;Z/2Z)). Then any connect sum
decomposition of M into more than k(M) factors has some S3 summand. In particular,
every compact 3-manifold M admits a prime decomposition.

The method of proof is also important, since it proceeds by taking a collection of disjoint
spheres, and simplifying the intersection with the 2-skeleton of a triangulation. We shall
see in the sequel that many important theorems can be deduced from properties of the
intersection of some 2-dimensional object with a triangulation which minimizes a suitable
complexity.

Proof. Suppose we have a nondegenerate decomposition M = M1#M2# · · ·#Mn, and let
S be a disjoint union of spheres witnessing the decomposition. Fix a triangulation τ of
M , and arrange S so that S ∩ τ is in general position. This means that S is disjoint from
the vertices of τ , that it intersects the edges of τ in finitely many isolated points, and
that it intersects the faces of τ in finitely many isolated loops and proper arcs. Define
a lexicographic complexity (e, f) where e is the number of points of τ 1 ∩ S, and f is the
number of components of τ 2∩S, and suppose that we have found a disjoint union of (n−1)
spheres S defining a nondegenerate decomposition, for which the complexity is minimal.

Note that the Mi are obtained from the components of M − S by capping off boundary
spheres with balls; thus the decomposition is nondegenerate providing no component of
M − S is homeomorphic to a multiply-punctured ball. We will modify the isotopy class of
the collection S in the course of the argument, while preserving the number of components
and the nondegeneracy.

First we eliminate loops of τ 2 ∩ S. If γ is an innermost loop of τ 2 ∩ S, then it bounds a
disk D in τ 2 with interior disjoint from S, and we can compress the component of S meeting
γ along D to produce S1 ∪ S2. At least one of the Si does not bound a (punctured) ball
on either side; throwing the other sphere away gives a new nondegenerate decomposition
with the same number of spheres and with smaller f . Thus for (e, f) minimal, there are
no loops of τ 2 ∩ S.

Next we eliminate arcs of τ 2 ∩ S with both endpoints on the same edge. Such an arc
bounds a bigon D in τ 2 and we can push S over D to reduce e by 2. Thus for (e, f)
minimal, every arc of τ 2 ∩ S has endpoints on distinct edges; such arcs are called normal.

Next we arrange that for every 3-simplex σ of τ , every component of S ∩ σ is a disk.
For, otherwise, some innermost (non-disk) component R has one boundary component
which bounds an innermost disk in ∂σ. This disk can be pushed into σ to a disk D with
boundary on ∂R, with the interior of D disjoint from S (by the assumption that R is
innermost among non-disk components) and then we can compress S along D and throw
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away one component, reducing e. Thus for (e, f) minimal, every component of S ∩ σ is a
disk for every 3-simplex σ of τ .

Now consider a simplex σ. Its boundary is decomposed by loops of S ∩ ∂σ into surfaces,
whose Euler characteristics sum to 2. Every disk component must contain at least one
vertex (since its boundary is made of normal arcs), so there are at most 4 of these. Thus
there can be at most 2 more components with negative Euler characteristic, and every
other component is an annulus containing no vertex; call these annuli good. Thus: there
are at most 6 bad pieces, and all the rest are good annuli. Each good annulus bounds two
disks in σ ∩ S, and the union bounds an I-bundle over a disk. Any component of M − S
made up of these I-bundles is itself an I-bundle; every other component has at least one
bad piece in some simplex, so there are at most 6t such components, where t is the number
of 3-simplices of τ . Every I-bundle has a sphere as a boundary component, so it is either
S2× I or a punctured RP3 (i.e. a twisted I-bundle over RP2). By hypothesis, the splitting
is nondegenerate, so there are no S2× I complementary components. But every punctured
RP3 adds a nontrivial Z/2Z summand to H1(M ;Z/2Z). Thus we obtain Kneser’s bound
n ≤ 6t+ rank(H1(M ;Z/2Z)), and prove the existence of a prime decomposition. □

This proves the existence part of Theorem 3.5.

3.4. Uniqueness of prime decomposition. We give the proof of the uniqueness of
prime factorization, following Milnor [24], thus completing the proof of Theorem 3.5. We
prove the theorem for closed, oriented 3-manifolds. Explicitly, we show that if M admits
two prime decompositions as M = M1#M2# · · ·#Mn and M = M ′

1#M
′
2# · · ·#M ′

m then
m = n, and the factors are the same up to permutation. We may further assume that m
and n are both bigger than 1, and that no Mi or M ′

j is S3.
The first step is to match S2 × S1 factors on both sides. Note that a closed surface S

embedded in a 3-manifold is nonseparating if and only if the class of [S] is essential in
H2(M ;Z/2Z). For, a separating surface bounds on either side, whereas a nonseparating
surface intersects some transverse essential loop γ in 1 point, so that [S] ∩ [γ] = 1.

Lemma 3.14. Let M be a closed, oriented 3-manifold, and let M = M1#M2# · · ·#Mn

be a decomposition into prime factors. Then one of the factors is an S2 × S1 if and only
if M contains a nonseparating embedded sphere.

Proof. If one of the factors is S2 × S1, then there is an embedded S2 × S1 −B3 in M , and
there is a nonseparating sphere in this S2 × S1 −B3.

Conversely, suppose M contains a nonseparating sphere S. Let T be the collection of
embedded spheres decomposing M into its prime factors (minus balls); each component of
T is separating, and therefore homologically trivial. Let S intersect T transversely in as
few circles as possible. If S is disjoint from T , it is contained in some punctured Mi; but
then Mi contains an S2×S1 summand, and is therefore already equal to S2×S1. If S ∩T
is nonempty, consider a loop of intersection γ bounding an embedded disk D in T disjoint
from S. Let γ decompose S into E1 and E2. Then there are two new spheres E1 ∪ D
and E2 ∪D such that [E1 ∪D] + [E2 ∪D] = [S] in H2(M ;Z/2Z) (so that at least one is
nonseparating), and such that each intersects T in fewer pieces than S (after an isotopy).
The lemma follows. □
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Lemma 3.15. Let M be a closed, oriented 3-manifold and let S, S ′ be nonseparating
embedded spheres. Then there is a self-homeomorphism of M taking S to S ′.
Proof. If the spheres are disjoint, let N = M − (S ∪ S ′), so that N is either connected
with 4 boundary spheres, or disconnected into two pieces with 2 boundary spheres. Cap
off boundary spheres with balls, and find an isotopy in each component which interchanges
the balls in pairs. Now remove the balls, and extend the result of the isotopy to a self-
homeomorphism of M .

If the spheres intersect, let γ be a circle of intersection bounding a disk D in S disjoint
from S ′, and decomposing S ′ into E1 and E2. Then as above, one of the Ei ∪ D is a
nonseparating sphere disjoint from S ′ and intersecting S in fewer circles that S ′ does. Then
there is a homeomorphism taking S ′ to Ei ∪D, and by induction another homeomorphism
taking Ei ∪D to S. □

It follows that we may match up S2×S1 factors of the two decompositions of M , and by
splitting off these summands one by one, we may reduce to the case that every embedded
sphere in M is separating.

So, let S be a sphere bounding M1 − B3, and let T be a union of spheres realizing
the second decomposition, so that M − T is a union of punctured M ′

i . We would like to
realize S disjoint from some such collection T ; if we can do this, it will be contained in
some punctured M ′

j, and we will therefore realize this punctured M ′
j as M1 − B3 union a

punctured ball, so that M ′
j =M1 and we can split off the two factors, and the theorem will

follow by induction. So suppose S∩T has the minimal number of pieces where S and T are
as above. An innermost disk D of S is contained in some punctured M ′

j and its boundary
decomposes some component Ti of T into E1 and E2. As before, consider the two spheres
E1∪D and E2∪D. These are contained in a punctured M ′

j, and must therefore both bound
punctured balls B1 and B2. If the punctured balls were disjoint, their union would be all
of the punctured M ′

j, thereby exhibiting M ′
j as S3, which is absurd; thus B1 ⊂ B2 (say).

But then E2 ∪D bounds a punctured M ′
j (with possibly fewer punctures than before) on

the other side, so we can replace the component Ti by E2 ∪D, obtaining a new collection
T ′ meeting S in fewer components. This completes the proof.

3.5. Scott Core Theorem. We now give the proof of the Scott Core Theorem, whose
most important corollary is the fact (proved independently by Shalen) that a finitely gen-
erated 3-manifold group is finitely presented.

If H is a finitely generated group, the Kurosh Subgroup Theorem (i.e. Theorem 2.5)
implies that the indecomposable factors of H are unique up to order and isomorphism,
and the non-Z factors are unique up to conjugacy (the number of each kind of factor is
finite by Grushko’s Theorem 3.7). Let i(H) denote the number of indecomposable factors
of H, and f(H) the rank of the biggest free factor. Define the complexity of H to be the
lexicographic pair (i(H), f(H)).
Lemma 3.16. Let G and H be finitely generated. Let ϕ : G → H be surjective, and
injective on each non-Z indecomposable factor. Then either ϕ is an isomorphism, or the
complexity of H is less than that of G.
Proof. By the Kurosh Subgroup Theorem, for each non-Z indecomposable factor Gi of
G, the group ϕ(Gi) is conjugate into some non-Z factor Hj(i) of H. Let G′ be the
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normal subgroup of G generated by the nonfree factors of G, and let H ′ be the nor-
mal subgroup of H generated by the Hj(i) where the i runs over nonfree factors. Then
G/G′ → H/H ′ is surjective. Furthermore, G/G′ is free of rank f(G), and by Grushko’s
Theorem, f(G) ≥ i(H/H ′) ≥ f(H). Furthermore, i(H) = i(H/H ′) + d where d is the
number of distinct indices in j(i); thus i(G) ≥ i(H), and f(G) = f(H) if and only if the
j(i) are all distinct, and G/G′ → H/H ′ is an isomorphism. But in this case by Kurosh, ϕ
must be an isomorphism of free factors and an isomorphism of each indecomposable factor
individually, and hence ϕ is an isomorphism. □

Lemma 3.17. Let R be a freely indecomposable finitely generated group of finite rank n > 1,
and suppose that every finitely generated subgroup of R of strictly smaller rank is finitely
presented. Then there is a finitely presented group G and a surjection ϕ : G → R which
does not factor through G→ K1 ∗K2 → R for Ki both nontrivial, and where G→ K1 ∗K2

is surjective.

Proof. Let C denote the class of finitely presented groups of rank n which surject onto
R by homomorphisms which are injective on each non-Z indecomposable factor. The
class C is nonempty, since it contains a free group of rank n. Each group in C gets a
complexity (i(G), f(G)), and we choose such a G of minimal complexity. If ϕ : G → R
is an isomorphism then evidently we are done. Otherwise there is a nontrivial element g
in the kernel. Define H to be the quotient of G by the normal closure of g, so that H is
finitely presented, G→ H is surjective, and ϕ factors as G→ H → R.

Suppose ψ : H → R factors through a surjection H → K1 ∗ K2 where both Ki are
nontrivial. Let Li denote the image of Ki in R. By Grushko’s Theorem, each Ki has
rank strictly less than n, and therefore so does Li, so by hypothesis, each Li is finitely
presented. But G→ L1 ∗ L2 is surjective; if some non-Z indecomposable factor Gj of G is
not conjugate into some Li, then by Kurosh Gj does not map injectively, and then it would
not be injective when further mapped by L1 ∗ L2 → R. It follows from Lemma 3.16 that
the complexity of L1 ∗ L2 is less than that of G. Moreover, L1 ∗ L2 is finitely presented,
since each Li is, and of rank n since it surjects onto R. Finally, each Li maps injectively
to R, so L1 ∗ L2 is in the class C, contrary to the choice of G. Thus ψ : H → R does not
factor through a surjection, and the lemma is proved. □

We now prove the Scott Core Theorem for π1(M) freely indecomposable of finite rank.

Proposition 3.18. Let M be a 3-manifold with π1(M) finitely generated. Then π1(M) is
finitely presented. Moreover, if π1(M) is indecomposable, there is a compact submanifold
Q of M which is a Scott Core.

Proof. For rank 0 we can take the empty set as a core, and for rank 1 we can take an
embedded loop. So we can assume (by induction) that the rank is n > 1, and that
every finitely generated subgroup of π1(M) of rank less than n is finitely presented. By
Lemma 3.17 there is a finitely presented group G and a surjective ϕ : G→ π1(M) such that
ϕ does not factor through a surjection of G to a nontrivial free product. LetK be a compact
2-complex with π1(K) = G, and let f : K → M induce ϕ on π1. Let Q be a compact
3-manifold containing f(K) whose boundary surface has least complexity subject to these
conditions. Since the surjection ϕ factors through π1(Q), the inclusion π1(Q) → π1(M) is
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surjective. Furthermore, if every boundary component of Q is incompressible, then π1(Q)
injects into π1(M), by Kneser’s Lemma, and Seifert-van Kampen, so Q would satisfy the
conclusion of the proposition.

So suppose ∂Q is compressible. If it compresses to the outside, we can enlarge Q by
adding a thickened compressing disk, obtaining some new Q′ whose boundary has smaller
complexity, contrary to the definition of Q. If it compresses to the inside, we can split
Q along this compressing disk to obtain Q1, Q2 (if separating) or Q1 (if not), and exhibit
π1(Q) = π1(Q1) ∗ π1(Q2) or π1(Q) = π1(Q1) ∗ Z. By the hypothesis of rank, π1(Q1) is
nontrivial. By the defining property of G, we may assume that ϕ(G) is conjugate into Q1,
so we may replace f by a homotopic f ′ : K → Q1, so that Q1 also contradicts the definition
of Q. Thus, ∂Q is incompressible, and Q is a Scott Core. □

Proposition 3.18 already proves that every finitely generated 3-manifold group is finitely
presented, which is one of the most useful corollaries of the Scott Core Theorem; it further
shows that for every M with π1(M) finitely generated there is some compact 3-manifold N
with π1(N) = π1(M) (just take a connect sum of Cores for the indecomposable factors);
but it remains to show that we can take N to be a compact submanifold of M . When
π1(M) is freely decomposable the proof is substantially more complicated.

Lemma 3.19. Let M be a 3-manifold with π1(M) finitely generated, and suppose we write
π1(M) = G1 ∗G2 ∗ · · ·∗Gn ∗F where each Gi is freely indecomposable and noncyclic, and F
is free. Then there is a compact submanifold N which is the union of compact submanifolds
Ni and disjoint 1-handles, and satisfying

(1) each Ni has indecomposable fundamental group and incompressible boundary;
(2) π1(N) → π1(M) is a split epimorphism; and
(3) each π1(Ni) is mapped isomorphically to a conjugate of Gi.

Proof. First, let K be a compact 2-complex with π1(K) = π1(M) (such a K exists, by
Proposition 3.18), and let f : K →M induce an isomorphism on π1, and let N be a regular
neighborhood of the image. Note that π1(N) → π1(M) is a split surjection (because it can
be precomposed with π1(K) → π1(N) in such a way that the composition π1(K) → π1(M)
is an isomorphism). The fact that this surjection is split depends on the fact that π1(M)
is known to be finitely presented, and is the only place in the rest of the argument where
we use this.

Compress ∂N as much as possible to obtain a new submanifold consisting of a disjoint
union of compact incompressible submanifolds Ni of M , and a collection of disjoint 1-
handles so that the union (which we relabel as N) is compact, connected, and π1(N) →
π1(M) is a split surjection. Next, let L be a simplicial K(π1(M), 1) obtained as a tree
of K(Gi, 1)’s and K(Z, 1)’s, one for each factor in a free decomposition of π1(M), and
let g : M → L be transverse to the midpoints of the edges, so that the preimage F is a
2-sided embedded surface, each of whose component has trivial image in π1(M). Make F
transverse to N , and compress the components, so that F ∩N is a union of disks transverse
to the 1-handles, together with incompressible surfaces contained in the Ni. Since each
Ni has incompressible boundary, each incompressible surface of F ∩Ni injects into π1(M),
and is therefore a 2-sphere (because M → L induces an isomorphism on π1). Cut the Ni

along these 2-spheres if necessary, and call the new pieces Ni. By Kneser’s Conjecture
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(Theorem 3.9), we can further decompose each Ni along essential spheres and disks into
the indecomposable summands of π1(Ni). Now replace each such essential sphere or disk
with a 1-handle, to get a new union (which again we relabel as N) consisting of the disjoint
union of Ni and 1-handles, where each π1(Ni) is freely indecomposable in π1(N), where
π1(N) → π1(M) is a split surjection, and where each π1(Ni) is mapped injectively (by
incompressibility of the boundary) into a conjugate of some indecomposable Gj.

On the other hand, since the surjection is split, each indecomposable Gj maps injectively
by the splitting map into some π1(Ni), and thus after relabeling and discarding some Nj if
necessary, we can assume π1(Ni) maps isomorphically to a conjugate of Gi, for each i. □

Without loss of generality, we assume that π1(M) has some factor G1 which is not
Z. Ignoring basepoints, each π1(Ni) maps to the conjugacy class of Gi. If we choose a
basepoint e on N1, then we can choose an embedded arc γi from e to Ni (not assumed to
be disjoint from the Nj) and for each free Z factor of π1(M) choose an embedded loop δj,
so that the γi and δj are disjoint except at e, and we have isomorphisms π1(Ni∪γi, e) → Gi

for each i, and π1(δj, e) → Z an isomorphism onto Z factors of π1(M).
Thus, we ultimately obtain N , the union of the Ni with 1-handles, and π1(N) =

π1(M) ∗ Fr for some r. Actually, it is convenient (for the sake of an inductive argument)
to allow N to be the union of Ni with a thickened neighborhood of some graph (which
might contain vertices and loops), and with π1(N) = π1(M) ∗ Fr, and π1(N) → π1(M)
surjective. Recall that a 3-manifold obtained by thickening a graph is called a handlebody
(see Definition 3.21). If F is the surface witnessing the free factorization of π1(M) (as in
the proof of Lemma 3.19) then we can further assume that F meets the handlebody part
of N transversely in s meridian disks. Note that each collection C of components of N −F
contained in a component of M −F is associated to a factor Gj or Z of π1(M), and in the
latter case C consists of a union of handlebodies, while in the former case C consists of
some handlebodies together with with Nj union some 1-handles. Let h denote the number
of nontrivial handlebody pieces contained in the C associated to all Gj factors, and define a
complexity to be the ordered pair (r+ s, h). Now choose N as above minimizing (r+ s, h).

First we prove a lemma about homomorphisms from the fundamental groups of handle-
bodies to Z.

Lemma 3.20. Let H be a handlebody, and let ϕ : π1(H) → Z be a homomorphism with
nontrivial kernel (for instance, if the genus of H is at least 2). Then there is a handlebody
H ′ ⊂ H of smaller genus than H such that π1(H ′) → π1(H) → Z has the same image as
ϕ.

Proof. Let Γ be a core graph of H. If some embedded loop γ in Γ is conjugate into the
kernel of π1(Γ) → Z, then if p is a point in an edge of γ, any arc in Γ passing over p can
be replaced with an arc going around γ the other way. Thus if H ′ is obtained by cutting
H along the disk dual to p, it satisfies the conclusions of the lemma. If H has genus 1,
the core circle is in the kernel, and we are done. If the genus of H is at least 2, and γ1, γ2
are two embedded loops in a core rose Γ for H, then either one of the γi maps to 0 in Z,
or they map to a, b ∈ Z; sliding γ1 over γ2 replaces a by a± b, so after finitely many such
slides, we may assume that one of the γi maps to 0, and we are done in this case too. □
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If π1(N) → π1(M) is not an isomorphism, there is some kernel, and we can find a
nontrivial embedded loop β ⊂ N conjugate into the kernel, and intersecting F in the least
number of points. There are two cases to consider.

(Case 1:) β is disjoint from F . In this case, β is contained in some submanifold of N −F .
Let C be the union of pieces of N −F in some component of M −F . If C is associated to
a Z factor, it is a union of handlebodies, and for some handlebody H the map π1(H) → Z
has a nontrivial kernel. By Lemma 3.20, one of these handlebodies can be replaced by a
simpler handlebody (thereby reducing r) without affecting the image of π1(N).

So C is associated to some Gj, and is a disjoint union of handlebodies and N ′j, which
is Nj together with some 1-handles. Since π1(Nj) → π1(Gj) is an isomorphism, if β is
contained in N ′j there must be at least one 1-handle attached to Nj in C. But if α′ ⊂ N ′j
based at a point ej ∈ Nj runs over the core of this 1-handle, then since the image of
π1(N

′
j, e) is contained in Gj, which is equal to the image of π1(Nj, e), it follows that there

is some α ⊂ Nj also based at ej such that α and α′ have the same image in Gj. Thus we
can remove the 1-handle from N ′j to obtain a new N with smaller r, and still surjecting
onto π1(M).

Finally, if β is contained in some handlebody H in C, we can join H to N ′j by a 1-handle
(which increases r by 1), then compress away all the 1-handles of H as above. Since β is
contained in H, it follows that H has positive genus, so the net result of this modification
does not increase r (or s); however it does decrease h. So the complexity is reduced.

(Case 2:) β intersects F . In this case, let D be an immersed disk mapping to M with
∂D = β, intersecting F transversely. By homotopy we can eliminate loops of intersection,
so that D ∩ F is a system of proper arcs, and by hypothesis we assume this system is
nonempty. An innermost arc σ′ of D ∩ F cobounds a bigon of D with an arc β′ ⊂ β
contained in some component C of N −F . If the endpoints of β′ are contained in the same
component of C ∩F , let α be an arc in C ∩F with the same endpoints as β′. Then β′ ∪α
and (β−β′)∪α are loops in N , each homotopically trivial in M (because every loop in F is
inessential in M) and each intersecting F in fewer points than β after an isotopy, contrary
to the definition of β. Thus we may assume that the endpoints of β′ are contained in
different components of C ∩ F . These different components are the ends of two thickened
arcs σ1, σ2 contained in 1-handles of N . We modify N by cutting out σ1 (say) and replacing
it with σ′, which we then push off into the side of F not containing C, and perturb to be
an embedded arc σ; effectively, we “push” σ1 over the immersed bigon bounded by β′ and
σ′, and then perturb the result to be embedded. The new N has isomorphic fundamental
group to the old one, and fewer intersections with F . Moreover, π1(N) still surjects onto
π1(M), since any loop in the old N which ran over σ1 can be homotoped across the bigon
into σ. This completes the proof of the Scott Core Theorem.

3.6. Heegaard splittings. In this section we give another proof of the existence of prime
decomposition; this depends on a theorem of Haken on the interaction of reducing spheres
with Heegaard splittings, and we give an elementary proof of this theorem due to Jaco [19].
Along the way we introduce the notion of a Heegaard splitting, one of the fundamental ways
to build and present 3-manifolds.
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Definition 3.21. A handlebody M is a 3-manifold obtained by taking a regular neighbor-
hood of a connected graph Γ in S3; it depends up to homeomorphism only on the homotopy
type of Γ, which is to say on its Euler characteristic. If π1(M) = π1(Γ) is free of rank g,
we say M has genus g. Note in this case that ∂M is a closed, oriented surface of genus g.

Note that a handlebody can be realized as a submanifold of S3 with connected comple-
ment, and therefore it is irreducible, by Alexander’s Theorem.

Definition 3.22. A Heegaard splitting of genus g of a closed, oriented 3-manifold M is a
decomposition M = H1 ∪ψ H2, where the Hi are handlebodies of genus g, and they are
glued by an orientation-reversing homeomorphism ψ : ∂H1 → ∂H2.

Heegaard splittings were introduced by Heegaard in 1898, although he did not prove any
significant theorems about them. Heegaard made the following elementary observation:

Proposition 3.23. Every closed, oriented 3-manifold admits a Heegaard splitting of some
genus.

Proof. Let τ be a triangulation of M , and let τ ′ denote the dual cell decomposition. Then
a neighborhood of the 1-skeleton N(τ 1) is a handlebody, and M − N(τ 1) = N((τ ′)1) is
another handlebody, thus exhibiting the desired structure. □

Example 3.24. There is only one way to glue a sphere to itself, so the only 3-manifold with
a Heegaard splitting of genus 0 is S3. If M = T1 ∪ψ T2 is a Heegaard splitting of genus 1,
the meridian of T2 is attached to the (p, q) curve on the torus ∂T1 for some coprime p, q
and after attaching a disk along this curve there is only one way to attach the remaining
3-ball. Thus we obtain the Lens space L(p, q) (see Example 1.8) which is covered by S3

with deck group Z/pZ when p ≥ 1, and is equal to S2 × S1 if p = 0.

Another way to prove the existence of Heegaard splitting is via Morse theory. If M is a 3-
manifold, and f is a Morse function in which the index of the critical points is nondecreasing
(one calls this an ordered Morse function), then some level set S of f separates the critical
points of index 0 and 1 from the critical points of index 2 and 3. The subset H− of M
below this level set is made from 0 and 1 handles; thus its core is a graph, and the subset
is a handlebody. Conversely, the subset H+ of M above this level set is made from 2 and
3 handles; thus its cocore is a graph, and it too is a handlebody.

Cerf showed (see Cerf [7], Chap. V or Laudenbach [22] for an elementary proof) that any
two ordered Morse functions may be joined by a path of ordered functions which are Morse
except at finitely many times when a pair of critical points with adjacent indices is created
or canceled (one calls this a “birth” or “death” process). At the level of Heegaard splittings,
the cocore of a 1-handle is a disk D1 in H− with boundary a compressing loop γ1 on S, and
the core of a 2-handle is a disk D2 in H+ with boundary a compressing loop γ2 on S. The
pair can be canceled if γ1 and γ2 intersect transversely in one point, thus eliminating a pair
of critical points and reducing the genus of the splitting by one. The inverse operation is
called stabilization of a Heegaard splitting. There is only one way to stabilize a Heegaard
splitting (up to homeomorphism), because the creation of a canceling pair of handles is
a local operation; but inequivalent splittings of the same manifold can become equivalent
after stabilization. Thus Cerf’s theorem implies the Theorem of Reidemeister–Singer, which



24 DANNY CALEGARI

says that any two Heegaard splittings of a fixed 3-manifold become equivalent after finitely
many stabilizations. We shall not prove this theorem here.

Let M = H1 ∪ψ H2 be a Heegaard splitting of M of genus g. A Heegaard reducing
sphere is a separating sphere S which intersects each Hi in a proper essential disk, the
two disks meeting in an essential simple loop in the boundary surface. The sphere realizes
M as a connect sum M = M1#M2 (not necessarily nontrivial), and each Mi gets an
induced Heegaard splitting of genus gi, where g1 + g2 = g. If the splitting is a nontrivial
stabilization, with γ1, γ2 curves as above bounding disks on the two sides and meeting
transversely in a point, then if α is the boundary of a regular neighborhood of the union
γ1 ∪ γ2 in the splitting surface, then α is the intersection of the Heegaard surface with a
transverse sphere. If α is essential in the surface, this is a reducing sphere; otherwise the
genus g = 1. Thus: a Heegaard splitting of genus g > 1 which is a nontrivial stabilization
admits a (compressible) reducing sphere.

We introduce the idea of boundary compression:

Definition 3.25. A properly embedded surface (S, ∂S) ⊂ (M,∂M) is boundary incom-
pressible if one of the following conditions holds:

(1) S is a disk which does not cobound a ball with a disjoint disk in ∂M − ∂S; or
(2) S is not a disk, and no essential simple proper arc α on S cobounds an embedded

bigon D in M − S with a proper arc β in ∂M − ∂S.

A properly embedded surface is boundary compressible if it is not boundary incompress-
ible. Such a surface can be boundary compressed: in the first case, the disk can be pushed
across the ball and eliminated; while in the second case, we can cut the surface S open
along α and glue in two disjoint parallel copies of D. The result is a new properly embed-
ded surface S ′ (possibly disconnected even if S was connected), each of whose components
has bigger Euler characteristic than S. Note that if S is incompressible, the result S ′ of
a boundary compression is also incompressible, since any compressing disk for S ′ can be
properly isotoped so that its boundary is in S ∩ S ′ and its interior is disjoint from S. It
follows that any properly embedded surface S in M can be repeatedly compressed and
then boundary compressed until it is both compressible and boundary incompressible.

The following proposition is due to Haken [15], and is generally known as Haken’s Lemma.
The proof we give is due to Jaco:

Proposition 3.26 (Haken’s Lemma). Let M be reducible. Then every Heegaard splitting
of M is reducible.

Proof. Let F be a Heegaard surface, splitting M into handlebodies H±. Let S be a non-
trivial reducing sphere in M with the property that its intersection S ∩ F is in general
position, and with the least number of components. We will show that S ∩ F consists of
exactly one component, which proves the proposition.

First, the number of components is positive, because handlebodies are irreducible. Next,
observe first that S+ is incompressible in H+. For, otherwise, a compression replaces S
with two new spheres, each of which intersects F in fewer components than S, and at least
one of which is nontrivial.

Suppose R is a component of S+. Then R is a planar surface. We would like to show that
R is a disk. Suppose not. Choose a maximal collection of disjoint nonparallel compressing
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disks D for F in H+ (these could be dual to the edges of a rose embedded in H+ to which
H+ deformation retracts). By an isotopy, we can make R ∩ D consist of a collection of
essential arcs in R. Performing a collection of boundary compressions in these arcs (across
bigons in the disks of D) reduces R to a collection of incompressible pieces, each contained
in a ball of H+ − D; since the pieces are incompressible, they are disks. Thus boundary
compression along the system of arcs R ∩ D reduces R completely to disks. Choose a
minimal family of arcs A from R ∩ D which cut R into disks. Each A either reduces b1
or separates. Compressing along a nonseparating arc decreases the number of boundary
components by 1, while compressing along a separating arc increases it by 1. We claim that
there will be strictly more nonseparating compressions than separating ones, and prove this
by induction. The base case is the annulus, in which every essential arc is nonseparating,
so this is obviously true. If we do a separating compression, we produce two new surfaces
R1, R2, and for each by induction we will have an excess of nonseparating compressions;
thus the excess is at least 2, and subtracting 1 for the compression producing the Ri from
R completes the induction step and proves the claim. But now the result of all these
boundary compressions isotopes S to S ′ which intersects F in fewer pieces. So R was a
disk after all.

But if every component of S+ is a disk (and similarly for S−) then S is a union of
spheres, one for each component of S ∩F , so this intersection has exactly one component,
and S is a Heegaard reducing sphere for the splitting. □

Thus if M is reducible, we can write M = M1#M2 nontrivially so that each of the Mi

has strictly smaller Heegaard genus than M . It follows that this process terminates after
finitely many steps (and shows that the number of prime summands is bounded by the
minimal Heegaard genus for M).

In general, the collection of Heegaard splittings of an irreducible 3-manifold is very
mysterious. But at least in the particular case of the 3-sphere, the situation is as simple
as it could be, as shown by Waldhausen [51]:

Proposition 3.27 (Waldhausen). Every Heegaard splitting of S3 is standard; i.e. it is
obtained by stablizing the unique splitting of genus 0. Thus there is exactly one Heegaard
splitting of S3 of each genus g ≥ 0.

Proof. When g = 0 there is nothing to prove, and when g = 1 this is just the observation
that a knot in S3 with a neighborhood whose boundary compresses to the outside is the
unknot (which follows from Dehn’s Lemma). So we can assume the genus g > 1.

The following argument is due to Rieck [34], simplifying an argument developed by
Rubinstein–Scharlemann [36], and depending on a Theorem of Casson–Gordon whose proof
we shall defer until a later section. Let x : S3 → [−1, 1] be a Morse function with a single
maximum and minimum, and level sets all spheres Sx, and let y : S3 → [−1, 1] be a
“sweepout”, for which y−1(1) is the core of the “upper” handlebody, y−1(−1) is the core
of the “lower” handlebody, and each other level set Σy is isotopic to the splitting surface.
Cerf theory (see [7] and [36]) says that we can find such functions x and y such that the
subset Γ of [−1, 1] × [−1, 1] for which the level sphere of x and the level surface of y are
not transverse is a 4-valent graph Γ (with isolated vertices on the boundary); moreover, on
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points on the edges of Γ the surfaces Sx and Σy intersect in a single nondegenerate critical
point (a circle or saddle), and at vertices of Γ the intersections have two critical points.

Give a complementary region R to Γ the label I if the components of Σy ∩ Sx are
inessential in Σy for all (x, y) in R, and give it the label E otherwise. Then there is either a
chain of adjacent E regions joining y = −1 to y = 1, or a chain of I regions joining x = −1
to x = 1 either adjacent or meeting at a vertex.

For each nonsingular (x, y), the regions of Σy−Sx are “left” or “right” according to which
side of Sx they are on. If (x, y) is in an I-region (equivalently, if Σy ∩ Sx consists only of
inessential loops in Σy) then exactly one of these sides contains pieces of positive genus.
Thus, I regions are either IL or IR. Near x = −1 all I regions are IR, and near x = 1 all
I regions are IL. Passing over an edge of Γ cannot change an IL region to an IR region,
so such regions are never adjacent. Similarly, passing through a vertex can move at most
one “handle” from the L side to the R side, so it can’t change an IL region to an IR region
unless g ≤ 1.

We conclude therefore that there must be a chain of adjacent E regions joining y = −1
to y = 1. Now, for each nonsingular (x, y) in an E region, some loop of Σy ∩Sx is essential
in Σy, and we see that an innermost such loop bounds a compressing disk for Σy on at
least one side, either the “positive” side or the “negative” side. Near y = 1 the Σy collapse
to a graph on the positive side, so there must be positive compressing disks in E regions
here; similarly, near y = −1 there must be negative compressing disks in E regions. Since
there is a chain of adjacent E regions, either there is a single E region with both positive
and negative compressing disks, or there are adjacent E regions, one with positive and
the other with negative compressing disks. When we pass over an edge of Γ corresponds
to passing through a single critical point; thus the loops of intersection before and after
passing through this singularity can be realized disjointly in Σ (up to isotopy). Thus we
conclude (finally) that there are disjoint essential loops on Σ which bound compressing
disks for the handlebodies on opposite sides. Such a Heegaard splitting is said to be weakly
reducible.

The Theorem of Casson–Gordon (which we shall prove in the sequel) says that if a closed
orientable 3-manifold M admits a Heegaard splitting which is weakly reducible, then M
contains a 2-sided embedded incompressible surface; such a surface is either a reducing
sphere (in which case the Heegaard splitting is reducible) or else has infinite π1; since 2-
sided embedded incompressible surfaces are π1-injective, the latter situation cannot occur
in S3. So we conclude that every Heegaard surface in S3 of genus at least 2 is reducible.

Since the reducing sphere is inessential in S3 by Alexander’s Theorem, we see that
the original Heegaard splitting is obtained from two splittings of S3 of lower genus; by
induction, each of these is standard, and therefore so is the original splitting. □

Note that it is not at all easy to recognize a standard handlebody in S3; an example
of a (geometrically) interesting genus 2 handlebody in S3 determinining a (topologically)
standard Heegaard splitting is given in Figure 6.

3.7. Group theory and the Poincaré Conjecture. In [44], Stallings showed that the
Poincaré Conjecture follows from a purely group theoretic statement; in [17], Jaco showed
that the group theoretic statement and the Poincaré Conjecture are equivalent. Thus,
Perelman’s proof also proves this group theoretic statement.



CHAPTER 1: COMBINATORIAL FOUNDATIONS 27

Figure 6. A genus 2 handlebody in S3 with handlebody complement.

If H is a handlebody of genus g, then ∂H is a closed oriented surface of genus g, and the
map π1(∂H) → π1(H) = Fg induced by inclusion is surjective. Jaco proved the somewhat
surprising fact that all surjective maps between these groups arise in this way:

Lemma 3.28 (Jaco). Let Σg be a closed oriented surface of genus g and Γh a wedge of h
circles, and let f : Σg → Γh induce a surjection in π1. Then h ≤ g, and if h = g there is a
homotopic map f ′ : Σg → Γg whose mapping cylinder is a handlebody of genus g.

Proof. This lemma is proved by a variation on Stallings’ proof of Grushko’s Theorem and
Kneser’s Conjecture (Theorem 3.7 and Theorem 3.9) one dimension lower. Write Γh as
S1∨Γh−1, and by a homotopy replace the basepoint by an interval joining the S1 and Γh−1
factors, and let p be the midpoint of the interval. Make f transverse to p by a homotopy,
so that f−1(p) is a collection of circles in Σg whose union L is homologically trivial.

If L consists of a single circle, we can compress Σg along this circle and cut Γg along p, and
reduce to two subsurfaces with genus summing to g, mapping to S1 and Γh−1 respectively,
surjectively on π1. We claim that after a homotopy of f , we can always assume that L
consists of a single circle.

First, L is nonempty, or else the image of π1(Σg) would be properly contained in π1(Γh),
contrary to hypothesis. If L contains at least two components, there is an arc α in Σg −L
running from one component L1 to a different component L2, and by exactly the same
algebraic argument as in the proof of Theorem 3.7 we can assume (after replacing α by a
possibly different arc) that f(α) is a homotopically trivial loop on one side of the wedge.

The key difference between this situation and the proof of Theorem 3.7 is that a priori α
might not be embedded. So let p be a point of self-intersection of α bounding an embedded
arc σ ⊂ α on one side, ending on the loop L1, and let σ′ be a small embedded arc contained
in the interior of α, and crossing the rest of α only at p. Let σ′ = σ′1σ

′
2, where the σi are the

parts on either side of p. Build a new arc σ′′ = σ′1σL1σ
−1σ′2; i.e. σ′′ is obtained from σ′ by

pushing it over σ, and adding a copy of L1 at the end. The relative homotopy class of σ′′ is
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obtained from that of σ′ by inserting L1, but f(L1) = p so the relative homotopy class of
f(σ′′) in Γh is the same as that of f(σ′). Moreover, by a small homotopy, we can push σ′′
off σ, eliminating the point p of self-intersection. After finitely many such moves, we obtain
a new embedded arc α′ from L1 to L2, so that f(α) is a homotopically trivial loop in Γh on
one side of p, and now the argument of Theorem 3.7 goes through one dimension lower to
build a new map homotopic to f such that f−1(p) has one fewer point of intersection.

The argument then reduces to the case that h = 1; obviously then g ≥ 1, and if g = 1 it
is elementary that we can homotop the map so that the mapping cylinder is a solid torus.
This proves the lemma. □

Theorem 3.29 (Jaco, Stallings). For any g > 1 let Σg denote the closed, oriented surface
of genus g, and let F1 and F2 be free groups of rank g. Let ϕ : π1(Σg) → F1 × F2 be
a surjective homomorphism. Then either of the following conclusions is equivalent to the
truth of the Poincaré Conjecture:

(1) some nontrivial element of ker(ϕ) is represented by an essential simple closed curve
on Σg; or

(2) the map ϕ can be factored through an essential map of π1(Σg) into some nontrivial
free product.

Proof. First we show the two conclusions are equivalent. Suppose γ is an essential simple
closed curve on Σg in the kernel. If γ is separating, then Σg/γ is a wedge of two surfaces
of smaller genus, and ϕ factors through the fundamental group of the wedge, which is a
nontrivial free product. If γ is nonseparating, let α be simple and intersect γ transversely in
a single point. Then [γ, α] is simple and in the kernel, and is essential if g > 1. Conversely,
suppose ϕ factors through a map ψ to G1 ∗G2. Let K = K(G1, 1) ∨K(G2, 1) and realize
ψ by f : Σg → K transverse to the basepoint p. Compress inessential components of
the preimage until we get an essential embedded loop in the preimage. This shows the
equivalence of the two conclusions.

Now, let ϕi : π1(Σg) → Fi be two surjective homomorphisms to free groups, and let G :=
π1(Σg)/ ker(ϕ1) ·ker(ϕ2). We claim that ϕ := ϕ1×ϕ2 is surjective if and only if G is trivial.
First, let ψi : F1 × F2 → Fi be projection to a factor. Then F1 × F2 = ker(ψ1) · ker(ψ2).
But if ϕ is surjective, then π1(Σg) = ker(ϕ1) · ker(ϕ2) so that G is trivial. Conversely, if G
is trivial, π1(Σg) = ker(ϕ1) · ker(ϕ2). Let (α, β) ∈ F1 × F2 be arbitrary, and let ϕ1(α

′) = α
and ϕ2(β

′) = β. Using π1(Σg) = ker(ϕ1) · ker(ϕ2) we write α′ = α′′x and β′ = yβ′′. Then
ϕ(α′′β′′) = (α, β), so that ϕ is surjective.

We now show that the truth of the first conclusion for all g > 1 implies the Poincaré
conjecture. Let M be a simply connected closed 3-manifold, and let M = H1 ∪ϕ H2 be
a Heegaard splitting of minimal genus g. If g = 1 then M is a Lens space, and is not
a counterexample. Otherwise, the inclusion of the splitting surface Σg into the two sides
gives two surjective homomorphisms ϕi : π1(Σg) → π1(Hi) =: Fi which are the factors of
a map ϕ : π1(Σg) → F1 × F2. The hypothesis that M is simply connected implies that
ϕ is surjective as above, so the first conclusion says we can find a simple loop γ on Σg

in the kernel of both ϕi. Dehn’s Lemma implies that γ bounds embedded disks in either
handlebody, and therefore we can exhibit M as a nontrivial connect sum M = M1#M2

where each Mi has a Heegaard splitting of strictly smaller genus. Thus by induction, the
Poincaré Conjecture is true.
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Conversely, suppose the Poincaré Conjecture is true, and let ϕ : π1(Σg) → F1 × F2 be
surjective, so that each factor ϕi : π1(Σg) → Fi is surjective. Let Γi be a wedge of g circles,
and identify π1(Γi) with Fi. By Lemma 3.28 we can represent the ϕi by fi : Σg → Γi whose
mapping cylinders are handlebodies, and the union of the two mapping cylinders is a 3-
manifold M with a Heegaard splitting of genus g. By the argument above, surjectivity of ϕ
implies that M is simply-connected; thus M is homeomorphic to S3. Then Proposition 3.27
implies that the Heegaard splitting of M is reducible, and the reducing sphere intersects
the splitting surface Σg in an essential simple closed curve. □

4. Haken manifolds

Definition 4.1. A compact orientable irreducible 3-manifold is Haken if it contains a
properly embedded 2-sided essential surface.

Remark 4.2. The term sufficiently large is sometimes used as a synonym for “Haken”. One
also sometimes considers a non-orientable generalization of Haken 3-manifolds, in which
case one insists that they should contain no 2-sided projective plane.

If M is Haken, and S is a 2-sided essential surface in M , we may cut M along S to
produce a new manifold M ′. If S ′ is a 2-sided essential surface in M ′, we may cut M ′

along S ′, and so on. Note that if M is irreducible, so is M ′, since if Σ were an essential
2-sphere in M ′ that bounded a ball B in M but not in M ′, the surface S would necessarily
be contained in the interior of B, which is absurd since S is essential.

Definition 4.3. If M is a Haken 3-manifold, a partial hierarchy for M is a sequence

M =M0
S0−→M1

S1−→ · · · Sn−1−−−→Mn

where
(1) each Si is a properly embedded 2-sided essential surface inMi which is not boundary

parallel; and
(2) each Mi+1 is obtained from Mi by cutting along Si.

If further Mn is a disjoint union of 3-balls then we call the sequence a hierarchy for M .

The main significance of Haken manifolds is that they all admit hierarchies, and this
opens up the possibility of proving theorems about Haken manifolds by induction.

4.1. Manifolds with boundary. Suppose M is irreducible with nonempty boundary. If
some component of ∂M is compressible, then a compressing disk is an essential surface in
M , so that M is Haken and the result of this compression is a new irreducible 3-manifold
whose boundary has smaller complexity. So we can find a partial hierarchy for M by
splitting inductively along disks, until all boundary components are incompressible. If
every boundary component is a sphere, then since M is irreducible, we are left with a
union of balls. Otherwise, some boundary component is incompressible of positive genus.

We now show that if M is Haken with boundary, then it contains a nonseparating
properly embedded essential surface. First we prove a lemma relating the homology of M
and ∂M :
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Lemma 4.4 (Lagrangian subspace). Let M be a compact oriented 3-manifold. Then the
kernel L of the inclusion homomorphism

L→ H1(∂M) → H1(M)

is a Lagrangian subspace of H1(∂M) with its intersection pairing. In particular, it has
dimension equal to half of the dimension of H1(∂M).

Proof. Integral elements α, β in L are of the form ∂A, ∂B for integral classes A and
B ∈ H2(M,∂M). These classes are dual to classes in H1(M) which are represented by
homotopy classes of maps from M to S1. A generic preimage is a proper 2-sided embedded
surface, so we get surfaces SA, SB representing A, B, and whose boundaries represent α, β.
If we put SA and SB in general position, they intersect in a family of oriented circles and
intervals; each interval runs from a positive to a negative crossing in ∂SA ∩ ∂SB, and all
points of intersection arise this way, so α∩β = 0. Thus we have shown that the intersection
pairing is trivial on L.

Now, by Poincaré duality, the intersection pairing of H1(M) with H2(M,∂M) is nonde-
generate. The quotient H1(∂M)/L can be identified with its image in H1, so every nonzero
class β in H1(∂M)/L pairs nontrivially with some A ∈ H2(M,∂M), represented by a sur-
face SA. But then ∂SA represents α ∈ L which pairs nontrivially with β. Thus L surjects
onto the dual of H1(∂M)/L, and its dimension is at least half of H1(∂M). So we conclude
that L is Lagrangian, as claimed. □

Proposition 4.5. Suppose M is Haken with nonempty boundary. Then M contains a
nonseparating properly embedded essential surface.

Proof. Every sphere component of ∂M bounds a ball, so some component is not a sphere.
But then the kernel of H1(∂M) → H1(M) is nonempty, and comes from some class A ∈
H2(M,∂M) represented by a nonseparating properly embedded essential surface SA. □

Using results from previous sections, we can give a characterization of Haken manifolds
in terms of their fundamental groups:

Proposition 4.6. An irreducible oriented 3-manifold M is Haken if and only if π1(M)
splits as a nontrivial amalgamated free product or HNN extension; equivalently, if and only
if π1(M) acts minimally on a nontrivial tree T without inversions.

Proof. The equivalence of the two conclusions is Lemma 2.3.
Going in one direction, if M is Haken, and S is a 2-sided essential surface properly

embedded in M , then by Kneser’s Lemma, S is π1-injective. Either M is closed and
then we can split along S, or M has boundary, and by Proposition 4.5 we can find a
nonseparating properly embedded essential surface. In either case, we can assume the
splitting of π1(M) coming from S is nontrivial (the case that S is a compressing disk is
possible, of course).

Conversely, suppose π1(M) acts on a tree T . Then M contains a 2-sided essential
properly embedded surface S whose fundamental group injects into an edge stabilizer, by
Proposition 2.7. □
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4.2. Kneser-Haken finiteness. Recall Kneser’s proof of the existence of a prime decom-
position (i.e. Theorem 3.5), which argued by simplifying the intersection of a collection of
pairwise disjoint essential spheres with the 2-skeleton of a triangulation of M . Essentially
the same argument proves the following proposition, which is usually known as Kneser-
Haken finiteness, and first proved by Haken. We do not prove this theorem in the most
general possible form; in particular, we require the surfaces to be closed. For a proof where
the surfaces are allowed to have boundary, see Jaco [19], Thm. III.20.

Theorem 4.7 (Kneser-Haken finiteness). Let M be a compact irreducible 3-manifolds.
Then there is a constant h(M) so that if S := S1 ∪ · · · ∪ Sn is a union of disjoint closed
incompressible surfaces in M , and n > h(M), then at least two of the Si are parallel.

Proof. The proof follows Kneser’s argument from § 3.3 very closely. First, let τ be a
triangulation of M , and isotop S so that its intersection with τ minimizes the complexity
(e, f), where e is the number of points of intersection of S with τ 1, and f is the number of
components of intersection of S with faces of τ 2.

For a minimal configuration, there are no loops of intersection of S with faces of τ ,
since the boundary of such a loop must be inessential in S (by the hypothesis that S
is incompressible), and an innermost such loop can be eliminated by an isotopy (by the
hypothesis that M is irreducible).

Similarly, for a minimal configuration, there are no arcs of intersection of S with faces
of τ with both endpoints on one edge, or an innermost arc could be eliminated by isotopy,
reducing the complexity of the intersection.

Finally, for σ a simplex, all components of S ∩ σ are disks. For, the boundary of a non-
disk component must be inessential in S (by the hypothesis that S is incompressible), and
an innermost such loop can be eliminated by an isotopy (again, because M is irreducible).

Thus, as before, for each simplex of σ the boundary ∂σ is split into pieces, at most six
of which are bad, and all the rest of which are annuli bounding an I-bundle over a disk in
σ−S. Thus, if τ has t simplices, at most 6t components of M −S can contain a bad piece,
and all the rest are I-bundles. Each 1-sided I-bundle contributes a nontrivial summand to
H1(M ;Z/2Z) as before, and we are done. □

4.3. Existence of hierarchies. One of the most important applications of Theorem 4.7
is to the existence of hierarchies. But first, it is important to impose some additional
restrictions on the kind of partial hierarchies we allow. In particular, it is important to insist
that the splitting surfaces Si are not just incompressible but also boundary incompressible.

We already saw in the proof of Proposition 3.26 that any surface S in a handlebody
which is incompressible and boundary incompressible is a disk. But handlebodies contain
many interesting incompressible surfaces, and these are the origin of some very interesting
phenomena.

Example 4.8. Let M be a handlebody of genus 4, and write M = S × I where S is a
once-punctured surface of genus 2. Let α be an essential nonseparating embedded loop in
S. For any n we can take the surfaces S × i/n for 0 < i < n, cut each surface open along
α× i/n, and join one side of (S −α)× i/n to the opposite side of (S −α)× (i+1)/n by a
“vertical” annulus of the form α× [i/n, (i+ 1)/n] (the two boundary annuli each with one
component on ∂M). This produces an essential surface Sn in M of genus n.
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Example 4.9. Let P be a pair of pants, and letM = P×I. Then we can also writeM = T×I
where T is a once-punctured torus. If α is an essential embedded loop in T then α × I is
an incompressible (but not boundary incompressible) annulus in M . Cutting along α × I
produces a new manifold M ′ which is homeomorphic to (T − α)× I) = P × I =M . Thus
we may continue this procedure indefinitely, and obtain a partial hierarchy of any length.

From now on, we only consider partial hierarchies where the decomposing surfaces Si
are both incompressible and boundary incompressible. The next proposition shows that
the phenomenon in Example 4.9 cannot occur for such hierarchies:

Proposition 4.10. There is a constant c(M) depending only on M , so that if M :=M0
S0−→

· · ·Mn is a partial hierarchy where every Si is incompressible and boundary incompressible,
there are at most c(M) surfaces Si which are not disks.

Proof. For each Mi, let M ′
i be the result of compressing the boundary of Mi as much

as possible, and let Ri be the union of non-sphere components of ∂M ′
i . Then either Mi

is a union of handlebodies (in which case all incompressible and boundary incompressible
surfaces in Mi are disks, and all Mj with j > i are handlebodies or balls) or Ri is nonempty
and incompressible in M ′

i , so that π1(Ri) injects in π1(M ′
i). But since M ′

i is obtained from
M by inductively splitting along incompressible surfaces, from Seifert van-Kampen we see
that π1(Ri) injects in π1(M), so that Ri is essential in M .

If Si is not a disk, then because it is incompressible and boundary incompressible, we
can isotop it into M ′

i . It follows that the Ri are all disjoint, and there is at least one for
each non-disk Si.

By Kneser-Haken finiteness (i.e. Theorem 4.7), there is a constant c(M) so that if there
are more than c(M) non-disk Si, then there are at least 4 parallel Ri. It follows that there
is some Si which can be isotoped into ∂M ′

i . But Mi is obtained from M ′
i by attaching

finitely many 1-handles, so there is some S ′i ⊂ Si, obtained by removing finitely many
disks from Si, so that S ′i is isotopic into ∂Mi. If Si is not a disk, then S ′i contains some
essential proper arc which is also essential in Si; isotoping S ′i into ∂Mi therefore certifies
that Si was boundary compressible (along the arc in question), contrary to hypothesis. □

Proposition 4.10 does not yet give an a priori bound on the length of a partial hierarchy,
but it is enough to deduce the existence of a hierarchy:

Theorem 4.11 (Hierarchy exists). Let M be Haken. Then any maximal partial hierarchy
in which every surface is boundary incompressible must terminate. In particular, M admits
a hierarchy.

Proof. Consider any partial hierarchy for M , which ends in Mn. Any incompressible and
boundary incompressible surface is either a compressing disk for the boundary or not. Each
compression of the boundary reduces its complexity, so there is a bound (depending on
Mn) on the number of disk surfaces in any extension of the partial hierarchy, before we
must either be left with a collection of balls, or we must cut along a non-disk component.
By Proposition 4.10 there is a bound (depending only on M) on the number of non-
disk components in any partial hierarchy. Thus any maximal partial hierarchy as above
must terminate at some Mn. Since M is Haken, every component of Mn has nonempty
boundary; but then every boundary component is a sphere (or else we could extend the
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partial hierarchy) and therefore Mn is a union of balls, so that the partial hierarchy is
actually a hierarchy. □

The next lemma lets us rearrange the order of surfaces in a partial hierarchy so that all
the “interesting” surfaces appear first. Combining this lemma with Proposition 4.10 and
Theorem 4.11 we see that any Haken manifold M admits a partial hierarchy of bounded
length (which can be effectively computed from any triangulation of M) which ends at a
collection of handlebodies.

Lemma 4.12 (Do disks last). Let M0
S0−→ · · ·Mn be a partial hierarchy. Then M0 has

another partial hierarchy of the same length terminating in Mn, in which all the splittings
along disk components are done last.

Proof. Suppose Si is a disk, so that when we cut Mi along Si to get Mi+1, we get two new
disks S±i ⊂ ∂Mi+1. Whatever ∂Si+1 is, we can isotop it in ∂Mi+1 to be disjoint from S±i .
But this means that ∂Si+1 ⊂ ∂Mi and is disjoint from ∂Si, so we can switch the order of
these two surfaces in the hierarchy. □

In fact, if one is prepared for our surfaces Si to be disconnected, we can find very short
hierarchies:

Proposition 4.13. Let M be Haken. Then there is a hierarchy of length at most 4:

M :=M0
S0−→M1

S1−→M2
S2−→M3

Proof. Let S0 be a maximal collection of pairwise disjoint essential closed surfaces. If a
component ofM1 has compressible boundary, then it must be a handlebody, or else it would
contain an essential surface (obtained as the boundary after compressing along a maximal
collection of disks) disjoint from and not parallel into S0. For each component of M1 with
incompressible boundary, we can find an essential nonseparating boundary incompressible
surface, and call the union of such surfaces (one for each component) S1. The result M2 of
cutting along S1 must now be a union of handlebodies, since otherwise as above we could
find a new essential surface to add to the collection S0. Now each handlebody admits a
maximal collection of disjoint compressing disks; the union over all components of M2 is
S2, and the result M3 =M2 − S2 is a union of balls. □

4.4. Homotopy equivalences between Haken manifolds. Homotopy equivalent 3-
manifolds are not necessarily homeomorphic, as the following examples show.

Example 4.14 (Square and Granny knot complements). Let square knot is a connect sum of
a right- and left-handed trefoil in S3. The Granny knot is a connect sum of two left-handed
trefoils. Denote their complements in S3 by M1 and M2. Then π1(M1) and π1(M2) are
equal, both groups being equal to the amalgam of two trefoil know complements along
their meridional subgroups; i.e.

π1(M1) = π1(M2) = ⟨x, y, z | xyx = yxy, xzx = zxz⟩
Since the Mi are orientable and irreducible, by the sphere theorem they have π2 trivial.
Since they are non-compact, they have π3 trivial. Thus both spaces are K(π, 1)s, and they
are homotopy equivalent. However, they are not homeomorphic, although this is harder to
see. One way to distinguish them is first to invoke a famous theorem of Gordon–Luecke
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[13] which says that knot complements in S3 are homeomorphic if and only if the knots are
isotopic. Then one must distinguish the square and Granny knots somehow; the simplest
way is to use the signature, which is zero for the square knot, and is 4 for the Granny knot
(or −4 for its mirror image).

Example 4.15 (Lens spaces). The Lens spaces L(p, q) and L(p′, q′) are homeomorphic if and
only if |p| = |p′| and q′ = ±q±1 mod p. On the other hand, they are homotopy equivalent
if and only if |p| = |p′| and qq′ = ±w2 mod p for some w. Thus (for example), L(7, 1)
and L(7, 2) are homotopy equivalent but not homeomorphic. Homotopy equivalent but
not homeomorphic Lens spaces can be distinguished by Reidemeister torsion, which was
invented by Reideimeister [33] precisely for this purpose.

However, it is a remarkable theorem of Waldhausen, that homotopy equivalences between
Haken manifolds which preserve the boundary structure are (with some well-understood
exceptions) homotopic to homeomorphisms. This theorem is proved inductively, using the
hierarchical structure. We prove the following theorem:

Theorem 4.16 (Waldhausen). Let M and N be Haken 3-manifolds, and suppose that
f : (M,∂M) → (N, ∂N) is injective on π1, and furthermore the restriction f : ∂M → ∂N
is injective on π1 on each component. Then f is homotopic through maps of pairs to some
map g : (M,∂M) → (N, ∂N) for which one of the following holds:

(1) g :M → N is a covering map;
(2) M is an I-bundle over a closed surface, and g(M) ⊂ ∂N ; or
(3) N (hence also M) is a solid torus and g : M → N is a branched covering with

branch set a circle.
Moreover, if f restricted to a component of ∂M is already a covering map to its image in
∂N , we may assume the homotopy is constant on this component.

The theorem depends on a similar but simpler proposition for surfaces, which we state
and prove first.

Proposition 4.17. Let F and G be compact oriented surfaces with π1(F ) ̸= 0. Let f :
(F, ∂F ) → (G, ∂G) be injective on π1. Then f is homotopic through maps of pairs to
g : (F, ∂F ) → (G, ∂G) for which one of the following holds:

(1) g : F → G is a covering map; or
(2) F is an annulus and g(F ) ⊂ ∂G.

Moreover, if f restricted to a component of ∂F is already a covering map to its image in
∂G, we may assume the homotopy is constant on this component.

Proof. Assume ∂G is nonempty. Then since f∗ is injective, ∂F is nonempty. Since
π1(F ) ̸= 0, boundary components of F are essential, so the restriction of f to each bound-
ary component is homotopic to a covering map, and after replacing f by a homotopic map
f ′, we can assume f ′ : ∂F → ∂G is a covering map on each component.

Let G′ be the cover of G with fundamental group equal to f∗(π1(F )), and let f ′ : F → G′

be the lift of f . Then f ′ is an embedding on each component of ∂F . Suppose there are
distinct components J0, J1 of ∂F with the same image K ⊂ ∂G′. Then we can find an
essential arc α from J0 to J1 whose image f ′(α) is a loop based at some point in K. By
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surjectivity of f ′ on π1, we may modify α as above so that f ′(α) is trivial in π1(G′). Since
f ′ induces an isomorphism on π1, we deduce that the elements associated to J0 and J1
are conjugate in π1(F ); but this immediately implies that F is an annulus, since otherwise
killing J0 (by attaching a disk, say) would produce a non-disk surface in which J1 is still
essential. So either we are in case (2), or we can assume f ′ restricted to ∂F is an embedding.

Choose a non-separating essential arc β in G′. The preimage (f ′)−1(β) consists of loops,
together with exactly one proper arc (because f ′ is an embedding near the boundary). The
loops are inessential in F , because f ′ is π1-injective, so after a homotopy, we can assume the
preimage is a single non-separating essential arc in F . After cutting along these arcs, we
get a new map f1 : (F1, ∂F1) → (G′1, ∂G

′
1) between simpler surfaces. Thus the proposition

follows by induction (if we are careful about the base cases).
Now, if ∂G is empty, we can find a 2-sided nonseparating loop β in G, homotop the map

so that the preimage consists of a collection of essential loops in F , then cut along β and
its preimage and apply the argument above. □

We are now ready to give the proof of Theorem 4.16. We follow very closely the proof
of the analogous Thm. 13.6 in [16].

Proof. Note that the condition that f should be injective on each component of ∂M is
automatic if ∂M is incompressible.

By Proposition 4.17 we homotop f on each component of ∂M so that f : ∂M → ∂N is a
covering map on each component. Let N ′ be the cover of N with fundamental group equal
to f∗(π1(M)), and let f ′ : M → N ′ be the lift of f . Suppose first that ∂M is nonempty,
and f ′ : ∂M → ∂N ′ is not an embedding. Then we can find a proper arc α in M with
distinct endpoints on ∂M whose image is a loop based at some point in ∂N ′. Since f ′ is
surjective on π1, we can choose α in such a way that f ′(α) is null-homotopic in N ′. Let B0,
B1 be the components of ∂M containing the endpoints of α, and let C be the component
of N ′ they map to.

Now, f ′ is a covering map when restricted to each Bi, so the images of π1(B0) and
α∗π1(B1) in π1(C) both have finite index; in particular, they have finite index in each
other, so the same is true for the image in π1(N

′). So if M̃ is the cover of M with
fundamental group π1(B0), the preimage B̃1 of B1 in M̃ is compact.

Suppose further that α is not homotopic rel. boundary into ∂M . Then B̃0 is not equal
to B̃1. It follows that B̃0 is incompressible in M̃ , or else we could compress B̃0 without
changing B̃1, contrary to the fact that both surfaces have fundamental groups which are
finite index in π1(M̃). Hence the inclusion of B̃0 in M̃ induces an isomorphism in π1, and
is therefore a homotopy equivalence. Thus, H2(M̃ ;Z/2Z) = H2(B̃0;Z/2Z) = Z/2Z. On
the other hand, we have an exact sequence

0 → H3(M̃, B̃0 ∪ B̃1;Z/2Z) → H2(B̃0 ∪ B̃1;Z/2Z) → H2(M̃ ;Z/2Z) = Z/2Z

and H2(B̃0∪ B̃1;Z/2Z) = Z/2Z⊕Z/2Z, so that M̃ is compact, and π1(B0) has finite index
in π1(M). From this, it follows on general grounds that M is an I-bundle over a closed
surface, and we obtain conclusion (2).

So suppose that α as above is homotopic rel. boundary into ∂M . Since the image of α is
a loop in C, and B0 → C is a covering, this image is nontrivial in π1(C). But by hypothesis,
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the image of α is trivial in π1(N ′). Thus C is compressible in N ′. We would like to argue
that C is a torus. Notice that we may assume that f takes distinct components of ∂M to
distinct components of ∂N ′, or else we could have found α as in the previous case. Then
f ′∗ : H2(∂M) → H2(∂N

′) is nonzero, since it is a covering map on each component, and
different components have different images. But then f ′∗ : H3(M,∂M) → H3(N, ∂N

′) is
nonzero, so N ′ is compact, and every component of ∂N ′ is in the image of some component
of ∂M . Since f ′ is a homotopy equivalence,

χ(∂M) = 2χ(M) = 2χ(N ′) = χ(∂N ′)

On the other hand, labeling components of ∂M as Bi, and components of ∂N ′ as Ci, if
f : Bi → Ci has degree ni, then niχ(Ci) = χ(Bi). No component is a sphere, so it follows
that ni = 1 for each i unless Bi (and Ci) is a torus. Thus C as above is a torus, as claimed.
Hence N ′ is a solid torus, and so is M , and we are in case (3).

So finally we can assume that f ′ is an embedding when restricted to ∂M . Choose a
proper essential surface S in N ′ (which is the first surface of a hierarchy), and homotop f ′
rel. boundary so that R := (f ′)−1(S) is an essential surface in M . Note that f ′ induces
an injection on π1 on each component of R; since S has boundary, and since f ′ restricted
to ∂R is an embedding, it follows that f ′ : R → S is homotopic to a homeomorphism, by
Proposition 4.17. So we can cut along R and S, and the proof follows by induction. □

4.5. Examples of Haken manifolds. Many naturally occurring classes of 3-manifolds
are easily seen to be Haken, and many natural operations on 3-manifolds stay in the world
of Haken ones. We describe some examples

Example 4.18 (Handlebodies). Every handlebody of genus at least 1 is Haken. They con-
tain many interesting incompressible surfaces, but the only incompressible and boundary
incompressible surfaces they contain are meridian disks. To see this, intersect any such
surface S with a maximal family D of meridian disks, and minimize the complexity of the
intersection. By incompressibility of S, there can be no loops of intersection. By boundary
incompressibility of S, innermost arcs of intersection can be eliminated by sliding S over a
disk in D; this produces a new surface S ′, still incompressible and boundary incompressible
if S is, with the same topology as S but with fewer intersections with D. So we ultimately
obtain S ′′ disjoint from D, and therefore deduce that S ′′ is a disk.

Example 4.19 (Knot complements). Let K be a knot in S3. Then the complement S3 −
N(K) of an open tubular neighborhood of K is a Haken manifold with torus boundary.
Irreducibility follows from Alexander’s Theorem, plus the fact that K is connected. By
Mayer–Vietoris, H1(S3 − N(K)) = Z; a properly embedded 2-sided surface dual to the
generator is called a Seifert surface. Any minimal genus Seifert surface is incompressible,
thus showing that S3 −N(K) is Haken.

Note that by the sphere theorem, π2(S3 −N(K)) = 0, and by noncompactness, π3(S3 −
N(K)) = 0. Thus, knot complements are K(π, 1)’s.

Example 4.20 (Branched covers). Let M → N be a branched cover, and suppose N is
Haken. For the sake of argument, let’s suppose M and N are oriented. A branched cover
between oriented manifolds has nonzero degree, and the image of π1(M) therefore has
finite index in π1(N) (for, otherwise, the map would factor through an infinite — and
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hence noncompact — cover of N , and would be trivial on H3). Since N is Haken, π1(N)
admits a nontrivial action on a tree, and therefore so does π1(M).

This does not yet imply that M is Haken. There are two ways that M could contain
essential spheres:

(1) there is a sphere S in M disjoint from L, and such that for each ball component B
of M − S the intersection B ∩ L is not an unlink; or

(2) there is a sphere S in M intersecting L in exactly one component K, so that K ∩S
consists of exactly 2 points, and for each ball component B of M−S the intersection
B ∩ L is not an unlink or an unlink together with an unknotted arc.

In every other case, M will be irreducible. To see this, first pass to a further cover which
is regular — i.e. obtained by quotient by a finite group action. Then look for a least area
essential embedded sphere Σ in M , with respect to a group-invariant metric. Then Σ is
either disjoint from or equal to its translates under the group action, and therefore covers a
spherical orbifold S in N . Note that because we are assuming the manifolds are orientable,
S is topologically a sphere with finitely many orbifold points.

Because N is Haken, the underlying sphere S is inessential in N , so each component of
L intersects S an even number of times. Giving N its orbifold structure, we see that S
has at most 3 orbifold points (because it has spherical geometry); so in fact, it must have
at most 2 orbifold points, and with the same order. So at most one component K of L
can intersect S in at most 2 points (after an isotopy for which the number of points of
intersection is minimal).

4.6. Examples of non-Haken manifolds. Haken manifolds by definition are irreducible,
and have infinite π1, so reducible 3-manifolds, and manifolds with finite fundamental group,
are non-Haken. It is more interesting to give examples with infinite π1.

Example 4.21 (Small Seifert fibered spaces). A compact 3-manifold is a Seifert fibered
space if it is foliated by circles. Epstein showed that every circle γ in such a manifold has
a neighborhood that looks like a solid torus constructed as D2× I/(x, 1) ∼ (φ(x), 0) where
φ : D2 → D2 is a twist through angle 2πp/q for some coprime (p, q), where γ is the core
circle 0 × I/(0, 1) ∼ (0, 0), and where the nearby circles are finite unions of the vertical
intervals x× I. Each nearby circle winds q times around γ, and sits on the boundary of a
tubular neighborhood of γ like a (p, q) torus knot. A circle γ for which q > 1 is called a
singular fiber; there are finitely many of these. Other circles are called ordinary

If M is a Seifert fibered space, the quotient space of M by its circle fibers is a 2-
dimensional orbifold O. Singular fibers become orbifold points in O; a singular fiber of
type (p, q) becomes an orbifold point of order q.

If α is an essential embedded loop in O, then the preimage of α in M is a vertical torus,
and is essential in M ; thus every such M is Haken unless O contains no essential loop.
This can happen only if O is a sphere with at most three orbifold points. Such Seifert
fibered spaces are called small. If O is a Euclidean or hyperbolic orbifold (for example, S2

with orbifold points of orders (2, 3, 6) is Euclidean, while S2 with orbifold points of orders
(p, q, r) with 1/p+ 1/q + 1/r < 1 is hyperbolic) then M is irreducible, and has infinite π1.

Example 4.22 (Dehn fillings on the Figure 8 knot complement). Thurston [48] § 4.10 clas-
sified incompressible surfaces in the Figure 8 knot complement. There are essentially only
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6 such surfaces: the boundary torus, the once-punctured torus Seifert surfaces, two one-
sided once-punctured Klein bottles (each of which is obtained as a colored region by a
two-coloring of one of the obvious projections), and two twice-punctured tori which are the
boundaries of tubular neighborhoods of the Klein bottles.

Figure 7. A symmetrical projection of the figure 8 knot.

Now, suppose M(p, q) is obtained by Dehn filling the Figure 8 knot complement M by
attaching a solid torus whose meridian is the (p, q) curve on ∂M . An essential surface S in
M(p, q) can be made transverse to the core α of the filling torus, and gives rise to a surface
S ∩M properly embedded in M . If S ∩M is compressible, a compressing disk D ⊂ M
must have ∂D = ∂D′ for some D′ ⊂ S which intersects α. If we cut out D′ from S and
replace it with D, we obtain a new surface S ′ which intersects α in fewer curves than S
does; moreover, S ′ is incompressible if S is. Similarly, if S∩M is boundary incompressible,
we can perform a boundary compression by an isotopy of S which eliminates intersections
with α. Thus, if S ∩ α is minimal, S ∩M is incompressible in M , and must be one of the
6 surfaces above. It can’t be ∂M , which does not stay incompressible in any filling; so it
has to be one of the other 5 surfaces. But each component of ∂(S ∩M) must bound a disk
in M(p, q), so (p, q) must be one of the slopes bounded by these surfaces.

Thus: M(p, q) contains an essential surface if and only if (p, q) is one of (0,±1) or
(±4,±1). On the other hand, for all but finitely many other surgeries, M(p, q) is hyperbolic,
and therefore is certainly irreducible and has infinite fundamental group.

Example 4.23 (Seifert–Weber dodecahedral manifold). The Seifert–Weber dodecahedral
manifold is obtained from a regular dodecahedron by gluing opposite faces by a twist of
3π/5. Edges are identified in six groups of five.

For any angle α between 60◦ and (approximately) 116.565◦ there is a regular hyperbolic
dodecahedron with every dihedral angle equal to α. Choosing α = 72◦ gives a dodecahedron
for which the gluing above gives rise to a complete hyperbolic structure on the Seifert–
Weber space.

Thurston conjectured that the Seifert–Weber manifold is non-Haken. This was proved
by Burton–Rubinstein–Tillmann [4] in 2012 by a computer implementation of their im-
provements to an algorithm of Jaco–Oertel [20] that will be discussed in § 6.

5. The Torus Theorem and the JSJ decomposition

5.1. The Torus Theorem. After the sphere, the next simplest kind of oriented closed
surface is the torus. The Sphere Theorem lets one replace an essential immersed sphere
by an embedded one, and it is natural to want a similar theorem for tori. The first such
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Figure 8. A regular hyperbolic dodecahedron with dihedral angles 72◦

torus theorem was proved by Waldhausen under the (rather strong) assumption that the
manifold is Haken. Scott [40] formulated and proved a stronger version, which we now
state:

Theorem 5.1 (Torus Theorem). Let M be a closed orientable irreducible 3-manifold, and
suppose that there is a π1-injective map f : T →M where T is a torus. Then

(1) either M contains an embedded incompressible torus, which can be taken to be
contained in any neighborhood of the image of T ; or

(2) π1(M) has an infinite cyclic normal subgroup.

The latter possibility can certainly occur: a small Seifert Fibered Space with Euclidean
or hyperbolic base orbifold is irreducible, and contains many immersed π1-injective tori.
However it is not even Haken; see Example 4.21.

It is natural to wonder whether these are the only examples; this turns out to be the
case, and its proof combines work of Mess, Tukai, Gabai, Casson–Jungreis:

Theorem 5.2 (Seifert fibered theorem). Let M be irreducible, and suppose that π1(M)
contains an infinite cyclic normal subgroup. Then M is Seifert fibered.

Combining Theorem 5.2 with Theorem 5.1 we obtain the satisfying conclusion that a
closed orientable irreducible 3-manifold admits a π1-injective map of a torus if and only if
it admits an essential embedded torus, or is a small Seifert Fibered Space.

Theorem 5.2 has a much easier argument if one adds the further hypothesis that M is
Haken. Under this hypothesis, the conclusion (that M is Seifert fibered) was proved by
Waldhausen, and his proof was simplified by Scott.

But at the time Scott proved Theorem 5.1, there were already well-known examples
of non-Haken 3-manifolds whose fundamental group contains an infinite cyclic normal
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subgroup, namely the small Seifert fibered spaces discussed in Example 4.21. Theorem 5.2
says that these are the only non-Haken examples.

We will sketch proofs of these theorems in the next few sections.

5.2. Minimal surfaces and Casson’s proof of the Torus Theorem. We will now
sketch the proof of the Torus Theorem 5.1 following Casson. Casson’s proof follows Scott’s
outline, but with a major simplification that depends on using results from the theory of
minimal surfaces.

Definition 5.3. A map of a surface f : S → M is least area if it globally minimizes the
area amongst all maps in its free homotopy class.

We summarize some of the most important properties of least area surfaces:
(1) Suppose π2(M) = 1. Then if no simple loop in S is conjugate into the kernel of

f∗ : π1(S) → π1(M), a least area surface exists. [42], [37]
(2) Least area surfaces are immersed; i.e. they have no branch points. [28]
(3) If M is orientable and irreducible, and S is orientable and not S2, then double

curves are essential. [11]
(4) If f : S → M is least area and π1-injective, if M is orientable and irreducible, and

if S is not a sphere, the preimage of f(S) in the universal cover consists of a union
of properly embedded planes, and the intersection between any two such planes is
a union of lines. [11]

(5) If f : T → M is a least area incompressible torus, then the preimages have the
1-line property: i.e. they intersect pairwise in at most one line. [11]

Casson’s main technical contribution beyond these results was the following:

Lemma 5.4 (Casson). If f : T →M is a least area torus, the double curves of f represent
primitive elements of π1(T ).

Proof. We give a proof of this lemma following Max Neumann–Coto [26], using the results
of Freedman–Hass–Scott [11] described above. Let P and Q be transverse planes in the
universal cover M̃ covering T . By the 1-line property, their intersection P ∩ Q is a single
line ℓ. Suppose α stabilizes Q but does not stabilize P . We further let ℓi denote the line
P ∩ αiP whenever this is nonempty and the intersection is transverse (again, we are using
the 1-line property). Note that ℓ, the ℓi, and all their translates by powers of α are parallel
in M̃ (i.e. they are stabilized by some common nontrivial covering translation). For, the
generator λ of the common stabilizers of P and Q commutes with α, and therefore stabilizes
the set of intersections between Q and all the αiP . This fact lets us reduce the analysis of
the configuration of Q and the various αiP to configurations of lines in the plane, where
separation arguments become more powerful.

The line ℓ divides P into two parts; we call the ends of these P+ and P−. Clearly, if
P intersects αP , then αP+ and α−1P+ lie on different sides of P in M̃ . Similarly, if P
intersects αP then P intersects α2P ; for, both P and α2P intersect Q, and both P+ and
α2P+ are on the same side of Q.

Finally, we claim that for all positive n, the ends αP+ and αnP+ lie on the same side
of P . Suppose by induction αiP+ lies to the right of P for all 1 ≤ i ≤ n. We can’t have
αn+1P = P , or else αnP+ = α−1P+ contrary to the fact that αP+ and α−1P+ are on
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different sides of P . The subset X on the positive side of Q to the right of αnP and to
the left of P is invariant under λ, and its quotient is compact, so it can’t contain αn+1P+;
thus this end must be to the right of P , as claimed. But then, no power of α stabilizes P ,
and we deduce that stabilizers of lines are primitive. □

It follows from this lemma that the double curves of f are homotopic to simple curves
in T . Given this, we now explain the proof of the Torus Theorem.

Let f : T → M be a least area π1-injective torus. By the 1-line property, each double
curve α on T is covered by a line ℓ in M̃ which must necessarily meet two distinct planes
P,Q covering T , stabilized by subgroups GP , GQ, both isomorphic to Z2, and intersecting
in a primitive Z subgroup which is the stabilizer of ℓ. Suppose there are double curves α, β
in distinct homotopy classes in T . Then there are planes P,Q,R stabilized by GP , GQ, GR

all distinct, for which P ∩ Q = lα, P ∩ R = lβ and (since α ∩ β is nonempty) Q ∩ R is
nonempty and equal to some lγ. Now, the stabilizer γ of lγ has no power conjugate into
⟨α, β⟩ = Z2; on the other hand, it commutes with both of them. Thus ⟨α, β, γ⟩ = Z3, and
it follows for homological reasons that M is finitely covered by T 3. It is known that M is
Seifert fibered in this case.

Otherwise we may assume that all double curves are parallel, and therefore (because
primitive) freely homotopic. Look at the universal cover, and consider a connected compo-
nent X of the preimage of T , so that X is a union of planes which are pairwise disjoint or
intersect in lines, and any two lines of intersection contained in the same plane are parallel
in that plane. We claim that the stabilizer of X normalizes α. This is proved by induction:
let P be some plane of X, and let gP be another plane. Because X is connected, we can
join P to gP by a sequence of translates

P := P0, P1, · · · , Pn := gP

where Pi = giP for some gi, and where Pi ∩ Pi+1 = ℓi is stabilized by αi. We have α = α0

by hypothesis. Moreover, gig−1i−1 : Pi−1 → Pi takes ℓi−1 to a line in Pi which is parallel
both to ℓi−1 and to ℓi; since by Lemma 5.4 these lines are stabilized by the same primitive
element, we have that αi−1 is equal to α±i , and is normalized by gig−1i−1. Thus, by induction,
α is normalized by g.

If X is not stabilized by all of π1(M), the boundary of a regular neighborhood covers a
closed surface whose fundamental group contains an infinite cyclic normal subgroup, and
is therefore a torus or Klein bottle; since M is orientable, there is an embedded essential
torus in this case. Otherwise, X is stabilized by all of π1(M), which means that ⟨α⟩ is
normal in π1(M), as claimed.

5.3. The Seifert Fibered Theorem: groups quasi-isometric to planes. Recall that
the Seifert Fibered Theorem 5.2 says that if M is irreducible, and π1(M) contains an
infinite cyclic normal subgroup, then M is Seifert fibered. We abbreviate G := π1(M) and
let C be the infinite cyclic normal subgroup.

The first step in the proof of the Seifert Fibered Theorem is due to Mess [23], and is
unfortunately unpublished. In this section we sketch the contents of Mess’s preprint. This
takes several steps, each of which is highly original and technical, and therefore our survey
necessarily omits many details.
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Let’s begin. We can assume by passing to a cover if necessary that M is a closed, oriented
3-manifold whose fundamental group contains a central Z subgroup. For simplicity, let’s
in fact assume that the center is actually equal to Z; it is easy to reduce to the case that
the center has rank 1, but it is subtle to deal with the possibility that the center might be
infinitely generated. In any case, the first main theorem Mess proves ([23] Thm. 1, page
2), by a “bare hands” topological argument, is:

Proposition 5.5 (Cover is solid torus). Let M be closed, irreducible, orientable. Suppose
that center of π1(M) is Z. Then the covering space M̂ with fundamental group equal to
this center is homeomorphic to a solid torus.

Proof. Let’s let a denote the generator of the center. Because it is central, the element a
is well-defined as an element of π1(M, p) for any point p, so we can build (e.g. inductively
on the skeleta of a triangulation) a homotopy H : M × S1 → M such that the track of
every point in M under the homotopy is in the class of a. We can lift this homotopy to
H : M̂ × S1 → M̂ ; because M was compact, the length of the tracks of the homotopy
have uniformly bounded length. For homological reasons, M̂ is one-ended, and the first
observation is that every compact set K in M̂ can be separated from this end by an
embedded torus T in such a way that a is still central in π1(E), where E is the noncompact
region bounded by T . To see this, first observe that K can be included in a big compact
set K ′′ such that the track of ∂K ′′ under the homotopy H stays disjoint from K (this
uses the fact that the tracks themselves have uniformly bounded length). The surface ∂K ′′

is essential in H2(M̂ − K), and its image under H sweeps out an immersed 3-manifold
whose image G in π1(M̂ − K) contains a central Z subgroup (the image of the tracks of
the homotopy). Pass to the cover M̂G of M̂ − K; this manifold has nontrivial H2, and
is therefore Haken, so (because it has a central Z subgroup) is already known to be a
Seifert fibered space. Thus the surface ∂K ′′ can be replaced by a homologically equivalent
embedded torus, which necessarily bounds a solid torus in M̂ . So M̂ is an increasing union
of solid tori; a further standard argument shows that these tori nest nicely in each other,
and the union is a solid torus. □

Now, at this stage, M̂ has two useful structures: topologically it is homeomorphic to a
solid torus R2 × S1, while geometrically it admits a homotopy H : M̂ × S1 → M̂ whose
tracks have bounded length. The next step is to find a relationship between these two
structures:

Proposition 5.6 (Circles of bounded length). With M , M̂ and H as above, there is a
homotopy J : M̂×S1×[0, 1] → M̂ whose S1×[0, 1] tracks have uniformly bounded diameter,
which starts at H and ends at a free circle action on M̂ witnessing its topological product
structure.

Proof. In words, J is a bounded homotopy from H to the Seifert structure. In particular,
because J has fibers of bounded diameter, M̂ admits a product structure for which the
circle fibers have uniformly bounded length. The homotopy J is constructed inductively
out of “round handles” — i.e. products of circles with ordinary (2-dimensional) handles.
First, we can pick any unknotted core γ of the solid torus, and take this to be the image
of some track of H under the homotopy J . The deck group G := π1(M)/π1(M̂) (which
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is a group because π1(M̂) is central and therefore normal) acts on M̂ by isometries, and
therefore by homeomorphisms; and thus permutes the set of positively oriented unknotted
cores, since these are the only unknotted circles which represent a homotopically in a solid
torus. Choose a separated net in G — a collection of elements gi such that no two are very
close, and such that every element is not too far away from something in the net. Evidently
we can choose such a net so that the translates of γ by elements of the net are all mutually
unlinked, and collectively represent an unknotted collection of circles in M̂ . Thicken each
such circle to a round 0-handle; these will be the round 0-handles in our decomposition.

Building the round 1-handles is tricky, and requires quite an ingenious argument. Be-
cause we chose a separated net, every round 0-handle is close to some, but not too many,
other round 0-handles. Any two round 0-handles which are close enough can be connected
by some annulus (because their cores are isotopic), and we can least area representatives.
Two such least area annuli cannot intersect on their boundaries (unless they agree), by the
roundoff trick. Thus, any two of them will intersect transversely in finitely many essential
circles. So we pick a starting 0-handle B0 and inductively attach least area annuli one at a
time, choosing the absolute smallest area one among the finitely many (up to isotopy) which
join an unattached 0-handle (which we will call Bn) to one of the B0, · · · , Bn−1 constructed
so far, and by a roundoff argument, we see that the result is embedded. By transfinite
induction, all the round 0-handles can be connected up in this way after some countable
ordinal stage. The annuli we attach can be thickened to become round 1-handles, and the
result is a tree of round 0-handles, connected up by round 1-handles, all with uniformly
bounded diameter (this is because at every stage some Bn yet to be connected is bounded
distance from the union of the handles connected so far, so the annuli which are attached
have uniformly bounded diameter).

Now consider a component X of the boundary of the union of round 0- and 1-handles
constructed so far. Note that X is partitioned into annuli Ti of bounded diameter which are
on the boundaries of the 0-handles, and Aj which are on the boundaries of the 1-handles.
They appear in a particular order · · ·T−1, T0, T1 · · · . Adding further round 1-handles splits
X into components, some of which might be bounded. We would like to add new annuli, to
split X up into components of uniformly bounded (combinatorial) size; to do this, we need
to find pairs of Ti, Tj which are a uniformly big combinatorial distance apart, but which
can be joined by and embedded annuli of uniformly bounded diameter. It is intuitively
clear that this can be done: if X is noncompact, the two “ends” of X can’t get too far
away from each other, or else there would be an arbitrarily big embedded ball contained
in the complement, which is incompatible with the fact that we chose a separated net’s
worth of translates of our original 0-handle. A similar argument works when X is compact
but sufficiently big (alternately one can suppose not and take pointed limits, since this is
a purely geometric argument). Thus we can attach round 1-handles of uniformly bounded
diameter so that at the end, every component X itself has bounded diameter, and can be
filled in with a round 2-handle. The construction of J with this handle decomposition as
the end result is routine. □

This brings us to section 3 of Mess’ paper (page 11), entitled, On groups which are
coarse quasi-isometric to planes. The group in question is G, i.e. π1(M)/π1(M̂). This
is the group that we hope will turn out to be the orbifold fundamental group of some
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2-orbifold O (the base of a Seifert fibration of M), if the Seifert Conjecture is true. Since it
is infinite, we want to show that G is a lattice in the group of isometries of the Euclidean or
hyperbolic plane; in fact, a cocompact lattice, since M is closed. In particular, this should
imply at least that G is quasi-isometric either to the Euclidean or the hyperbolic plane.
By the Schwarz lemma, we know that G is quasi-isometric to M̂ , and we have constructed
a product structure on M̂ whose fibers have uniformly bounded length. It is therefore
straightforward (e.g. by averaging over fibers) to construct a complete Riemannian metric
on the plane (which we denote P ) so that G is quasi-isometric to P . The next main result
is Thm. 7 (page 13) which says:

Theorem 5.7. Suppose a finitely generated group G is quasi-isometric to a plane P with a
complete Riemannian metric. If P is conformally equivalent to the hyperbolic plane, then
G is quasi-isometric to the hyperbolic plane.

Mess’s proof of this theorem is interesting, but can be shortened by appealing to a
theorem of Candel [5].

Proof. Note that P has bounded geometry (i.e. 2-sided curvature bounds, and injectivity
radius bounded below). One subtlety, observed by Mess, is that the plane admits complete
Riemannian metrics with bounded geometry, and in the conformal class of the hyperbolic
plane, but for which 0 is the bottom of the spectrum of the Laplacian; a group quasi-
isometric to such a space would be amenable, by a famous theorem of Brooks, whereas no
group quasi-isometric to the hyperbolic plane can be amenable.

Nevertheless, Candel proves that if L is a compact Riemann surface lamination all of
whose leaves are conformally hyperbolic, then the leafwise uniformization map is continu-
ous; in particular, since L is compact, the uniformization map is bilipschitz (and in par-
ticular is a quasi-isometry). Now, a Riemannian manifold with bounded geometry can be
realized as a dense leaf in a lamination by taking its closure in pointed Gromov-Hausdorff
space; if we do this to P , we obtain a lamination L. A priori a lamination can have leaves
of different conformal type; but in this case P is uniformly quasi-isometric to G, and there-
fore (since G acts cocompactly on itself) the same must be true for every leaf of L. Now
apply Candel’s theorem. □

Finally we must deal with the case that P is quasi-isometric to the Euclidean plane. In
this case, Thm. 10 (page 20) says (paraphrasing):

Theorem 5.8 (Conformally Euclidean). Suppose G = π1(M)/π1(M̂) is quasi-isometric
to a plane P with a complete Riemannian metric, which is conformally equivalent to the
Euclidean plane. Then G is virtually rank 2 abelian, and M is Seifert fibered; thus, the
Seifert fiber Conjecture holds in this case.

Proof. The argument is a beautiful application of ideas from the theory of random walks,
combined with a theorem of Varopoulos. It is a well-known fact that a simple random walk
is recurrent (i.e. returns to a bounded region infinitely often) in Euclidean space of dimen-
sion 1 and 2, and transient otherwise. This is not hard to show: under random walk on
Euclidean space, after n steps each coordinate function is distributed like a Gaussian with
variance of order n; thus the probability that a given coordinate function will be bounded
by a constant C after n steps is of order O(

√
n). By independence, in m-dimensional space,
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the probability that all coordinate functions will be bounded by the same constant C at
the same time after n steps is O(n−m/n); thus, when m is at least 3, the total number of
times this should happen in an infinite walk is bounded, by the Borel-Cantelli Lemma.

Now, in the continuum limit, a simple random walk rescales to Brownian motion, and
Brownian motion is conformally invariant in dimension 2; this means that if you have
a complete Riemannian metric on a plane P , you can tell whether it is conformally hy-
perbolic or conformally Euclidean by whether Brownian motion is transient or recurrent.
Using the quasi-isometry between P and G, one concludes that if P is conformally Eu-
clidean, random walk on G is recurrent. But this is an extremely confining possibility for
finitely presented groups; Varopoulos [50] showed (when combined with Gromov’s famous
theorem that groups of polynomial growth are virtually nilpotent) that it implies that G is
virtually abelian of rank at most 2; this is enough to complete the proof, using the (known)
classification of nilpotent 3-manifold groups. □

Mess’ paper thus reduces the Seifert Fibered Conjecture to the question of whether
groups quasi-isometric to the hyperbolic plane are virtually isomorphic to Fuchsian groups
— i.e. to (cocompact) lattices in the group of isometries of the hyperbolic plane. Much
progress on this question had already been made by Tukia, and while Mess’ paper was still
under consideration at JAMS this question was solved in the affirmative independently
(and in quite different ways) by Casson-Jungreis, and Gabai.

5.4. The Seifert Fibered Theorem: the convergence group theorem. To complete
the proof of the Seifert Fibered Theorem 5.2 it suffices to show that any subgroup of
Homeo+(S1) acting as a convergence group is conjugate into PSL(2,R). This will imply
that G/C (as above) is isomorphic to the fundamental group of a hyperbolic orbifold,
and therefore either that M contains an essential torus, or that this orbifold is a triangle
orbifold, and M is a small Seifert Fibered Space.

6. Combinatorial Algorithms

6.1. Normal surface theory. We have already met some elements of normal surface
theory in Kneser’s bound on the number of terms in a nontrivial connect sum decomposition
Theorem 3.13, and Kneser–Haken finiteness Theorem 4.7.

Both theorems start with a compact 3-manifold M and a collection X of disjoint essential
surfaces of some sort. Then one chooses a triangulation τ of M , and adjusts X by isotopy,
compression, and various other combinatorial operations until one obtains a new collection
X′ whose intersection with τ is simple enough to analyze directly. Normal surface theory,
as introduced by Haken [14], formalizes this theory and turns it into a computational tool.

Definition 6.1 (Normal surface). Let T be a 2-simplex. A normal arc is a properly
embedded arc α ⊂ T which is a combinatorial link of one of the vertices.

Let ∆ be a 3-simplex. A normal disk is a properly embedded disk D ⊂ ∆ which is either
a combinatorial link of one of the vertices (a normal triangle) or a combinatorial link of
either of a pair of opposite edges (a normal quadrilateral). See Figure 9.

Let M be a 3-manifold with a triangulation τ . An embedded surface F is in normal
form with respect to τ if F is in general position with respect to τ , and if the intersection
of F with each simplex ∆ of τ is a finite (disjoint) union of normal disks.
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Figure 9. Four normal triangles link the vertices of a tetrahedron. A nor-
mal quadrilateral links each of a pair of opposite edges of a tetrahedron.

Another way to say this is that a surface is normal if it is incompressible in the comple-
ment of the 1-skeleton τ 1 (and not boundary parallel into a single edge), and its intersection
with τ 2 is as simple as possible; the process of repeatedly compressing a surface relative to
τ 1 and simplifying its intersection with τ 2 is precisely the process of Kneser normalization.

If F is in normal form with respect to τ , then for each tetrahedron ∆ of τ the intersection
F ∩∆ consists of finitely many copies of each of the seven possible normal disk types in ∆.
Thus if τ has t tetrahedra, the surface S determines a non-negative integral vector v(F )
in R7t that counts the number of each type of disk of F in each tetrahedron.

The vector v(F ) is not completely arbitrary; it must satisfy two nontrivial constraints:
(1) (admissible): for each tetrahedron ∆ the intersection F ∩∆ can have at most one

quadrilateral type; and
(2) (matching equations): for each triangle T in the boundary of tetrahedra ∆ and ∆′

the number of normal arcs in T of each type arising as the boundary of normal
disks of F ∩∆ of each type must match the numbers arising from F ∩∆′.

The normal arcs in T are a basis for a copy of R3; the map that takes normal disks in ∆
to normal arcs in each face T of ∂∆ induces a non-negative integral linear map R7 → R3.
Thus bullet (2) above imposes three linear conditions on v(F ) for every triangle T in τ 2.

Lemma 6.2. There is a bijection between normal surfaces F in M up to normal iso-
topy (i.e. isotopy through normal surfaces) and non-negative integral vectors v(F ) ∈ R7t

satisfying admissibility and the matching equations.

Proof. A normal isotopy does not change the number or type of normal disks in each
tetrahedron. Thus there is a well-defined map from the normal isotopy class of F to the
vector v(F ). The necessity of the matching equations for v(F ) is clear. The necessity of
admissibility for v(F ) comes from the fact that two normal quadrilaterals of different type
in a single tetrahedron must necessarily intersect.

Conversely, suppose we have a vector v satisfying admissibility and the matching equa-
tions. In each tetrahedron ∆ we may build a surface ∆(v) by taking disjoint parallel copies
of each normal disk type with nonzero coordinates. By the matching equations, the family
of normal arcs in each triangle T that comes from adjacent ∆ and ∆′ are isotopic, so after
an isotopy we may assume that these normal disks glue up along their edges. The result
of the gluing is a normal surface F . □
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Given τ the space of solutions to the matching equations is a non-negative rational
cone in R7t whose projectivization is a finite sided compact convex projectively rational
polyhedron P. We say a point p in P is admissible if for each tetrahedron ∆ the coordinates
of p are nonzero for at most one quadrilateral type in ∆. The set of admissible points is a
closed union of faces of P. In particular, if p is any admissible point, then p is in the convex
hull of a finite set of admissible vertices of P. It is therefore important to understand when
a vector of the form v(F ) can be written as a convex combination of vectors of the form
v(F1) and v(F2).

We make two definitions.

Definition 6.3 (Weight). The weight of a normal surface F is the number of intersections
of F with the 1-skeleton of τ . A normal surface F is of least weight if it has the least weight
among all normal surfaces isotopic (but not necessarily normally isotopic!) to F .

Definition 6.4 (Compatibility and normal sum). Two normal surfaces F and F ′ are said
to be compatible if v(F )+ v(F ′) is admissible. Equivalently, they are compatible if they do
not meet any tetrahedron in quadrilaterals of different types. For such F and F ′ we may
define the normal sum F+F ′ to be the normal surface associated to the vector v(F )+v(F ′).

A decomposition F = F1+F2 is said to be in reduced form if we can’t write F = F ′1+F
′
2

where each F ′i is isotopic to Fi, and F ′1 ∩ F ′2 has fewer components than F1 ∩ F2.

Normal sum is (evidently) additive for both Euler characteristic and weight, since both
functions are linear in the normal surface coordinates.

Given any normal surface F we may repeatedly decompose F as the sum of a pair of
surfaces in reduced form projectively contained in faces of P of lower dimension until ulti-
mately we may express F as a linear sum of surfaces projectively represented by admissible
vertices of P. If F has some desirable topological property, and F = F1 + F2 is in reduced
form, one may show that either F1 or F2 or both have a similar property, and thereby
deduce that if any F with the desired property exists, there is such an F among the vertex
normal surfaces.

As we have seen throughout this chapter, spheres play a special role in combinatorial
3-manifold topology. Among connected orientable surfaces, the sphere is the unique surface
of positive Euler characteristic. Because Euler characteristic is additive, if F is a normal
2-sphere and F = F1+F2 is a decomposition, then at least one of the Fi has a component R
with positive Euler characteristic. If M is orientable, then either R is a (normal) 2-sphere,
or it is a 1-sided projective plane whose tubular neighborhood contains a (normal) 2-sphere
with vector 2v(R). Thus every normal 2-sphere in M may be obtained from vertex normal
2-spheres and vertex tori by a small set of elementary operations.

Another important property that behaves well under decomposition is incompressibility:

Theorem 6.5 (Jaco–Oertel [20], Thm. 2.2). Let M be a closed irreducible 3-manifold, and
let F be an embedded, two-sided incompressible surface. After isotopy, assume that F is
a normal surface of least weight. If F = F1 + F2 is in reduced form, then F1 and F2 are
incompressible.

This may be proved by examining a hypothetical compression disk for F1 (say) of minimal
complexity, and showing that it gives rise to a compression disk for F . We shall sketch the
a proof of a closely related fact (Theorem 6.7) in the sequel.
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The proof of Kneser–Haken finiteness shows that if M is Haken, then there is a two-sided
incompressible surface in normal form with respect to any triangulation. It follows that if
M is closed and irreducible, then M is Haken if and only if one of the admissible vertices
of P is projectively represented by an incompressible surface. A similar theorem of Jaco–
Tollefson [21] says that a closed 3-manifold M is reducible if and only if some admissible
vertex of P is projectively represented by an essential S2.

Given a two-sided connected vertex surface F one may check the incompressibility of F
by a similar procedure. Cut open M along F to obtain a 3-manifold N with boundary two
copies F± of F . One may develop normal surface theory for manifolds with boundary, and
by a similar decomposition argument one may show (Jaco–Oertel Lem. 4.1) that if F+ or
F− is compressible, some admissible vertex of the projective normal surface space for N
projectively represents a compressing disk. Thus one obtains an algorithm to determine
whether a closed irreducible 3-manifold M is Haken.

The decomposition strategy, which makes normal surface theory into a useful algorithmic
tool, is due to Haken [14], who used it to solve the recognition problem for the unknot.
Haken’s algorithm was further clarified and streamlined by Schubert [38] and Jaco–Oertel
[20], and in recent years has been implemented (with major additional simplifications) in
the program Regina by Burton [3].

6.2. Branched surfaces. Normal surface theory and Kneser normalization reduces (in
some sense) the study of embedded surfaces in 3-manifolds to combinatorics and linear
algebra. A similar sort of reduction is achieved by the theory of branched surfaces. This
theory was initiated by Floyd–Oertel [10] and further developed by Oertel [27].

A branched surface B in a 3-manifold M is a subspace locally modelled on the space
indicated on the left of Figure 10. A surface S in M is carried by B if it can be isotoped so
that the sheets of S run locally nearly parallel to B, as indicated on the right of Figure 10.

Figure 10. The local model for a branched surface, and some local sheets
of an embedded surface fully carried by it. The branch locus is in red.

The sectors of a branched surface are the open subsets locally homeomorphic to surfaces.
The complement of the sectors is the branch locus, a 4-valent subgraph where the closures
of distinct sectors come together.

If S is carried by B, it projects to B in such a way that for each sector σ, the preimage
of σ is a union of disjoint copies of σ in S that each project homeomorphically to σ. Thus
S determines a function w from the sectors of B to non-negative integers; the vector of



CHAPTER 1: COMBINATORIAL FOUNDATIONS 49

these integers w(S) is called the weight vector of S. It satisfies matching equations coming
from compatibility of weights along each edge of the branch locus. Conversely if w is a
non-negative integral weight function on sectors satisfying the matching equations, we may
take w(σ) parallel copies of σ for each sector, and glue them together in a neighborhood
of the branch locus to produce S carried by B with weight w(S) = w.

A branched surface B is said to fully carry S if every coefficient of w(S) is positive. The
space of solutions to the matching equations is a finite sided rational polyhedral cone, and
if B fully carries any surfaces, the surfaces it fully carries are the integral points in the
interior of this cone.

One way to think of a branched surface is in terms of differential topology. We can give
M a smooth structure, and think of B as a certain kind of smooth 2-complex for which
the tangent spaces of the sectors all match up along each arc in the branch locus. If F is a
properly embedded surface in M−B then we can adjust ∂F to be transverse to the branch
locus in B, and then components of ∂F get a polygonal structure from the stratification
of B into sectors and branch locus. We may further adjust F by a proper isotopy so that
each edge of ∂F is a smooth arc in its sector, and the tangent spaces to ∂F are continuous
(in M) from either side at a vertex. But now there are two possibilities; if we orient a
component γ of ∂F , then at a vertex v the oriented unit tangent vectors γ′(v+) and γ′(v−)
to ∂F at v on either side either agree (in which case v is a smooth point on ∂F , or satisfy
γ′(v+) = −γ′(v−) (in which case we call v a cusp). See Figure 11.

Figure 11. A cusp and a smooth point.

We may thus distinguish the properly embedded surfaces F in M −B homeomorphic to
a disk by how many cusps they have; an n-gon is a disk with n cusps. There are colloquial
names for n-gons for small n: a 0-gon is just a disk, a 1-gon is a monogon, a 2-gon is a bigon
and so on. A properly embedded surface F in M −B is essential if it is incompressible in
M −B, and not smoothly isotopic rel. ∂F into B.

For a properly embedded surface F in M−B there is a refinement of Euler characteristic
as follows. Define χ(F ) to be the ordinary Euler characteristic minus half the number of
cusps. Thus χ for a disk is 1, for a monogon is 1/2, for a bigon is 0 and so on. This
agrees with ordinary Euler characteristic for smooth surfaces (those without cusps), and
is additive; i.e. if a surface F in M with boundary on B is cut into pieces Fi by B then
χ(F ) =

∑
χ(Fi).
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Floyd–Oertel resp. Oertel gave conditions on a branched surface B that ensure that
every surface fully carried resp. carried by B is incompressible in M . Such a branched
surface is said to be incompressible; before we give the precise definition we explain the
basic idea.

Suppose S is carried by B but is compressible. Let D be a compressing disk for S.
Squash S down into B by the carrying map, and do the same with D; then isotop D
to minimize the complexity of its intersection with B. It turns out that the search for a
minimum complexity D certifies one of three possibilities for B.

(1) Disks of contact: It might be that there is a subdisk E of D that is actually
contained in B; i.e. E consists of a single sector bounded by a smooth curve of the
branch locus. The sector E is called a disk of contact, and one says this disk of
contact busts the compressing disk D; see Figure 12.

Figure 12. A compressing disk D for S might be busted by a disk of contact.

We can create disks of contact in any branched surface B by isotoping sectors
until they bump up against each other, thereby busting compressing disks for the
surfaces carried by B. Conversely, whenever B contains a disk of contact we may
cut B open along E, creating a new and simpler branched surface B′ that carries
the same isotopy classes of surfaces as B.

(2) Reeb components:
An innermost subdisk ofD inM−B might be boundary parallel, so that it can be

smoothly isotoped rel. boundary into B and then pushed through to the other side.
One expects that this operation will reduce complexity and make the intersection of
D with B simpler; and one can certainly find rigorous definitions of complexity for
which it does not make anything worse. However if B contains a torus T bounding a
solid torus N , and B further contains a number of compressing disks Di for N (with
complementary cusps all pointing in the ‘same direction’ around the longitude of
T ) then we might repeatedly push D over the disks Di until we move once around
N and arrive back where we started.

This configuration is called a Reeb component; see Figure 13.
(3) Essential disk or monogon:

A minimal complexity disk D may be found which is transverse to B away from
∂D. It is decomposed by B into properly embedded subdisks Di, each with some
number of cusps. Because the complexity is minimal, each Di is essential. Because
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Figure 13. Compressing disks for a torus become boundary parallel in a
Reeb component.

Euler characteristic is additive, and χ(D) = 1, some component Di must have
χ(Di) > 0; thus it must be an essential disk or monogon.

With these definitions we may define an incompressible branched surface:

Definition 6.6 (Incompressible branched surface). A branched surface B is incompressible
if

(1) B contains no disks of contact;
(2) B has no Reeb component; and
(3) complementary regions admit no essential disk or monogon.

The discussion above essentially proves the following theorem of Oertel (for details see
[27]):

Theorem 6.7 (Oertel [27] Thm. 2). Let M be irreducible, and B an incompressible
branched surface. Suppose B fully carries some surface. Then every surface F carried
by B is incompressible.

Oertel further shows ([27], Thm. 3) that in any irreducible M there is a finite collection
of incompressible branched surfaces that carry every 2-sided incompressible surface. The
proof goes via normal surfaces. Roughly speaking, if we fix a triangulation τ and a normal
surface F , we can build a branched surface B that carries F by ‘pushing’ together the
normal disks of F in each simplex into a spine of the sort in Figure 10. The resulting
branched surface B carries (more or less) all and only the normal surfaces in the closure
of the projective face containing F . If M is irreducible, and if F is incompressible of least
weight, then Oertel shows B is an incompressible branched surface.

Note that this gives a new proof (or morally, a translation into the language of branched
surfaces of the proof) of Theorem 6.5.

6.3. Almost normal surfaces and recognizing S3. The decomposition strategy for
normal surfaces goes some way towards determining the connect sum decomposition for
M , since it shows that if M is reducible, some essential S2 may be found among the vertex
surfaces. However this leaves open the question of deciding whether a vertex sphere F is
essential or not.
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If a sphere F is homologically essential, then of course it is (isotopically) essential.
Otherwise we may split along F and cap with B3s to obtain a connect sum decomposition
M = A#B so that F is essential if and only if neither of A nor B is S3. Thus the problem
of deciding if M is reducible may be reduced to the problem of recognizing S3 among closed
triangulated 3-manifolds.

The first algorithm to recognize S3 was given by Rubinstein [35], and simplified by
Thompson [47] using a variation of normal surface theory called almost normal surface
theory.

A surface F is almost normal with respect to a triangulation τ if there is exactly one
tetrahedron ∆ of τ so that F is normal in every tetrahedron of τ −∆, and its intersection
with ∆ consists of normal disks plus a single octagon disk. An octagon disk is shaped
rather like a saddle, and its boundary is a loop consisting of eight normal arcs (whence the
name); see Figure 14. Almost normal surfaces are parameterized by non-negative integral
vectors satisfying versions of the admissibility condition and matching equations, and one
may develop algorithms (parallel to normal surface theory) to find and recognize them.

Figure 14. An octagon disk boundary compresses on either side to a pair
of normal triangles.

An almost normal surface F containing an octagon disk O is compressible rel. τ 1. There
are a pair of boundary compressing bigons for O in ∆, one on either side, that intersect
transversely at a point. The boundary of a regular neighborhood of either bigon gives a
compressing disk for F , and performing either compression simplifies O to a pair of normal
triangles. If one thinks of normal surfaces as a combinatorial analog of locally least area
surfaces (with weight playing the role of area), then almost normal surfaces are like index
1 minimal surfaces.

Rubinstein’s algorithm leverages this analogy in the following way. The 3-sphere may
be characterized amongst all 3-manifolds by the property that it admits a sweepout by
2-spheres — i.e. a foliation F by 2-spheres in the complement of two points. For any
Riemannian metric on the 3-sphere we can look for a minimax sweepout; i.e. one that
minimizes the maximum area of the spheres in the foliation. In a minimax sweepout (if
one exists), a sphere S of maximum area will be a (index 1) minimal surface, or else we
could reduce the minimax area by flowing the spheres near S in the direction of mean
curvature. In the combinatorial analogy, a triangulation of S3 plays the role of a metric,
the minimax sphere becomes an almost normal sphere, and repeated Kneser normalization
of this sphere to either side gives the minimax sweepout.
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To make this scheme concrete, we now present Thompson’s modification of Rubinstein’s
algorithm. Given an irreducible 3-manifold M the first step is to find (by Jaco–Oertel)
a maximal collection Σ of disjoint normal embedded 2-spheres. If any 2-sphere is non-
separating, then H1(M) is nontrivial, so M is not S3. Thus we may assume that all the
2-spheres in Σ are separating, and we may cut open M along Σ into a collection of 3-
manifolds Ni, each with spherical boundary. These 3-manifolds come in three different
types:

(1) a 3-ball bounded by a vertex linking 2-sphere (note that every vertex of M is
enclosed in such a piece);

(2) a piece with more than one boundary component; or
(3) a piece with exactly one boundary component which is not a vertex linking 2-sphere.

A piece of type (1) is evidently a 3-ball. It will turn out (Lemma 6.8) that every piece
of type (2) is a punctured 3-ball; and furthermore, (Lemma 6.9) a piece of type (3) is a
3-ball if and only if it contains an almost normal 2-sphere.

The Jaco–Oertel algorithm may be modified to show that if a 3-manifold contains an
almost normal 2-sphere it contains one among the vertex solutions of almost normal surface
space. So we examine the type (3) pieces one by one, compute the almost normal surface
space for each of them, and look for an almost normal 2-sphere among the vertex solutions.
If every type (3) piece has such a surface then M is S3, and otherwise not.

It remains to prove Lemmas 6.8 and 6.9. We sketch the proofs; for details see [47],
Lemma 2 and Lemma 4 respectively.

Lemma 6.8. A piece of type (2) is a punctured 3-ball.

Proof. Let N be a piece of type (2). Since every vertex of τ is contained in a piece of type
(1), the intersection τN := τ 1 ∩ N is a collection of proper arcs. Because N contains no
vertices, and M is connected, a simplicial path connecting a suitable pair of vertices will
contain an arc α of τN joining distinct boundary components S1, S2 of ∂N . Push off α to
a parallel arc α′ from S1 to S2; then a tubular neighborhood of S1 ∪S2 ∪α′ is a 3-ball with
3 punctures, whose third boundary component is a 2-sphere S in the interior of N .

The surface S separates N into two pieces N±, where N+ (say) is the tubular neighbor-
hood of S1 ∪ S2 ∪ α′. Note that S is compressible in the complement of τN on either side:
on the N+ side a compressing disk D+ bounds a meridian linking α′, whereas on the N−
side there is a bigon whose boundary runs over α and a parallel arc on S, and D− may be
taken to be the boundary of a regular neighborhood of this bigon.

Let W± be the maximal compression bodies obtained by repeatedly compressing S down
to either side rel τN . The tracks of S under either of these families of compressions is a
punctured 3-ball — i.e. both W+ and W− are punctured 3-balls — and therefore the same
is true for W := W+ ∪W−. Evidently W+ = N+. We claim that also W− = N−. This
will prove the lemma.

Consider a (necessarily spherical) component F of ∂W−. By hypothesis this is incom-
pressible to the negative side rel. τN . If it is incompressible to the positive side (i.e. into
W+) rel. τN then it is incompressible rel. τN and therefore isotopic rel. τN to a normal
sphere. But the only normal spheres in N are the boundary components. So we will be
done if we can show F is incompressible in the complement of τN into W .
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Haken’s Lemma (i.e. Proposition 3.26) says that if a 3-manifold is reducible, one may
find a reducing sphere that intersects the Heegaard surface in any Heegaard splitting in
a single circle. A mild generalization of the argument says that if a 3-manifold W has
compressible boundary, one may find a compressing disk D that intersects the surface S in
any compression body splitting W := W+ ∪S W− in a single circle. Evidently D can only
intersect W+ in a disk parallel to D+, since this is the only compressing disk for S in N+.
Every arc of intersection of D with D− bounds a disk on one side in D∩W−, and one can
thereby push D− over D to produce a compressing disk for S in N− from D+. But there
is no such disk; hence no D can exist.

Thus F is incompressible rel. τN and the lemma is proved. □

Lemma 6.9. A piece of type (3) is a 3-ball if and only if it contains an almost normal
2-sphere.

Proof. Let N be a piece of type (3), and let τN := τ 1∩N be the intersection of N with the 1-
skeleton of the triangulation. Let F be an almost normal surface in N . Because F contains
an almost normal octagon O, it is compressible rel. τN to either side. Compress either
side as much as possible, producing a pair of compression bodies W := W+ ∪W− as in
Lemma 6.8, each of which is a punctured 3-ball. The components of ∂W are incompressible
to the outside of ∂W rel. τN by construction. If one of them were compressible to the inside,
then again as in Lemma 6.8 we could find a compressing disk intersecting F in a single
essential circle, and obtain a pair of compressing disks for F in W to either side which are
disjoint. But F is almost normal, hence normal away from O; thus the only compressing
disks for F are the obvious ones, and the boundaries of these intersect essentially in F
rel. τN . It follows that ∂W is incompressible rel. τN and therefore normal. Since each
component is obtained from a sphere F by Kneser normalization, ∂W consists only of
spheres. But the only normal sphere in N is ∂N . Thus W = N so that N is a 3-ball.

Conversely, it turns out that every type (3) piece N which is homeomorphic to B3

contains an almost normal 2-sphere. To find it, first let F be the foliation of B3−point by
concentric 2-spheres. The 1-skeleton τN is a (proper) tangle in B3, and we may put τN in
general position with respect to F. The width of τN is the maximum number of (transverse)
intersections of τN with a leaf of F. In other words, the width of τN is the maximal weight
of the leaves of F. One says, following Gabai [12] that a tangle L properly isotopic to τN is
in thin position if it minimizes the width. We claim that a leaf S of F realizing the width
for an arrangement in thin position is the sought-after almost normal (minimax) 2-sphere.

Figure 15. Critical arcs of τN on either side of a minimax sphere must link
or we could reduce width.

To see this, let’s think about what τN can look like near S. Since S realizes the maximal
width, the first critical point of τN above S must be a local maximum, and the first
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critical point below S must be a local minimum. Furthermore, the arcs of τN associated
to these critical points must link, or else by an isotopy we could reduce the width of τN ;
see Figure 15.

One argues that this pair of linking critical arcs correspond to a pair of opposite edges
of some tetrahedron ∆ in which S has an almost normal octagon. Away from this pair of
arcs S is incompressible rel. τN or else by realizing such a compression by an isotopy of τN
we could reduce the width. This justifies the claim and proves the lemma. □

6.4. Crushing.
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