
CHAPTER 0: CONSTRUCTIONS AND EXAMPLES

DANNY CALEGARI

Abstract. This is Chapter 0 of a book on 3-Manifolds. This Chapter introduces sev-
eral standard techniques for building 3-manifolds, together with a range of illustrative
examples.

Contents

1. Building 3-manifolds 1
2. Knots and Links 12
3. Seifert Fibered Spaces 27
4. Surface bundles 41
5. Acknowledgments 51
References 51

1. Building 3-manifolds

In this chapter we introduce techniques for constructing 3-manifolds and give a range of
examples. The tone is informal, and several concepts are introduced for which a precise
technical definition must wait until a later chapter. A manifold is said to be closed if it
is compact without boundary. Although our main focus and interest is 3-manifolds, along
the way we are naturally led to consider 2-manifolds, more usually called surfaces, and
1-manifolds which (if closed and embedded in a 3-manifold) are called knots or links.

1.1. Euler characteristic. One of the simplest and most useful invariants of a (sufficiently
nice) topological space X is the Euler characteristic χ(X). If X is a finite cell complex
(e.g. a simplicial complex) then χ(X) is equal to the alternating sum of the number of
cells in each dimension; i.e.

χ(X) =
∑
i

(−1)i · number of cells of dimension i

One may also compute χ(X) directly from the singular homology of X, via the formula
χ(X) =

∑
(−1)i · rank(Hi(X)).

Example 1.1 (Surfaces). If M1, M2 are manifolds of the same dimension, the connect sum of
M1 and M2 (denoted M1#M2) is obtained from the disjoint union of the Mi by removing an
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open ball from each of the Mi and gluing the resulting boundary spheres by an orientation-
reversing homeomorphism. If S1 and S2 are surfaces, and if S = S1#S2 then χ(S) =
χ(S1) + χ(S2)− 2.

(1) Every closed connected oriented surface may be obtained from S2 by repeatedly
connect summing with tori T 2. Since χ(T 2) = 0, the result of connect summing S2

with g tori satisfies χ = 2− 2g and is called the closed surface of genus g.
(2) Every closed connected nonorientable surface may be obtained from S2 by repeat-

edly connect summing with projective planes RP2. Since χ(RP2) = 1 the result of
connect summing S2 with m projective planes satisfies χ = 2−m. Notice that the
2-sphere uniquely realizes the maximum of χ among all closed connected surfaces.

(3) Every compact surface may be obtained from a closed surface by removing finitely
many open disks. If S is a genus g surface minus p disks, then χ(S) = 2− 2g − p.

If M is a closed connected oriented 3-manifold, Poincaré duality and the universal co-
efficient theorem together imply that rank(Hi(M)) = rank(H3−i(M)) for all i. Thus
χ(M) = 0. Since Euler characteristic is multiplicative under finite covers and additive
under disjoint union, it follows that χ(M) = 0 for any closed 3-manifold, orientable or not.

Example 1.2 (Nonorientable 3-manifolds). Let M be a closed connected non-orientable
3-manifold. Then χ(M) = 0. Since H0(M) = Z and H3(M) = 0, this implies that
rank(H1(M)) > 0. In particular, the abelianization of π1(M) is infinite, and surjects onto
Z.

There is a straightforward relationship between the Euler characteristic of a compact
3-manifold and the Euler characteristic of its boundary:

Lemma 1.3. Suppose M is a compact 3-manifold with boundary ∂M . Then χ(∂M) =
2χ(M).

Proof. The double of M , denoted DM , is the 3-manifold obtained by taking two disjoint
copies of M and gluing them by the identity along ∂M . This is a closed 3-manifold, and
therefore satisfies χ(DM) = 0. On the other hand, by e.g. Meyer-Vietoris,

χ(DM) = 2χ(M)− χ(∂M)

□

A closed (not necessarily connected) surface S bounds a 3-manifold if and only if χ(S)
is even. Necessity follows from Lemma 1.3; sufficiency follows by an explicit construction.

1.2. Triangulations. Every 3-manifold may be triangulated — i.e. obtained from a dis-
joint collection of tetrahedra by gluing faces in pairs. Compact 3-manifolds may be obtained
from finite collections of tetrahedra; non-compact ones require infinitely many.

Every simplicial 2-complex obtained by edge pairing a finite collection of triangles is
a closed 2-manifold (not necessarily connected or orientable), but not every simplicial 3-
complex obtained by face pairing a finite collection of tetrahedra results in a 3-manifold.

Let’s fix notation. Let T be a finite disjoint collection of tetrahedra, and suppose we
are given a gluing map that pairs each face of each tetrahedron homeomorphically with
some other face. Let X denote the result of gluing, thought of as a quotient space of T ,
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and let’s insist that X is a simplicial complex, or perhaps what is more generally called a
∆-complex: i.e. the interior of each simplex of T embeds in the quotient space X. This
condition just amounts to the requirement that the different identifications of edges that
result by composing the various face gluings are compatible, and do not result (for example)
in an edge being ‘folded in half’.

Proposition 1.4. Let X be a simplicial (or ∆) complex obtained from a finite disjoint
collection of tetrahedra T by face gluing. Then X is a 3-manifold if and only if χ(X) = 0.

Proof. A finite simplicial 3-complex is always a manifold away from the vertices, and is a
manifold near each vertex if and only if the vertex link is a 2-sphere. We shall see that this
holds at every vertex if and only if χ(X) = 0.

Let U be the disjoint union of the triangular vertex links of the tetrahedra of T . The
face pairing of T induces an edge pairing of U , and the image of U in X is therefore a
triangulated surface L. Evidently the components of this surface are the vertex links of X.

Let’s denote the vertices of X by vi and the corresponding vertex links by Li. Since
each Li is a closed surface, χ(Li) ≤ 2 with equality if and only if Li is a sphere. Let N
be the compact 3-manifold with boundary obtained by removing the vertices from X and
replacing each vertex vi by a copy of Li. By Lemma 1.3 we have 2χ(N) =

∑
χ(Li). On

the other hand, X may be obtained from N by collapsing each Li to a single point, and
therefore

χ(X) = χ(N) +
∑
i

(1− χ(Li)) =
∑
i

(1− χ(Li)/2)

It follows that χ(X) ≥ 0 with equality if and only if every vertex link is a 2-sphere. □

Example 1.5 (600 cell). Five regular Euclidean tetrahedra very nearly fit together around
an edge. The dihedral angles are all cos−1(1/3) ∼ 70.53◦ which is very close to 72◦. If
you take five physical tetrahedra (for example, 4-sided Dungeons and Dragons dice) and
squeeze them together, you could imagine that they would close up under enough pressure.

The dihedral angles in a regular spherical tetrahedron are larger than those in a Euclidean
one, so five regular spherical tetrahedra all with edge length cos−1(1/2) = π/3 will fit
together perfectly (and rigidly) around an edge. One may extend this configuration by
packing in more regular spherical tetrahedra, five around every edge, until one tessellates
S3 completely with exactly 600 of them.

The symmetries of this tessellation form the Coxeter group H4 with diagram r r r r5 ;
this acts transitively on the set of tetrahedra, and the stabilizer of each tetrahedron is the
full permutation group S4. Thus the order of the group is 14400.

Example 1.6 (Ideal triangulations). If X is a simplicial 3-complex with χ(X) > 0 then some
vertex links are not spheres. Removing these vertices produces a noncompact 3-manifold,
that may be compactified by adding back the vertex links as boundary components. An
ideal tetrahedron is a tetrahedron with the vertices removed; consequently we may speak
of ideal triangulations.

If M is a closed 3-manifold and L ⊂ M is a knot or link in M , then M−L is a noncompact
3-manifold that may be compactified by adding back a torus for each component of L
(equivalently, one may take an open neighborhood N(L) of L, and then consider the
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Figure 1. Five regular Euclidean tetrahedra very nearly fit together around
an edge.

compact 3-manifold M − N(L)). Such manifolds may often be efficiently represented by
ideal triangulations. See Example 2.2 for some examples.

Example 1.7 (Gieseking manifold). The Gieseking manifold is obtained from a single ideal
tetrahedron by a suitable face pairing. Figure 2 indicates a choice of orientation on the
edges of a tetrahedron; there is a combinatorially unique orientation-preserving face pairing
that respects the orientations on edges.

The quotient simplicial complex X has one tetrahedron, two triangles, one edge and
one vertex; thus χ(X) = 1 and the vertex link has χ = 0. Since the face gluings are
orientable, the manifold obtained from X by removing the vertex is non-orientable, and
may be compactified to a closed manifold by adding a Klein bottle boundary.

All six edges of the tetrahedron fit together around the unique edge of X. The dihedral
angles in a regular hyperbolic tetrahedron are smaller than those in a Euclidean one; as the
common edge lengths get longer the dihedral angle shrinks until as the edges get infinitely
long, the dihedral angle becomes exactly 60◦. Thus if one takes a regular ideal hyperbolic
tetrahedron one may perform the face gluings for the Gieseking manifold isometrically
in such a way that the resulting non-compact manifold inherits a complete hyperbolic
structure.

Example 1.8 (PGL(2,F7)). Simplicial complexes arise in many ways in mathematics. It
is not so common for such complexes to be manifolds, but there are some interesting
examples.

Let P be the projective line over F7, the field with 7 elements. As a set, P consists of
8 points that we may identify with F7 ∪ ∞. The group G := PGL(2,F7) acts on P ; the
element represented by the matrix ( a b

c d ) acts on z ∈ P by z → (az + b)/(cz + d).
G acts simply transitively on ordered distinct triples of points in P . The stabilizer of

any specific triple is therefore the full permutation group S3. For example, the stabilizer
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Figure 2. Edge orientations determining the face pairing that results in the
Gieseking manifold.

of 0, 1,∞ is generated by z → 1/(1− z) and z → 1− z or as matrices, ( 0 1
−1 1 ) and ( −1 1

0 1 ).
The first matrix fixes 3 and 5 while the second matrix permutes them. The ‘meaning’ of 3
and 5 is that these are the primitive 6th roots of unity in F7.

Let X be the simplicial complex whose ‘simplices’ are the G orbits of 0, 1,∞, 3 in the
space of distinct 4-tuples of elements of P and whose ‘faces’ are glued if they agree as
subsets of P . By our previous observation, every triangle (for instance 0, 1,∞) lies in
exactly two tetrahedra, so the resulting complex is a 3-manifold except possibly at the
eight vertices. Let M be equal to X minus its vertices. This is a noncompact 3-manifold.
One may check that there are exactly six tetrahedra around each edge; for example, the
edge 0,∞ lies in the tetrahedra 0, 1,∞, 3 and 0, 1,∞, 5 and their images under powers of
the order 3 element ( 3 0

0 5 ). Consequently, as in Example 1.7 one may realize a complete
hyperbolic structure on M by building X out of regular ideal hyperbolic tetrahedra.

The simplicial complex X is made up of 42 tetrahedra, 84 triangles, 42 edges and 8
vertices, so χ(X) = 8. Every face gluing is orientation-reversing, so M is orientable. The
group G acts transitively on the vertices; it follows that every vertex link is a torus, and
M may be compactified by adding 8 boundary tori, one for each vertex of X.

The full symmetry group of the tessellation of hyperbolic 3-space by regular ideal hy-
perbolic tetrahedra is PGL(2,O3) where O3 is the ring of ‘Eisenstein integers’ in the field
Q(

√
−3). If we denote the primitive sixth root of unity (1 +

√
−3)/2 by ζ, then O3 = Z[ζ]

and the reduction O3 → F7 given by sending ζ to 3 induces a surjective homomorphism
PGL(2,O3) → PGL(2,F7) whose kernel is π1(M). Remarkably, M is homeomorphic to the
complement of the 8-component link in S3 in Figure 3 as discovered by Thurston [7].

1.3. Heegaard splittings.

Definition 1.9 (Handlebody). Let M be a 3-manifold, and let Γ be a finite connected
graph embedded in the interior of M . The closure H of a regular neighborhood of Γ is a
compact 3-manifold with boundary called a handlebody.
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Figure 3. The complement of this 8-component link in S3 is homeomorphic
to M .

The Euler characteristic of a connected finite graph Γ is ≤ 1 with equality if and only
if Γ is a tree, and in general is 1 − g if Γ is homotopic to a wedge of g circles (such a
homotopy may be obtained by collapsing a maximal subtree to a point).

By Lemma 1.3 we have χ(∂H) = 2− 2g. The surface ∂H is orientable if and only if H
is (of course, this is automatic if M is orientable). If H is orientable and χ(H) = 1− g we
say H is a handlebody of genus g. Note that H deformation retracts to Γ, so that π1(H) is
free on g generators.

Definition 1.10. Let M be a closed 3-manifold. A Heegaard splitting for M is a decompo-
sition into two handlebodies M = H1∪H2 glued by a homeomorphism along their common
boundaries. The genus of the Heegaard splitting is the common genus of H1 and H2; this
is also equal to the genus of the splitting surface ∂H1 = ∂H2

Example 1.11 (Lens spaces). The only 3-manifold with Heegaard genus 0 is the 3-sphere,
obtained by identifying the boundaries of two 3-balls.

In C2 with standard complex coordinates z1, z2 the 3-sphere is the level set |z1|2+ |z2|2 =
1. The Clifford torus |z1|2 = |z2|2 = 1/2 is the splitting surface of a genus 1 splitting of S3,
bounding genus 1 handlebodies H1 where |z1| > |z2| and H2 where |z2| > |z1|. The core of
H1 is the circle where |z1| = 1 and z2 = 0, and the core of H2 is the circle where z1 = 0
and |z2| = 1. Note that a genus 1 handlebody is topologically a product D2 × S1

For p and q coprime there is a free action of Z/pZ on S3 generated by (z1, z2) →
(e2πi/pz1, e

2πiq/pz2). The quotient 3-manifold is the Lens space L(p, q). Note that the result
only depends on the residue of q mod p, so usually we normalize q by requiring 0 < q < p.
Each of the handlebodies H1, H2 is preserved by the group action, and the quotients are
also genus 1 handlebodies; thus each Lens space has a Heegaard splitting of genus 1.

Conversely, any 3-manifold with a genus 1 Heegaard splitting is either a Lens space, or
S2 × S1 obtained by doubling D2 × S1.
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Figure 4. An order 5 symmetry of the Clifford torus in S3 whose quotient
is the splitting surface for a genus 1 Heegaard splitting of L(5, 2).

Figure 4 shows the projection of the Clifford torus to R3 under stereographic projection,
together with some arrows indicating the generator of the Z/pZ action described above
with p = 5 and q = 2.

Example 1.12 (Triangulations). Let τ be a triangulation of a closed 3-manifold M . Let Γ
denote the 1-skeleton of τ , and let Γ′ denote the dual 1-skeleton: i.e. Γ has one vertex in the
center of each tetrahedron of τ , and one edge intersecting each face and running between
the vertices in the center of the adjacent tetrahedra. Evidently M admits a Heegaard
splitting where H1 and H2 are closed regular neighborhoods of Γ and Γ′ respectively.

Example 1.13 (Morse functions). Let M be a closed 3-manifold and let f : M → R be a
Morse function; i.e. the critical points of f are isolated and nondegenerate. By general
position we may assume that f is self-indexing; i.e. that the critical points of index i are
all contained in the level set f−1(i) for each of i = 0, 1, 2, 3.

A Riemannian metric on M determines the vector field grad(f), which is everywhere
perpendicular to the level sets of f . The integral curves of this vector field are the gradient
flowlines. At each index 1 critical point there are two gradient flowlines asymptotic to
the given point in forward time; in backward time they are asymptotic to index 0 critical
points. The closure of the union of these flowlines, over all index 1 critical points, is a graph
Γ. Likewise, at each index 2 critical point there are two gradient flowlines asymptotic to
the given point in backward time; in forward time they are asymptotic to index 3 critical
points, and the closure of the union of these flowlines is another graph Γ′. The level surface
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S := f−1(3/2) separates M into two handlebodies H1 := f−1[0, 3/2] and H2 := f−1[3/2, 3]
which deformation retract onto Γ and Γ′ respectively, and thereby gives rise to a Heegaard
splitting of M .

Example 1.14 (Handle structure). The Heegaard splitting coming from a Morse function
inherits some extra combinatorial data in the form of a handle structure, which makes M
into a kind of thickened CW complex. In a neighborhood of a critical point of index i,
the descending resp. ascending gradient flowlines from the critical point fill out disks of
dimension i and 3− i respectively, and these disks form the core Di×0 and cocore 0×D3−i

of an i-handle Di ×D3−i.
In the example above, H1 is the union of the 0-and 1-handles, and H2 is the union of

the 2 and 3-handles. The cocores of the 1-handles resp. the cores of the 2-handles form
a system of disks in H1 resp. in H2 that chop it up into 3-balls, each of which contains
a single index 0 resp. index 3 critical point. The boundary circles of these cocores resp.
cores form a system of circles {αi} resp. {βj} on the splitting surface S.

If S has genus g, then by canceling critical points of adjacent index if necessary, we may
always choose a self-indexing Morse function with S := f−1(3/2) which has exactly one
critical point of index 0 and 3, and exactly g critical points of index 1 and 2. Thus we
obtain two systems of g embedded circles {αi}, {βj} on S.

The complement H1 − ∪(cocores of 1-handles) is a ball, and the boundary of this ball
may be compactified by adding S −∪αi together with 2g disks, one on either side of each
1-handle cocore. In particular, S −∪αi is a planar surface, homeomorphic to S2 minus 2g
disks (and the same is true for the βj).

Conversely, if S is any genus g surface and {αi}, {βj} are two systems of g embedded
circles for which S−∪αi and S−∪βj are spheres minus 2g disks, then this data determines
a Heegaard splitting of a 3-manifold. For, we can glue g thickened disks to one side of S
along the αi curves, g thickened disks to the other side of S along the βj curves, and fill in
the resulting S2 boundaries with a 3-ball on either side.

Example 1.15 (Handle slides). Let H be a genus g handlebody, and let {αi} be a collection
of g circles on ∂H bounding the core disks {Di} of a system of 2-handles for H. One
may modify this system by isotopy in H, together with a combinatorial operation called a
handle slide.

Suppose that γ is an oriented arc in ∂H properly embedded in ∂H−∪αi that runs from
a point on αi to a point on αj. A neighborhood of γ on ∂H is a rectangle R, and the union
of this rectangle with the disks Di and Dj is itself a topological disk E. We may push E
off itself by a proper isotopy to a new disk E ′ properly embedded in H and with boundary
α′ = ∂E ′ an embedded circle in ∂H disjoint from the αi.

The disk E ′ is said to be obtained by a handle slide of Di over Dj. Replacing Di by E
produces a new system of 2-handles for H, and a theorem of Whitehead says that any two
systems of 2-handles are related to each other by a finite sequence of handle slides plus
isotopy.

Example 1.16 (Stabilization and destabilization). If f is a Morse function on a manifold,
we may perturb f locally by introducing a canceling pair of critical points p, p′ of respective
index i and i+ 1 that are joined by a single gradient flowline; conversely a pair of critical
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points joined by a single gradient flowline may be perturbed away. The first operation
is called stabilization and the second destabilization. If f is a Morse function on a 3-
manifold stabilization usually refers to the introduction of a pair of critical points of index
1 and 2. In the corresponding handle structure the boundary circle of the cocore of the
1-handle intersects the boundary circle of the core of the 2-handle in a single (transverse)
point, corresponding to the unique gradient flowline connecting the two critical points.
Conversely, if M has a genus g Heegaard splitting with a handle structure for which there
is a pair of circles αi, βj that meet transversely in a single point, one may ‘cancel’ the
handles to produce a Heegaard splitting of genus g − 1.

A Heegaard splitting with a handle structure gives rise to a presentation for π1(M):

Proposition 1.17 (Balanced Presentation). A handle structure on M with one 0-cell and
one 3-cell gives rise to a balanced presentation for π1(M); i.e. a presentation with the
same number of generators as relations.

Proof. The Heegaard splitting presents M as the union of two handlebodies H1 and H2.
As remarked earlier, π1(H1) is free on g generators if the splitting has genus g; we may
take the free generators to be the cores of the 1-handles. By Seifert van-Kampen attaching
each 2-handle along the boundary of its cocore imposes a relation on π1, which may be
taken to be the free homotopy class of the attaching loop βj in H1. Attaching the 3-handle
does not affect π1. □

Suppose M has a handle structure of genus g. Let

π1(M) = ⟨a1, · · · , ag | r1, · · · , rg⟩
be a balanced presentation obtained as above, where ai is the core of the 1-handle with
cocore αi, and rj is the relation associated to the 2-handle with attaching loop βj. If we
isotop the curves αi and βj in S to be transverse and to intersect the minimal number of
times (one says the αi and the βj meet efficiently) then each rj is a cyclically reduced word
of length equal to the cardinality of βj ∩ ∪iαi, with one letter ai or a−1

i (in cyclic order)
for each transverse positive or negative intersection of βj with αi.

Example 1.18 (Poincaré Homology Sphere). A Heegaard diagram is a diagram of a genus
g surface together with two families of curves that are the attaching circles for a genus g
handle structure on a 3-manifold. In a 1904 paper ([4]) on the nascent field of topology
(dubbed ‘analysis situs’), Poincaré gave an example of a closed 3-manifold with the homol-
ogy of the 3-sphere but with nontrivial fundamental group; this manifold is now known as
the Poincaré Homology Sphere. In Poincaré’s paper this example is presented via what is
essentially a Heegaard diagram.

Drawing the α and β curves legibly on a genus 2 surface is challenging. What is easier is
to draw the result of cutting the surface along the α curves, thereby giving rise to a planar
surface — a sphere with four holes — on which the cut up β curves reduce to a system
of proper arcs. Figure 5 shows such a diagram for the Poincaré Homology Sphere; it is
essentially equivalent to the figure in Poincaré’s paper.

From the diagram one can read off a balanced presentation for π1(M):

π1(M) = ⟨a, b | a4ba−1b, b−2a−1ba−1⟩
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cut open−−−−−→

Figure 5. A Heegaard diagram for the Poincaré Homology Sphere cut open
along the α circles (not pictured) onto a planar surface.

The abelianization of this group is the quotient of the group Z2 by the subgroup generated
by the vectors ( 3

2 ) and
( −2
−1

)
; since det

(
3 −2
2 −1

)
= 1 this quotient is trivial, so that H1(M) =

0. The universal coefficient theorem and Poincaré duality imply that H2(M) = 0, and since
M is closed and orientable, H3(M) = Z. Thus H∗(M) ∼= H∗(S

3); i.e. M is a homology
sphere (as its name implies).

To see that π1(M) is not trivial, we may obtain a homomorphism ϕ from π1(M) to the
group of orientation-preserving symmetries of a regular dodecahedron. Let F be a face
of the dodecahedron and V a vertex of F . Let ϕ(a) be a rotation through angle −2π/5
with axis through the center of F , and let ϕ(b) be a rotation through angle 2π/3 with
axis through V . If G denotes the image ϕ(π1(M)) then ϕ(a) has order 5 in G and ϕ(b)
has order 3, so that the defining relations of π1(M) both say ϕ(a−1b)2 = 1 which is true,
since ϕ(a−1b) is a rotation through angle π with axis through the center of an edge of F
containing V . The homomorphism ϕ is easily seen to be surjective to the full group of
orientation-preserving symmetries of the dodecahedron which has order 60, and the kernel
turns out to be of order 2 generated by the central element a5 = ab−1ab−1 = b3. Thus the
order of π1(M) is 120.

In the same paper Poincaré asked the question whether it was possible for a closed 3-
manifold with trivial fundamental group to fail to be homeomorphic to the 3-sphere; the
negation of this possibility became known as the Poincaré Conjecture, which dominated
topology for a hundred years until its final resolution by Perelman using methods from
Ricci Flow.

Example 1.19 (Compression body). Let M be a compact 3-manifold with boundary. We
can construct a self-indexing Morse function without local maxima f : M → [0, 5/2] for
which ∂M = f−1(5/2) is a nonsingular level set. The level surface S separates M into
a handlebody H1 := f−1[0, 3/2] and a compression body H2 := f−1[3/2, 5/2] which is
obtained from a collar neighborhood of S by attaching 2-handles.
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Figure 6. The right-handed trefoil knot K is depicted in black. The red
arc α is an unknotting arc; i.e. the complement of an open neighborhood of
Γ := K ∪ α is a (genus 2) handlebody.

For example, let K ⊂ S3 be the (right-handed) trefoil knot, and let M = S3 − N(K)
where N(K) is a solid torus open neighborhood of K; Figure 6 depicts the knot K in black.
The red arc α in the figure runs from K to itself, and the union Γ := K ∪ α is what is
called a theta graph because it is homeomorphic to the letter θ.

The manifold M is not a handlebody; equivalently, the knot K is ‘genuinely’ knotted,
i.e. it is not isotopic to a round circle. On the other hand, the theta graph Γ is unknotted
in the sense that H := S3 −N(Γ) is a (genus 2) handlebody. Thus M has the structure of
a compression body obtained from H by attaching a single 2-handle whose cocore is the
arc α.

The arc α in Example 1.19 is called an unknotting tunnel for the knot K. More generally,
for a knot K (or link L) in S3 a system of proper embedded arcs α1, · · · , αg in S3 −K is
a system of unknotting tunnels if the graph Γ := K ∪j αj has the property that S3 −N(Γ)
is a handlebody (of genus g). The unknotting number of a knot K is the least g for which
a system of g unknotting tunnels exists; it is always finite.

1.4. Surgery. Individual 3-manifolds can be studied on their own, but it is also important
to understand the relations between different 3-manifolds. Distinct 3-manifolds may be
related by surgery.

The idea of surgery is simple: start with a closed 3-manifold M and a compact subman-
ifold Ā ⊂ M . Choose a homeomorphism ϕ : ∂Ā → ∂Ā. If A denotes the interior of Ā we
can form a compact 3-manifold M − A with ∂(M − A) = ∂Ā and then close it back up
by gluing back Ā by attaching its boundary to ∂(M −A) by ϕ. The result is a new closed
3-manifold M ′. If M and A are oriented and ϕ is orientation-preserving then M ′ will be
oriented too.

Example 1.20 (Mapping class group). Suppose ∂Ā = Sg, the closed oriented surface of
genus g. Now ϕ : ∂Ā → ∂Ā is a self-homeomorphism of Sg. The set of orientation-
preserving self-homeomorphisms of Sg form a topological group in the compact-open topol-
ogy, and the path components are precisely the isotopy classes of homeomorphisms. This
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set of path components is itself a group, called the mapping class group of genus g, usually
denoted Modg or Γg.

Some self-homeomorphisms of ∂Ā might extend to self-homeomorphisms of Ā; this prop-
erty depends only on the isotopy class of ϕ in Modg, and those classes that extend form a
subgroup EA. Evidently if M ′ is obtained from M by surgery the homeomorphism type of
M ′ depends only on the coset of ϕ in Modg/EA.

Example 1.21 (Heegaard splittings). Any two closed 3-manifolds with Heegaard splittings
of genus g are related by surgery where Ā = Hg, a handlebody of genus g. By stabilization,
any two closed oriented 3-manifolds admit Heegaard splittings of some common genus g.

Example 1.22 (Alexander trick). Any (orientation-preserving) homeomorphism ϕ : S2 →
S2 extends to a self-homeomorphism of B3 by coning ϕ radially to the center. This ex-
tension is not typically smooth even if ϕ is, and in higher dimensions sometimes a smooth
extension does not exist, but Smale showed that any orientation-preserving diffeomorphism
ϕ : S2 → S2 may be smoothly isotoped to the identity. Thus there is only one way to
(smoothly) attach a 3-ball to a compact 3-manifold with S2 boundary.

An extremely important special case of surgery is that Ā is a solid torus, i.e. a handle-
body of genus 1. This case of surgery was first studied by Dehn, and is known as Dehn
surgery. We shall return to it in § 2.4.

2. Knots and Links

A circle smoothly embedded in a 3-manifold is called a knot, and a disjoint union of
smoothly embedded circles is a link. Knots or links are equivalent if they are smoothly
isotopic in their ambient manifolds. Knots and links are interesting in their own right, and
additionally they give a powerful method to represent 3-manifolds (and relations between
them) via Dehn surgery.

2.1. Diagrams and Reidemeister moves. Let L ⊂ S3 be a (knot or) link. We may
obtain a projection of L by removing a point from S3−L to produce R3, and then projecting
R3 orthogonally to the horizontal plane R2 by π : R3 → R2. If we wiggle L slightly by
an isotopy to put it in general position, then π : L → R2 will be an immersion on each
component, and the image will contain at most finitely many transverse double points
(called crossings) and no other singularities. Suppose p ∈ π(L) is a crossing, i.e. the
preimage π−1(p) is a line in R3 that intersects L transversely in two points. If we orient
this line (equivalently, if we coorient R2 in R3) then one point of π−1(p) ∩ L lies ‘above’
the other, and this is generally indicated in the projection by omitting the image under π
of a small segment of L near the point which is ‘underneath’. Knot and link projections
are the pictures of knots and links one encounters in practice; Figure 3 and Figure 6 are
examples.

If L and L′ are isotopic links in S3, the projections of L and L′ are related by a finite
sequence of combinatorial moves which alternate between isotopy of the projection, and
one of the following three local modifications of a diagram, called Reidemeister moves (see
Figure 7).
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↔ ↔ ↔ ↔

Figure 7. Any two projections of isotopic links are related by planar isotopy
and a finite number of Reidemeister moves.

One way to see this is to think about singularities of the vertical projections in a generic
smooth isotopy of L to L′. A dimension count in spaces of real algebraic curves shows that
three kinds of singularities will occur at isolated times during the isotopy:

(1) the tangent to a knot becomes vertical at a point, and the knot projects this tan-
gency to an ordinary cusp;

(2) two arcs of the projection become tangent to first order at a point (this is called a
tacnode); or

(3) three arcs intersect at an ordinary triple point.
A transition through one of these singularities gives rise to one of the three Reidemeister
moves.

Example 2.1 (An amphichiral knot). Reidemeister moves are not always the easiest way to
indicate an isotopy between two different projections of isotopic knots. A knot K in S3 is
chiral if it is not isotopic to its image under some (equivalently: any) orientation-reversing
homeomorphism of S3 (e.g. a reflection of the round S3 in R4 in a hyperplane through the
origin), otherwise it is amphichiral. The trefoil is chiral; it comes in left and right-handed
versions (Figure 6 depicts a right-handed trefoil). The figure 8 knot is amphichiral; see
Figure 8.

 

→ →

Figure 8. The figure 8 knot is amphichiral.

An isotopy between the figure 8 knot and its mirror image is indicated in the figure.
First, pull the rightmost strand to the left over the rest of the knot. Then the diagram
may be isotoped into the desired form.

It is not hard to visualize how to achieve the first move by an isotopy, but in the course
of the isotopy the projection will change by multiple Reidemeister 2 and 3 moves, together
with a pair of Reidemeister 1 moves at the end.

Example 2.2 (Alternating link complements). It is a demanding exercise in visualization
to translate a knot or link projection into a combinatorial ideal triangulation of the com-
plement, but there is a systematic method which works well for alternating links.

A link projection is alternating if, as we move along any component of the link in any
orientation, the crossings alternate between overcrossings and undercrossings. A link is
alternating if it admits some alternating projection.



14 DANNY CALEGARI

Suppose L is a link projection. We can embed L in a graph Γ by adding one “verti-
cal” edge for each crossing, which joins the overcrossing point to the undercrossing point.
Complementary regions to the projection are polygons, whose edges are arcs of L joining
adjacent crossings. A complementary n-gon P to the projection determines a 2n-gon P̄
obtained by inserting a vertical edge at each vertex of P ; see Figure 9. Then we can obtain

Figure 9. Insert red vertical edges at each crossing of the projection to turn
a complementary 5-gon P into a 10-gon P̄ (edges in red and green). Then
collapse the green edges to ideal points to obtain an ideal 5-gon P ′.

an ideal n-gon P ′ from P̄ by collapsing the original edges of P (which lie on L) from P̄ ,
replacing them by ideal vertices. Thus: the edges of P ′ correspond to the crossings on the
boundary of the region P and the (ideal) vertices of P ′ correspond to segments of the link
L running between adjacent crossings.

Now let’s suppose L is alternating. The complement S3 − L is obtained by gluing two
(combinatorial) ideal polyhedra B± defined as follows. Each of ∂B± has one copy of each
ideal polygon P ′ as a face, and all faces arise this way. We glue B+ to B− along their
boundaries by gluing each P ′ in ∂B+ to the P ′ in ∂B− by the “identity” map. It remains
to describe how the copies of P ′ fit together combinatorially in ∂B+ and in ∂B−.

Suppose P , Q are complementary polygons to L which share an edge e ⊂ L oriented
to run from an undercrossing e− to an overcrossing e+. Note that the crossings e± will
correspond to pairs of edges of P+ and Q+ in ∂B+ and in ∂B−. Suppose with respect to
the orientation on e that P is on the left and Q is on the right. Then the copies of P ′ and
Q′ share one edge in ∂B+ and one edge in ∂B− as follows:

• in ∂B+, P ′ and Q′ meet along e−; and
• in ∂B−, P ′ and Q′ meet along e+.

This determines the way the different P ′ meet in ∂B+ and in ∂B−, and thus the combina-
torics of the gluing. In practice we may obtain the gluing by thinking of the projection as
the 1-skeleton of (the boundary of) a polyhedral ball E, checkerboard coloring the com-
plementary polygons (i.e. the faces of E) and gluing two copies of E together along these
faces, rotating the white faces clockwise and the dark faces anticlockwise through one unit.

If some complementary regions to L are bigons, they give rise to a pair of bigons in ∂B+

and ∂B− which may be collapsed to edges without changing the topology of the quotient.
This simplification is useful in practice.

The Figure 8 knot K has a projection with 6 complementary regions consisting of 4
triangles and 2 bigons. After collapsing bigons, we obtain S3 − K by gluing two ideal
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tetrahedra as in Figure 10. This is an important example; an explicit picture of the face
gluing may be found in Figure 7 in Chapter 2.

Figure 10. Take two copies of the colored tetrahedron (i.e. the rightmost
figure) and glue faces to faces, twisting white faces clockwise and dark faces
anticlockwise. This exhibits S3 − figure 8 knot as the union of two ideal
tetrahedra.

The Borromean rings L in its standard projection has 8 complementary triangle regions.
Both B± in this case are ideal octahedra, and S3 − L can be realized by gluing two ideal
octahedra according to the pattern in Figure 11.

Figure 11. Take two copies of the checkerboard colored octahedron (i.e.
the rightmost figure) and glue faces to faces, twisting white faces clockwise
and dark faces anticlockwise. This exhibits S3 − Borromean rings as the
union of two ideal octahedra.

2.2. Connect sum. Suppose K ⊂ S3 and K ′ ⊂ S3 are two oriented knots. We may
choose a closed arc α ⊂ K and α′ ⊂ K ′ and balls BK , BK′ ⊂ S3 so that BK ∩K = α and
BK′ ∩ K ′ = α′. Then S3 − BK and S3 − BK′ are both balls containing oriented knotted
arcs in their interiors, and we can glue them together along their boundaries to produce S3

in such a way as to glue the knotted arcs together, forming an (oriented) knot in S3 called
the connect sum of K and K ′, and denoted K#K ′. The common sphere along which the
balls BK and BK′ are glued is called a decomposing sphere for K#K ′.

The balls BK , BK′ may be thought of as little beads strung on the knots K and K ′. These
beads may be slid around the knot between any two places; thus the result of connect sum
does not depend (up to isotopy) on the choice of arcs or balls, and one may check that it
defines an associative operation on oriented isotopy classes of knots in S3. Furthermore,
this operation is commutative, since it does not depend on an ordering of the knots.

Connect sum with an unknot (i.e. a round circle in S3) is the identity operation. Apart
from associativity and commutativity, there are essentially no other relations between
connect sum, so that in the end it is not a very interesting operation. As a special case,
the connect sum of two nontrivial knots is never the unknot:
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Proposition 2.3. Let K and K ′ be oriented knots in S3. If K#K ′ is the unknot then both
K and K ′ are unknots.

Proof. We give a rather startling proof due to Barry Mazur, and known as the Mazur
swindle. Suppose K#K ′ is the unknot. Then the same is true of K#K ′#K#K ′ and
K#K ′#K#K ′#K#K ′ and so on. We may tentatively form the infinite connect sum
K∞ := #N(K#K ′) by summing on smaller and smaller copies of K#K ′ accumulating
only at a single point; see Figure 12.

Figure 12. The infinite connect sum K∞ := #N(K#K ′)

A priori this is not a (tame) knot, because it appears to have a wild point where the
summands accumulate. However this is deceiving: since by hypothesis K#K ′ is unknotted,
the apparently knotted segments are really just inefficient projections of unknotted arcs,
and this infinite sum K∞ is an ordinary unknot, albeit drawn with a wild projection. On
the other hand, by bracketing the terms differently we have the identity

K∞ = K#N(K ′#K) = K#N(K#K ′) = K#K∞

Since K∞ is an unknot, K is an unknot too, and similarly for K ′. □

Remark 2.4. Up to now we have been implicitly working with smooth knots and isotopies;
the argument in the proof of Proposition 2.3 implicitly moves us to the world of topological
isotopies and homeomorphisms, and technically one ought to show that this does not
introduce new equivalences between isotopy classes of smooth knots that cannot be achieved
by smooth isotopy. This can be done, but we don’t do it here.

2.3. Linking number. Suppose K and K ′ are two disjoint knots in S3. Let’s orient K
and K ′ (arbitrarily). Since S3 is simply-connected, the knot K ′ can be shrunk down to
a point. The track of this homotopy is an immersed oriented disk D bounding K ′, and
if we wiggle D to be in general position, we can arrange for it to meet K transversely in
finitely many points. If D′ is any other disk bounding K ′ in general position (but with the
opposite orientation), the union D ∪D′ is an oriented 2-sphere S. The signed intersection
number of S with K depends only on the homology classes [S] ∈ H2(S

3) and [K] ∈ H1(S
3)

which are both trivial; thus the signed intersection number of D with K is equal to that
of D′ with K, and depends only on K ′. This number is called the linking number of K
and K ′, and denoted link(K,K ′). From the definition one sees that it only depends on the
isotopy class of the pair. Notice that changing the orientation of either knot changes the
sign of link(K,K ′).

We may compute this number directly from a link projection. Let’s suppose K and K ′

have been projected to the horizontal R2 in R3. We may contract K ′ to a point by first
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pushing it vertically into some level set of z far below the knot K, and then contracting
it radially in that level set. The only intersections of the track of this homotopy with K
are on the vertical lines that intersect both K and K ′ — i.e. at the overcrossings of K ′

over K. Such an overcrossing contributes 1 or −1 to the linking number depending on the
relative orientations of K and K ′; see Figure 13.

1

KK ′

−1

K K ′

Figure 13. We may compute link(K,K ′) by counting crossings of K ′ over
K in any link projection.

If we rotate R3 about the x-axis through 180◦, overcrossings of K ′ over K in the original
diagram become overcrossings of K over K ′ in the rotated diagram and vice versa, and
therefore link(K,K ′) = link(K ′, K).

2.4. Dehn Surgery. Dehn surgery modifies a closed 3-manifold M by removing an open
solid torus and gluing it back in by an automorphism of its boundary. The homeomorphism
type of the result depends on the mapping class of the boundary automorphism, modulo
those mapping classes that extend over a solid torus.

Let’s fix an identification of a torus T with the quotient space R2/Z2. We may think of
Z2 here as either π1(T ) or H1(T ) acting on the universal cover R2 by (integer) translations.
Any (orientation-preserving) self-homeomorphism induces a linear automorphism of Z2;
conversely any matrix in SL(2,Z) acts linearly on R2 permuting Z2 and descends to a
homeomorphism of the quotient torus. Thus there is a surjective map Mod(T ) → SL(2,Z),
and this map turns out to be an isomorphism.

If we think of T as the boundary of a solid torus H we may choose a basis for H1(T )
consisting of a pair of oriented curves µ, λ such that

(1) µ is the boundary of a disk cross-section D of H (we say µ is a meridian for H);
and

(2) µ and λ intersect transversely in one point.
The curve λ is called a longitude. There is no canonical choice for λ in general.

We choose coordinates on H1(T ) = Z2 for which µ = ( 1
0 ) and λ = ( 0

1 ). Any mapping
class that extends over H must preserve the kernel of the inclusion map Z2 = H1(T ) →
H1(H) = Z. This kernel is Z, generated by µ. Conversely, any mapping class that fixes or
reverses µ extends over the disk D that it bounds. The complement of this disk in H is
an open ball, and the mapping class extends over this ball by the Alexander trick. Thus
the subgroup of Mod(T ) that extends over H is precisely the set of matrices of the form
± ( 1 ∗

0 1 ).
Now let’s let K be a knot in S3. Let N(K) be an open solid torus neighborhood of K

and let T be the torus T := ∂(S3 − N(K)). If we orient K, we may choose a meridian µ
for T which has linking number 1 with K. Now there is a canonical choice of (oriented)
longitude, namely the unique oriented curve λ which has linking number 0 with K and for
which the intersection number of µ with λ in T is 1.
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If p/q is a rational number in reduced form, we define the result of p/q-surgery on K to
be the 3-manifold obtained by removing N(K) from S3 and gluing a solid torus back by
any automorphism represented in terms of the basis [µ], [λ] by a matrix in SL(2,Z) of the
form ( p r

q s ). By the discussion above, the resulting closed 3-manifold — denoted Kp/q —
depends only on the rational number p/q. By abuse of notation we let K1/0 denote S3.

Example 2.5 (Lens spaces). Let K ⊂ S3 be an oriented unknot, i.e. the isotopy class of any
round knot (in the spherical metric) and let N(K) be an open solid torus neighborhood.
The complement S3 −N(K) is a closed solid torus whose core is another unknot K ′. Let
T = ∂(S3 − N(K)) be the boundary torus with meridian µ and longitude λ. Notice that
λ is the meridian of K ′; in particular, the automorphism ( 1 0

m 1 ) of T (in µ, λ coordinates)
extends to an automorphism of S3 −N(K). This automorphism fixes λ and takes µ to a
curve representing µ+mλ. It follows that the result of p/q surgery on K and p/(q +mp)
surgery on K gives rise to homeomorphic 3-manifolds.

In fact, the manifold Kp/q is homeomorphic to the Lens space L(p, q) that we encountered
in Example 1.11 whose homeomorphism type (as we have already noted) depends only on
q mod p, and under this identification the torus ∂S3 −N(K) becomes the quotient of the
Clifford torus by the Z/pZ action.

Example 2.6 (±1 surgery on the unknot). Even the case of ±1 surgery on the unknot K
is interesting. As we have already noted, the automorphism ( 1 0

1 1 ) of T = ∂S3 − N(K)
extends to an automorphism of S3 − N(K) that we denote h. The homeomorphism h is
obtained by cutting S3 −N(K) along D, twisting through 360◦, and regluing. If K ′ is an
oriented knot in S3 −K then h(K ′) will be a possibly different knot; see Figure 14:

K ′

K

h(K ′)

Figure 14. The automorphism h of S3−N(K) is obtained by cutting along
the horizontal disk D (in blue) and rotating through 360◦ in the direction
of the red arrow before regluing. It takes any K ′ crossing through D to a
possibly different knot.

The automorphism h fixes λK and takes µK to µK + λK . Furthermore, if µK′ and λK′

are a meridian and longitude for K ′ (represented by knots on the boundary of a thin
tubular neighborhood of K ′) then the images hµK′ and hλK′ will represent curves µh(K′)

and λh(K′) + link(K,K ′)µh(K′) in terms of a meridian and longitude µh(K′), λh(K′) for the
knot h(K ′). To see this, consider the knot K ′ as it crashes through the meridianal disk D
of the solid torus S3 − N(K) one strand at a time and think about the effect of h on a
neighborhood of this strand; see Figure 15.

Example 2.7. The (2-component) Whitehead link admits an isotopy interchanging the
two components, each of which are individually unknots. Doing 1 surgery on the first
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h−→

Figure 15. The automorphism h carries µK to µK + λK and fixes λK . It
carries µK′ to µh(K′) and λK′ to λh(K′) + link(K,K ′)µh(K′) (in this figure
link(K,K ′) = 1).

component changes the second component into a right-handed trefoil, while doing −1
surgery on the second component changes the first component into a figure 8 knot. Thus
the manifold obtained from S3 by −1 surgery on the right-handed trefoil is homeomorphic
to the manifold obtained from S3 by 1 surgery on the figure 8 knot. See Figure 16.

1

= −1

1

isotopy−−−−→
1

−1

=

−1

Figure 16. −1 surgery on the right-handed trefoil is the same as 1 surgery
on the figure 8 knot.

Example 2.8 (Slam dunk move). Suppose L is a link consisting of two components L =
K1 ∪K2 where K2 links K1 as a tiny meridian. Suppose we do integral surgery n on the
knot K1; i.e. drill out a neighborhood N(K1) and glue in a solid torus H whose meridian
is the (n, 1) curve on ∂N(K1). We may push the knot K2 into H and observe that it
intersects the meridian disk transversely exactly once; in particular, K2 is isotopic to the
core of H. Thus performing p/q surgery on K2 just drills out H and glues it back in by a
twist, changing the surgery coefficient on K1 to n− q/p.

n

p/q
→

n− q/p

Figure 17. The slam dunk move.

Example 2.9 (Dehn twist on Heegaard surface). Let M be a closed oriented 3-manifold
with a Heegaard splitting M = H1∪H2, and let S be the splitting surface. We may obtain
a new 3-manifold by cutting along S and regluing by a mapping class in Mod(S).

One particularly simple mapping class is a Dehn twist, defined as follows. If γ ⊂ S
is any essential simple closed curve, and A is an annulus neighborhood parameterized as
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S1 × [0, 1] with S1 × 1/2 = γ, we obtain a self-homeomorphism of S which is equal to the
identity outside A, and on A it is given by the formula (θ, t) → (θ + 2πt, t); see Figure 18.

→

Figure 18. A (right-handed) Dehn twist.

The mapping class of this map is called the right-handed Dehn twist in γ and usually
denoted τγ (the inverse is a left-handed Dehn twist). Let M ′ be obtained from M by cutting
along S and regluing by τγ. I claim M and M ′ are related by Dehn surgery on the curve
γ, thought of as a knot in M .

To see this, let’s let N be the result of cutting M open along the annulus A; i.e. N
is obtained by gluing H1 to H2 by identifying S − A ⊂ ∂H1 with S − A ⊂ ∂H2 by the
identity. The boundary of N is a torus, made from two copies of A, one in each of ∂H1

and ∂H2, and we may choose a basis µ, λ on this torus in such a way that µ intersects each
copy of A in the arc 0 × [0, 1], and λ = S1 × 1/2 in the top copy of A (say). To obtain
the manifold M back from N we glue in the mapping cylinder of the identity map from A
to itself, whereas to obtain M ′ we glue in the mapping cylinder of τγ|A. These mapping
cylinders are both solid tori; the meridian of the first solid torus is µ, and the meridian of
the second solid torus is µ+ λ in the given coordinates. Thus M ′ is obtained by 1 surgery
on γ in M .

This procedure is powerful enough to produce all closed oriented 3-manifolds:

Proposition 2.10. Every closed oriented 3-manifold may be obtained by Dehn surgery on
some link in S3.

Proof. If M is a closed oriented 3-manifold, it admits a Heegaard splitting of some genus g.
The 3-sphere also admits some Heegaard splitting of genus g that we denote S3 = H1∪H2

with splitting surface S. It follows that there is some ϕ ∈ Mod(S) so that M is obtained
from S3 by cutting along S and regluing by ϕ.

We shall see in the sequel that the entire mapping class group Mod(S) may be generated
by Dehn twists. Thus we may obtain a factorization ϕ = τ1τ2 · · · τn where each τi is a right
or left handed Dehn twist in some essential simple curve γi in S. Take n parallel copies
S1, . . . , Sn of S contained in a collar neighborhood, and for each i let Ki be the copy of γi
in Si. The union of the Ki is a link L, and as in Example 2.9, the result of ±1 surgery (in
suitable coordinates) on the components of L takes S3 to M . □

2.5. Wirtinger presentation. Let K be a knot in S3, and let us consider a knot projec-
tion with n crossings. We may imagine the plane of the projection to be an equatorial S2

in S3, and think of K as being decomposed into segments, two for each crossing, that are
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properly embedded in the components of S3−S2. These segments are ‘bridges’, one above
and one below the equatorial sphere of the projection; see Figure 19.

tilt−−→

Figure 19. Crossings may be interpreted as ‘bridges’, one above and one
below the equatorial sphere of the projection. A meridian loop (in red)
going around a positive bridge is the core of a 1-handle of a handlebody H+;
a disk (in blue) going under a negative bridge is the core of a 2-handle of the
compression body J .

If N(K) is an open neighborhood of K, the compact manifold S3 − N(K) decomposes
along the equatorial S2 into two B3s with n tubes drilled out. Evidently these tubes are
unknotted in each B3, so the two sides are handlebodies of genus n; we denote them H+

and H−. These two handlebodies are glued together along a common planar subsurface P
of their boundary, namely S2 − (N(K) ∩ S2), a sphere with 2n open disks removed.

We may think of H+ as being made from one 0-handle and n 1-handles. The core of
each 1-handle is a loop that loops like a meridian around a positive bridge. Dually, we
may think of H− as being made from n 2-handles and one 3-handle. The 2-handles are
disks that go underneath a negative bridge and isolate it from all the others; the result of
attaching these disks to P creates a boundary 2-sphere, and this 2-sphere is capped off by
the 3-handle.

There is another way to think of this picture: let’s let J denote the union of H− together
with a collar neighborhood of ∂H+. Thus we may think of J as being obtained from a
collar of ∂H+ by attaching n 2-handles and one 3-handle. In this presentation, we may
cancel the 3-handle with any one of the 2-handles; the reason is that each 2-handle D2 × I
is attached to the boundary of the 3-handle along only one D2 × point face, and we may
simply ‘push’ this face across the 3-handle by an isotopy. Thus we may think of J after all
as the union of a collar of ∂H+ with only (n−1) 2-handles; in particular, J is a compression
body.

From this picture one may read off a rather elegant presentation for π1(S
3 − N(K))

called the Wirtinger presentation. Orient the knot K, and choose one generator xi for
each positive bridge which links it positively from above. Each negative bridge gives a
relation between the three generators that meet at the crossing (see Figure 20). Any one
of these relations follows from all the others and may be excluded (this is equivalent to the
fact that any one of the n 2-handles may be canceled by the 3-handle); thus we obtain a
presentation with n generators and n− 1 relations. In the abelianization, every generator
maps to the generator 1 of H1(S

3 −N(K)) = Z.
Example 2.11. From the standard projection of the right-handed trefoil K (see Figure 21)
we may read off a presentation

π1(S
3 −N(K)) = ⟨a, b, c | aca−1 = b, cbc−1 = a⟩
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xi xj

xk

x−1
i xjxi = xk

xj xi

xk

xixjx
−1
i = xk

Figure 20. Each crossing gives a relation between three generators.

which may be rewritten symmetrically as ⟨a, b, c | ac = ba = cb⟩.
a

bc

Figure 21. Wirtinger generators for π1(S
3 − right-handed trefoil).

One advantage of the Wirtinger presentation is that it is easy to read off representatives
for the meridian µ and longitude λ; we explain how to do this in the case of the trefoil. Any
of the Wirtinger generators may be chosen to be the meridian, since they are all conjugate;
let’s choose a basepoint somewhere around the ‘uppermost’ point on the projection so that
µ = a. For a general knot, we may choose any generator as the meridian. To find the
longitude, first trace around the outline of the knot, picking up one generator or its inverse
at each undercrossing; for example, if we start at our basepoint and proceed positively
around K we obtain λ′ = cab. For a general knot we obtain a word of length equal to the
number of crossings. This is one choice of longitude, but not the canonical choice which is
homologically trivial in S3 −K; it may be corrected by multiplying by a suitable choice of
the meridian, hence λ = caba−3. As a sanity check we verify that µ and λ commute:

λµ = caba−2 = ca2ca−3 = cacba−3 = cbaba−3 = acaba−3 = µλ

Performing 1 surgery on K glues in a solid torus. At the level of π1 this kills the loop on
the boundary torus represented by λµ = caba−2. Thus a presentation for the fundamental
group of this 3-manifold is

π1(M) = ⟨a, b, c | ac = ba = cb, caba−2 = 1⟩
Eliminating the generator b by b = aca−1 gives

π1(M) = ⟨a, c | caca−1c−1a−1, ca2ca−3⟩
Adding back a new generator b := a−1c−1 and eliminating c gives

π1(M) = ⟨a, b | b−2a−1ba−1, b−1ab−1a−4⟩
which is equivalent to the presentation for the fundamental group of the Poincaré Homology
Sphere given in Example 1.18.

In fact, the manifold obtained from S3 by 1 surgery on a right-handed trefoil is the
Poincaré Homology Sphere! This observation is due to Max Dehn, and is a rather challeng-
ing exercise in cut-and-paste topology. One way to see it is to first drill out an unknotting
arc from S3 −N(K) to create a genus 2 handlebody, as in Example 1.19. Then 1 surgery
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on the trefoil is the result of attaching another genus 2 handlebody, whose attaching circles
are the boundary of the cocore of the unknotting arc we just drilled out, and the loop λµ
on ∂S3 − N(K). Finally, one may move these two curves around on the boundary of the
handlebody by an isotopy to put them in the form of Figure 5.

2.6. Branched covers. Let L be a link in S3. As in § 2.5, any projection of L with
n crossings gives rise to a splitting of S3 as a union of 3-balls S3 = B+ ∪ B− along an
equatorial S2 for which each intersection L± := L ∩ B± is a union of n unknotted arcs
joining up the 2n points of L ∩ S2.

Let M → S3 be a branched cover of degree d, branched over L. Topologically such a
cover is obtained by taking an ordinary d-fold cover of S3 −L and then gluing back covers
of components of L to close up the holes. Each pair (B±, L±) is topologically a disk with
n points times I, so the preimages H± of B± are handlebodies.

Example 2.12. In the case of a knot K, there is a unique cyclic branched cover of each
degree d, given by the regular cyclic cover of S3−K whose fundamental group is the kernel
of the composition π1(S

3 −K) → H1(S
3 −K) = Z → Z/dZ. For this regular cover, the

handlebodies H± have genus (d− 1)n− d+ 1.

In fact, Alexander [1] showed that every closed oriented 3-manifold arises as a branched
cover of some link in S3:

Proposition 2.13. Every closed oriented 3-manifold M may be obtained as a branched
cover of S3 over some link.

Proof. The first step is to exhibit a map M → S3 branched over a graph in a particularly
simple way, and then to modify the map locally so that the branch locus is a link. Let τ
be a triangulation of M , and let τ ′ denote the barycentric subdivision of τ . Every vertex
of τ ′ is the barycenter of an i-simplex of τ , and in this way we obtain a labeling of the
vertices of τ ′ by numbers 0, 1, 2, 3 in such a way that every simplex of τ ′ has all four labels
on its vertices.

Build a triangulation of S3 by taking a single tetrahedron and doubling it in its boundary.
Label the four vertices of this triangulation by 0, 1, 2, 3. Then there is an obvious map f
from M to S3 taking each simplex of τ ′ homeomorphically to one of the two simplices
in this triangulation of S3 in the unique manner which is orientation-preserving on each
simplex. Evidently f : M → S3 is branched over the 1-skeleton of the triangulation of S3,
which is topologically the complete graph on 4 vertices.

The branch locus of f is the subset of M where f is not a local covering. The next step
is to perturb f so that the branch locus is a link in M . Let ∆ denote the 1-skeleton of the
triangulation of S3 so that f−1(∆) is the 1-skeleton of τ ′. If e is an edge of f−1(∆) mapping
to an edge f(e) of ∆, the local degree at e is the degree with which a meridian circle for
e maps to a meridian circle for f(e). This is evidently equal to n/2 where n simplices of
τ ′ meet along the edge e (note this is always even, since simplices of τ ′ that share a face
are oppositely oriented by their vertex labels). We may erase edges of f−1(∆) with local
degree 1 (if any) to get a subgraph Γ which is exactly the branch locus of f .

Now, let’s parameterize neighborhoods of e and f(e) as oriented cylinders f : e × D →
f(e) × D where D is the unit disk in C so that in these coordinates the map f is just
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(p, z) → (p, zd(e)) where d(e) is the local degree of e. We may perturb this map to (p, z) →
(f(p), zd(e) + ϵ). This splits apart the branch locus near e into d − 1 parallel edges, each
running between the vertices of e. After performing this modification near each edge of Γ,
we get a new branched map f ′ : M → S3 whose branch locus Γ′ is a graph, every edge of
which maps with local degree 2. Note that the image f(Γ′) will not typically be equal to
∆.

If v is a vertex of Γ′ mapping to f ′(v) then an open neighborhood of v is a ball mapping
to a ball neighborhood of f ′(v). The restriction of f ′ to the boundary of this ball is a
branched cover g : S2 → S2 with simple branch points, and the map on balls is the cone on
g. If we identify the target with CP1 and pull back the Riemann surface structure under
g, then we may think of g as a rational map of some degree d(v) — the local degree of v —
with 2d(v)−2 simple critical points. The space of rational maps of degree d(v) with simple
critical points is Zariski open and therefore connected in the (connected) variety of all
degree d(v) rational maps. Let β : D → D be any Blaschke product — i.e. a holomorphic
degree d(v) map from the unit disk to itself — with simple critical points. Then β extends
to β : CP1 → CP1 by (Schwartz) reflection in the unit circle. Now think of CP1 as the
boundary of B3, and foliate B3 by arcs joining points in D to their (Schwartz) reflections.
The map β extends yet again to B3, respecting this product structure, to a degree d map
β : B3 → B3 branched over d(v)−1 unknotted arcs that join the simple critical points of β
to their reflections. Modify the map f ′ in a neighborhood of v and replace it by a suitable
conjugate of the map β, and do this for all vertices of Γ′. The result is a new branched map
f ′′ : M → S3 whose branch locus is a link. If we perturb f ′′ to put it in general position,
we may arrange that the image of this link is a link in S3 over which M is branched. □

2.7. Seifert surfaces. If K is an oriented knot in S3, linking number with K defines a
homomorphism from π1(S

3 −K) to Z, or equivalently an element of H1(S3 −K;Z). For
any reasonable topological space X (for instance, a CW complex), H1(X;Z) is naturally
in bijection with free homotopy classes of maps from X to S1; thus, associated to an
orientation on any knot K we obtain a canonical homotopy class of map from S3 −K to
S1.

Let’s let N(K) be an open tubular neighborhood of K, and parameterize the boundary
torus as S1 × S1 where each S1 × point is an oriented meridian, and each point× S1 is an
oriented longitude. Then we may choose a smooth representative map f : S3−N(K) → S1

whose restriction to ∂(S3 − N(K)) is projection to the first factor S1 × S1 → S1. If S is
the preimage of a regular value of f , then S will be a proper, two-sided oriented surface
with ∂S equal to a longitude for K. Such an S is called a Seifert surface. Seifert surfaces
are not unique (even up to isotopy). We usually insist that S is connected; it turns out
this is always possible (we shall see why shortly), and is equivalent to the fact that linking
number represents a primitive class in H1(S3 −K;Z). Thus a Seifert surface is a compact
oriented surface of some genus g ≥ 0 with one boundary component. The least genus over
all Seifert surfaces is called the genus of K and is denoted g(K). It is not easy to compute.

Example 2.14 (Genus 0). If g(K) = 0 then K is an unknot. For, a genus 0 Seifert surface
is a disk, and we may shrink K across this disk to a round neighborhood of a point.
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Example 2.15 (Connect sum). Genus is additive under connect sums; that is, g(K#K ′) =
g(K)+g(K ′). Seifert surfaces for K and K ′ may be glued together along a pair of boundary
arcs to produce a Seifert surface for K#K ′; this shows g(K#K ′) ≤ g(K)+g(K ′). To prove
the other inequality one must take a Seifert surface S for K#K ′ and a decomposing sphere
S2 in general position with respect to S and intersecting K#K ′ in two points, and isotop S2

to inductively eliminate innermost circles of intersections of S2∩S until this intersection is
a single arc decomposing S into a pair of Seifert surfaces for K and K ′. This gives another
proof of Proposition 2.3.

Seifert gave an algorithm to produce a (connected!) Seifert surface directly from an
oriented knot projection. The algorithm begins with a knot projection and has three steps:

(1) resolve the crossings compatibly with the orientation to produce a disjoint union of
embedded loops;

(2) span the loops with embedded disks oriented compatibly with their boundary cir-
cles, innermost disks ‘in front of’ outermost ones (with respect to the projection);
and

(3) connect up these embedded disks with twisted strips at each of the original crossings
to produce S.

The meaning of this algorithm is best explained by an example. Figure 22 shows the
(oriented) knot 933. The crossings are resolved consistently with the orientation to produce
four oriented circles: three positively oriented, one negatively oriented. These are spanned
by disks (the co-orientation of the green disks points out of the page and the co-orientation
of the yellow disk points into the page), and then the disks are connected up with twisted
strips to produce an oriented genus 3 Seifert surface for the knot, which turns out to be
the minimum possible.

 

Figure 22. Seifert’s algorithm produces a genus 3 Seifert surface for this
projection of the knot 933.

A Seifert surface S defines a relative homology class [S] ∈ H2(S
3−N(K), ∂(S3−N(K)))

dual to the class in H1(S3 −N(K)) defined by linking number.

2.8. Knot and link invariants. Any two projections of a knot (resp. link) are related
by a finite sequence of Reidemeister moves. Any function of a projection that does not
change under one of these moves therefore defines a knot (resp. link) invariant.

Example 2.16 (3-colorability). A knot or link projection is 3-colorable if we can color each
segment of the projection with one of three fixed colors (let’s call them red, green and blue)
in such a way that at least two colors are used, and at each crossing the incident segments
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are either all the same color, or all different colors. This property is preserved under the
Reidemeister moves; see Figure 23.

↔ ↔ ↔ ↔

Figure 23. The Reidemeister moves preserve the property of 3-colorability.

The trefoil is 3-colorable; the unknot and the figure 8 knot are not.

Example 2.17 (Alexander–Conway polynomial). The Alexander–Conway polynomial ∇(L)
is an invariant of oriented links taking values in the ring Z[z]. This invariant is defined
by setting ∇(O) = 1 where O is any unknot, and if three oriented links L+, L−, L0 have
diagrams which are the same away from some little region where they differ as indicated
in Figure 24, their polynomials are related by ∇(L+) − ∇(L−) = z∇(L0). This is called
(by Conway) a skein relation.

L+ L− L0

Figure 24. Defining skein relation of the Alexander–Conway polynomial.

Setting aside for the moment the question of whether any such ∇ with this property
exists, we see from Reidemeister 1 applied to an unknot that ∇ vanishes on unlinks of
two (and recursively, any n > 1) components. Define a complexity on links to be the
ordered pair (a, b) where a is the minimal number of crossings in any diagram, and b is the
minimal number of crossings that need to be changed (in some specific projection with a
crossings) to change the diagram into a projection of an unlink. Evidently this complexity
is well-ordered, and for any nontrivial oriented link L we can always arrange that L is one
of L± in such a way that the complexity of the other element of L± and of L0 are strictly
smaller. Thus by induction, ∇ is uniquely determined.

To see that it is well-defined at all is harder; in fact, it is not even clear that it is well-
defined on a knot or link diagram! One way to do it is to show that ∇(L)(t− t−1) = ∆L(t

2)
where ∆L is the Alexander polynomial which may be defined in several ways, some of which
are manifestly topologically invariant; the interested reader may look ahead to Chapter 6.
Closer to the theme of this subsection, Hoste [3] gives an algorithm to evaluate ∇ uniquely
on an oriented link diagram by choosing some specific sequence of simplifying crossings as
above, and then shows that this (now well-defined) invariant of a diagram is invariant under
Reidemeister moves. In fact, one obtains in this way a homogeneous polynomial invariant
in Z[x, y, z] that specializes to ∇ when −x = y = 1. This multi-variable polynomial was
discovered independently and almost simultaneously by several different groups, and goes
under the name of the HOMFLYPT polynomial, made up from the initials of the various
discoverers.
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3. Seifert Fibered Spaces

3.1. Circle bundles.

Definition 3.1 (Euler number). Let E be a smooth orientable circle bundle over a closed
oriented surface S. If we scale a Riemannian metric on E so that each circle has length 2π
we may realize E as the boundary of a smooth unit D2 bundle W over S. Note that W is
a smooth compact orientable 4-manifold with boundary E.

Since D2 is contractible, we may find a smooth section σ : S → W . The (oriented) self-
intersection number of this section is an integer, called the Euler number of the bundle.

The Euler number is a complete invariant of orientable circle bundles over closed surfaces:

Proposition 3.2 (Euler number classifies). Let E → S be an oriented circle bundle over a
compact oriented connected surface S. If S has boundary, E is a product S×S1. Otherwise,
E is classified up to isomorphism (as an oriented circle bundle) by the Euler number, which
may be any integer Z.

Proof. For an oriented circle bundle, a trivialization is the same as a section. Any oriented
circle bundle over a graph has a section, so it is trivial. If S has boundary, it deformation
retracts to an embedded subgraph and therefore E = S × S1 in this case.

Otherwise we may find a cell decomposition of S with one face, and trivialize E over a
neighborhood of the 1-skeleton. In other words, we may find an embedded disk D ⊂ S and
a section σ : S −D → E|(S −D). Now, E|D is just a solid torus, which admits its own
trivialization as a circle bundle ϕ : D×S1 → E|D. If we choose points p ∈ S1 and q ∈ ∂D
the curve µ′ := ϕ(∂D× p) is a meridian on this solid torus, and the fiber λ := ϕ(q× S1) is
a longitude. In these coordinates the section σ(∂D) is a curve µ that may be written (up
to isotopy) as µ′ + eλ for some integer e.

We claim e is the Euler number; in particular, it is independent of the choice of trivial-
ization over S−D. To see this, think of E = ∂W for a disk bundle W as above. The map σ
is a section over S−D. The trivialization ϕ extends to a trivialization ϕ : D×D2 → W |D.
In ϕ coordinates, σ is the graph of z → ze over the unit circle S1 in C. This extends as
a section of W over D to z → ze if e ≥ 0 or as z → z̄−e if e < 0. Thus the intersection
number of σ(S) with the zero section in W (which is the self-intersection number of σ(S))
is e, so that e is the Euler number.

We may reverse the construction above to exhibit E as the result of Dehn surgery on
a product bundle as follows. Start with S × S1 and let K be any oriented fiber. A
neighborhood of K is a solid torus foliated by circles, and on the boundary we may choose
a meridian µ and a longitude λ which is also a fiber. If we perform −1/e surgery in these
coordinates, the meridian µ′ of the new solid torus satisfies µ′ = µ− eλ so that µ = µ′+ eλ
as above. In particular, E is determined by e up to isomorphism, and any e ∈ Z may
arise. □

Changing the orientation of the fiber or the base changes the Euler number to its neg-
ative. By van Kampen’s theorem, we may obtain a presentation for π1(E). Pick a point
p ∈ S and let N(p) be an open disk neighborhood of p. If S has genus g, the fundamental
group π1(S − N(p)) is free on 2g generators a1, · · · , ag, b1, · · · , bg. One may choose these
generators so that the signed intersection of ai with bi is 1 for all i, and then the product
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of commutators γ :=
∏

i[ai, bi] represents the negatively oriented boundary of S − N(p)
which is the oriented image of both curves µ and µ′ that wind positively around the solid
torus E|N(p). See Figure 25.

a1

b1

a1

b1

a2

b2

a2

b2

γ

Figure 25. If ai, bi are a standard surface basis for a genus g surface with
one boundary component, the product

∏
[ai, bi] respresents the negatively

oriented boundary γ.

Since E|(S−N(p)) is a product, its fundamental group is just the product of π1(S−N(p))
with a Z factor generated by a central element z representing the oriented fiber. Gluing
back in a solid torus adds a relation γ = ze. Thus a presentation is given by

π1(E) = ⟨a1, · · · , ag, b1, · · · , bg, z | [ai, z] = [bi, z] = 1,
∏
i

[ai, bi] = ze⟩

In particular, H1(E) = Z2g ⊕ Z/eZ which gives another way to see that e is well-defined
independent of choices, and gives an easy method to compute it, at least up to sign.

Let’s consider some examples.

Example 3.3 (Hopf fibration). The 3-sphere S3 may be thought of as the unit sphere
in C2 with its standard Hermitian metric. There is a free action of S1 on S3 given by
multiplication of coordinates:

eiθ · (w, z) = (eiθw, eiθz)

and the orbits are precisely the intersection of S3 with the complex lines in C2. It follows
that the quotient space is the Riemann sphere CP1, which is diffeomorphic to S2 with its
standard orientation. This exhibits S3 as the total space of a circle bundle over S2 called
the Hopf fibration.

S3 is the boundary of the unit B4 in C2. Complex lines in C2 meet B4 in disks, and these
disks all intersect only at the origin. It follows that we may obtain W as in Definition 3.1
by blowing up B4 at the origin. Thus W is CP2 − point, and a section of W 4 → S2 takes
S2 (with the standard orientation) to the exceptional divisor in CP2. In particular, the
Euler number of the Hopf fibration is −1.

Example 3.4 (SO(3)). The group SO(3) acts transitively on the unit sphere S2 in R3 and
point stabilizers are the conjugates of SO(2) = S1. Thus SO(3) is the total space of an S1

bundle over S2.
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To compute the Euler number we find a section away from a point. Let p+ be the north
pole and p− the south pole. For 0 ≤ t ≤ π let αt be the rotation of the yz plane and βt

the rotation of the xy plane through positive angle t. Let (θ, t) for θ ∈ S1 and t ∈ [0, π] be
polar coordinates on S2 for which (θ, 0) is the north pole and (θ, 1) is the south pole. The
map (θ, t) → βθαtβ−θ is a section from S2 − p+ to SO(3). As t → π the rotations βθαtβ−θ

limit to ιyzβ−2θ where ιyz is the involution (x, y, z) → (x,−y,−z) taking p+ to p−. Thus
as we wind around a tiny positively oriented circle around p− the angle θ winds negatively
once around the circle and the section winds positively twice around a fiber. Hence the
Euler number is 2.

Another way to see this is to note that SO(3) acts freely and transitively on the unit
tangent bundle UTS2, and after choosing a base vector, the orbit map is an identification
SO(3) = UTS2. The unit tangent bundle bounds the unit disk bundle. A section of this
bundle is just a vector field where the vectors have length ≤ 1. The intersection of a generic
section with the zero section is simply the number of zeros of a generic vector field, counted
with sign, which by the Poincaré-Hopf index formula is equal to the Euler characteristic,
which is 2.

As a 3-manifold SO(3) is homeomorphic to RP3. Here’s one way to see this. Let I ⊂
SO(3) be the set of involutions. A nontrivial rotation γ of R3 has a unique axis. This
axis intersects S2 at two points, and if γ is not an involution, there is exactly one of these
points p at which γ acts by (oriented) rotation through angle α < π. The map that takes
γ to αp ∈ R3 extends continuously to the identity and maps SO(3)− I homeomorphically
to the open unit ball in R3 of radius π. Each involution fixes two antipodal points on S2,
and acts as multiplication by −1 in the tangent planes at these two points. Thus I is an
RP2, compactifying the ball SO(3)− I to RP3.

Example 3.5 (Unit quaternions). We may identify C2 with Hamilton’s quaternions by
(z, w) ↔ z + wj. The group of unit quaternions may be thought of as the unit S3,
and acts on itself by left multiplication. The subgroup S1 of unit complex numbers sits
inside S3 as a subgroup and acts freely on the left, and we may think of the Hopf fibration
S3 → CP1 as the map to the space of right cosets of S1 in S3.

On the other hand, there is the adjoint action of S3 on the space of purely imaginary
quaternions: q · q′ = qq′q̄. The center acts trivially, so this action factors through S3 →
SO(3) = S3/ ± 1. The induced action of SO(3) is the standard action considered in
Example 3.4. We may identify the north pole with the quaternion i, and the stabilizer of
i is again S1. But now this exhibits S2 as the space of left cosets of S1 in S3. The Euler
number of this circle bundle is 1, since each fiber of SO(3) → S2 is double-covered by a
fiber of S3 → S2.

Example 3.6 (unit tangent bundles). Let S be any surface. For any Riemannian surface S
the unit tangent bundle UTS is a circle bundle over S. This bundle is oriented if S is, and
if S is closed and oriented its Euler number is χ(S). In particular, if S has genus g, the
Euler number is 2− 2g.

If S is a torus, it is parallelizable and UTS is just the 3-torus T 3. If S is a hyperbolic
surface we may realize S as the quotient of the hyperbolic plane H2 by the deck group, a
discrete subgroup Γ of the isometries of H2 isomorphic to π1(S). The group of orientation-
preserving isometries of H2 is isomorphic to PSL(2,R); it acts transitively with point
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stabilizers isomorphic to S1 acting on H2 by rotations. Thus we may identify H2 with the
space of right cosets of some S1 subgroup of PSL(2,R), and S with the double coset space
of S1 and the subgroup Γ, so that the fibration UTS → S may be written in the form

Γ\PSL(2,R) → Γ\PSL(2,R)/S1

Example 3.7 (Heisenberg group). Let H be the group of 3× 3 real matrices of the form:

H :=

{1 x z
0 1 y
0 0 1

 for x, y, z ∈ R

}

As a topological space, H is evidently diffeomorphic to R3. There is a discrete subgroup
HZ consisting of matrices for which x, y, z ∈ Z. There is a homomorphism H → R2

taking a matrix to the pair (x, y), and this homomorphism restricts on HZ to a map to Z2.
Thus there is a natural projection to a torus HZ\H → R2/Z2. The fiber is a circle, and
E := HZ\H is the total space of an orientable circle bundle over the torus. Note that H is
the universal cover of E, and HZ = π1(E).

The Euler number e of this bundle is 1. One way to see this is to consider the fundamental
group. Under the surjection HZ → Z2 the standard generators lift to elements a, b, and
the kernel is central and generated by z, represented by a fiber. As matrices we have

a :=

1 1 0
0 1 0
0 0 1

 , b :=

1 0 0
0 1 1
0 0 1

 , z :=

1 0 1
0 1 0
0 0 1


In particular we may compute [a, b] = ze = z so that e = 1.

Example 3.8. The manifold S2 × S1 is obtained by 0 surgery on an unknot in S3. Thus
the unique oriented S1 bundle over S2 with Euler number e is given by surgery on a Hopf
link in S3, one component with coefficient 0 and one with coefficient −1/e. By the slam
dunk move (Example 2.8) this is equivalent to e surgery on an unknot; i.e. it is the Lens
space L(e, 1). For example, taking e = 2 gives RP3 = L(2, 1).

Example 3.9 (Nonorientable bundles). The total space of a circle bundle E might be ori-
ented even if it is not oriented as a circle bundle. Let E → S be a circle bundle over a
nonorientable surface S. Then E is orientable if and only if for each one-sided embedded
loop γ in S the restriction E|γ is a Klein bottle fibering over a circle.

A not necessarily orientable circle bundle E over S still bounds a disk bundle W over
S, and the total space of W is orientable if E is. There is still a section σ : S → W but if
S is not orientable, the self-intersection number is only defined mod 2.

We may still find a disk D ⊂ S and a section σ of E|S − D so that σ(∂D) represents
µ′ + eλ in some trivialization of E|D, but now a different choice of section will change e
by an arbitrary multiple of 2.

Arguing as in Proposition 3.2 one may show that nonorientable circle bundles over
nonorientable surfaces with orientable total space are classified by the topology of the base
surface, and the Euler number e ∈ Z/2Z.
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3.2. Exceptional fibers. The total space of a circle bundle (orientable or not) admits a
foliation by the circle fibers. However, not every foliation of a 3-manifold by circles is a
circle bundle, even locally.

Example 3.10 (Exceptional fiber). For coprime integers p, q with 0 < q < p let f : D → D
be the map z → e2πi·q/pz. This has order p, and acts freely on D− 0. The mapping torus
Mf := D×I/(z, 1) ∼ (f(z), 0) is a solid torus, fibered by circles γQ which are the images of
Q× I in Mf , where Q ⊂ D is an orbit of the group G := Z/pZ generated by f . Note that
we may also think of an orbit Q as a point of the quotient space D/G, which is topologically
a disk.

We may change coordinates on Mf and think of it as a product D × S1 and now the
circles γQ are just the curves in D × S1 of the form (e2πitq/pz, e2πit) for t ∈ [0, p]. In these
coordinates, a meridian µ′ for Mf is just the circle S1 × 0. Let T := ∂Mf denote the
boundary torus. Let λ be one of the γQ on T , and let µ be a curve on T made from a
pair of segments, one in µ′ and one in λ, the segment in µ′ winding 1/p of the way around
and the segment in λ winding −q/p of the way around. Then µ and λ may be perturbed
to intersect transversely once positively, so that they form a basis for H1(T ). In these
coordinates, µ′ = pµ+ qλ; see Figure 26.

µ

µ′

λ

Figure 26. A basis µ, λ on the boundary of an exceptional fiber in green
and red respectively. A meridian µ′ represents pµ + qλ; in this figure p = 3
and q = 1.

Note that a different trivialization of T with λ as circle fiber would pick a new µ̂ := µ+nλ.
In these new coordinates we would have µ′ = pµ+ qλ = pµ̂+ (np+ q)λ. The core circle of
the foliation of Mf in Example 3.10 is called an exceptional fiber of type p, q.

Definition 3.11 (Seifert fibered space). A Seifert fibered space is a compact oriented 3-
manifold M with a foliation F by circles (called a Seifert fibration of M) so that every leaf
γ either has a neighborhood foliated as a product, or has a neighborhood foliated like Mf

in Example 3.10 with γ as the exceptional fiber.
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If M is Seifert fibered, the boundary of M consists of tori with a product foliation by
circles. Note that although we require M to be oriented, the foliation by circles doesn’t
need to be. If it is, we say that the Seifert fibration is oriented. This is equivalent to the
existence of an action of the group S1 on M which is locally free, in the sense that point
stabilizers are discrete in S1.

Example 3.12 (Brieskorn spheres). For integers p, q, r ≥ 2 let V be the complex algebraic
surface in C3 defined by the equation

zp1 + zq2 + zr3 = 0

This is singular at the origin, but its intersection with the unit sphere S5 ⊂ C3 is a smooth
3-manifold M(p, q, r) = V ∩ S5. There is an action of the circle on M(p, q, r) given by

eiθ · (z1, z2, z3) = (eqriθz1, e
priθz2, e

pqiθz3)

This action is locally free, and factors through an action of a quotient circle which is free
away from the three orbits where one of the zj = 0. These are exceptional fibers whose
type is a rather complicated function of p, q, r in general.

For any (z1, z2, z3) ∈ M(p, q, r) there is a unique real t > 0 for which (tqrz1, t
prz2) ∈ S3 ⊂

C2. The map
(z1, z2, z3) → (tqrz1, t

prz2)

takes M(p, q, r) surjectively to S3, and is an r-fold cyclic branched cover, branched over
the subset of S3 where zp1 +zq2 = 0. This is a link, lying on the torus |z1|p = |z2|q, called the
(p, q) torus link, and has n = gcd(p, q) components. The (2, 3) torus link is a (right-handed)
trefoil.

We can extend the definition of Euler number to Seifert fibered spaces, although in
general it will takes values in Q (at least when the Seifert fibration is oriented). Suppose
M has an oriented Seifert fibration with exceptional fibers δ1, · · · , δn of type pi, qi. Let Ni

be a fibered solid torus neighborhood of δi and let N := ∪Ni. The complement M − N
is an ordinary oriented circle bundle over a compact oriented surface S ′ of some genus
g with n boundary components, and we may choose a trivialization M − N = S ′ × S1.
This trivialization picks out a choice of meridian µi in the boundary of each Ni, that
intersects each oriented circle fiber on ∂Ni positively in one point. Choose one such circle
fiber λi. Finally, let µ′

i be the meridian of Ni. Calculating as above, we see that µ′
i =

piµi + (nipi + qi)λi for some integer ni. We define the Euler number e by the formula
−e =

∑
i(ni + qi/pi).

Proposition 3.13 (e is well-defined). The Euler number e of an oriented Seifert fibration
is well-defined.

Proof. With notation as above, π1(S
′) is a free group of rank 2g+n−1 with a presentation

of the form
π1(S

′) = ⟨a1, b1, · · · , ag, bg, c1, . . . , cn |
∏

[ai, bi] =
∏

cj⟩
where the ai, bi are a standard basis for π1 of a closed surface of genus g, and the cj are
conjugacy classes of the negatively oriented boundary loops, which are the projections of
the µj.
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Two different trivializations of a circle bundle over S ′ differ over each loop in S ′ by
some multiple of the fiber; in other words, the difference between two trivializations is
measured by a homomorphism ϕ from π1(S

′) to Z. In particular, all trivializations agree
on any commutator, hence on the loop

∏
[ai, bi]. Thus, although we might change the

trivialization over each ci individually, changing ni to n′
i where n′

i − ni = ϕ(ci), the sum∑
ni is independent of all choices, and e is well-defined. □

In case M is an ordinary oriented circle bundle we may pick a single (ordinary) fiber as
δ1 and (by abuse of notation) define p1, q1 = 1, 0. In this case we get µ′ = µ − eλ which
agrees with our definition µ = µ′ + eλ in the proof of Proposition 3.2.

If S is a closed surface of genus g, we may obtain M by Dehn surgery on S × S1 as
follows. Take n fibers Ki := xi × S1 and on the boundary of a neighborhood of each of
them let µi be the meridian, and choose a fiber as the longitude λi. In these coordinates,
do pi/qi surgery on each Ki. Finally, pick one last fiber x×S1 and (if necessary) do −1/m
surgery where e = m −

∑
qi/pi. This construction shows that every Euler number may

arise, subject only to the constraint −e =
∑

qi/pi mod Z.
We may read off a presentation of π1(M) from this picture. Recall that π1(S

′) is free on
2g + n − 1 generators, and π1(S

′ × S1) is isomorphic to F2g+n−1 × Z. Gluing back in the
neighborhoods of the exceptional fibers adds n relations. Thus we have a presentation for
π1(M) of the form

π1(M) = ⟨a1, b1, · · · , ag, bg, c1, · · · , cn, z |∏
[ai, bi] =

∏
cj, [ai, z] = [bi, z] = [cj, z] = 1, c

pj
j = z−njpj−qj⟩

where −e =
∑

(nj + qj/pj) as before. It is a common convention to replace the generators
cj with new generators ĉj := cjz

−nj for which the presentation becomes

π1(M) = ⟨a1, b1, · · · , ag, bg, ĉ1, · · · , ĉn, z |∏
[ai, bi](

∏
ĉj)

−1 = zm, [ai, z] = [bi, z] = [ĉj, z] = 1, ĉ
pj
j = z−qj⟩

where m = −
∑

ni as above.

3.3. Orbifolds. The fundamental group π1(M) of an oriented Seifert fibration has a cen-
tral subgroup Z, generated by the class z of a generic (i.e. non-exceptional) circle fiber.
This central subgroup is usually isomorphic to Z, but there are some exceptional cases
where it is finite cyclic. The quotient has presentation

π1(M)/Z := ⟨a1, b1, · · · , ag, bg, c1, . . . , cn | cpjj = 1,
∏

[ai, bi] =
∏

cj⟩

This is very nearly, but not quite a surface group. What is it?

Example 3.14 (Triangle group). Let’s look at a very simple case, that g = 0 and n = 3. In
other words, we are considering a group with a presentation of the form

G := ⟨c1, c2 | cp1 = cq2 = (c1c2)
r = 1⟩
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for positive integers p, q, r. Let’s suppose ∆ is a triangle with angles π/p, π/q, π/r. The
triangle ∆ may be realized as a geodesic triangle in a Riemannian surface X where

X2 =


round S2 if 1/p+ 1/q + 1/r > 1

E2 if 1/p+ 1/q + 1/r = 1

H2 if 1/p+ 1/q + 1/r < 1

Take the edge with angles 1/p and 1/q and double ∆ across it, to produce a convex
quadrilateral Q in X, with two opposite vertices at which there are angles of 2π/p and
2π/q respectively. Let C1 and C2 be rotations, centered at these vertices, through angles
2π/p and 2π/q respectively; thus C1 and C2 have orders p and q. Then C1C2 is rotation
through an angle of −2π/r, and therefore has order r. In particular, we have obtained a
(faithful!) representation of G into the group of (orientation-preserving) isometries of X.
See Figure 27 for the case p = 3, q = 5, r = 2.

Figure 27. The quadrilateral Q made by doubling ∆, and its images under
the group G.

The quotient X/G is topologically a 2-sphere, but metrically it is locally modeled on
X except at three points where it looks like the quotient of X by a finite cyclic group of
rotations.

The space X/G in Example 3.14 is an orbifold — a topological space O locally modeled
on the quotient of a manifold by a finite group of diffeomorphisms. The three exceptional
points are orbifold points, which look locally like the quotient of X by rotations of order
p, q and r respectively.

A finite group of diffeomorphisms of R2 is either conjugate to Z/nZ acting by rotations,
or a dihedral group Dn acting by rotations and reflections. For an orientable surface
orbifold, only rotations are possible, and the quotient of R2 by Z/nZ is homeomorphic to
R2. Thus an orientable surface orbifold O is determined by its underlying topological space
(which is an orientable surface) together with a discrete set of orbifold points labeled by
integers pi > 1 where O is locally modelled on R2 quotiented by a rotation group Z/piZ.
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Example 3.15 (Orbit space of a Seifert fibration). If M admits an oriented Seifert fibra-
tion, we may consider the quotient space of M whose fibers are the (Seifert) fibers of the
fibration. This quotient space O admits the natural structure of an orbifold: away from
the exceptional fibers M is a product S ′ ×S1 for some surface S ′ with boundary, and near
an exceptional fiber of type p, q the space of circles looks like a disk with one orbifold point
with label p (compare with Example 3.10).

One may define covering maps between orbifolds:

Definition 3.16 (Covering space). A map between orbifolds ϕ : Õ → O is a covering
space if every point in O is contained in a neighborhood locally modelled on U/Γ for some
open U ⊂ Rn and finite group of diffeomorphisms Γ, so that the preimages under ϕ are
a disjoint union of open subsets of the form U/Γ′ for some subgroup Γ′ of Γ (that might
vary from subset to subset).

In 2 dimensions this just means that Õ → O is a branched cover of the underlying
topological surfaces and if x̃ ∈ Õ maps to x ∈ O with local degree d, then if x has label
n ≥ 1 (where n = 1 corresponds to an ordinary point) the label at x̃ is n/d. In particular,
the branch locus is a subset of the set of orbifold points. Covers are regular or irregular
as for ordinary covering spaces, and a map S → O where S is a surface is a regular cover
if and only if it is the quotient by a discrete properly discontinuous (but not necessarily
free!) group action.

Example 3.17 (Orbifold Euler characteristic). If O is a surface orbifold with orbifold points
xi with labels pi, we may define the orbifold Euler characteristic χo(O) to be equal to
χo(O) = χ(S)−

∑
(pi − 1)/pi. Heuristically, we may think of a point with label pi as only

1/pi of a point. With this definition, orbifold Euler characteristic is multiplicative under
orbifold covers of finite degree, where the degree of an orbifold covering is its ordinary
degree as a branched cover between the underlying topological surfaces.

The Galois correspondence lets us define the orbifold fundamental group πo
1(O) of an

orbifold O in terms of its system of (orbifold) coverings. If O is an orbifold with orbifold
points x1, · · · , xm with labels p1, · · · , pn then an orbifold cover of O is the same thing as
an ordinary cover S̃ ′ of the surface S ′ := O−∪xi for which the fundamental group π1(S̃

′),
thought of as a subgroup of π1(S

′), contains every conjugate of γpi
i where γi ⊂ S ′ is a small

loop winding once around xi. If S ′ has genus g, it follows that πo
1(O) has a presentation of

the form

πo
1(O) = ⟨a1, b1, · · · , ag, bg, c1, . . . , cn | cpjj = 1,

∏
[ai, bi] =

∏
cj⟩

This answers the question we asked at the start of § 3.3: if M is an oriented Seifert fibration
whose quotient space is an orbifold O, then the quotient of π1(M) by the central subgroup
Z generated by the class z of the fiber is the orbifold fundamental group πo

1(O). In other
words, we have a central extension Z → π1(M) → πo

1(O).

Example 3.18 (Good and bad orbifolds). An orbifold O is good if it is finitely covered by
a manifold. Otherwise it is bad. An orbifold O with underlying space S2 and one orbifold
point with label n (a teardrop) is bad, since its orbifold fundamental group is trivial.
Likewise an orbifold O with underlying space S2 and two orbifold points with labels n,m
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and n ̸= m (a spindle) is bad, since its orbifold fundamental group is Z/ gcd(n,m)Z so no
orbifold cover can completely unwrap either of the orbifold points (if n = m the orbifold
is good, since it is n-fold cyclically covered by S2).

Another way to see that these orbifolds are bad is to use Euler characteristic. If O is a
teardrop then χo(O) = 1 + 1/n and if O is a spindle then χo(O) = 1/n+ 1/m. In neither
case is there a positive integer d so that dχo(O) is χ(S) for a closed oriented surface S, so
no degree d cover S → O can exist.

Proposition 3.19. Every oriented surface orbifold is good, except for teardrops and spin-
dles.

Proof. To see this first observe that if O is good, so is a connect sum O#T (where the
connect sum is performed at an ordinary point in O) since we may obtain a degree d orbifold
cover of O#T by taking a degree d orbifold cover of O, and connect summing it with d
tori. If O is an orbifold whose underlying surface S has positive genus, then by taking an
(ordinary) cover of S we may ensure that O has as many orbifold points as we like. Thus
we are reduced to showing that O is good, where O is an orbifold with underlying space
S2 and n ≥ 3 orbifold points with labels p1, · · · , pn. Just as in Example 3.14 we may find
a convex geodesic n-gon in a space X with angles π/pi at the vertices where X is round
S2, E2 or H2 according to the sign of

∑
1/pi + 2 − n. The group generated by rotations

through angles 2π/pi at the vertices of this n-gon is a discrete group Γ of isometries of X
with quotient X/Γ = O. Let Γ′ be a torsion-free normal subgroup of Γ of finite index (that
such a subgroup exists follows from a theorem of Selberg). Then X/Γ′ is a surface that
covers O with degree equal to the index of Γ′ in Γ. □

Example 3.20 (UTO as a Seifert fibered space). If O is a surface orbifold, the unit tangent
bundle of O naturally has the local structure of the unit tangent bundle of an open subset
of R2 modulo a finite group of rotations. This is a Seifert fibered space, whose exceptional
fibers correspond precisely to the orbifold points of O! The operation that takes an orbifold
O to its unit tangent bundle UTO has a (one-sided) inverse, that takes a Seifert fibered
space to its space of circles (i.e. Example 3.15).

We claim if x is an orbifold point of O with label p, the circle UTxO is an exceptional
fiber in UTO of type p, (p − 1). To see this, let’s model O locally on a quotient of a disk
D by the action of Z/pZ generated by a rotation α through positive angle 2π/p.

The unit tangent bundle UTD is a solid torus D2 × S1 fibered as a product by unit
circles. Let D′ := D/⟨α⟩ denote the quotient of D in the orbifold. The unit tangent
bundle UTD′ = UTD/⟨α⟩ is also a solid torus, and the circle fibration on UTD descends
to a foliation on the quotient with an exceptional fiber of type p, (p− 1); see Figure 28.

Getting the signs right is a headache: thinking of UTD′ as a quotient gives it coordinates
D2 × I/(z, 0) ∼ (e2πi/pz, 1) which as a mapping torus is D2 × I/(z, 1) ∼ (e2πi·(p−1)/pz, 0).

The Euler number e of UTO may now be calculated as above. If S ′ is the underlying
topological surface of O then we may put all the orbifold points in a disk D, and trivialize
UT |S ′−D in such a way that the trivialization winds χ(S ′) times around the fibers relative
to the ‘obvious’ trivialization of UT |∂D. Thus if the orbifold points have orders pi,

e = χ(S ′)−
∑
i

(pi − 1)/pi = χo(O)
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D

x

v α(v)

α2(v)

UTD

v

α(v)

quotient by α−−−−−−−−→

UTD′

Figure 28. The quotient of UTD by a positive rotation through angle 2π/p
is a neighborhood of an exceptional fiber of type p, (p− 1) in UTD′.

This recovers and generalizes the statement that the Euler number of UTS is χ(S) for an
ordinary oriented surface S.

As a concrete example, if O is the spherical triangle orbifold with three orbifold points
of orders 2, 3, 5 then χo(O) = 1/30. The orbifold O is covered by S2 with order 60, so
UTO has a degree 60 cover which is UTS2 = RP3; in particular, the order of π1(UTO) is
120. What is it?

As above, we have a presentation
π1(UTO) = ⟨c1, c2, c3, z | c−2

1 = c32 = c53 = z, c1c2c3 = 1⟩
The generators z and c1 may be eliminated and we may relabel the generators by a−1 = c2,
b = c3 simplifying the presentation to

⟨a, b | (a−1b)2 = b3 = a−5⟩
which recovers the presentation for the fundamental group of the Poincaré Homology
Sphere from Example 1.18. In fact, UTO is the Poincaré Homology Sphere; this is a
rather challenging exercise in the manipulation of Dehn surgery diagrams.

−1
2

0

2
1

3
2

5
4

retrivialize−−−−−−→ 1

0

−2 −3 −5

Figure 29. Change the trivialization to change the surgery coefficients.

We start with S2 × S1 presented as 0 surgery on an unknot K, and then surger four
fibers (unlinked unknots linking K once). The coefficients of the three exceptional fibers
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are 2/1, 3/2 and 5/4, and the other fiber has coefficient −1/2 where 2 comes from the
Euler characteristic of S2. By changing the trivialization of the fibering away from the
exceptional fibers, we may replace 2/1, 3/2, 5/4 with −2,−3,−5 and replace −1/2 with 1.
See Figure 29.

−2

−1

−3 −5 →
−1

−2

−4

→
−1

−3

→

−1

Figure 30. Untwist −1 circles repeatedly.

Slam-dunk this 1 circle into the knot K, changing its coefficient to −1. Then repeatedly
untwist the spanning disks of unknots with coefficient −1 as in Example 2.6 until we are
left with −1 surgery on the left-handed trefoil, which is indeed the Poincaré Homology
Sphere (with the opposite orientation to Example 2.11). See Figure 30.

Euler number behaves well under covering maps. Suppose M admits an oriented Seifert
fibration, and we have a degree d covering map π : N → M . We may pull back the Seifert
fibers of M to give N the structure of an oriented Seifert fibration. If ON and OM are the
quotient orbifolds of the fibration, there is a commutative diagram

N
π−−−→ M

qN

y qM

y
ON

πo

−−−→ OM

where πo is an orbifold covering map of degree do. A generic fiber of M is covered by a
generic fiber of N , and since the set of generic fibers is open and connected, the covering
degree is some fixed number df independent of the choice.

With this notation, d = dodf and we have equalities

χo(ON) = doχo(OM) and e(N) = e(M) · do/df
which follow more or less immediately from the definitions.

Example 3.21 (Cyclic quotient). Let N be a solid torus neighborhood of an exceptional
fiber of type (p, q). There is a locally free S1 action on N that rotates the circles at constant
speed, and the subgroup Z/pZ stabilizes the exceptional fiber. If n is coprime to p, the
group Z/nZ acts freely, and the quotient is a solid torus neighborhood of an exceptional
fiber of type (p, nq).

If M has an oriented Seifert fibration, these locally free S1 actions may be glued together
via a partition of unity to obtain a global locally free circle action on M . Suppose the
exceptional fibers are of type (pi, qi) and n is coprime to every pi. Then the group Z/nZ acts
freely on M with Seifert fibered quotient M ′. Evidently OM ′ = OM and e(M ′) = n · e(M).
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As an example, let’s suppose M is the manifold UTO from Example 3.20 where O
is the spherical triangle orbifold with three orbifold points of orders 2, 3, 5. This has
e = χo(O) = 1/30. Suppose M ′ is another Seifert fibered space with orbifold O. The
exceptional fibers must be of type (2, 1), (3, a) and (5, b) for some a coprime to 3 and b
coprime to 5, so that e(M ′) is of the form n− 1/2− a/3− b/5 = m/30 for some arbitrary
integer m coprime to 30. Thus M ′ is isomorphic as a Seifert fibered space to the quotient
of M by the free action of Z/|m|Z on circle fibers, possibly up to change of orientation.

Example 3.22 (Circle bundle cover). If M has an oriented Seifert fibration with quotient
orbifold O, and if O is good, then O has a finite orbifold cover (and therefore a regular
cover) which is a surface S, coming from a surjective homomorphism πo

1(O) → ∆ where ∆
is a finite group. Composing with π1(M) → πo

1(O) gives a surjective homomorphism from
π1(M) to ∆, and therefore a finite cover M̃ of M . Evidently the quotient orbifold of M̃ is
S; in particular, M̃ is an oriented circle bundle over S.

The long exact sequence in homotopy groups ends in

0 → π2(M) → π2(S) → Z → π1(M) → π1(S) → 0

and the central subgroup Z generated by the fiber z is the quotient of Z by the image of
π2(S). Thus we are in exactly one of the following situations:

(1) S is not a sphere, and the class of the fiber generates a Z central subgroup of π1(M);
or

(2) S is a sphere; in this case the image of the generator of π2(S) is the Euler number
e (up to sign) and there are two subcases:
(a) π2(M) = Z mapping isomorphically to π2(S); this implies the Euler number is

0 so that M = S2 × S1 fibered as a product; or
(b) π2(M) = 0 and the Euler number is nonzero; in this case M is a Lens space

L(e, 1) as in Example 3.8.

If z generates a Z central subgroup in a cover, then it generates one in π1(M). Thus if O is
a good orbifold, the center of π1(M) contains a Z unless the quotient orbifold O is covered
by S2 and the Euler number is nonzero, in which case M is finitely covered by S3. If O
is a bad orbifold, it has no honest surface cover, and M has no finite cover for which the
Seifert fibration lifts to an honest circle bundle. Note in this case that the Euler number
is necessarily non-integral (and therefore in particular nonzero).

Example 3.23 (Seifert fibered spaces with bad orbifolds). Suppose M has an oriented Seifert
fibration with quotient orbifold O. Either O is a teardrop with label p or a spindle with
labels p1, p2. Thus M has one exceptional fiber of type p, q in the first case, and two
exceptional fibers of type p1, q1 and p2, q2 in the second case. Thus M has a Dehn surgery
description as in Figure 31.

In either case we can apply the slam-dunk move twice. This reduces the first diagram to
surgery on an unknot with coefficient m−q/p, and the second to surgery on a Hopf link with
coefficients m− q1/p1 and p2/q2. In the first case we have a Lens space L(mp− q, p), and
in the second case we have a Lens space L(a, b) where a and b are somewhat complicated
functions of the pi, qi and m.
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p
q

0

− 1
m − 1

m

0

p1
q1

p2
q2

Figure 31. Surgery diagrams for oriented Seifert fibrations with bad quo-
tient orbifold. These are all Lens spaces.

3.4. The geometry of S̃L(2,R). The Lie group SL(2,R) is 3 dimensional and orientable,
and homeomorphic to an open solid torus. To see this, consider the standard linear action
of SL(2,R) on R2; the space of oriented lines in R2 through the origin is a circle, and the
stabilizer of an oriented line (for instance the x-axis) is the subgroup of matrices of the
form

(
a b
0 a−1

)
where a ∈ R+ and b ∈ R which is evidently diffeomorphic to R2.

The subgroup K := SO(2,R) is a maximal compact subgroup, abstractly isomorphic
to a circle. Right multiplication of K on SL(2,R) is free, and its orbits foliate the open
solid torus as a product. This action commutes with the left action; thus for any discrete
cocompact subgroup Γ of SL(2,R) the quotient space Γ\SL(2,R) is a Seifert fibered 3-
manifold.

The left multiplication of SL(2,R) on itself is free and transitive, so we may choose any
Euclidean inner product on the tangent space at the identity and transport this around
to obtain a (left-invariant) Riemannian metric. This left multiplication commutes with
the right action of K, and since K is compact, we may average the Riemannian metric
under the K action to obtain a Riemannian metric on SL(2,R) which is invariant under
the full SL(2,R)×K action (note that this action is not faithful, since the matrix

( −1 0
0 −1

)
is central, and acts in the same way on the left and the right).

The universal cover S̃L(2,R) is diffeomorphic to R3. As a Lie group it is a central
extension of SL(2,R) by the group Z. In this covering group the subgroup K is unwrapped
to K̃, which is isomorphic to R. We may pull back an invariant Riemannian metric on
SL(2,R) to obtain a Riemannian metric on S̃L(2,R) invariant under S̃L(2,R)× K̃.

Example 3.24 (Hyperbolic orbifold). As already remarked in Example 3.6, the group
PSL(2,R) (i.e. the quotient of SL(2,R) by its (order 2) center) is isomorphic to the group
of orientation-preserving isometries of the hyperbolic plane H2. The point stabilizers in
PSL(2,R) are double covered by the conjugates of the subgroup K. Thus we may identify
H2 with the space of cosets PSL(2,R)/K and if Γ is a discrete group of isometries of H2,
the quotient orbifold O satsifies O = Γ\H2 = Γ\PSL(2,R)/K. In particular, we may
identify UTO with Γ\PSL(2,R). By varying O and taking covers or cyclic quotients as
in Example 3.21 one may obtain many examples of Seifert fibered spaces isomorphic to
S̃L(2,R) modulo a discrete properly discontinuous group of isometries.

3.5. Geometrization of Seifert Fibered Spaces. We have encountered a bewildering
assortment of Seifert fibered spaces throughout this section and it is natural to want to try
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to impose some sort of order. At least for oriented Seifert fibrations of closed manifolds
M we have two invariants: the (orbifold) Euler characteristic of the quotient orbifold
χo(O), and the Euler number e(M). In all the cases we have encountered — and it
turns out, in every case — the manifold M may be obtained as the quotient of a complete
homogeneous simply-connected Riemannian manifold X by a discrete group Γ acting freely
and isometrically on X (homogeneous means that the metric on X looks the same at every
point; i.e. that the group of isometries of X acts transitively).

Which Riemannian manifold one takes for X depends on the two invariants. If one
insists that the Riemannian metric should be chosen so that the isometry groups are as big
as possible, there are six possibilities for any X (up to a suitable notion of isomorphism)
that can cover Seifert fibered spaces:

S2 × R,E3,H2 × R, S3,Nil, S̃L(2,R)

where Nil is the 3-dimensional nilpotent Lie group H (i.e. the Heisenberg group) we
encountered in Example 3.7. The relationship to our two invariants is captured in the
following table:

χo(O) > 0 χo(O) = 0 χo(O) < 0
e(M) = 0 S2 × R E3 H2 × R
e(M) ̸= 0 S3 Nil S̃L(2,R)

This fact goes by the name of the Geometrization Theorem for Seifert Fibered Spaces,
and it extends to non-orientable Seifert fibrations and non-orientable manifolds (the condi-
tion e(M) ̸= 0 holds for such a manifold if it holds for some orientable finite cover). It was
formulated and proved by Thurston, and it is a special (though in many ways atypical)
case of his Geometrization Conjecture, which we shall return to many times in subsequent
chapters. With some effort, a complete proof of the Geometrization Theorem for Seifert
Fibered Spaces could be deduced from our discussion up to this point; however this would
involve a detailed analysis of many cases, and it does not seem worthwhile to include it
here. The interested reader may find all the details, and much more beside, in Peter Scott’s
excellent article [6].

4. Surface bundles

4.1. Mapping class groups. Let Sg be a closed oriented surface of genus g. The mapping
class group Modg is the group of isotopy classes of orientation-preserving homeomorphisms
from Sg to itself (see Example 1.20). If S has boundary and/or marked points or punctures
one may define a mapping class group for S to be the group of isotopy classes of orientation-
preserving homeomorphisms fixing (or permuting) the marked points or punctures, and
fixing the boundary pointwise.

Surfaces and their automorphisms are a central object in mathematics, and mapping
class groups and their properties are a vast subject. We confine ourselves here to the
merest outline, and point the reader to the textbook [2] for details.

Example 4.1 (Braid groups). Let D be a (closed) disk with n marked points in the interior.
The braid group Bn is the group of isotopy classes of orientation-preserving homeomor-
phisms of D fixing the boundary pointwise and permuting the n marked points. This is
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isomorphic to the group of isotopy classes of compactly supported homeomorphisms of C
permuting n marked points.

The space of degree n monic polynomials f in one complex variable is Cn, where the
coordinates are the coefficients of f . The discriminant of f , denoted ∆(f), is a polynomial
in the coefficients of f that vanishes if and only if f has a multiple root. By abuse of
notation, we let ∆ ⊂ Cn denote the set of polynomials for which ∆(f) = 0; this is a
(rather singular) algebraic hypersurface in Cn. The complement Cn −∆ is a K(π, 1) (i.e.
its universal cover is contractible) with π1 = Bn.

Example 4.2. The mapping class group of a disk is trivial by the Alexander trick, and the
mapping class group of an annulus is Z, generated by a Dehn twist in the core circle (see
Example 2.9). The mapping class group of a pair of pants (i.e. a sphere minus three open
disks) is Z3, generated by Dehn twists in circles parallel to the boundary components.

Example 4.3 (Outer automorphism). A homeomorphism of Sg fixing a basepoint induces
an automorphism of π1; ignoring basepoints introduces the ambiguity of an inner auto-
morphism. Thus there is a homomorphism from Modg to Out(π1(Sg)), the group of outer
automorphisms of π1. It turns out that this homomorphism is injective, and the im-
age has index 2 (every automorphism may be achieved if one allows orientation-reversing
homeomorphisms). This image is usually denoted Out+(π1(Sg)). This is known as the
Dehn–Nielsen Theorem.

Injectivity is equivalent to the fact that a homeomorphism homotopic to the identity is
isotopic to the identity. Since a homeomorphism must take simple curves to simple curves
this amounts to showing that homotopic simple curves on a surface are isotopic (which can
be proved by lifting to an annular covering space and finding the isotopy there), moving
the images of a sufficiently complicated system of simple curves back to themselves by an
isotopy, and applying the Alexander trick to the complementary disk regions.

Since Sg for any g ≥ 1 is a K(π, 1), any outer automorphism of the fundamental group
is induced by a homotopy equivalence. Thus, surjectivity is equivalent to the fact that a
homotopy equivalence of Sg is homotopic to a homeomorphism. The key is again to show
that the image of an essential simple curve is homotopic to a simple curve, so that these
curves can be straightened one by one as above. This is equivalent to giving a purely
algebraic criterion for a conjugacy class in π1(Sg) to be represented by a simple curve.
There are a few ways to do this; one way is to show that a conjugacy class has a simple
representative if and only if π1(Sg) splits as an HNN extension or amalgamated free product
over the Z subgroup it generates.

Example 4.4 (One marked point). Suppose S is a closed surface and p ∈ S is a marked
point. Let’s denote the mapping class group of S by Mod(S) and the mapping class group
of S fixing p by Mod(S, p). There is a surjective map Mod(S, p) → Mod(S) obtained
by forgetting the point p. Since a mapping class in Mod(S, p) fixes p it induces a well-
defined automorphism of π1(S). In particular, Mod(S, p) is isomorphic to the subgroup
Aut+(π1(S)) of index 2 mapping to Out+(π1(S)) and the kernel is the group of inner
automorphisms; equivalently, the quotient of π1(S) by its center.

This short exact sequence relating Mod(S, p) to Mod(S) is called the Birman exact
sequence.
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Example 4.5. The mapping class group of a torus T is SL(2,Z), generated by Dehn twists
in a meridian and longitude. Since π1(T ) is abelian, the mapping class group of a torus
with one marked point is also SL(2,Z).

Theorems about mapping class groups may be proved inductively by cutting a surface
S into simpler surfaces along essential simple (i.e. embedded) closed curves or arcs. The
most important theorem of this kind is due to Max Dehn:

Theorem 4.6 (Dehn twists generate). Every mapping class group is generated by Dehn
twists along essential simple closed curves.

This theorem is proved inductively. Suppose γ is an essential simple closed curve, and
ϕ is a mapping class. One first proves that there are a sequence of (left or right handed)
Dehn twists τ1, · · · , τn so that τ1 · · · τnϕ(γ) is isotopic to γ. Then one may cut open the
surface along γ, restrict the mapping class τ1 · · · τnϕ to the cut open surface, and induct.
At the end one is left with a collection of elementary cases (annuli or pairs of pants) where
the theorem can be proved by hand.

Let us see that such a sequence of Dehn twists exists in the easier case that γ is non-
separating. Any two non-separating curves γ, γ′ on a surface may be interpolated by a
sequence of non-separating curves γ = γ0, γ1, · · · , γn = γ′ where each successive pair γi, γi+1

intersect transversely in a single point. A neighborhood of γi ∪ γi+1 is homeomorphic to a
punctured torus, and we have already seen that the mapping class group of a punctured
torus is SL(2,Z), generated by Dehn twists. So we may find a product of Dehn twists
supported in this punctured torus that takes γi to γi+1 as claimed.

4.2. Surface bundles. A surface bundle over a circle (or just surface bundle for short) is a
3-manifold obtained as the mapping torus of a surface homeomorphism. In other words, M
is the mapping torus Mf := S × I/(z, 1) ∼ (f(z), 0) associated to some homeomorphism
f : S → S of a surface to itself. M is oriented if and only if S is oriented and f is
orientation-preserving.

The homeomorphism type of M depends only on the mapping class of f by the isotopy
extension theorem. The same 3-manifold may sometimes be realized as a surface bundle
in infinitely many (not-isotopic) ways.

Example 4.7 (Closed nonsingular 1-form). Let M be closed and suppose there is a closed
1-form α on M which is nonsingular; i.e. the restriction of α to the tangent space at
every point of M is nonzero. Since α is closed, it defines a de Rham cohomology class
[α] ∈ H1(M ;R) and a homomorphism from H1(M ;Z) to R obtained by integrating α over
representative loops. The image of H1(M ;Z) in R is the group of periods of α.

By adding a small multiple of another closed 1-form to α, we may perturb it to a closed
nonsingular 1-form with rational periods, and we may then scale it so that the group of
periods is exactly Z. Fix a basepoint p ∈ M and for every other q ∈ M define π(q) :=

∫
γq
α

where γq is any oriented path from p to q. Different paths will give rise to different values,
but the difference between any two values will be a period. Thus π is well-defined as a map
from M to R/Z = S1. Since α is nonsingular, this map is a submersion, and therefore M
is fibered by the point preimages, exhibiting M as a surface bundle over a circle.
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Example 4.8 (Torus bundles). A matrix A ∈ SL(2,Z) acts linearly on R2 and on the
quotient torus T = R2/Z2 and we may form the mapping torus MA which is a torus
bundle over the circle. It turns out in every case that MA has a geometric structure
— i.e. it may be obtained as the quotient of a complete homogeneous simply-connected
Riemannian manifold X by a discrete group of isometries; compare the discussion in § 3.5.
The fundamental group of MA is a semidirect product Z2 → π1(MA) → Z where the
conjugation action of the generator of Z acts on Z2 by the matrix A. Since tr(A2) =
tr(A)2−2, if |tr(A)| ≥ 2 then by replacing A with its square if necessary (which corresponds
to taking a cyclic double cover of MA) we may assume tr(A) ≥ 2.

A nontrivial matrix A ∈ SL(2,Z) has eigenvalues λ, λ−1 which are either both real or
both on the unit circle.

(1) If the trace of A is one of −1, 0, 1 then A has finite order (6, 4 or 6 respectively) and
we may choose a Euclidean structure on T for which it acts by isometries. In this
case the mapping torus MA is finitely covered by T 3 and has a Euclidean metric.

(2) If the trace of A is 2 then A is conjugate to a matrix of the form ( 1 n
0 1 ). Thus the

foliation of T by meridians is preserved by A, and suspends to a foliation of MA

by oriented circles, exhibiting MA as an oriented circle bundle over a torus with
Euler number n. In particular, MA has an |n|-fold cyclic cover which is homeomor-
phic (after possibly reversing orientations if n < 0) to the manifold HZ\H from
Example 3.7, and MA has a metric modeled on Nil.

(3) If the trace of A is > 2 then A has two real eigenvalues that we may order 0 < λ−1 <
1 < λ with associated eigenspaces Vs and Vu, which necessarily have irrational slope,
or else they would contain primitive vectors in Z2 that were taken to non-primitive
vectors by A or A−1. The map A compresses the ‘stable direction’ Vs and expands
the ‘unstable direction’ Vu; see Figure 32.

Figure 32. An Anosov map on a torus compresses the stable direction and
expands the unstable direction.

Parallel translates of these eigenspaces give a pair of linear foliations F̃s and F̃u

of R2 that are preserved by A; it shrinks leaves of F̃s by λ−1 and stretches leaves of
F̃u by λ. These foliations descend to linear foliations Fs and Fu on T of irrational
slope. One says that an automorphism A of T is Anosov if it preserves such a pair
of foliations and shrinks/stretches the leaves by complementary factors.
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Now suppose we choose a linear isomorphism B : R2 → R2 taking Vu, Vs to the
x and y coordinate axes respectively. Then BAB−1 is the matrix

(
λ 0
0 λ−1

)
which

preserves the irrational lattice Λ := BZ2.
Define Sol to be the 3-dimensional solvable Lie group obtained as an exact se-

quence R2 → Sol → R where the generator t of R acts by conjugation on R2

by
(
et 0
0 e−t

)
. Any Euclidean metric on the tangent space at the identity defines a

complete left-invariant Riemannian metric on Sol. There is a discrete faithful repre-
sentation from π1(MA) to Sol which takes π1(T ) to Λ ⊂ R2 and takes the generator
of the monodromy to log λ ∈ R. Thus MA has a metric modeled on Sol.

Example 4.9 (Finite order elements). Let ϕ ∈ Mod(S) have finite order. This means there
is a power n so that ϕn is isotopic to the identity. It turns out that ϕ has a representative
homeomorphism f for which fn is equal to the identity. This is a special case of the Nielsen
realization theorem (which applies to all finite subgroups of Mod(S), not just the cyclic
ones).

Example 4.10 (Reducible mapping classes). A mapping class ϕ ∈ Mod(S) is said to be
reducible if there is a finite family of disjoint essential simple closed curves Γ ⊂ S which are
permuted up to isotopy by ϕ. The suspension of Γ in Mϕ is a finite collection of two-sided
embedded tori Ti and one-sided Klein bottles Kj. These lift to infinite cylinders in the
cyclic cover S × R of Mϕ, and thence to planes in the universal cover. In particular, the
inclusions Ti → Mϕ and Kj → Mϕ are injective on π1. An embedded π1-injective surface
is called essential; and a 3-manifold that contains an essential torus or Klein bottle is said
to be toroidal.

apply f−−−−→

Figure 33. A pair of transverse singular foliations (in red and blue respec-
tively) near a 3 prong singularity. A pseudo-Anosov map f stretches the red
lines by λ and shrinks the blue lines by λ−1.

Example 4.11 (Pseudo-Anosov mapping classes). An automorphism f of a closed surface
S is said to be pseudo-Anosov if it admits a pair of transverse singular (in a sense to be
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defined) foliations Fs and Fu which are each taken themselves by f , and which admit local
coordinates modeled on foliations of R2 by vertical and horizontal lines respectively in
which f stretches the horizontal lines (i.e. the leaves of Fu) by λ and shrinks the vertical
lines (i.e. the leaves of Fs) by λ−1 for some real λ−1 < 1 < λ.

At the (finitely many) singularities the local picture is obtained from that above near
the origin (0, 0) ∈ R2 by first quotienting by (x, y) → (−x,−y) and then taking an n-fold
cover (for some n > 2) branched over the image of (0, 0). Figure 33 gives a picture of the
pair of singular foliations near a 3-prong singularity (i.e. the case n = 3).

One example of a pseudo-Anosov automorphism may be obtained by taking an Anosov
automorphism A of a torus T , letting P be a finite orbit of A, and letting S → T be a
finite cover of T branched over P in such a way that A lifts to an automorphism f : S → S.
The singular f -invariant foliations on S are the preimages of the (nonsingular) A-invariant
foliations on T . The singularities in this case are all even-pronged.

Figure 34. A genus 2 surface made from six Euclidean squares.

Another example is given in Figure 34 which shows an arrangement of six unit squares
in Euclidean 3-space and a gluing of the twelve free edges by translations with quotient a
genus 2 surface S. If we apply the matrix ( 2 1

1 1 ) to each square the result is a Euclidean
parallelogram, and these six Euclidean parallelograms can be made to tile S (each parallel-
ogram wraps over four squares). The map taking each square to its image pieces together
on the edges, and defines a piecewise linear map f : S → S. Each square admits a pair of
foliations with slopes −1.618034 and 0.618034, and these foliations match together along
the edges of the squares with 3-pronged singularities at the vertices. These foliations are
preserved by f , one stretched with eigenvalue 2.618034 and one shrunk by a factor of
0.381966. See Figure 35.



CHAPTER 0: CONSTRUCTIONS AND EXAMPLES 47

Figure 35. A matrix in SL(2,Z) takes each square to a parallelogram that
wraps over four squares. This automorphism preserves a pair of singular
foliations with slopes −1.618034 and 0.618034 on each square.

Although Example 4.11 may look very exotic, it turns out to be the typical example of
a mapping class! Thurston [8] proved the following extraordinary theorem:

Theorem 4.12 (Thurston, classification of surface automorphisms). Let S be a closed,
oriented surface of genus at least 2. Then every orientation-preserving self-homeomorphism
of S is isotopic to a map f which is either finite order, reducible, or pseudo-Anosov.

If f : S → S is reducible we may cut S along a family of invariant curves and obtain an
induced map on the cut open surface. An analog of Theorem 4.12 applies to surfaces with
boundary, and we may inductively cut up S into pieces so at the end the restriction of f
(after isotopy) is either finite order, or pseudo-Anosov. We shall return to this theorem
and its consequences in Chapter 2.

4.3. Fibered knots and links. A fibered knot or link is a knot or link L in S3 whose
complement is a surface bundle. One may also consider fibered knots or links in arbitrary
3-manifolds.

Example 4.13 (Links of plane singularities). Let z, w be coordinates on C2, and let f(z, w)
be a polynomial with no constant term. Let V ⊂ C2 be the variety where f = 0; thus
(0, 0) ∈ V . For small positive ϵ let S3

ϵ denote the (real) sphere in C2 consisting of vectors
of norm ϵ. Then for sufficiently small ϵ depending on f , the intersection L := V ∩ S3

ϵ is a
link, and the map f/|f | : S3

ϵ − L → S1 is a fibration; in particular, L is a fibered link.
For example,
(1) if f is nonsingular at 0, then L is an unknot;
(2) if f = zw then L is a Hopf link;
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(3) if f = z3 + w2 then L is a right-handed trefoil and in general if f = zp + wq then
L is a (p, q) torus link (see Example 3.12).

Example 4.14 (Open book decomposition). Let S be a compact oriented surface with
boundary, and let f : S → S be an orientation-preserving homeomorphism which is the
identity on ∂S. The mapping torus Mf is a compact manifold whose boundary has the
structure of a product ∂Mf = ∂S×S1. Form the quotient space N from Mf by collapsing
every p× S1 in ∂S × S1 to a point. Topologically, N is obtained from Mf by doing Dehn
filling on each boundary torus along the p × S1 curves; in particular, it is an oriented
3-manifold, and the image of ∂Mf becomes an oriented link L ⊂ N whose complement is
foliated by Seifert surfaces which are the images of the fibers of Mf . We call the result an
open book decomposition of N with binding L, and the Seifert surface fibers are the pages
of the book. Thus: an open book decomposition for a manifold N is an oriented fibered
link L for which the fiber of N − L may be taken to be a Seifert surface for L.

If K ⊂ S3 is a fibered knot, for any fibration of S3 −K the oriented fibers S represent
generators of the relative homology H2(S

3, K) = H1(S3 − K) = Z and their boundary
components are therefore longitudes for K; thus every fibered knot in S3 is the binding of
an open book decomposition.

Example 4.15 (Heegaard decompositions). Let L ⊂ M be the binding of an open book
decomposition with fibers homeomorphic to F . Let F+ and F− be two such fibers. The
union S := F+ ∪ F− is a closed surface which is the Heegaard surface of a Heegaard
splitting M = H1∪SH2 where each of H1 and H2 is an interval of pages. If we take a union
of annular neighborhoods A of L on S then each of H1 and H2 has a product structure
Hi := F × I in which A = ∂F × I.

Conversely, if L ⊂ M is an oriented link which admits a Seifert surface F and N is
the compact 3-manifold obtained by removing an open tubular neighborhood of F , then
∂N = S is made from two copies F+ ∪ F− of F together with a union of annuli A whose
cores are isotopic to L. If N is homeomorphic to a product F × I in which A = ∂F × I,
then M admits an open boook decomposition with binding L and pages isotopic to F .

Example 4.16 (Connect sum). Suppose L is the binding of an open book structure on S3;
i.e. L is a fibered link with Seifert surface fiber S. Suppose α ⊂ L is a closed arc and there
is a little 3-ball BL with BL ∩ L = α. Then α is the binding of an open book structure on
BL whose pages are disks that bound arcs foliating the open annulus ∂BL − L.

Now suppose L′ is the binding of another open book structure on S3, and choose an arc
α′ ⊂ L′ and ball BL′ as above. Then S3− int(BL) and S3− int(BL′) are closed 3-balls with
open book structures that match up on the boundaries, and can be glued up to form an
open book structure on S3 with L#L′ as binding.

Example 4.17 (Murasugi sum). Let S1 and S2 be two compact, disjointly embedded oriented
surfaces in S3, and suppose we can isotop the two surfaces so that they can be made to
intersect along a polygon P whose edges alternate between boundary edges of S1 and S2.
We may glue them together along such a polygon to produce a new surface, which is called
the Murasugi sum of S1 and S2, and denoted S1#PS2.
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Now suppose S1 and S2 are pages of open book decompositions of S3. We claim the
same is true for S1#PS2. Split S3 into two 3-balls S3 = B+ ∪ B− where we can arrange
for S1 ⊂ B+ and S2 ⊂ B− and P is contained on the equatorial S2 = B+ ∩B−.

The hypothesis that S1 and S2 are pages of open book decompositions means that the
complements M1 := S3−N(S1) and M2 := S3−N(S2) are handlebodies with the structure
of a product S1 × I and S2 × I. The ball B− is contained in M1 and B+ is contained in
M2; with respect to the product structure we can think of M1 − B− as being obtained by
taking a P × [1/2, 1] ‘bite’ out of the S1 × I structure, and B2 −B+ obtained by taking a
P × [0, 1/2] ‘bite’ out of S2 × I. After an isotopy we can think of P itself as P × [1/2] in
either factor; gluing along this P produces

(S1 × I − P × [1/2, 1]) ∪P×1/2 (S2 × I − P × [0, 1/2]) = S1#PS2 × I

It follows that the complement S3−N(S1#PS2) is a handlebody with a product structure,
so that S1#PS2 is a page of an open book decomposition. See Figure 36 in the case that
P is a square with two edges on each of ∂S1 and ∂S2.

Figure 36. Murasugi sum of pages of open books on S3 yields a page of a
new open book. Surfaces are in orange, and annuli are in green. The blue
faces are exposed by the ‘bite’ taken out of each product piece by removing
B− and B+ respectively.

Many fibered knots and links may be obtained via Murasugi sum. Summing two Hopf
bands of the same handedness produces a fiber for a right- or left-handed trefoil. Summing
two Hopf bands of opposite handedness produces a fiber for the figure 8 knot.

Example 4.18 (Braids). A braid representation of an oriented link L in S3 is a link projection
in which every component winds monotonely and positively around some point in the
projection plane. One may express this equivalently without reference to a projection:
choose an unknot K in S3 − L and parameterize S3 − K as D × S1 in such a way that
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every component of L projects to the S1 factor by a covering map (of positive degree); in
this case we might say that L is in braid position with respect to the unknot K. A braid
representation of L exhibits S3 − (L∪K) as the mapping torus of some element of a braid
group; in particular, L ∪K is a fibered link.

Alexander showed that every link L in S3 admits a braid representation. One way to
see this is to choose an arbitrary projection which is in general position with respect to the
foliation of the plane minus the origin by lines of constant argument. Each component of L
decomposes into segments whose top and bottom points are tangencies with the foliation;
we are concerned with the negatively oriented segments. Each negative segment may be
broken up further into long negative segments that contain only overcrossings, and short
negative segments that contain a single undercrossing. Take each long negative segment
and drag it up and over the origin, replacing it by a long positive segment. Now each short
negative segment has endpoints on positively oriented segments, and may be adjusted by
an isotopy to be positively oriented, thus eliminating all tangencies. See Figure 37.

drag and tilt−−−−−−−−→

Figure 37. Drag long negative segments over the origin and tilt short neg-
ative segments to put a link in braid position.

Example 4.19. Every closed oriented 3-manifold M contains a fibered link. To see this first
exhibit M as surgery on a link L in S3, so that there is a link L′ in M and an identification
M − L′ = S3 − L. Now drill out an additional unknot K from S3 so that L is in braid
position with respect to K.

Example 4.20. Every closed oriented 3-manifold admits an open book decomposition. To
see this first take a branched cover M → S3 branched over some link L. Put L in braid
position with respect to an unknot K. Then S3 has an open book decomposition with K
as the binding, and with L transverse to the pages. Thus the preimages of the pages give
an open book decomposition of M with binding the preimage of K.
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