
Option Pricing and Portfolio Optimization Solutions

Dannin Eccles

Chapter 2: The Continuous-Time Market Model

Exercise 1. Prove: If Y is a modification of the stochastic process X and if X and Y both have continuous paths
then they are indistinguishable.

Proof. Fix a continuous stochastic process X and suppose that Y is a continuous modification of X. By definition,
we have that P{Xt ≠ Yt} = 0 for each t ∈ [0,∞). Define A ∶= {ω ∈ Ω ∣ ∃t ∈ [0,∞) ∶ Xt(ω) ≠ Yt(Ω)} and observe
that, by the continuity of both X and Y , for each ω ∈ A, there exists a collection of open interval {Iω} such that

ω ∈ {Xt ≠ Yt} for all t ∈ Iω. Define I ∶= {⋃{Iω} ∶ ω ∈ A}. By this standard properties of R, the set that this

collection covers has a countable subcovering {Iωn}n∈N. By the same reasoning, for each Iωn there exists a countable
collection {tnk

}k∈N ⊂ [0,∞) such that, for any Iω ∈ I with Iω ∩ Iωn
≠ ∅, there exists k with tnk

∈ Iω ∩ Iωn
. I claim

that A ⊂ ⋃n∈N⋃k∈N{Xtnk
≠ Ytnk

}. Indeed, for any ω ∈ A, there exists n ∈ N such that Iω ∩ Iωn ≠ ∅, and therefore

some k ∈ N such that tnk
∈ Iω ∩ Iωn , so that ω ∈ {Xtnk

≠ Ytnk
}. It follows that PA ≤ P(⋃n∈N⋃k∈N{Xtnk

≠ Ytnk
}) = 0,

proving that X and Y are indistinguishable.

Exercise 2. Let τ be a stopping time and {(Xt,Ft)}t≥0 a right-continuous (sub-)martingale. Show that under these
assumptions the stopped process {(Xt∧τ ,Ft)}t≥0 is again a (sub-)martingale.

Proof. Fix a stopping time τ . Observe that it suffices to prove the statement for locally right constant (sub-
)martingales. Indeed, using the fact that any right-continuous (sub-)martingale can be approximated from below by
locally right constant (sub-)martingales, the dominated convergence theorem will imply that the statement holds also
for right-continuous (sub-)martingales. To this end, fix a locally right constant martingale Xt = ∑

∞
n=0 φn1[tn,tn+1),

with t0 = 0. Note that

Xt∧τ = φm+11{τ≥m} +
m−1
∑
n=0

φn1{τ∈[tn,tn+1)}, m ∶=max{k ∶ tk < t},

which is Ftm -measurable, and therefore Ft measurable. Moreover, E[∣Xt∧τ ∣] ≤ ∑
m+1
n=0 E[∣φn∣] < ∞. Finally, observe

that, by induction and the fact that each φn and 1{τ∈[tn,tn+1)} are Ftn+1 measurable, to prove that E[Xt∧τ ∣ Fs] =Xs∧τ
for any 0 ≤ s < t, it suffices to prove that E[Xtn+1∧τ ∣ Ftn] =Xtn∧τ for each n. We have that

E[Xtn+1∧τ ∣ Ftn] = E [φn+11{τ≥tn} +
n−1
∑
k=0

φk1{τ∈[tk,tk+1)} ∣ Ftn]

= 1{τ≥tn}E[φn+1 ∣ Ftn] +
n−1
∑
k=0

φk1{τ∈[tk,tk+1)}

= 1{τ≥tn}φn +
n−1
∑
k=0

φk1{τ∈[tk,tk+1)}

= φn1{τ≥tn−1} +
n−1
∑
k=0

φk1{τ∈[tk,tk+1)}

=Xtn∧τ .
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Exercise 3. Let the process {P (t)}t≥0 be defined by

P (t) = p ⋅ e(b−
1
2σ

2)t+σW (t),

where W (t) is a one-dimensional Brownian motion, p, b, σ ∈ R are real constants with σ ≠ 0.
Show:

(a) V ar(P (t)) = p2e2bt (eσ
2t − 1).

(b) P (t)
t→∞
ÐÐ→

⎧⎪⎪
⎨
⎪⎪⎩

∞ a.s. P if b > 1
2
σ2

0 a.s. P if b < 1
2
σ2

.

(c) Compare the result of (b) with the limiting behavior of E(P (t)), V ar(P (t)) for t→∞.

Proof. (a) Noting that σW (t) ∼ N(0, σ2t), it follows that

E(P (t)2) = p2 ∫
∞

−∞

1
√
2πt
⋅ e(2b−σ

2)t+2σx
⋅ e−

x2

2t dx

= p2 ∫
∞

−∞

1
√
2πt
⋅ e(2b+σ

2)t
⋅ e−

(x−2σt)2

2t dx

= p2 ⋅ e2bt+σ
2t.

From Lemma 2.25, we have that E(P (t)) = p ⋅ ebt, and so

V ar(P (t)) = E(P (t)2) −E(P (t))2 = p2 ⋅ e2bt(eσ
2t
− 1).

(b) We have that lnP (t)
t
=

lnp
t
+ b − 1

2
σ2 + σW (t)

t
. Now by the law of large numbers for Brownian motion, we have

that W (t)
t

t→∞
ÐÐ→ 0 a.s. P. Hence, lnP (t)

t

t→∞
ÐÐ→ b − 1

2
σ2 a.s. P. If b > 1

2
σ2, it follows that lnP (t)

t→∞
ÐÐ→ ∞ a.s. P,

so that P (t)
t→∞
ÐÐ→∞ a.s. P. Otherwise if b < 1

2
σ2, then lnP (t)

t→∞
ÐÐ→ −∞ a.s. P, so that P (t)

t→∞
ÐÐ→ 0 a.s. P.

(c) Observe that E(P (t)) = pebt t→∞
ÐÐ→

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if b > 0

p if b = 0

0 if b < 0

, and V ar(P (t)) = p2e2bt (eσ
2t − 1)

t→∞
ÐÐ→

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞ if b > − 1
2
σ2

p2 if b = − 1
2
σ2

0 if b < − 1
2
σ2

.

Exercise 4. Let {(X(t),Ft)}t≥0 be a stochastic process with a filtration {Ft}t satisfying the usual conditions. Show
that for all n ∈ N the random variable τ(ω) ∶= inf{t ≥ 0 ∶X(t, ω) ≥ n} is a stopping time.

Proof. I am fairly certain we need the additional assumption that X is at least left or right path continuous a.s. P.
Since {Ft}t is a complete filtration, we may assume w.l.o.g. that X is simply left or right path continuous. For the
case where X is right path continuous, note that ω ∈ {τ ≤ t} if and only if ω ∈X−1t′ ([n,∞)) for some t′ ∈ [0, t]. By the
right continuity of t↦Xt, it follows that {τ ≤ t} =X

−1
t ([n,∞))∪⋃q∈Q∩[0,t]X

−1
q ([n,∞)), and since X−1q ([n,∞)) ∈ Ft

for all q ∈ [0, t], it follows that {τ ≤ t} ∈ Ft.
For the case where X is left continuous, observe that ω ∈ {τ ≤ t} if and only if ω ∈X−1t′ ([n,∞)) for some t′ ∈ [0, t],

or for each t′ > t, there exists some t′′ ∈ (t, t′) such that ω ∈X−1t′′ ([n,∞)). Take a sequence {tk}k such that tk
k→∞
ÐÐÐ→ t

and tk > t for all k. By left continuity, we see that {τ ≤ t} = ⋃q∈Q∩[0,t]X
−1
q ([n,∞))∪⋂k≥1⋃m≥kX

−1
tm([n,∞)). Observe

that for any ε > 0, there exists some k such that t < tm < t + ε for all m ≥ k, so that ⋃m≥kX
−1
tm([n,∞)) ∈ Ft+ε. It

follows that ⋂k≥1⋃m≥kX
−1
tm([n,∞)) ∈ ⋂ε>0Ft+ε = Ft, proving that {τ ≤ t} ∈ Ft. Thus, if X is either left or right path

continuous a.s. P, then τ is a stopping time.

Exercise 5. Let {(X(t),Ft)}t≥0 be a one-dimensional Itô process. Prove that its representation

X(t) =X(0) + ∫
t

0
K(s)ds + ∫

t

0
H(s)dW (s)

is uniquely determined. More precisely, if

X(t) = Y (0) + ∫
t

0
µ(s)ds + ∫

t

0
σ(s)dW (s)

is another representation, then we have
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• X(0) = Y (0) a.s. P

• K(s) and µ(s) as well as H(s) and σ(s) are equivalent with respect to λ⊗ P.

Proof.

Lemma 1. Suppose that {(M(t),Ft)}t∈[0,T ] is a continuous martingale of the form

M(t) = ∫
t

0
v(s)ds with ∫

T

0
∣v(s)∣ds ≤ C < ∞.

Then M(t) = 0 for all t ∈ [0, T ] a.s. P.

Suppose first that v ∈ L2[0, T ]. Then for any t ∈ [0, T ] and partition π of [0, t], by repeated applications of Jensen’s
inquality, we have that

∑
π

(M(ti+1) −M(ti))
2
= ∑

π

(∫

ti+1

ti
v(s)ds)

2

≤ ∑
π

(ti+1 − ti)∫
ti+1

ti
v(s)2 ds

≤ ∥π∥∑
π
∫

ti+1

ti
v(s)2 ds

= ∥π∥∫
t

0
v(s)2 ds

∥π∥→0
ÐÐÐ→ 0.

Thus, when v ∈ L2[0, T ], M has zero quadratic variation. In the case where v ∉ L2[0, T ], define vn = v ⋅1{∣v∣≤n}. Then

each vn ∈ L
2[0, T ] and so Mn(t) = ∫

t
0 vn(s)ds has zero quadratic variation. Applying the dominated convergence

theorem to ∣vn∣ ≤ ∣v∣, we see that

sup
t∈[0,T ]

∣Mn(t) −M(t)∣ ≤ ∫
T

0
∣vn(s) − v(s)∣ds

n→∞
ÐÐÐ→ 0.

Thus, Mn → M uniformly and it follows that M must also have zero quadratic variation. In particular, for any
t ∈ [0, T ] and for any partition π of [0, t], we have that

E [M(t)2] = E [∑
π

(M(tti+1) −M(ti))
2
]
∥π∥→0
ÐÐÐ→ 0,

and it follows that M(t) = 0 a.s. P for all t ∈ [0, T ].

Lemma 2. Let {(M(t),Ft)}t∈[0,T ] be as above, but with the weakened condition:

∫

T

0
∣v(s)∣ds < ∞ a.s. P.

Then M(t) = 0 for all t ∈ [0, T ] a.s. P.

For each n ∈ N, define τn ∶= inf{t ∈ [0, T ] ∶ ∫
t
0 ∣v(s)∣ds ≥ n}. By Exercise 4, each τn is a stopping time. Observe that

the stopped martingale Mt∧τn = ∫
t∧τn
0 v(s)ds has the property that ∫

T∧τn
0 ∣v(s)∣ds ≤ C < ∞, and we can apply the

same reasoning as in Lemma 1 to conclude that M(t) = 0 for all t ∈ [0, T ∧τn] a.s. P. Given that ∫
T
0 ∣v(s)∣ds < ∞ a.s.

P, it follows that a.s. P there exists some N(ω) such that τN = T , and Lemma 2 follows after some obvious P-null
set arguments.

Finally, suppose that for some one-dimensional Itô process {(X(t),Ft)}t≥0, we have two representations:

• X(t) =X(0) + ∫
t
0 K(s)ds + ∫

t
0 H(s)dW (s)

• X(t) = Y (0) + ∫
t
0 µ(s)ds + ∫

t
0 σ(s)dW (s)
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Then X(0) = Y (0) + σ(0)W0 = Y (0) a.s. P. Now define the continuous martingale M(t) ∶= ∫
t
0 H(s) − σ(s)dW (s).

Observe that M(t) = ∫
t
0 µ(s) −K(s)ds a.s. P. Since ∫

T
0 ∣µ(s) −K(s)∣ds < ∞ for all T > 0, we can apply Lemma 2

to conclude that M(t) = 0 for all t ∈ [0,∞) a.s. P. It follows that H and σ, as well as K and µ are equivalent with
respect to λ⊗ P.

Exercise 6. Show that the processes Mt and Ht occurring in the proof of Itô’s formula satisfy

E(
m

∑
k=1
((Mtk −Mtk−1)

2
− ∫

tk

tk−1
H2

s ds))

2

= E(
m

∑
k=1
((Mtk −Mtk−1)

2
− ∫

tk

tk−1
H2

s ds)
2

)

Proof. Define Xi ∶= (Mti −Mti−1)
2 − ∫

ti
ti−1

H2
s ds. By the Itô isometry,

EXi = E(∫
ti

ti−1
Hs dW (s))

2

−E(∫
ti

ti−1
H2

s ds) = 0.

Thus, it suffices to prove that Cov(Xi,Xj) = 0 for i ≠ j, for then E (∑m
k=1Xk)

2
= E (∑m

k=1X
2
k). Fix i < j and observe

that

E (XiXj) = E(E(XiXj ∣ Fti))

= E(XiE(Xj ∣ Fti))

= E(Xi ⋅ 0)

= 0,

where the third equality follows from another application of Itô’s isometry.

Exercise 7. Let {(X(t),Ft)}t≥0 be an Itô process. Let τ be a stopping time. Prove that for suitable f we have:

∫

s

0
f(X(t ∧ τ))dX(t ∧ τ) = ∫

s∧τ

0
f(X(t))dX(t).

Proof. Since X is an Itô process, there exist progressively measurable processes K and H with ∫
t
0 ∣K(s)∣ds < ∞ and

∫
t
0 H

2(s)ds < ∞ a.s. P for all t ≥ 0, such that X(t) =X(0) + ∫
t
0 K(s)ds + ∫

t
0 H(s)dW (s). Thus,

X(t ∧ τ) =X(0) + ∫
t∧τ

0
K(s)ds + ∫

t∧τ

0
H(s)dW (s)

=X(0) + ∫
t

0
K(s)1[0,τ] ds + ∫

t

0
H(s)1[0,τ] dW (s),

and so X(t ∧ τ) is an Itô process. It follows that for suitable f we have

∫

s

0
f(X(t ∧ τ))dX(t ∧ τ) = ∫

s

0
f(X(t ∧ τ))K(t)1[0,τ] dt + ∫

s

0
f(X(t ∧ τ))H(t)1[0,τ] dW (t)

= ∫

s∧τ

0
f(X(t))K(t)dt + ∫

s∧τ

0
f(X(t))H(t)dW (t)

= ∫

s∧τ

0
f(X(t))dX(t).

Exercise 8. Prove the product rule, Corollary 2.53.

Proof. Fix one-dimensional Itô processes Xt and Yt with Xt = X0 + ∫
t
0 Ks ds + ∫

t
0 Hs dWs, and Yt = Y0 + ∫

t
0 µs ds +

∫
t
0 σs dWs. Define the two-dimensional Itô process Zt = (Xt, Yt) and let f(t, x, y) = xy ∈ C1,2([0,∞) ×R2). Then by
the multi-dimensional Itô formula,

Xt ⋅ Yt =X0 ⋅ Y0 + ∫
t

0
Ys dXs + ∫

t

0
Xs dYs + ∫

t

0
d⟨X,Y ⟩s

=X0 ⋅ Y0 + ∫
t

0
YsKs +Xsµs +Hsσs ds + ∫

t

0
YsHs +Xsσs dWs.
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Exercise 9. Let {(W (t),Ft)}t∈[0,T ] be a one-dimensional Brownian motion. Show that the following processes are
martingales with respect to {Ft}t:

(a) X(t) = exp ( t
2
) ⋅ cos(W (t));

(b) X(t) = exp ( t
2
) ⋅ sin(W (t));

(c) X(t) = (W (t) + t) ⋅ exp (−W (t) − t
2
).

Proof. I believe Observe that W (t) is an Itô process, with W (t) = W (0) + ∫
t
0 0ds + ∫

t
0 1dWs. Define f(t, x) =

exp ( t
2
) ⋅ cos(x), g(t, x) = exp ( t

2
) ⋅ sin(x), and h(t, x) = (x + t) ⋅ exp (−x − t

2
). Because f, g, h ∈ C1,2([0,∞) × R), we

can apply the multi-dimensional Itô formula to obtain that

(a)

exp(
t

2
) ⋅ cos(W (t)) = f(t,W (t))

= 1 +
1

2
∫

t

0
exp(

s

2
) ⋅ cos(W (s))ds − ∫

t

0
exp(

s

2
) ⋅ sin(W (s))dWs −

1

2
∫

t

0
exp(

s

2
) ⋅ cos(W (s))ds

= 1 − ∫
t

0
exp(

s

2
) ⋅ sin(W (s))dWs;

(b)

exp(
t

2
) ⋅ sin(W (t)) = f(t,W (t))

=
1

2
∫

t

0
exp(

s

2
) ⋅ sin(W (s))ds + ∫

t

0
exp(

s

2
) ⋅ cos(W (s))dWs −

1

2
∫

t

0
exp(

s

2
) ⋅ sin(W (s))ds

= ∫

t

0
exp(

s

2
) ⋅ cos(W (s))dWs;

(c)

(W (t) + t) ⋅ exp(−W (t) −
t

2
) = ∫

t

0
exp(−W (s) −

s

2
) −

1

2
(W (s) + s) exp(−W (s) −

s

2
) ds

+ ∫

t

0
exp(−W (s) −

s

2
) − (W (s) + s) exp(−W (s) −

s

2
) dWs

+
1

2
∫

t

0
−2 exp(−W (s) −

s

2
) + (W (s) + s) exp(−W (s) −

s

2
) ds

= ∫

t

0
(1 −W (s) − s) exp(−W (s) −

s

2
) dWs.

Since exp ( t
2
) ⋅ sin(W (t)), exp ( t

2
) ⋅ cos(W (t)), (1 −W (s) − s) exp (−W (s) − s

2
) ∈ L2[0, T ]{Ft}t , and because the Itô

integral maps L2[0, T ] into the space of continuous {Ft}t martingales with expectation equal to 0, it follows that
each of the given processes are martingales with respect to {Ft}t.

Exercise 10. Define

H(t) ∶= exp(−∫
t

0
r(s) +

1

2
∥θ(s)∥2 ds − ∫

t

0
θ(s)′ dW (s)) , θ(t) ∶= σ−1(t)(b(t) − r(t)1).

(a) Show that 1/H(t) is the wealth process corresponding to the pair

(π(t), c(t)) = (σ−1(t)′σ−1(t)(b(t) − r(t)1),0)

and an initial wealth of x = 1/H(0) = 1.
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Proof. We need to verify that 1/H(t) solves the wealth equation for the given self-financing pair (π, c). Define

the Itô process Yt ∶= − ∫
t
0 r(s)+

1
2
∥θ(s)∥2 ds−∫

t
0 θ(s)

′ dW (s) and apply the Itô formula to f(x) = e−x to get that

d(1/H(t)) = −f(Yt)dYt +
1

2
f(Yt)d⟨Y ⟩t

=
1

H(t)
((r(t) +

1

2
∥θ(t)∥2)dt + (θ(t)′)dW (t)) +

1

H(t)
(
1

2
∥θ(t)∥2 dt)

= (r(t)
1

H(t)
) dt +

1

H(t)
(b(t) − r(t)1)′σ−1(t)′σ−1(t)((b(t) − r(t)1)dt + σ(t)dW (t))

= (r(t)
1

H(t)
− c(t)) dt +

1

H(t)
π(t)′((b(t) − r(t)1)dt + σ(t)dW (t)).

Thus, 1/H(t) is the unique solution for the wealth equation corresponding to the self-financing pair (π, c) and
initial wealth x = 1.

(b) Let (π, c) ∈ A(1) with c ≡ 0 and

E(∫
T

0
π(t)′σ(t)dW (t)) = 0, ∫

T

0
∥π(t)2∥ dt < ∞.

Show that if for the wealth process X(t) corresponding to (π,0) the expected value E(ln(X(T )) exists then
we have

E(ln(X(T )) ≤ E(ln(
1

H(T )
)) .

Proof. Since X(t) is the wealth process corresponding to (π,0), X(t) must satisfy the wealth equation:

dX(t) = (r(t)X(t) − c(t))dt +X(t)π(t)′((b(t) − r(t)1)dt + σ(t)dW (t)).

By the Itô formula,

d(ln(X(t))) =
1

X(t)
dX(t) −

1

2X(t)2
d⟨X⟩t

= (r(t) + π(t)′(b(t) − r(t)1) −
1

2
π(t)′σ(t)σ(t)′π(t))dt + π(t)′σ(t)dW (t),

and it follows that

E(ln(X(T )) = E
⎛

⎝
ln(X(0)) + ∫

T

0
r(t) + π(t)′(b(t) − r(t)1) −

1

2
∥σ(t)′π(t)∥2 dt + ∫

T

0
π(t)′σ(t)dW (t)

⎞

⎠

= E
⎛

⎝
∫

T

0
r(t) + π(t)′(b(t) − r(t)1) −

1

2
∥σ(t)′π(t)∥2 dt

⎞

⎠
.

The same line of reasoning shows that

E( ln(
1

H(T )
)) = E

⎛

⎝
ln(

1

H(0)
) + ∫

T

0
r(t) + ∥σ−1(t)(b(t) − r(t)1)∥2

−
1

2
∥σ−1(t)(b(t) − r(t)1)∥2 dt + ∫

T

0
(b(t) − r(t)1)′σ−1(t)′ dW (t)

⎞

⎠

= E
⎛

⎝
∫

T

0
r(t) +

1

2
∥σ−1(t)(b(t) − r(t)1)∥2 dt

⎞

⎠
.

Hence, the problem is reduced to proving the inequality

E∫
T

0
∥σ−1(t)(b(t) − r(t)1)∥2 − 2π(t)′(b(t) − r(t)1) + ∥π(t)′σ(t)∥2 dt ≥ 0.

6



Writing θ(t) = σ−1(t)(b(t) − r(t)1), we have

E∫
T

0
∥σ−1(t)(b(t) − r(t)1)∥2−2π(t)′(b(t) − r(t)1) + ∥π(t)′σ(t)∥2 dt

= E∫
T

0
∥θ(t)∥2 − 2π(t)′σ(t)θ(t) + ∥π(t)′σ(t)∥2 dt

= E∫
T

0
∥θ(t) − π(t)′σ(t)∥2 dt ≥ 0.

Exercise 11. Let B ≥ −K be an FT -measurable random variable with K > 0 and T > 0 fixed. Show that under
suitable assumptions there exist an initial wealth of x ≥ −K and a trading strategy φ such that the corresponding
wealth process X(t) satisfies

X(t) ≥ −K for all t ∈ [0, T ],

X(T ) = B a.s. P.

Proof. Define y ∶= E(H(T )(B +K)) and assume that y < ∞. Then by Theorem 2.63 (2) there exists a portfolio

process π(t), t ∈ [0, T ], with (π,0) ∈ A(y) and the corresponding wealth process Y (t) satisfies Y (T ) = B +K a.s. P.
Now define X(t) ∶= Y (t) −K and note that X(t) also satisfies the same wealth equation that Y (t) satisfies and so
by the Variation of Constants Theorem, X(t) is the unique wealth process corresponding to the self-financing pair
(π,0) with initial wealth X(0) = Y (0) −K = y −K ≥ −K. Moreover, we have that X(T ) = Y (T ) −K = B a.s. P.
Thus, the trading strategy φ given by φi(t) ∶=

πi(t)X(t)
Pi(t) suffices.

Exercise 12. By suitable localization deduce Corollary 2.70 from the martingale representation theorem.

Proof. I believe Corollary 2.70 needs the further assumption that there exists a localization {τn}n for the local
Brownian martingale {(Mt,Ft)}t∈[0,T ] such thatMt∧τn is square integrable for each n. Thus, fix some local Brownian
martingale {(Mt,Ft)}t∈[0,T ] with localization {τn}n such that EM2

t∧τn < ∞ for all t ∈ [0, T ] and n ∈ N. Then by the

martingale representation theorem, for each n there exists some progressively measurable Rm-valued process ψ(n)(t),
t ∈ [0, T ], with

E
⎛

⎝
∫

T

0
∥ψ(n)(t)∥2 dt

⎞

⎠
< ∞, Mt∧τn =M0 + ∫

t∧τn

0
ψ(n)(s)′ dW (s) a.s. P.

Define the progressively measurable Rm-valued process ψ by ψ(s,ω) ∶= ψ(n)(s,ω) for ω ∈ Ft with s ∈ [0, τn(ω)]. Note
that for all 0 ≤ s ≤ τn−1(ω),

∫

s

0
ψ(n−1)(t)′ dW (t)(ω) =Ms∧τn−1(ω) −M0(ω) =Ms∧τn(ω) −M0(ω) = ∫

s

0
ψ(n)(t)′ dW (t)(ω) a.s. P,

and it follows that ψ(n)(s,ω) = ψ(n−1)(s,ω) a.s. P. Thus, ψ is well-defined up to some null set, and we can arbitrarily

set ψ(s,ω) = 0 for all s ∈ [0, T ] and all ω in this null set. Now for any s ∈ [0, T ], since τn
n→∞
ÐÐÐ→∞ a.s. P, we see that

for every t ∈ [0, T ] and for a.e. ω ∈ Ft, there exists some n such that s ≤ τn(ω), and so

Ms(ω) =Ms∧τn(ω) =M0(ω) + ∫
s∧τn

0
ψ(n)(h)dW (h)(ω) =M0(ω) + ∫

s

0
ψ(h)dW (h)(ω) a.s. P.

Finally, by the definition of ψ, we see that for all t ∈ [0, T ] and ω ∈ Ft either there exists some n such that

∫
T
0 ∥ψ(s)∥

2 ds(ω) = ∫
T
0 ∥ψ

(n)(s)∥ds(ω) < ∞, or ψ(s,ω) = 0 for all s ∈ [0, T ] and so ∫
T
0 ∥ψ(s)∥

2 ds(ω) = 0.
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Chapter 3: Option Pricing

Exercise 1. Under the assumptions of the Black-Scholes model determine the fair prices of the following options
given by their payoff diagrams.

(a) Butterfly spread with mean basis price 2K

Solution. The payoff diagram for the butterfly spread can be replicated by buying two calls on the security,
one with strike price K and another with strike price 3K, and selling two calls with strike price 2K. Thus, all
together we have the time T payoff B = (P1(T ) −K)

+ − 2(P1(T ) − 2K)
+ + (P1(T ) − 3K)

+. Applying Corollary
3.15 followed by the Black-Scholes formula, the fair price process X̂(t) for the contingent claim B is therefore
given by

X̂(t) = EQ (exp(−∫
T

t
r(s)ds) ⋅B ∣ Ft)

= EQ (exp(−∫
T

t
r(s)ds) ⋅ (P1(T ) −K)

+
∣ Ft) − 2EQ (exp(−∫

T

t
r(s)ds) ⋅ (P1(T ) − 2K)

+
∣ Ft)

+ EQ (exp(−∫
T

t
r(s)ds) ⋅ (P1(T ) − 3K)

+
∣ Ft)

= P1(t)(Φ(d1,K(t)) − 2Φ(d1,2K(t)) +Φ(d1,3K(t))) − e
−r(T−t)

(KΦ(d2,K(t)) − 4KΦ(d2,2K(t)) + 3KΦ(d2,3K(t))).

(b) Straddle with basis price K

Solution. The payoff diagram for the straddle can be replicated by buying a put and a call, both with strike
price K. Thus, the time T payoff is given by B = (P1(T )−K)

+ +(K −P1(T ))
+. Again applying Corollary 3.15

and the Black-Scholes formula, we get that the price process X̂(t) for the contingent claim B is given by

X̂(t) =XC(t) +XP (t)

= P1(t)(Φ(d1(t)) −Φ(−d1(t))) −K ⋅ e
−r(T−t)

(Φ(d2(t)) −Φ(−d2(t)))

= P1(t)sgn(d1(t))(2Φ(∣d1(t)∣) − 1) −Ke
−r(T−t)sgn(d2(t))(2Φ(∣d2(t)∣) − 1).

(c) Strangle with basis prices K1 <K2

Solution. The payoff diagram for the strangle can be replicated by buying a put with strike price K1 and a
call with strike price K2. Thus, we have that the price process X̂(t) is given by

X̂(t) =XC,K1(t) +XP,K2(t)

= P1(t)(Φ(d1,K1(t)) −Φ(−d1,K2(t))) −K1 ⋅ e
−r(T−t)Φ(d2,K1(t)) +K2 ⋅ e

−r(T−t)Φ(−d2,K2(t)).

(d) Bull spread with basis prices K1 <K2

Solution. The payoff diagram is replicated by buying a call with strike price K1 and selling a call with strike
price K2, resulting in the price process

X̂(t) =XC,K1(t) −XC,K2(t)

= P1(t)(Φ(d1,K1(t)) −Φ(d1,K2(t))) −K1 ⋅ e
−r(T−t)Φ(d2,K1(t)) +K2 ⋅ e

−r(T−t)Φ(d2,K2(t)).

Exercise 2. Show that in the Black-Scholes setting the price XC(t) of a European call satisfies:

(a) XC(t) decreases in t

Proof. Writing the one-dimensional Black-Scholes call price process given time t and security price p as

f(t, p) = p ⋅Φ(d1(t)) −K ⋅ e
−r(T−t)Φ(d2(t)),

8



the task is to prove that ft < 0. We may assume that r ≥ 0. Using the identities: d2(t) = d1(t) − σ
√
T − t

and P1(t)φ(d1(t)) = Ke
−r(T−t)φ(d2(t)), where φ is defined to be the density function of the standard normal

distribution, we have that

ft(t, p) = pφ(d1(t))
∂d1
∂t
(t) − rKe−r(T−t)Φ(d2(t)) −Ke

−r(T−t)φ(d2(t))
∂d2
∂t
(t)

= pφ(d1(t))
∂d1
∂t
(t) − rKe−r(T−t)Φ(d2(t)) − pφ(d1(t))(

∂d1
∂t
(t) +

σ

2
√
T − t

)

= −pφ(d1(t))
σ

2
√
T − t

− rKe−r(T−t)Φ(d2(t))

< 0.

(b) XC(t) increases in r

Proof. Observe that

∂XC(t)

∂r
= pφ(d1(t))

∂d1
∂r
(t) + (T − t)Ke−r(T−t)Φ(d2(t)) −Ke

−r(T−t)φ(d2(t))
∂d2
∂r
(t)

= pφ(d1(t))
∂d1
∂r
(t) + (T − t)Ke−r(T−t)Φ(d2(t)) − pφ(d1(t))

∂d1
∂r
(t)

= (T − t)Ke−r(T−t)Φ(d2(t))

≥ 0.

(c) XC(t) increases in P1(t)

Proof. Observe that

∂XC(t)

∂p
= Φ(d1(t)) + pφ(d1(t))

∂d1
∂p
(t) −Ke−r(T−t)φ(d2(t))

∂d2
∂p
(t)

= Φ(d1(t)) + pφ(d1(t))
∂d1
∂p
(t) − pφ(d1(t))

∂d1
∂p
(t)

= Φ(d1(t))

> 0.

(d) XC(t) increases in σ for σ > 0

Proof. Observe that

∂XC(t)

∂σ
= pφ(d1(t))

∂d1
∂σ
(t) −Ke−r(T−t)φ(d2(t))

∂d2
∂σ
(t)

= pφ(d1(t))
∂d1
∂σ
(t) − pφ(d1(t)) (

∂d1
∂σ
(t) −

√
T − t)

= pφ(d1(t))
√
T − t

≥ 0.

Exercise 3. Compute the price of a European call with the help of the equivalent martingale measure in a market

model with d = 2, σ = (
σ11 σ12
σ21 σ22

), where the call is a call on the first stock, i.e. the final payment B is given by

B = (P1(T ) −K)
+

9



Solution. Observe that in (Ω,FT ,Q) we have

dP1(t) = P1(t) ⋅ (r(t)dt + σ11 dW
Q
1 (t) + σ12 dW

Q
2 (t)) .

Thus, by the Variation of Constants Theorem, P1(t) = P1(0)⋅exp (∫
t
0 r(s)ds −

1
2
(σ2

11 + σ
2
12)t + σ11W

Q
1 (t) + σ12W

Q
2 (t)).

By Corollary 3.15, the fair price of the contigent claim B is given by

p̂ = EQ (exp(−∫
T

0
r(s)ds)(P1(T ) −K)

+
)

= EQ (exp(−∫
T

0
r(s)ds)(P1(0) ⋅ exp(∫

T

0
r(s)ds −

1

2
(σ2

11 + σ
2
12)T + σ11W

Q
1 (T ) + σ12W

Q
2 (T )) −K)

+

)

= EQ

⎛

⎝

(P1(0)pT e
− 1

2 (σ
2
11+σ

2
12)T+σ11W

Q
1 (T )+σ12W

Q
2 (T ) −K)+

pT

⎞

⎠
,

where we define pT ∶= exp (∫
T
0 r(s)ds). Define Z ∶= σ11W

Q
1 (T ) + σ12W

Q
2 (T ) and observe that since WQ

1 (T ) and

WQ
2 (T ) are normal i.i.d. with respect to Q, Z ∼ NQ(0, (σ

2
11 + σ

2
12)T ). Moreover,

P1(0)pT e
− 1

2 (σ
2
11+σ

2
12)T+Z −K > 0

if and only if

Z > ln(
K

P1(0)pT
) +

1

2
(σ2

11 + σ
2
12)T =∶ K̂.

Thus, we have that

p̂ = EQ

⎛

⎝

(P1(0)pT e
− 1

2 (σ
2
11+σ

2
12)+Z −K)+

pT

⎞

⎠

= ∫

∞

K̂

1
√
2π(σ2

11 + σ
2
12)T

P1(0)e
− 1

2 (σ
2
11+σ

2
12)T+z− z2

2(σ2
11
+σ2

12
)T dz −

1

pT
K
⎛

⎝
Φ
⎛

⎝

−K̂
√
(σ2

11 + σ
2
12)T

⎞

⎠

⎞

⎠

= P1(0)∫
∞

K̂

1
√
2π(σ2

11 + σ
2
12)T

e
− (z−(σ

2
11+σ

2
12)T )

2

2(σ2
11
+σ2

12
)T dz −

1

pT
K
⎛

⎝
Φ
⎛

⎝

−K̂
√
(σ2

11 + σ
2
12)T

⎞

⎠

⎞

⎠

= P1(0)Φ
⎛

⎝

−K̂
√
(σ2

11 + σ
2
12)T

+

√

(σ2
11 + σ

2
12)T

⎞

⎠
−

1

pT
KΦ
⎛
⎜
⎝

ln (P1(0)pT

K
) − 1

2
(σ2

11 + σ
2
12)T

√
(σ2

11 + σ
2
12)T

⎞
⎟
⎠

= P1(0)Φ
⎛
⎜
⎝

ln (P1(0)pT

K
) + 1

2
(σ2

11 + σ
2
12)T

√
(σ2

11 + σ
2
12)T

⎞
⎟
⎠
−

1

pT
KΦ
⎛
⎜
⎝

ln (P1(0)pT

K
) − 1

2
(σ2

11 + σ
2
12)T

√
(σ2

11 + σ
2
12)T

⎞
⎟
⎠
.

Exercise 4. Let

φ(t, x) =
1
√
2πt

exp(−
x2

2t
) .

(a) Show that φ(t, x) is a solution of the partial differential equation

ut =
1

2
uxx.

Proof. Observe that

1

2
φxx = −

∂

∂x
(

x

2
√
2π
t−3/2 exp(−

x2

2t
))

= (
x2
√
2π
t−5/2 −

1

2
√
2π
t−3/2) exp(−

x2

2t
)

= φt.
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(b) Show that the problem

ut(t, x) = uxx(t, x), (t, x) ∈ [0,∞) ×R,
u(0, x) = g(x), x ∈ R,

with a bounded function g is solved by

u(t, x) = E (g (
√
2t ⋅ Y + x))

for some random variable Y ∼ N(0,1).

Proof. Clearly u(0, x) = E[g(x)] = g(x). Observe that Z ∶=
√
2t ⋅ Y + x ∼ N(x,2t) and so, since g is bounded,

we can apply Dominated Convergence twice to get that

ut(t, x) =
∂

∂t
∫

∞

−∞
g(z)

1
√
4πt

e−
(z−x)2

4t dz

= 2∫
∞

−∞
g(z)φt(2t, z − x)dz

= 2∫
∞

−∞
g(z) (

1

2
φxx(2t, z − x)) dz

=
∂2

∂x2
∫

∞

−∞
g(z)

1
√
4πt

e−
(z−x)2

4t dz

= uxx(t, x).

Exercise 5. Prove Proposition 3.28, part (2): The price PA(t, P1(t)) of an American put with strike K ≥ 0 satisfies

(K − P1(t))
+
≤ PA(t, P1(t)) ≤K.

Proof. In the case PA(t, P1(t)) > K, the strategy “sell the option at time t and immediately invest the proceeds at
the riskless rate r” is an arbitrage opportunity: If the buyer of the option exercises the option at some point s ∈ [t, T ],
the time T value of the strategy is PA(t, P1(t))e

r(s−t) + (PA(t, P1(t)) +P1(t) −K)e
r(T−s) > 0, and if the buyer of the

option never exercises the option, the time T value of the strategy is PA(t, P1(t))e
r(T−t) > 0.

In the case (K−P1(t))
+ > PA(t, P1(t)), the strategy “buy the option and immediately exercise it” yields a riskless

time t gain K −P1(t) −PA(t, P1(t)) > 0 and incurs no further costs, which is impossible in an arbitrage free market.
The desired inequality follows by the principle of no-arbitrage.

Exercise 6. Prove Proposition 3.29, part (2): For the price PE(t, P1(t)) of a European put with strike price K ≥ 0
and exercise date T , we have

(e−r(T−t)K − P1(t))
+
≤ PE(t, P1(t)) ≤K,

if there will be no dividend payments on the stock in [0, T ].

Proof. Observe that PE(t, P1(t)) ≤ PA(t, P1(t)) ≤K, proving the right hand inequality. Now suppose that

(e−r(T−t)K − P1(t))
+
> PE(t, P1(t)).

I claim that the follows strategy constitutes an arbitrage strategy: “Take a loan of value e−r(T−t)K at the riskless
rate r, buy the put for PE(t, P1(t)) and one unit of stock for P1(t), and invest the positive rest e−r(T−t)K − P1(t) −
PE(t, P1(t)) at the riskless rate r”. The riskless investment leads to a capital of K − er(T−t)(P1(t) +PE(t, P1(t))) at
t = T .

If P1(T ) < K, the option buyer exercises the put, selling their one unit of stock for the strike price K and uses
this money to close out their loan, realizing a gain of K − er(T−t)(P1(t) + PE(t, P1(t))) > 0.

If instead P1(T ) ≥K, the option buyer sells their one unit of stock and closes out their loan, realizing a gain of

(P1(T ) −K) + (K − e
r(T−t)

(P1(t) + PE(t, P1(t)))) >K − e
r(T−t)

(P1(t) + PE(t, P1(t))) > 0.

Since both cases result in strictly positive gains without any initial capital, the no-arbitrage principle implies the
desired inequality.
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Exercise 7. Prove Proposition 3.44: All martingale measures Q for P0(t), . . . , Pd(t) which are equivalent to P
can be obtained by a Girsanov transformation with an m-dimensional progressively measurable stochastic process
{(θ(t),Ft)}t∈[0,T ] where for all t ∈ [0, T ] we have

∫

t

0
θ2i (s)ds < ∞ a.s. P, for i = 1, . . . ,m

and where Z(t, θ), defined as in Excursion 5, p. 93, is martingale with respect to P . In particular, Q is given as

Q(A) ∶= QT (A) ∶= E(1A ⋅Z(T, θ)) for all A ∈ FT .

Proof. Fix a martingale measure space (Ω,FT ,Q) for P0(t), . . . , Pd(t) such that Q is equivalent to P . Observe that
since Q and P are equivalent on FT , they must also be equivalent measures on Ft for all t ∈ [0, T ]. For each t ∈ [0, T ],

define Dt to be the Radon-Nikodym derivative
dQ∣Ft

dP ∣Ft
. For any t ∈ [0, T ] and A ∈ Ft

E(E[DT ⋅ 1A ∣ Ft]) = ∫
A
DT dP

= Q(A)

= Q∣Ft(A)

= ∫
A
Dt dP ∣Ft

= ∫
A
Dt dP

= E[Dt ⋅ 1A].

It follows that for all t ∈ [0, T ], E[DT ∣ Ft] = Dt, showing that {(Dt,Ft)}t∈[0,T ] satisfies the martingale property.
Moreover, since P ∣Ft and Q∣Ft are equivalent measures, it follows that Dt > 0 a.s. P and so E∣Dt∣ = Q(Ω) = 1 < ∞
for all t ∈ [0, T ]. Thus, {Dt}t∈[0,T ] is a P -Brownian martingale and we can apply Corollary 2.70 to the Martingale
Representation Theorem to get that there exists an m-dimensional progressively measurable process {(Ψ(t),Ft)}t≥0,
t ∈ [0, T ], with

∫

T

0
∥Ψ(t)∥2 dt < ∞

and

Dt =D0 + ∫

t

0
Ψ(s)′ dW (s) a.s. P.

I claim that D0 = 1. Observe that the statement D0 = 1 is equivalent to the statement that P ∣F0 = Q∣F0 , and so to
prove the statement, it suffices to verify that P (A) = Q(A) for all A ∈ F0. Since P and Q are equivalent measures,
this statement holds for all P -null sets. Fix some A ∈ F0 such that P (A) ≠ 0. Because F0 is defined to be the
completion of σ{W (0)}, and W (0) is constant a.s. P , it follows that for all B ∈ F0, P (B) ∈ {0,1}, and so P (A) = 1.
Thus, P (Ac) = 0 = Q(Ac), which implies that Q(A) = 1 = P (A), and the claim follows. Hence, for all t ∈ [0, T ]

Dt = 1 + ∫
t

0
Ψ(s)′ dW (s) a.s. P.

Since Q∣Ft and P ∣Ft are equivalent measures, Dt > 0 a.s. P for all t ∈ [0, T ]. Define θ(t) ∶= −Ψ(t)
Dt

, so that

Dt = 1 − ∫
t
0 Ds ⋅ θ(s)

′ dW (s). Clearly {(θ(t),Ft)}t∈[0,T ] is an m-dimensional progressively measurable stochastic

process. Moreover, if we can show that ∫
t
0 ∥θ(s)∥

2 ds < ∞ a.s. P for all t ∈ [0, T ], it will follow by the Variation of

Constants Theorem that Dt = exp (−∑
m
j=1 ∫

t
0 θj(s)dWj(s)−∫

t
0 ∥θ(s)∥

2 ds) = Z(t, θ), so that Z(t, θ) is a P -martingale

and Q(A) = E[1A ⋅DT ] = E[1A ⋅Z(T, θ)] for all A ∈ FT .

Need to prove: ∫
t
0 ∥θ(s)∥

2 ds < ∞ a.s. P for all t ∈ [0, T ].

Exercise 8. Show: With the notations and assumptions of Section 3.6 we have the following equivalence for a
trading strategy φ(t):

φ(t) is self-financing ⇐⇒

X̂(t) =
x

p0
+

d

∑
i=1
∫

t

0
φi(s)dP̂i(s) a.s. P for all t ∈ [0, T ].
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Proof. We have that

dPi(t) = Pi(t)
⎛

⎝
bi(t)dt +

m

∑
j=1

σij(t)dWj(t)
⎞

⎠
,

and, by the Itô formula
1

P0(t)
=

1

p0
− ∫

t

0

1

P0(s)2
r(s)ds.

Hence, by the product rule,

dP̂i = dPi(t)
1

P0(t)
+ Pi(t)d(

1

P0(t)
) + ⟨Pi ,

1

P0
⟩
t

dt

= P̂i(t)
⎛

⎝
bi(t)dt +

m

∑
j=1

σij(t)dWj(t)
⎞

⎠
−
P̂i(t)

P0(t)
r(t)dt.

Suppose that φ(t) is a self-financing trading strategy. Then by definition, the wealth process X(t) corresponding to
φ(t) satisfies

X(t) = x +
d

∑
i=1
∫

t

0
φi(s)dPi(s) a.s. P for all t ∈ [0, T ].

Another application of the product rule gives that for all t ∈ [0, T ]

X̂(t) =
x

p0
+ ∫

t

0
X(s)d

1

P0(s)
+ ∫

t

0

dX(s)

P0(s)
+ ∫

t

0
⟨X ,

1

P0
⟩
s

ds

=
x

p0
−

d

∑
i=1
∫

t

0
φi(s)

P̂i(s)

P0(s)
r(s)ds +

d

∑
i=1

⎛

⎝
∫

t

0
P̂i(s)φi(s)bi(s)ds +

m

∑
j=1
∫

t

0
P̂i(s)φi(s)σij(s)dWj(s)

⎞

⎠

=
x

p0
+

d

∑
i=1
∫

t

0
φi(s)dP̂i(s) a.s. P.

For the other direction, suppose that φ(t) is a trading strategy such that

X̂(t) =
x

p0
+

d

∑
i=1
∫

t

0
φi(s)dP̂i(s) a.s. P for all t ∈ [0, T ].

Then X(t) = X̂(t)P0(t), and so by the product rule, we have that for all t ∈ [0, T ]

X(t) =
x

p0
p0 + ∫

t

0
P0(s)dX̂(s) + ∫

t

0
X̂(s)dP0(s) + ∫

t

0
⟨X ,P0⟩s ds

= x +
d

∑
i=1
∫

t

0
P0(s)φi(s)dP̂i(s) +

d

∑
i=1
∫

t

0
φi(s)P̂i(s)r(s)ds

= x +
d

∑
i=1

⎛

⎝
∫

t

0
φi(s)(Pi(s)bi(s) − P̂i(s)r(s))ds +

m

∑
j=1
∫

t

0
Pi(s)φi(s)σij(s)dWj(s)

⎞

⎠
+

d

∑
i=1
∫

t

0
φi(s)P̂i(s)r(s)ds

= x +
d

∑
i=1
∫

t

0
φi(s)dPi(s) a.s. P.

It follows that φ(t) is self-financing.

Exercise 9. In the case of a two-dimensional Black-Scholes model compute the fair price of the contingent claim
with the final payment

B = 1{P1(T )≥P2(T )}.

Solution. By Corollary 3.15, the price process X̂(t) of the contingent claim B satisfies

X̂(t) = EQ (e
−r(T−t)

⋅ 1{P1(T )≥P2(T )} ∣ Ft)

= e−r(T−t)Q(P1(T ) ≥ P2(T ) ∣ P1(t), P2(t)).

13



Observe that P1(T ) ≥ P2(T ) if and only if

P1(t)e
(T−t)(r− 1

2 ∑
2
j=1 σ2

1j)+∑
2
j=1 σ1j(WQ

j (T )−W
Q
j (t)) ≥ P2(t)e

(T−t)(r− 1
2 ∑

2
j=1 σ2

2j)+∑
2
j=1 σ2j(WQ

j (T )−W
Q
j (t)),

if and only if

(σ11 − σ21) (W
Q
1 (T ) −W

Q
1 (t)) + (σ12 − σ22) (W

Q
2 (T ) −W

Q
2 (t)) ≥ ln(

P2(t)

P1(t)
) −

1

2
(T − t) (σ2

21 + σ
2
22 − σ

2
11 − σ

2
12) =∶ K̂.

Set Z ∶= (σ11 − σ21) (W
Q
1 (T ) −W

Q
1 (t)) + (σ12 − σ22) (W

Q
2 (T ) −W

Q
2 (t)). As (σ11 − σ21) (W

Q
1 (T ) −W

Q
1 (t)) and

(σ12 −σ22) (W
Q
2 (T ) −W

Q
2 (t)) are independent normally distributed random variables with zero mean and variances

(σ11 −σ21)
2(T − t) and (σ12 −σ22)

2(T − t), respectively, it follows that Z ∼ N(0, (T − t)((σ12 −σ22)
2 +(σ11 −σ21)

2)).

Thus,

X̂(t) = e−r(T−t) ∫
∞

K̂

1
√
2π(T − t)((σ12 − σ22)2 + (σ11 − σ21)2)

exp(−
x2

2(T − t)((σ12 − σ22)2 + (σ11 − σ21)2)
) dx

= e−r(T−t)Φ
⎛
⎜
⎝

ln (P1(t)
P2(t)) +

1
2
(T − t)(σ2

21 + σ
2
22 − σ

2
11 − σ

2
12)

√
(T − t)((σ12 − σ22)2 + (σ11 − σ21)2)

⎞
⎟
⎠
.

Exercise 10 (Black-Scholes formula with dividend rates). If a stock pays a dividend rate δP1(t) for some δ > 0 per
unit of time then its price in the Black-Scholes model is modelled as the solution of

dP1(t) = P1(t)((b − δ)dt + σ dW (t)),

P1(t) = p.

Show that the price C(t, P1(t)) of a European call on this stock with strike K is given by:

C(t, P1(t)) = e
−δ(T−t)P1(t)Φ(δ1(t)) − e

−r(T−t)KΦ(δ2(t)),

with

δ1(t) =
ln (P1(t)

K
) + (r − δ + 1

2
σ2)(T − t)

σ
√
T − t

,

δ2(t) = δ1(t) − σ
√
T − t.

Proof. Note that

P1(T ) = P1(t) ⋅ exp((r − δ −
1

2
σ2
) (T − t) + σ(WQ

(T ) −WQ
(t))) .

By Corollary 3.15 and the independence of WQ(T ) −WQ(t) from Ft,

C(t, P1(t)) = EQ (e
−r(T−t)

(P1(T ) −K)
+
∣ Ft)

= e−r(T−t)EQ ((P1(t) exp((T − t) (r − δ −
1

2
σ2
) + σ(WQ

(T ) −WQ
(t))) −K)

+
)

= ∫

∞

K̂

1
√
2π(T − t)

(P1(t)e
(T−t)(−δ− 1

2σ
2)+σx

− e−r(T−t)K) e−
x2

2(T−t) dx

= e−δ(T−t)P1(t)∫
∞

K̂

1
√
2π(T − t)

exp(−
(x − σ(T − t))2

2(T − t)
) dx − e−r(T−t)KΦ

⎛
⎜
⎝

ln (P1(t)
K
) + (r − δ − 1

2
σ2) (T − t)

σ
√
T − t

⎞
⎟
⎠

= e−δ(T−t)P1(t)Φ(d1(t)) − e
−r(T−t)KΦ(d2(t)) − P1(t)(e

−δ(T−t)
− 1),

where K̂ ∶=
ln( K

P1(t)
)−(r−δ− 1

2σ
2)(T−t)

σ
≤WQ(T ) −WQ(t) if and only if K ≤ P1(T ).

Exercise 11 (Garman-Kohlhagen model for currency options). In the Garman-Kohlhagen model the exchange rate
S(t) between the domestic and a foreign currency (e.g. Euro/Dollar) in units of the domestic currency is given as
the solution of

dS(t) = µdt + σ dW (t), S(0) = s for µ,σ ∈ R.
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Let rd denote the riskless domestic rate, rf the foreign riskless rate. Show that under these assumptions the price of
a call option with time to maturity T − t and strike K on one unit of foreign currency is given by

C(t, S(t)) = exp(−rf(T − t))S(t)Φ(γ1(t)) −K exp(−rd(T − t))Φ(γ2(t))

with

γ1(t) =
ln (S(t)

K
) + (rd − rf +

1
2
σ2)(T − t)

σ
√
T − t

,

γ2(t) = γ1(t) − σ
√
T − t,

in the units of the domestic currency.

Proof. Observe that one unit of foreign currency appreciates at the riskless rate of rf per unit of time in units of the
foreign currency, which is worth rfS(t) per unit of time with respect to the domestic currency. It follows that the
exchange rate S(t) may be interpreted as a stock paying a dividend rate rfS(t) per unit of time with respect to a
one-dimensional Black-Scholes model. The conclusion then follows directly by application of Exercise 10.

Exercise 12. Compute the price of the “asset or nothing” option which is given by

B = P1(T ) ⋅ 1{P1(T )≥K}

in the one-dimensional Black-Scholes model.

Solution. By Corollary 3.15, the price process X̂(t) for the payout B = P1(T ) ⋅ 1{P1(T )≥K} is given by

X̂(t) = e−r(T−t)EQ(P1(T ) ⋅ 1{P1(T )≥K} ∣ Ft)

= e−r(T−t)EQ (P1(t)e
(T−t)(r− 1

2σ
2)+σ(WQ(T )−WQ(t))

⋅ 1{WQ(T )−WQ(t)≥K̂})

= P1(t)Φ
⎛
⎜
⎝

ln (P1(t)
K
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

⎞
⎟
⎠
.

Exercise 13. (a) In the one-dimensional Black-Scholes model compute both the gamma and the delta of a Euro-
pean call and a European put with maturity T and strike K.

Solution. I computed the delta for a European call in Exercise 2(c): ∆EC(t) = Φ(d1(t)). I will use the same
identities as in Exercise 2, namely: d2(t) = d1(t) − σ

√
T − t and P1(t)φ(d1(t)) = Ke

−r(T−t)φ(D2(t)), where φ
is defined to be the density function of the standard normal distribution. Computing the delta of a European
put, we have that

∆EP (t) =Ke
−r(T−t)φ(−d2(t))

∂(−d2(t))

∂p
−Φ(−d1(t)) − P1(t)φ(−d1(t))

∂(−d1(t))

∂p

=Ke−r(T−t)φ(d2(t))
∂(−d1(t))

∂p
−Φ(−d1(t)) − P1(t)φ(−d1(t))

∂(d1(t))

∂p

= −Φ(−d1(t)).

Computing the gamma of a European call, we get

ΓEC(t) =
∂

∂p
Φ(d1(t))

= φ(d1(t))
∂d1(t)

∂p

=
φ(d1(t))

P1(t)σ
√
T − t

.

And finally computing the gamma of a European put, we get

ΓEP (t) = −
∂

∂p
Φ(−d1(t))

=
φ(−d1(t))

P1(t)σ
√
T − t

.
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(b) Assume that an investor holds one European call with strike K1 and maturity T1. Further, he can trade in
European puts with maturities T2, T3 and strikes of K2,K3. In the Black-Scholes model, determine the numbers
φ1(t), φ2(t) of the two different puts the investor has to hold such that the portfolio - consisting of the call and
the put position - is both delta- and gamma-neutral at time t.

Solution. Using part (a), the requirement that the portfolio is delta-neutral is equivalent to the relation that
for all t,

Φ(d1(t,K1, T1)) +
∂φ1(t)

∂p
XEP (t,K2, T2) +

∂φ2(t)

∂p
XEP (t,K3, T3)

− φ1(t)Φ(−d1(t,K2, T2)) − φ2(t)Φ(−d1(t,K3, T3) = 0,

and the requirement that the portfolio is gamma-neutral is equivalent to the relation

φ(d1(t,K1, T1))

P1(t)σ
√
T1 − t

+ φ1(t)
φ(−d1(t,K2, T2))

P1(t)σ
√
T2 − t

+ φ2(t)
φ(−d1(t,K3, T3))

P1(t)σ
√
T3 − t

−
∂φ1(t)

∂p
Φ(−d1(t,K2, T2)) −

∂φ2(t)

∂p
Φ(−d1(t,K3, T3))

+
∂2φ1(t)

∂p2
XEP (t,K2, T2) +

∂2φ2(t)

∂p2
XEP (t,K3, T3) = 0.

The possible solutions (φ1(t), φ2(t)) are then determined by the general solution to the above system of second
order linear differential equations.

Exercise 14. In a Black-Scholes market show that the absolute price change of a European call as a function of the
price of the underlying stock is smaller than the absolute price change of the underlying itself.

Proof. Let C(p) be the call price for a given price p, holding all else constant. By the mean value theorem, for any
p1 < p2, there exists some p̃ ∈ (p1, p2) satisfying

C(p2) −C(p1) = Cp(p̃)(p2 − p1)

= Φ(d1(t, p̃))(p2 − p1)

< p2 − p1.

Since Cp > 0, it follows that ∣C(p2) −C(p1)∣ = C(p2) −C(p1) < ∣p2 − p1∣.
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Chapter 4: Pricing of Exotic Options and Numerical Algorithms

Exercise 1. Show that, with the notation of the proof of Proposition 4.1, we have

I1 = P1(t)Φ
(ρ1)(g1(t), h1(t))

I2 =K1e
−r(T1−t)Φ(ρ1)(g2(t), h2(t)).

Proof. We have that

I1 ∶= P1(t)∫
∞

w̃

1
√
2π(T − t)

e−
x2

2(T−t) eσx−
1
2σ

2(T−t)Φ(a)dx,

I2 ∶= ∫
∞

w̃

1
√
2π(T − t)

e−
x2

2(T−t) e−r(T1−t)K1Φ(b)dx,

w̃ ∶=
1

σ
⋅ (ln(

p∗

P1(T )
) − (r −

1

2
σ2
) (T − t)) ,

a ∶=
σx + ln (P1(t)

K1
) + (r + 1

2
σ2)(T1 − T ) + (r −

1
2
σ2)(T − t)

σ
√
T1 − T

,

b ∶=
σx + ln (P1(t)

K1
) + (r − 1

2
σ2)(T1 − t)

σ
√
T1 − T

.

Observe that

I1 = P1(t)∫
∞

w̃

1
√
2π(T − t)

e−
(x−σ(T−t))2

2(T−t) Φ(a)dx

= P1(t)∫
∞

w̃
φσ(T−t),(T−t)(x) ⋅Φ(

1
√
T1 − T

x + β) dx,

where β ∶=
ln(P1(t)

K1
)+(r+ 1

2σ
2)(T1−T )+(r− 1

2σ
2)(T−t)

σ
√
T1−T

. Then by Lemma 4.2, I1 = P1(t)P(X ≥ w̃,Z ≤ β), where

(X,Z) ∼ N
⎛

⎝
(
σ(T − t)

−
σ(T−t)√
T1−T

) ,
⎛

⎝

T − t − T−t√
T1−T

− T−t√
T1−T

T1−t
T1−T

⎞

⎠

⎞

⎠
.

Let Y1 ∶= −
1√
T−tX + σ

√
T − t and Y2 ∶=

√
T1−T√
T1−t

Z + σ(T−t)√
T1−t

, so that

(Y1, Y2) ∼ N ((
0
0
) ,(

1 ρ1
ρ1 1

)) .

Then

I1 = P1(t)P(Y1 ≤ −
w̃

√
T − t

+ σ
√
T − t, Y2 ≤

√
T1 − T
√
T1 − t

β +
σ(T − t)
√
T1 − t

)

= P1(t)P(Y1 ≤ g1(t), Y2 ≤ h1(t))

= P1(t)Φ
(ρ1)(g1(t), h1(t)).

We also have that

I2 =K1e
−r(T1−t)

∫

∞

w̃
φ0,(T−t)(x)Φ(

1
√
T1 − T

x + β + σ
√
T1 − T) dx

=K1e
−r(T1−t)P(X ≥ w̃,Z ≤ β + σ

√
T1 − T ),

with

(X,Z) ∼ N
⎛

⎝
(
0
0
) ,
⎛

⎝

T − t − T−t√
T1−T

− T−t√
T1−T

T1−t
T1−T

⎞

⎠

⎞

⎠
.
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Let Y3 ∶= −
1√
T−tX and Y4 ∶=

√
T1−T
T1−t Z, so that

(Y3, Y4) ∼ N ((
0
0
) ,(

1 ρ1
ρ1 1

)) .

Then

I2 =K1e
−r(T1−t)P

⎛

⎝
Y3 ≤ −

w̃
√
T − t

, Y4 ≤

√
T1 − T

T1 − t
β +

σ(T1 − T )
√
T1 − t

⎞

⎠

=K1e
−r(T1−t)Φ(ρ1)(g2(t), h2(t)).

Exercise 2. Prove Lemma 4.2: If X and Y are independent random variables with

X ∼ N(µ,σ2
), Y ∼ N(0,1),

then for x̃, α, β ∈ R, α > 0, we have

∫

∞

x̃
φµ,σ2(x) ⋅Φ(αx + β)dx = P(X ≥ x̃, Y ≤ αX + β)

= P(X ≥ x̃, Z ≤ β),

where

(X,Z) ∼ N ((
µ
−αµ
) ,(

σ2 −ασ2

−ασ2 1 + α2σ2)) .

Here φµ,σ2 is rhe density function of the normal distribution with mean µ and variance σ2.

Proof. Observe that

∫

∞

x̃
φµ,σ2(x) ⋅Φ(αx + β)dx = ∫

∞

−∞
φµ,σ2(x)P(x ≥ x̃, Y ≤ αx + β)dx

= E[P(X ≥ x̃, Y ≤ αX + β)]
= P(X ≥ x̃, Y ≤ αX + β)
= P(X ≥ x̃, Z ≤ β),

where Z ∶= Y − αX. Observe that EZ = E(Y − αX) = −αµ, and since X and Y are independent,

var(Z) = var(Y ) + α2var(X) = 1 + α2σ2,

and
cov(X,Z) = E[X(Y − αX)] + αµ2

= α(E[X]2 −E[X2
]) = −ασ2.

Thus,

(X,Z) ∼ N ((
µ
−αµ
) ,(

σ2 −ασ2

−ασ2 1 + α2σ2)) ,

as required.

Exercise 3. Compute explicitly the price of the chooser option with maturity T and final payment

BCh =max (XCall
T1,K1

(P1(T ), T ),X
Put
T2,K2

(P1(T ), T )).

Solution. Let p∗ ≥ 0 be the unique price such that XCall
T1,K1

(T, p∗) =XPut
T2,K2

(T, p∗). Observe that, since XCall
T1,K1

(T, p)

strictly increases in p and XPut
T2,K2

(T, p) strictly decreases in p, BCh =X
Call
T1,K1

(T ) ⋅1{P1(T )≥p∗}+X
Put
T2,K2

(T ) ⋅1{P1(T )<p∗}.
Define

w̃ ∶=
1

σ
⋅ (ln(

p∗

P1(t)
) − (r −

1

2
σ2
)(T − t)) .
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Let g1(t), g2(t), h1(t) and h2(t), ρ1 be defined as in Proposition 4.1 and define

h3(t) ∶=
ln (P1(t)

K2
) + (r + 1

2
σ2)(T2 − t)

σ
√
T2 − t

,

h4(t) ∶= h3(t) − σ
√
T2 − t, λ1 ∶=

√
T − t

T2 − t
.

Then for t < T , we have that

XCh(t) = EQ(e
−r(T−t)BCh ∣ P1(t))

= EQ(e
−r(T−t)XCall

T1,K1
(T ) ⋅ 1{P1(T )≥p∗} ∣ P1(t)) +EQ(e

−r(T−t)XPut
T2,K2

(T ) ⋅ 1{P1(T )<p∗} ∣ P1(t))

=
1

√
2π(T − t)

∫

∞

w̃
e−

x2

2(T−t) e−r(T−t)XCall
T1,K1

(T,P1(t) ⋅ e
(r− 1

2σ
2)(T−t)+σx

)dx

+
1

√
2π(T − t)

∫

w̃

−∞
e−

x2

2(T−t) e−r(T−t)XPut
T2,K2

(T,P1(t) ⋅ e
(r− 1

2σ
2)(T−t)+σx

)dx

= P1(t)Φ
(ρ1)(g1(t), h1(t)) −K1e

−r(T1−t)Φ(ρ1)(g2(t), h2(t))

+
1

√
2π(T − t)

∫

∞

−w̃
e−

x2

2(T−t) (e−r(T2−t)K2Φ(a) − P1(t)e
−σx− 1

2σ
2(T−t)Φ(b))dx,

where

a ∶=
ln ( K2

P1(t)) − (r −
1
2
σ2)(T2 − t) + σx

σ
√
T2 − T

,

b ∶=
ln ( K2

P1(t)) − (r +
1
2
σ2)(T2 − T ) − (r −

1
2
σ2)(T − t) + σx

σ
√
T2 − T

.

Applying Lemma 4.2 and through a chain of computations much like in Problem 4.1, we have that

1
√
2π(T − t)

∫

∞

−w̃
e−

x2

2(T−t) e−r(T2−t)K2Φ(a)dx =K2e
−r(T2−t)Φ(λ1)(−g2(t),−h4(t)),

1
√
2π(T − t)

∫

∞

−w̃
P1(t)e

−σx− 1
2σ

2(T−t)Φ(b)dx = P1(t)Φ
(λ1)(−g1(t),−h3(t)).

It follows that

XCh(t) = P1(t)Φ
(ρ1)(g1(t), h1(t)) −K1e

−r(T1−t) − P1(t)Φ
(λ1)(−g1(t),−h3(t)) +K2e

−r(T2−t)Φ(λ1)(−g2(t),−h4(t)).

Exercise 4. Consider the two-dimensional Black-Scholes model. Let Q1 be the unique equivalent martingale measure
for P0(t), P1(t), P2(t), if P1(t) is used as the numeraire.

(a) Determine the Radon-Nikodym density of Q1 with respect to P .
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Solution. By Theorem 3.51, the Radon-Nikodym density Y (T ) = dQ1

dP
is given by

Y (T ) =H(T ) ⋅ P1(T )

= P1(T ) exp(−(r +
1

2
∥σ−1(b − r1)∥2)T − (b − r1)′σ

′−1W (T ))

= exp
⎛

⎝

⎛

⎝
b1 − r −

1

2

⎛

⎝
σ2
11 + σ

2
12 + (

(b1 − r)σ22 − (b2 − r)σ12
σ11σ22 − σ12σ21

)

2

+ (
(b2 − r)σ11 − (b1 − r)σ21

σ11σ22 − σ12σ21
)

2
⎞

⎠

⎞

⎠
T

+ (−
(b1 − r)σ22 − (b2 − r)σ12

σ11σ22 − σ12σ21
+ σ11)W1(T )(−

(b2 − r)σ11 − (b1 − r)σ21
σ11σ22 − σ12σ21

+ σ12)W2(T )
⎞

⎠

= exp
⎛

⎝
−
1

2

⎛

⎝
(
(b1 − r)σ22 − (b2 − r)σ12

σ11σ22 − σ12σ21
− σ11)

2

+ (
(b2 − r)σ11 − (b1 − r)σ21

σ11σ22 − σ12σ21
− σ12)

2
⎞

⎠
T

− (
(b1 − r)σ22 − (b2 − r)σ12

σ11σ22 − σ12σ21
− σ11)W1(T ) − (

(b2 − r)σ11 − (b1 − r)σ21
σ11σ22 − σ12σ21

− σ12)W2(T )
⎞

⎠

= exp(−
2

∑
i=1
∫

T

0
Xi dWi(s) −

1

2
∫

T

0
∥X∥2 ds)

= Z(T,X),

where we define X ∶=
⎛

⎝

(b1−r)σ22−(b2−r)σ12

σ11σ22−σ12σ21
− σ11

(b2−r)σ11−(b1−r)σ21

σ11σ22−σ12σ21
− σ12

⎞

⎠
.

(b) Show that

W (1)
(t) =W (t) +

⎛

⎝

(
(b1−r)σ22−(b2−r)σ12

σ11σ22−σ12σ21
− σ11) t

(
(b2−r)σ11−(b1−r)σ21

σ11σ22−σ12σ21
− σ12) t

⎞

⎠

is a Q1-Brownian motion.

Proof. Observe that by Theorem 3.51, Z(t,X) is a P -martingale. The conclusion then follows by Grisanov’s
Theorem.

Exercise 5. Use the notation of Proposition 4.4 and prove the following equalities

(a) XPut
min (0) =X

Call
min (0) +Ke

−rT − p1Φ(d3(0)) − p2Φ(d4(0))

Proof. Observe that

BPut
min = (K −min(P1(T ), P2(T )))

+

= (min(P1(T ), P2(T )) −K)
+
+K −min(P1(T ), P2(T ))

= BCall
min +K −min(P1(T ), P2(T )).

Thus,

XPut
min (0) =X

Call
min (0) + e

−rTEQ(K −min(P1(T ), P2(T )))

=XPut
min (0) + e

−rTK −EQ(e
−rTP1(T ) ⋅ 1{P1(T )≤P2(T )}) −EQ(e

−rTP2(T )⋅{P1(T )>P2(T )}).

Define

W (i)
(t) =W (t) +

⎛

⎝

(
(b1−r)σ22−(b2−r)σ12

σ11σ22−σ12σ21
− σi1) t

(
(b2−r)σ11−(b1−r)σ21

σ11σ22−σ12σ21
− σi2) t

⎞

⎠
.
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Applying Problem 4.4, we have that

EQ(e
−rTPi(T ) ⋅ 1{Pi(T )≤Pi (mod 2)+1(T )}) = piEQi(1{Pi(T )≤Pi (mod 2)+1(T )})

= piQi(Pi(T ) ≤ Pi (mod 2)+1(T ))

= piQi

⎛
⎜
⎝
(−1)i+1(σ11 − σ21)W

(i)
1 (T ) + (−1)

i+1
(σ12 − σ22)W

(i)
2 (T ) ≤

ln (
pi (mod 2)+1

pi
) + (−1)i 1

2
((σ11 − σ21)

2 + (σ12 − σ22)
2)T

√
((σ11 − σ21)2 + (σ12 − σ22)2)T

⎞
⎟
⎠

= piQi

⎛
⎜
⎝
Z(i) ≤

ln (
pi (mod 2)+1

pi
) + (−1)i 1

2
σ2T

√
σ2T

⎞
⎟
⎠

= piΦ(di+2).

Putting everything together, we have that

XPut
min (0) =X

Call
min (0) − p1Φ(d3) − p2Φ(d4).

(b) XCall
max (0) =X

Call
(1) (0) +X

Call
(2) (0) −X

Call
min (0)

Proof. Note that

BCall
max +B

Call
min = (max(P1(T ), P2(T )) −K)

+
+ (min(P1(T ), P2(T )) −K)

+

=max((P1(T ) −K)
+, (P2(T ) −K)

+
) +min((P1(T ) −K)

+, (P2(T ) −K)
+
)

= BCall
(1) +B

Call
(2) .

Thus,
XCall

max (0) +X
Call
min (0) =X

Call
(1) (0) +X

Call
(2) (0).

(c) XPut
max(0) =X

Put
(1) (0) +X

Put
(2) (0) −X

Put
min (0)

Proof. Note that

BPut
max +B

Put
min = (K −max(P1(T ), P2(T )))

+
+ (K −min(P1(T ), P2(T )))

+

=min((K − P1(T ))
+, (K − P2(T ))

+
) +max((K − P1(T ))

+, (K − P2(T ))
+
)

= BPut
(1) +B

Put
(2) .

Thus,
XPut

max(0) +X
Put
min (0) =X

Put
(1) (0) +X

Put
(2) (0).

Exercise 6. Do the explicit calculations needed for the determination of the price XCall
do (0) of a European down-

and-out call.

Solution. The task is to fill in the details of the explicit calculation for the down-and-out call in the section on
one-sided barrier options, where it assumed that the barrier b < p1 and K < b. Fix µ ∈ R and define W̃ (t) ∶=W (t)+µt,
M̃(t) = min0≤s≤t W̃ (s). Observe that since the distributions of W (t) and −W (t) are identical, applying Lemma 4.5
we have that for any µ ∈ R and x <min(w,0),

P(W (t) + µt ≥ w, min
0≤s≤t
(W (s) + µs) > x) = P(−W (t) − µt ≤ −w,max

0≤s≤t
(−W (s) − µs) < −x)

= Φ(
−w + µt
√
t
) − e2µxΦ(

−w + 2x + µt
√
t

) .
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It follows that the joint density function φW̃ ,M̃(w,x) is given by

φW̃ ,M̃(w,x) =
∂2

∂w∂x

⎛

⎝
Φ(
−w + µt
√
t
) − e2µxΦ(

−w + 2x + µt
√
t

)
⎞

⎠
1{x≤min(w,0)}

= −
⎛

⎝
2e2µx

1
√
2πt

∂

∂w
exp(−

(2x + µt −w)2

2t
) − 2µe2µx

∂

∂w
Φ(
−w + 2x + µt

√
t

)
⎞

⎠
1{x≤min(w,0)}

=
⎛

⎝
− (2x + µt −w)

1

t

√
2

πt
e2µx−

(2x+µt−w)2

2t +

√
2

πt
µe2µx−

(2x+µt−w)2

2t
⎞

⎠
1{x≤min(w,0)}

=
1

t

√
2

πt
(w − 2x)e−µ

2t/2+µw−(2x−w)2/(2t)1{x≤min(w,0)}.

Set µ ∶=
r− 1

2σ
2

σ
. Since P1(T ) >K if and only if

W (T ) + µT >
1

σ
ln(

K

p1
) =∶ ŵ,

and, assuming σ > 0, min0≤s≤T P1(s) > b if and only if

min
0≤s≤T

(W (s) + µs) >
1

σ
ln(

b

p1
) =∶ x̂,

it follows that

XCall
do (0) = EQ(e

−rT
(P1(T ) −K)

+
⋅ 1{P1(t)>b∀t∈[0,T ]})

= ∫

w

x̂
∫

∞

x̂
e−rT (P1(T ) −K)

1

T

√
2

πT
(w − 2x)e−µ

2T /2+µw−(2x−w)2/(2T ) dw dx.

Since the computation of this integral is rather long and similar to the computation of XPut
do (0), I will just summarize

the steps here: Substituting u = w−2x, completing the square, using the identity ∫
∞
a ue−(u−m)

2/(2T ) du =mTΦ (m−a√
T
)+

T 1√
2T
e−

(a−m)2

2T , integrating a number of terms by parts, and completing the square again on the exponents of these
terms, we get

XCall
do (0) = p1Φ(d1) − be

−rTΦ(d1 − σ
√
T ) + e−rT (b −K)Φ(d1 − σ

√
T ) − p1 (

b

p1
)

2 r
σ2 +1

Φ(d2) + e
−rT
(
b

p1
)

2 r
σ2 −1

Φ(d2 − σ
√
T ),

where

d1 ∶=
ln (p1

b
) + (r + 1

2
σ2)T

σT
, d2 ∶=

ln ( b
p1
) + (r + 1

2
σ2)T

σT
.

Exercise 7. Compute the price XPut
do (0) of a European down-and-out put.

Solution. Observe that if K ≤ b, then the option is worthless. Hence, we may assume that K > b. Note that
BPut

do > 0 if and only if

W (T ) + µT <
1

σ
ln(

K

p1
) =∶ ŵ,

and

min
0≤s≤T

(W (s) + µs) >
1

σ
ln(

b

p1
) =∶ x̂.

Thus, using the joint density function computed in Problem 6, we find that

XPut
do (0) =

1

T

√
2

πT
∫

0

x̂
∫

ŵ

x
(w − 2x)e−µ

2T /2+µw−(2x−w)2/(2T )
(e−rTK − p1e

σw
)dw dx

=
1

T

√
2

πT
∫

0

x̂
∫

ŵ−2x

−x
ue−µ

2T /2+µ(u+2x)−u2/(2T )
(e−rTK − p1e

σ(u+2x)
)dudx

=
1

T

√
2

πT
∫

0

x̂
e2µx ∫

ŵ−2x

−x
ue−

(u−µT )2

2T (e−rTK − p1e
σ(u+2x)

)dudx
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Focusing first on the inner integral, we have

∫

ŵ−2x

−x
ue−

(u−µT )2

2T (e−rTK − p1e
σ(u+2x)

)du = e−rTKI1 − p1e
2σxI2,

with

I1 = ∫
ŵ−2x

−x
ue−

(u−µT )2

2T du

= −T (e−
(ŵ−2x−µT )2

2T − e−
(x+µT )2

2T − µT
√
2πT (Φ(

ŵ − 2x − µT
√
T

) −Φ(
−x − µT
√
T
)))

= −T (J1 − J2) + µT
2
√
2πT (J3 − J4),

and

I2 = ∫
ŵ−2x

−x
ue−

(u−µT )2

2T +σu du

= ∫

√
(ŵ−2x−µT )2−2σ(ŵ−2x)T

√
(x+µT )2+2σxT

e−
y2

2T (y + (µ + σ)T )dy

= −T (e−
(ŵ−2x−µT )2−2σ(ŵ−2x)T

2T − e−
(x+µT )2+2σxT

2T )

+ (µ + σ)T
√
2πT
⎛

⎝
Φ
⎛

⎝

√
(ŵ − 2x − µT )2 − 2σ(ŵ − 2x)T

T

⎞

⎠
−Φ
⎛

⎝

√
(x + µT )2 + 2σxT

T

⎞

⎠

⎞

⎠

= −T (J5 − J6) + (µ + σ)T
√
2πT (J7 − J8).

It follows that,

XPut
do (0) =

1

T

√
2

πT
∫

0

x̂
e2µx(µT 2

√
2πTe−rTK(J3 − J4) − e

−rTKT (J1 − J2)

+ p1e
2σxT (J5 − J6) − p1e

2σx
(µ + σ)T

√
2πT (J7 − J8))dx.

We compute,

∫

0

x̂
e2µxJ1 dx = ∫

0

x̂
e−

(ŵ−2x−µT )2

2T +2µx dx

= e−
(ŵ−µT )2+4ŵ2

2T ∫

0

x̂
e−

2(x+ŵ)2

T dx

=

√
πT

2
e−

(ŵ−µT )2+4ŵ2

2T (Φ(
2
√
T
ŵ) −Φ(

2(x̂ + ŵ)
√
T
)) .

∫

0

x̂
e2µxJ2 dx = ∫

0

x̂
e−

(x+µT )2

2T +2µx dx

= ∫

0

x̂
e−

(x−µT )2
2T dx

=
√
2πT (Φ(−µ

√
T ) −Φ(

x̂ − µT
√
T
)) .

∫

0

x̂
e2µxΦ(

ŵ − 2x − µT
√
T

) dx =
1

2µ
(Φ(

ŵ − µT
√
T
) − e2µx̂Φ(

ŵ − 2x̂ − µT
√
T

) − ∫

0

x̂
e2µx−

(ŵ−2x−µT )2

2T dx)

=
1

2µ

⎛

⎝
Φ(

ŵ − µT
√
T
) − e2µx̂Φ(

ŵ − 2x̂ − µT
√
T

)

−

√
πT

2
e−

(ŵ−µT )2+4ŵ2

2T (Φ(
2
√
T
ŵ) −Φ(

2(x̂ + ŵ)
√
T
))
⎞

⎠
.
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∫

0

x̂
e2µxJ4 dx = ∫

0

x̂
e2µxΦ(

−x − µT
√
T
) dx

=
1

2µ
(Φ (−µ

√
T) − e2µx̂Φ(

−x̂ − µT
√
T
) − ∫

0

x̂
e−

(x+µT )2

2T +2µx dx)

=
1

2µ
(Φ (−µ

√
T) − e2µx̂Φ(

−x̂ − µT
√
T
) −
√
2πT (Φ(−µ

√
T ) −Φ(

x̂ − µT
√
T
))) .

∫

0

x̂
e2(µ+σ)xJ5 dx = ∫

0

x̂
e−

(ŵ−2x−µT )2−2σ(ŵ−2x)T
2T +2(µ+σ)x dx

= e
− ŵ2

−2σŵT
2T + (µŵ−2σ−µ)2

2µ2T ∫

0

x̂
e

−
(x+

µŵ−2σ−µ

2µ2T
)

2

2( 1
4µ2T

)

dx

=

√
π

2µ2T
e
− ŵ2

−2σŵT
2T + (µŵ−2σ−µ)2

2µ2T (Φ(
2σ + µ(1 − ŵ)

µ
√
T

) −Φ(
2µ2T x̂ + 2σ + µ(1 − ŵ)

µ
√
T

)) .

∫

0

x̂
e2(µ+σ)xJ6 dx = ∫

0

x̂
e−

(x+µT )2+2σTx
2T +2(µ+σ)x dx

= e−
µ2T+(σ+µ)2T

2 ∫

0

x̂
e−

(x−
σ+µ
4T

)
2

2T dx

=
√
2πTe−

µ2T+(σ+µ)2T
2 (Φ(−

σ + µ

4T 3/2 ) −Φ(
4T x̂ − σ − µ

4T 3/2 )) .

∫

0

x̂
e2(µ+σ)xJ7 dx = ∫

0

x̂
e2(µ+σ)xΦ

⎛

⎝

√
(ŵ − 2x − µT )2 − 2σ(ŵ − 2x)T

T

⎞

⎠
dx

=
1

2(µ + σ)

⎛

⎝
Φ
⎛

⎝

√
(ŵ − µT )2 − 2σŵT

T

⎞

⎠
− e2(µ+σ)x̂Φ

⎛

⎝

√
(ŵ − 2x̂ − µT )2 − 2σ(ŵ − 2x̂)T

T

⎞

⎠

− ∫

0

x̂
e−

(ŵ−2x−µT )2−2σ(ŵ−2x)T
2T +2(µ+σ)x dx

⎞

⎠

=
1

2(µ + σ)

⎛

⎝
Φ
⎛

⎝

√
(ŵ − µT )2 − 2σŵT

T

⎞

⎠
− e2(µ+σ)x̂Φ

⎛

⎝

√
(ŵ − 2x̂ − µT )2 − 2σ(ŵ − 2x̂)T

T

⎞

⎠

−

√
πT

2
e−

(ŵ−µT )2−2σŵT+ŵ2

2T (Φ(−
ŵ
√
T
) −Φ(

2x̂ − ŵ
√
T
))
⎞

⎠
.

∫

0

x̂
e2(µ+σ)xJ8 dx = ∫

0

x̂
e2(µ+σ)xΦ

⎛

⎝

√
(x + µT )2 + 2σxT

T

⎞

⎠
dx

=
1

2(µ + σ)

⎛

⎝
Φ(µ2T ) − e2(µ+σ)x̂Φ(

(x̂ + µT )2 + 2σx̂T

T
) − ∫

0

x̂
e−

(x+µT )2+2σxT
2T +2(µ+σ)x dx

⎞

⎠

=
1

2(µ + σ)

⎛

⎝
Φ(µ2T ) − e2(µ+σ)x̂Φ(

(x̂ + µT )2 + 2σx̂T

T
)

−
√
2πTe

(σ2
+2σµ)T
2 (Φ (−(µ + σ)

√
T) −Φ(

x̂ − (µ + σ)T
√
T

))
⎞

⎠
.
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Putting everything together, we have that

XPut
do (0) = e

−rTTK
⎧⎪⎪
⎨
⎪⎪⎩

Φ(
ŵ − µT
√
T
) − e2µx̂Φ(

ŵ − 2x̂ − µT
√
T

)

−

√
πT

2
e−

(ŵ−µT )2+4ŵ2

2T (Φ(
2
√
T
ŵ) −Φ(

2(x̂ + ŵ)
√
T
))

−Φ (−µ
√
T) + e2µx̂Φ(

−x̂ − µT
√
T
) −
√
2πT (Φ(−µ

√
T ) +Φ(

x̂ − µT
√
T
))

⎫⎪⎪
⎬
⎪⎪⎭

− e−rTK
⎧⎪⎪
⎨
⎪⎪⎩

e−
(ŵ−µT )2+4ŵ2

2T (Φ(
2
√
T
ŵ) −Φ(

2(x̂ + ŵ)
√
T
)) − 2(Φ(−µ

√
T ) −Φ(

x̂ − µT
√
T
))

⎫⎪⎪
⎬
⎪⎪⎭

+ p1

⎧⎪⎪
⎨
⎪⎪⎩

1

µT
e
− ŵ2

−2σŵT
2T + (µŵ−2σ−µ)2

2µ2T (Φ(
2σ + µ(1 − ŵ)

µ
√
T

) −Φ(
2µ2T x̂ + 2σ + µ(1 − ŵ)

µ
√
T

))

− 2e−
µ2T+(σ+µ)2T

2 (Φ(−
σ + µ

4T 3/2 ) −Φ(
4T x̂ − σ − µ

4T 3/2 ))

⎫⎪⎪
⎬
⎪⎪⎭

− p1

⎧⎪⎪
⎨
⎪⎪⎩

Φ
⎛

⎝

√
(ŵ − µT )2 − 2σŵT

T

⎞

⎠
− e2(µ+σ)x̂Φ

⎛

⎝

√
(ŵ − 2x̂ − µT )2 − 2σ(ŵ − 2x̂)T

T

⎞

⎠

−

√
πT

2
e−

(ŵ−µT )2−2σŵT+ŵ2

2T (Φ(−
ŵ
√
T
) −Φ(

2x̂ − ŵ
√
T
)) −Φ(µ2T ) − e2(µ+σ)x̂Φ(

(x̂ + µT )2 + 2σx̂T

T
)

−
√
2πTe

(σ2
+2σµ)T
2 (Φ (−(µ + σ)

√
T) −Φ(

x̂ − (µ + σ)T
√
T

))

⎫⎪⎪
⎬
⎪⎪⎭

.

Exercise 8. (a) Show that the binomial model consisting of a stock and a bond is complete. Compute the
corresponding equivalent martingale measure Qn.

Proof. Fix a binomial model with parameters 0 < d < er
T
n < u,n, q (using the same notation as in section 4.3).

Towards computing Qn, let q̂i(P
(n)
1 (i)) ∶= Qn(P

(n)
1 (i+1) = uP

(n)
1 (i) ∣ P

(n)
1 (i)) and observe that the martingale

requirement gives

0 = EQn

⎛

⎝

P
(n)
1 (i)

P0(i
T
n
)
−

P
(n)
1 (i − 1)

P0((i − 1)
T
n
)
∣ F
(n)
i−1
⎞

⎠

=
P
(n)
1 (i − 1)

P0((i − 1)
T
n
)
((q̂i(P

(n)
1 (i − 1))u + (1 − q̂i(P

(n)
1 (i − 1)))d)e−r

T
n − 1)

Ô⇒ q̂i(P
(n)
1 (i − 1)) ≡

er
T
n − d

u − d
=∶ q̂.

Observe that since d < er
T
n < u, it follows that q̂ ∈ (0,1). Hence, Qn ∼ B(n, q̂) defines a valid martingale

probability measure on the binomial model. Moreover, Qn is clearly equivalent to P , and has Radon-Nikodym

derivative ( q̂
q
)
U
(
1−q̂
1−q)

n−U
=

dQn

dP
, where U is the defined to be the number of ”ups” for a given path.

Fix a contingent claim B in the binomial model. We need to prove that there exists an admissible trading strat-
egy φ(k) with corresponding wealth process X(k) such that B = X(T ) a.s. P , such that X̂(k) = X(k)/P0(k)

is a martingale with respect to Qn. Observe that for a given price P
(n)
1 (n − 1), the system of equations

φ1(n − 1)uP
(n)
1 (n − 1) + φ0(n − 1)e

r T
n = B(uP

(n)
1 (n − 1))

φ1(n − 1)dP
(n)
1 (n − 1) + φ0(n − 1)e

r T
n = B(dP

(n)
1 (n − 1))
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has the unique solution given by

φ1(n − 1) =
B(uP

(n)
1 (n − 1)) −B(dP

(n)
1 (n − 1))

P
(n)
1 (n − 1)(u − d)

φ0(n − 1) = e
−r T

n
dB(uP

(n)
1 (n − 1)) − uB(dP

(n)
1 (n − 1))

d − u
.

Thus, since by Theorem 3.45 there exist no arbitrage opportunities in our model, the price of the option at time

n−1 must be given by 0 ≤X(n−1, P
(n)
1 (n−1)) = P

(n)
1 (n−1)φ1(n−1)+φ0(n−1). Now suppose that the option

has been priced at time n − k for some k ∈ {1, . . . , n − 1} by replicating the price X(n − k + 1, P
(n)
1 (n − k + 1))

via a time n − k strategy φ1(n − k), φ0(n − k). Observe that the system of equations

φ1(n − k − 1)uP
(n)
1 (n − k − 1) + φ1(n − k − 1)e

r T
n =X(n − k, uP

(n)
1 (n − k − 1))

φ1(n − k − 1)dP
(n)
1 (n − k − 1) + φ1(n − k − 1)e

r T
n =X(n − k, dP

(n)
1 (n − k − 1))

has the unique solution given by

φ1(n − k − 1) =
X(n − k, uP

(n)
1 (n − k − 1)) −X(n − k, dP

(n)
1 (n − k − 1))

P
(n)
1 (n − k − 1)(u − d)

φ0(n − k − 1) = e
−r T

n
dX(n − k, uP

(n)
1 (n − k − 1)) − uX(n − k, dP

(n)
1 (n − k − 1))

d − u
.

Again, due to the lack of arbitrage opportunities, the time n − k − 1 price of B must be given by 0 ≤ X(n −

k − 1, P
(n)
1 (n − k − 1)) = φ1(n − k − 1)P

(n)
1 (n − k − 1) + φ0(n − k − 1). Thus, we inductively obtain a unique

trading strategy φ(i) whose wealth process has the property that X(n) = B and X(i) ≥ 0 for all i ∈ {0, . . . , n}.
Moreover, due to the equation defining φ(n − k − 1) above, we see that

φ1(n − k − 1)P
(n)
1 (n − k) + φ1(n − k − 1)e

r T
n =X(n − k,P

(n)
1 (n − k))

= φ1(n − k)P
(n)
1 (n − k) + φ0(n − k),

and so φ is admissible. Finally, towards verifying that X̂ is a Qn-martingale, observe that

EQn(X̂(k) ∣ F
(n)
k−1) = EQn(P̂

(n)
1 (k)φn(k − 1) + φ0(k − 1)e

r T
n (1−k) ∣ F

(n)
k−1)

= P̂
(n)
1 (k − 1)φn(k − 1) + φ0(k − 1)e

−r T
n (k−1)

= X̂(k − 1).

(b) Show that the price of an option B in the binomial model is given as EQn(e
−rTB).

Proof. Observe that

EQn(e
−r nT−(n−1)T

n B ∣ P
(n)
1 (n − 1)) = q̂e−r

T
nB(uP

(n)
1 (n − 1)) + (1 − q̂)e−r

T
nB(dP

(n)
1 (n − 1))

=
1 − de−r

T
n

u − d
B(uP

(n)
1 (n − 1)) +

ue−r
T
n − 1

u − d
B(dP

(n)
1 (n − 1))

= φ1(n − 1)P
(n)
1 (n − 1) + φ0(n − 1)

=X(n − 1).

Now suppose that EQn(e
−r nT−(n−k)T

n B ∣ F
(n)
n−k) =X(n − k) for some k ∈ {1, . . . , n − 1} and observe that

EQn(e
−r nT−(n−k−1)T

n B ∣ F
(n)
n−k−1) = EQn(e

−r T
n EQn(e

−r nT−(n−k)T
n B ∣ F

(n)
n−k) ∣ F

(n)
n−k−1)

= EQn(e
−r T

nX(n − k) ∣ F
(n)
n−k−1)

= er
T
n (n−k−1)EQn(X̂(n − k) ∣ F

(n)
n−k−1)

= er
T
n (n−k−1)X̂(n − k − 1)

=X(n − k − 1).

The statement follows by induction.
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Exercise 9. Show by an example that in the trinomial model a European call cannot always be replicated by a
trading strategy in bond and stock.

Proof. Take the one-period trinomial model with up parameter u = 2 and let B(up1) = 3,B(p1) = 2,B( 1
u
p1) = 1.

Suppose for a contradiction that some trading strategy φ replicates B. Then φ must satisfy the system of equations:

2φ1p1 + φ0 = 3

φ1p1 + φ0 = 2

φ1
p1
2
+ φ0 = 1.

But then we must have φ1 =
1
p1
= 2

p1
, a contradiction. Hence, B cannot be replicated by a trading strategy.

Exercise 10. In the one-period trinomial model compute two different equivalent martingale measures.

Solution. Let u, q1, q2 be the parameters for the one-period trinomial model. Observe that any q̂1, q̂2 ∈ (0,1) such
that q̂1 + q̂2 < 1 and

p1 = EQn
(e−rTP1(1))

= e−rT p1 (uq̂1 +
q̂2
u
+ 1 − q̂1 − q̂2) ,

defines an equivalent martingale measure for our model. Solving, we have that

q̂1 =
erT − 1 + (u − 1)q̂2

u(u − 1)
.

Since 1 ≤ erT < u (assuming r ≥ 0), any two choices of q̂2 ∈ (0,min (1, u
u+1 −

erT−1
(u−1)(u+1))) will do.

Exercise 11. Give the proof of assertions (1) and (2) in Theorem 4.18:

(1) The random variables {τn+1 − τn}n∈N are independent and identically distributed. Their Laplace transform
φ(λ) is given by

φ(λ) = E (e−λτ1) =
cosh(µσ−2∆y)

cosh(γ∆y)

with µ ∶= r −
1

2
σ2 , γ ∶=

√
µ2 + 2λσ2

σ2
, λ > 0.

Proof. Observe that

(τn+1 − τn)(ω) = inf{s > 0 ∶ ∣σ(Ws+τn(ω) −Wτn(ω)) + s(r − 1/2σ
2
)∣ >∆y}.

By the strong Markov property of Brownian motion, Bt =Wt+τn −Wτn is a Brownian motion, independent of
Fτn . Since (τk) is an increasing sequence of stopping times, (Fτk) is an increasing sequence of σ-algebras. It
follows that σ(Ws+τn −Wτn) + s(r − 1/2σ

2) is independent of Fτk for all 0 ≤ k ≤ n. Since measurable functions
preserve independence, it follows that τn+1 − τn is independent from Fτk ⊃ σ(τk) for all 0 ≤ k ≤ n, proving
that (τn+1 − τn)n∈N are independent. Moreover, since for all n ∈ N, Bt =Wt+τn −Wτn ∼ N(0, t), it follows that

σ(Wt+τn −Wτn) + t(r − 1/2σ
2)

d
= σ(Wt+τm −Wτm) + t(r − 1/2σ

2) for all n,m ∈ N, proving that (τn+1 − τn)n∈N are
also identically distributed.

Towards computing their Laplace transform φ(λ) = E(e−λτ1), let τ (n)1 ∶= τ1 ∧ n and observe that for a twice
continuously differentiable function g ∈ C2(y −∆y, y +∆y), the Itô formula yields

g(Y (τ
(n)
1 ))e−λτ

(n)
1 = g(y) + ∫

τ
(n)
1

0
−λg(Y (s))e−λs + µg′(Y (s))e−λs +

1

2
σ2g′′(Y (s))e−λs ds

+ ∫

τ
(n)
1

0
σg′(Y (s))e−λs dW (s),
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where µ ∶= r − 1
2
σ2. By definition, Y (s) is bounded in [0, τ

(n)
1 ] and so σg′(Y (s))e−λs is also bounded on this

interval. Hence,

E
⎛

⎝
∫

τ
(n)
1

0
σg′(Y (s))e−λs dW (s)

⎞

⎠
= 0.

This implies that

E [g(Y (τ (n)1 ))e−λτ
(n)
1 ] = g(y) +E

⎡
⎢
⎢
⎢
⎣
∫

τ
(n)
1

0
−λg(Y (s))e−λs + µg′(Y (s))e−λs +

1

2
σ2g′′(Y (s))e−λs ds

⎤
⎥
⎥
⎥
⎦
. (1)

Now to determine E(e−λτ1), we look for a g ∈ C2 with

1

2
σ2g′′(x) + µg′(x) − λg(x) ≡ 0, for all x ∈ (y −∆y, y +∆y) (2)

g(y −∆y) = 1 (3)

g(y +∆y) = 1. (4)

Applying dominated convergence and boundary conditions (3) and (4), we see that

lim
n→∞

E (g(Y (τ (n)1 ))e−λτ
(n)
1 ) = E (g(Y (τ1))e−λτ1) = φ(λ).

Thus, for such g ∈ C2, (1) and (2) imply that

g(y) = φ(λ).

Solving the given two-point boundary value problem for g, we get

g(x) = e−
µ

σ2 x
(C1e

γx
+C2e

−γx
)

⎧⎪⎪
⎨
⎪⎪⎩

C1e
γ(y+∆y) +C2e

−γ(y+∆y) = eµσ
−2(y+∆y)

C1e
γ(y−∆y) +C2e

−γ(y−∆y) = eµσ
−2(y−∆y)

Ô⇒ cosh(γ∆y)(C1e
γy
+C2e

−γy
) = eµσ

−2y cosh(µσ−2∆y)

Ô⇒
cosh(µσ−2∆y)

cosh(γ∆y)
= g(y) = φ(λ).

(2) E(τ1) = ∆y
µ
⋅ tanh ( µ

σ2 ⋅∆y) for µ ≠ 0,

E(τ21 ) = 2(E(τ1))2 +
σ2∆y
µ3 ⋅ tanh (

µ
σ2 )∆y − (

∆y
µ
)
2
for µ ≠ 0.

Proof. See Problem 14 below.

Exercise 12. Derive part (2) of Lemma 4.5 from part (1) with the help of Grisanov’s Theorem 3.11:

For µ ∈ R, let W̃ (t) ∶=W (t) + µ ⋅ t and M̃(t) ∶=max0≤s≤t W̃ (s).Then the following relation is valid:

P (W̃ (t) ≤ w, M̃(t) < x) = Φ(
w − µt
√
t
) − e2µxΦ(

w − 2x − µt
√
t

) .

Proof. By Grisanov’s Theorem, for any T ≥ 0, W̃ (t) is a Brownian motion with respect to the probability measure

QT defined by the Radon-Nikodym density Z(T,µ) = e−µW (T )−1/2µ
2T . Fix t ≥ 0. By part (1) of Lemma 4.5, for any

x ≥max(w,0),

QT (W̃ (t) ≤ w, M̃(t) < x) = Φ(
w
√
t
) − 1 +Φ(

2x −w
√
t
) .
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It follows that the joint Qt-density function φW̃ ,M̃,Qt
(w,x) is given by

φW̃ ,M̃,QT
(w,x) =

∂2

∂w∂x
(Φ(

w
√
t
) − 1 +Φ(

2x −w
√
t
))1{x≥max(w,0)}

=
4x − 2w

t
√
2πt

e−
(2x−w)2

2t 1{x≥max(w,0)}.

Using this Qt-density function, we compute

P (W̃ (t) ≤ w, M̃(t) < x) = EP (1{W̃ (t)≤w,M̃(t)<x})

= EQt (1{W̃ (t)≤w,M̃(t)<x}e
µW (t)+1/2µ2t

)

= EQt (1{W̃ (t)≤w,M̃(t)<x}e
µW̃ (t)−1/2µ2t

)

= ∫

x

−∞ ∫
x

0∨w̃
eµw̃−1/2µ

2t 4x̃ − 2w̃

t
√
2πt

e−
(2x̃−w̃)2

2t dx̃ dw̃

=

√
2

πt
e−1/2µ

2t
∫

x

−∞
eµw̃ ∫

x

0∨w̃

2x̃ − w̃

t
e−

(2x̃−w̃)2

2t dx̃ dw̃

=
1
√
2πt

e−1/2µ
2t
∫

x

−∞
eµw̃ (e−

(2(0∨w̃)−w̃)2

2t − e−
(2x−w̃)2

2t ) dw̃

=
1
√
2πt
∫

x

−∞
eµw̃−

w̃2

2t −1/2µ
2t
− eµw̃−

(2x−w̃)2

2t −1/2µ2t dw̃

=
1
√
2πt
∫

x

−∞
e−

(w̃−µt)2

2t − e2xµ−
(w̃−(µt+2x))2

2t dw̃

= Φ(
w − µt
√
t
) − e2µxΦ(

w − 2x − µt
√
t

) .

Exercise 13. (a) In the binomial model, determine the parameters u, d, q if additionally to the moment conditions
(4.21) and (4.22) we require u = 1/d.

Solution. To first dispense with the case q = 1/2, observe that condition (4.21) forces r = 1/2σ2 and then

(4.22) implies that u = eσ
√
∆t. Now suppose that q ≠ 1/2. From (4.21), we have that

(r − 1/2σ2
)∆t = ln(u)q + ln(d)(1 − q)

= ln(u)(2q − 1).

It follows that u = e
r−1/2σ2

2q−1 ∆t. From (4.22), we also have that

(r − 1/2σ2
)
2
(∆t)2 + σ2∆t = ln(u)2q + ln(d)2(1 − q)

= ln(u)2

=
(r − 1/2σ2)2(∆t)2

(2q − 1)2
.

Solving for q, we find that

q =
(r − 1/2σ2)

√
∆t

2
√
(r − 1/2σ2)2(∆t) + σ2

+
1

2
,

and
u = e

√
(r−1/2σ2)2(∆t)2+σ2∆t.

(b) Cox, Ross, Rubinstein suggest the choice of

u = eσ
√
∆t, d = e−σ

√
∆t.

Show that with this requirement, (4.21) is satisfied but not requirement (4.22). How do we have to choose the
left-hand side of (4.22) such that with the above choice of u, d (4.22) is also satisfied? How do we have to
interpret this left-hand side?
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Solution. Observe that in order for (4.21) to be satisfied, we must pick

q =
(r − 1/2σ2)

√
∆t + σ

2σ
.

However, we than have

ln(u)2q + ln(d)2(1 − q) = σ2∆t

≠ (r − 1/2σ2
)
2
(∆t)2 + σ2∆t,

and so (4.22) would be satisfied if and only if the riskless interest rate is given by r = 1/2σ2. That is, if and
only if the price process has no drift component.

Exercise 14. Let τ1 be defined as in Section 4.5. Determine E(τ1) and E(τ21 ).

Solution. From Exercise 11, we computed

φ(λ) = E(e−λτ1) =
cosh(µσ−2∆y)

cosh(γ∆y)
.

Observe that if µ ≠ 0, then this expression is smooth in some neighborhood of 0, and

E(τ1) = −E(
d

dλ
∣
λ=0

e−λτ1)

= −φ′(0)

=
cosh(µσ−2∆y)

cosh2(γ∆y)
sinh(γ∆y)

∆y
√
µ2 + 2λσ2

RRRRRRRRRRRλ=0

=
∆y

∣µ∣
tanh(µσ−2∆y).

We also have that

E(τ21 ) = E(
d2

dλ2
∣
λ=0

e−λτ1)

= φ′′(0)

=
d

dλ
∣
λ=0

⎛

⎝
φ(λ) tanh(γ∆y)

∆y
√
µ2 + 2λσ2

⎞

⎠

= φ′(0) tanh(µσ−2∆y)
∆y

∣µ∣
− φ(0)

1

cosh2(µσ−2∆y)
(
∆y

µ
)

2

+ φ(0) tanh(µσ−2∆y)
σ2∆y

∣µ∣3

= E(τ1)2 −
1

cosh2(µσ−2∆y)
(
∆y

µ
)

2

+ tanh(µσ−2∆y)
σ2∆y

∣µ∣3

= 2E(τ1)2 + tanh(µσ−2)
σ2∆y

∣µ∣3
− (

∆y

µ
)

2

.
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Chapter 5: Optimal Portfolios

Exercise 1. Use the martingale method to solve the portfolio problem (5.2) in the case of constant market coefficients
and with the utility functions

U1(t, x) = U2(x) =
1

γ
xγ for γ ∈ (0,1) fixed.

Solution. Using the same notation as in Section 5.2, we have that

I1(t, y) = I2(y) = y
1/(γ−1).

Setting p ∶= γ
γ−1 , we compute

χ(y) = E(∫
T

0
H(t)I1(t, yH(t))dt +H(T )I2(yH(t)))

= E(∫
T

0
y1/(γ−1)H(t)

γ
γ−1 dt + y1/(γ−1)H(T )

γ
γ−1 )

= y1/(γ−1) (∫
T

0
E (e−rpt−pθW (t)−

1
2pθ

2t
) dt +E (e−rpT−pθW (T )−

1
2pθ

2T
))

= y1/(γ−1) (∫
T

0
e−tp(r+

1
2 θ

2(1−p)) dt + e−Tp(r+ 1
2 θ

2(1−p)))
)

= y1/(γ−1) ((
1

κ
+ 1) eκT −

1

κ
) ,

where we define κ ∶= p ( 1
2
θ2 1

γ−1 − r) (and assume for now that κ ≠ 0). Given initial wealth x > 0, Theorem 5.8 tells

us that the optimal terminal wealth is given by

B∗ = I2(χ
−1
(x)H(T ))

=
xH(T )1/(γ−1)

( 1
κ
+ 1) eκT − 1

κ

,

and the optimal consumption is

c∗(t) = I1(t, χ
−1
(x)H(t))

=
xH(t)1/(γ−1)

( 1
κ
+ 1) eκT − 1

κ

.

Towards applying Theorem 5.9, we compute

1

H(t)
E(∫

T

t
H(s)c∗(s)ds +H(T )B∗ ∣ Ft) =

1

H(t)1−p
x

( 1
κ
+ 1) eκT − 1

κ

(∫

T

t
E(

H(s)

H(t)
)

p

ds +E(
H(T )

H(t)
)

p

)

=
x

H(t)1−p
( 1
κ
+ 1) eκ(T−t) − 1

κ

( 1
κ
+ 1) eκT − 1

κ

=∶ f(t,W (t)).

Moreover, there exists a portfolio π∗ with corresponding wealth process Xx,π∗,c∗ such that Xx,π∗,c∗(T ) = B∗ a.s.
Since χ(y) < ∞ for all y > 0, f(0,0) = x, and one can easily check that f ∈ C1,2([0, T ] ×R), Theorem 5.9 implies that
the optimal portfolio is given by

π∗(t) =
1

Xx,π∗,c∗(t)
σ−1fx(t,W (t))

= (p − 1)
H(t)1−p

σH(t)2−p
(−θ)H(t)

=
θ

σ(1 − γ)
.
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Now, dealing with the edge case κ = 0, we see from above that in this case χ(y) = y1/(γ−1)(T + 1), and the optimal

terminal wealth and consumption are given by B∗ = xH(T )1/(γ−1)
T+1 , and c∗(t) = xH(t)1/(γ−1)

T+1 . The optimal wealth process

is then Xx,π∗,c∗(t) = x(T−t+1)
H(t)1−p(T+1) , and the optimal portfolio is again π∗(t) = θ

σ(1−γ) .

Exercise 2. Use the martingale method to solve the consumption problem (5.8) with the utility functions

U1(t, x) =
1

γ
e−βtxγ , γ ∈ (0,1), β > 0 fixed.

How do the optimal strategies (π∗, c∗) depend on β?

Solution. Again using the notation from Section 5.2, we have that

I1(t, y) = e
β

γ−1 ty1/(γ−1) = eβ(p−1)typ−1,

with p ∶= γ
γ−1 . Thus, using κ ∶= p (

1
2
θ2(p − 1) − r) (and assuming for now that β(p − 1) + κ ≠ 0),

χ(y) = E(∫
T

0
H(t)I1(t, yH(t))dt)

= yp−1 ∫
T

0
eβ(p−1)tE (H(t)p) dt

= yp−1 ∫
T

0
e(β(p−1)+κ)t dt

= yp−1
e(β(p−1)+κ)T − 1

β(p − 1) + κ

= yp−1CT .

By Corollary 5.10, the optimal consumption is given by

c∗(t) = I1(t, χ
−1
(x)H(t))

=
xeβ(p−1)t

CT
H(t)p−1

=
xH(t)p−1(β(p − 1) + κ)eβ(p−1)t

e(β(p−1)+κ)T − 1

=
x(β(1 − p) − κ)

1 − e(β(p−1)+κ)T
e(1−p)((r+θ

2−β)t+θW (t))

Now solving the edge case β(p−1)+κ = 0, we get that χ(y) = yp−1T , so that c∗(t) = x
T
e(1−p)((r+θ

2−β)t+θW (t)). Observe
that, in both cases,

E(c∗(t)) = CE (e(1−p)((r+θ
2−β)t+θW (t))

) = Ce(1−p)(r+θ
2−β− 1

2 (1−p)
2θ2)t,

for some constant C. Thus, if β < r + θ2 − 1
2
(1 − p)2θ2 then expected optimal consumption increases with time. If

these two quantities are equal, expected optimal consumption remains constant in time, and if β > r+θ2− 1
2
(1−p)2θ2,

then expected optimal consumption decreases with time.

Exercise 3. Consider the example “logarithmic utility” of Section 5.3 with an option with the final payoff

B = ∣P1(T ) −K ∣.

(a) Determine the price of B and the corresponding replicating trading strategy Ψ(t) = (Ψ0(t),Ψ1(t)).

Solution. Observe that B = BCall
K +BPut

K , and so the price process f corresponding to payoff B is

f(t) =XCall
K (t) +XPut

K (t),

where XCall
K and XPut

K are defined to be the price processes for a European call and put option with strike
price K, respectively. Thus, the replicating trading strategy is given by

(Ψ0(t),Ψ1(t)) = (Ke
−rT
(1 − 2Φ(d2(t))),2Φ(d1(t)) − 1).
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(b) Show that with the above option Theorem 5.11 remains valid if (with the usual notations) we set

φ1(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ξ1(t)
Ψ1(t) if Ψ1(t) ≠ 0,

0 otherwise.

Proof. Let ξ be the optimal stock-bond trading strategy with corresponding wealth process Xξ, take c to be
the optimal consumption process, and let Xφ(t) = φ0(t)P0(t) +φ1(t)f(t) be the wealth process corresponding
to the option-bond trading strategy

φ(t) = (
Xξ(t) − φ1(t)f(t)

P0(t)
, φ1(t)) .

Let πφ be the option portfolio process associated to φ. Observe that, from the definition of φ, we have that

Xφ
(t) =

Xξ(t) − φ1(t)f(t)

P0(t)
P0(t) + φ1(t)f(t) =X

ξ
(t), for all t ∈ [0, T ].

It follows that Xφ(0) = Xξ(0) = x and for all t ∈ [0, T ], Xφ(t) = Xξ(t) ≥ 0. Moreover, assuming φ is a valid
trading strategy, we immediately get that J(x;πφ, c) = J(x;πξ, c). Hence, to complete the proof, it suffices to
verify that φ is a self financing trading strategy. Towards verifying that φ satisfies stochastic integrability, note
that by the Itô formula,

df(t, P1(t)) = (ft(t) + P1(t)Ψ1(t)r +
1

2
σ2P1(t)fpp(t)) dt + σP1(t)Ψ1(t)dW (t),

and so

∫

T

0
φ1(t)

2 d⟨f⟩t = ∫
T

0
σ2 ξ1(t)

2

Ψ1(t)2
1{Ψ1=0}(t)Ψ1(t)

2P1(t)
2 dt

≤ σ2
∫

T

0
ξ1(t)

2P1(t)
2 dt < ∞ a.s.

Towards proving that φ is self financing, we use the fact that f solves the Black-Scholes PDE,

ft + rpfp +
1

2
σ2p2fpp − rf = 0, f(T, p) = ∣p −K ∣,

to compute that

φ0(t)dP0(t) + φ1(t)df(t) − c(t)dt =
Xξ(t) − φ1(t)f(t)

P0(t)
rP0(t)dt

+
ξ1(t)

Ψ1(t)
1{Ψ1≠0}(t) ((ft(t) + P1(t)Ψ1(t)r +

1

2
σ2P1(t)

2fpp(t)) dt + σP1(t)Ψ1(t)dW (t)) − c(t)dt

= rXξ
(t)dt + φ1(t) (ft(t) + P1(t)rΨ1(t) +

1

2
σ2P1(t)

2fpp(t) − rf(t)) dt + σξ1(t)P1(t)dW (t) − c(t)dt

= rξ0(t)P0(t)dt + rξ1(t)P1(t)dt + σξ1(t)P1(t)dW (t) − c(t)dt

= ξ0(t)dP0(t) + ξ1(t)dP1(t) − c(t)dt

= dXξ
(t)

= dXφ
(t).

(c) For fixed t ∈ [0, T ] regard the optimal portfolio process πopt(t) as a function of P1(t). What happens at that
value of P1(t) for which Ψ1(t) vanishes?

Solution. Observe that Ψ1(t) = 0 if and only if d1(t) = 0, if and only if

P1(t) =Ke
−(r+ 1

2σ
2)(T−t).
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Hence, by monotone dependence of Ψ1(t) on P1(t) and the continuity of Φ(d2(t)) with respect to P1(t), as
Ψ1(t) → 0,

f(t) = P1(t)Ψ1(t) +Ke
−r(T−t)

(1 − 2Φ(d2(t))) →Ke−r(T−t)(1 − 2Φ(−σ
√
T − t)) > 0.

It follows that, for the case b ≠ r,

πopt(t) =
φ1(t)f(t)

Xφ(t)

=
ξ1(t)f(t)1{Ψ≠0}

Ψ1(t)φ0(t)P0(t) + ξ1(t)f(t)1{Ψ≠0}

=
ξ1(t)f(t)

Ψ1(t)Xφ(t)
1{Ψ1≠0}

=
b − r

σ2

f(t)

Ψ1(t)P1(t)
1{Ψ1≠0}

→

⎧⎪⎪
⎨
⎪⎪⎩

∞, as Ψ1(t) ↓ 0

−∞, as Ψ1(t) ↑ 0.

In the case where b = r, ξ1(t) ≡ 0 and so πopt(t) ≡ 0.

Exercise 4. For T > 0 solve the following stochastic control problem

min
u(⋅)

E0,x
(∫

T

0
(MX(s)2 +Nu(s)2) ds +DX(T )2)

with

dX(s) = (AX(s) +Bu(s))ds + σ dW (s),

X(0) = x ∈ R,

and M,N,D > 0, A,B,σ ∈ R, and U = R.

Solution. The HJB-equation corresponding to this stochastic control problem admits the form

min
u∈R
{vt +

1

2
σ2vxx + (Ax +Bu)vx +Mx2 +Nu2} = 0, (t, x) ∈ [0, T ] ×R

v(T,x) =Dx2, x ∈ R.

Formal minimization yields the following candidate for the optimal control:

u∗(t) = −
Bvx(t,X(t))

2N
.

Inserting this candidate into the HJB-equation results in the PDE

vt +
1

2
σ2vxx +Axvx −

B2

4N
v2x +Mx2 = 0, (t, x) ∈ [0, T ] ×R

v(T,x) =Dx2, x ∈ R.

To solve this PDE, we use the ansatz v(t, x) = f(t)x2 + g(t). This transforms the PDE into the ordinary differential
equation

(f ′(t) + 2Af(t) −
B2

N
f(t)2 +M)x2 + g′(t) + σ2f(t) = 0, (t, x) ∈ [0, T ] ×R

f(T )x2 + g(T ) =Dx2, x ∈ R.

Since this equation has to hold for all x ∈ R, this differential equation breaks into the following system of differential
equations:

⎧⎪⎪
⎨
⎪⎪⎩

f ′(t) + 2Af(t) − B2

N
f(t)2 +M = 0, t ∈ [0, T ]

f(T ) =D.
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⎧⎪⎪
⎨
⎪⎪⎩

g′(t) + σ2f(t) = 0, t ∈ [0, T ]

g(T ) = 0.

Thus, given f , we obtain g via g(t) = σ2
∫

T
t f(s)ds. Towards solving the first of these equations, define a ∶= −B2

N
,

b ∶= 2A and c ∶=M , and let r1, r2 be the real roots of the polynomial ax2 + bx+ c and ∆ ≥ 0 the discriminant. Solving
via partial fractions gives

−∫ dt = ∫
df

af2 + bf + c

= ∫
df

a(f − r1)(f − r2)

= ∫
1
√
∆

df

f − r1
− ∫

1
√
∆

df

f − r2

=
1
√
∆

ln
f − r1
f − r2

.

This suggests the solution

f(t) =
r1 − r2

D−r1
D−r2 e

−
√
∆(t−T )

1 − D−r1
D−r2 e

−
√
∆(t−T )

.

and plugging this back into u∗ gives

u∗(t) = −
B(r1 − r2

D−r1
D−r2 e

−
√
∆(t−T ))

N(1 − D−r1
D−r2 e

−
√
∆(t−T ))

x.

Observe that since e−
√
∆(t−T ) ≥ 1 and D−r1

D−r2 > 1, it follows that u∗(t) is a smooth function on the bounded interval

[0, T ]. Thus, the SDE for X is linear with bounded coefficients and so by the variation of constants theorem, this
equation has a unique solution X∗ with respect to the control u∗. The moment condition (5.13) for u∗ is satisfied by
the boundedness of u∗, and the moment condition (5.14) for X∗ follows by Lemma 3.23. Finally, since f is smooth,
g is also smooth and so v ∈ C1,2 and clearly satisfies the polynomial growth condition by the boundedness of f(t).
Thus, by Theorem 5.17, u∗ is an optimal control and v coincides with the value function.

Exercise 5. For T > 0 solve the stochastic control problem

max
u(⋅)

E(X(T )γ)

with

dX(t) = au(t)dt + u(t)dW (t)

X(0) = x > 0

and a ∈ R, 0 < γ < 1, U = R, O = (0,∞). In particular, show that the optimal strategy u∗(t) and the value function
V (t, x) have the forms

u∗(t) =
a

1 − γ
X(t),

V (t, x) = exp(a2
γ

2(1 − γ)
(T − t))xγ .

Solution. The HJB-equation corresponding to this stochastic control problem admits the form

min
u∈R
{vt +

1

2
u2vxx + auvx} = 0, (t, x) ∈ Q,

v(T,x) = xγ , x > 0

for Q ∶= [0, τ) ×O. Formal minimization yields the following candidate for the optimal control:

u∗(t) = −
avx(t,X(t))

vxx(t,X(t))
.
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Inserting u∗(t) into the HJB-equation results in the partial differential equation

vt −
a2v2x
2vxx

= 0, (t, x) ∈ Q

v(T,x) = xγ , x > 0.

To solve this PDE, we choose the ansatz v(t, x) = f(t)xγ . This transforms the partial differential equation into the
ordinary differential equation for f(t)

f ′(t)xγ + a2
γ

2(1 − γ)
f(t)xγ = 0, (t, x) ∈ Q

f(T ) = 1.

Solving, we obtain f(t) = ea
2 γ

2(1−γ)
(T−t) and u∗(t) = 1

1−γX(t). Thus, if we can show that the conditions of Theorem

5.17 are satisfied, then it will follow that u∗ is an optimal control and V (t, x) = v(t, x) = exp (a2 γ
2(1−γ)(T − t))x

γ , as re-

quired. To this end, observe that the SDE corresponding to the control u∗ forX, given by dX(t) =X(t) ( a2

1−γ dt +
1

1−γ dW (t))

is linear with constant coefficients, and therefore has a unique solution X∗ by the variation of constants theorem.
Moreover, this solution X∗ satisfies moment condition (5.14) by Lemma 3.23, and moment condition (5.13) immedi-
ately follows as

E(∫
t1

0
∣u∗(s)∣k ds) ≤

t1a

1 − γ
E0,x ⎛

⎝
sup

s∈[0,t1]
∣X(s)∣k

⎞

⎠
< ∞, ∀k ∈ N.

Finally, since v ∈ C1,2(Q) and obviously satisfies the polynomial growth condition on Q, all the conditions of Theorem
5.17 hold, and the conclusion follows.

Exercise 6. Show that in the market with constant coefficients and an infinite horizon the problem

max
(π,c)∈A′(x)

Ex
(∫

∞

0
e−βtU(c(t))dt) , β > 0,

admits the optimal solution pair of the form
π∗(t) ≡ π ∈ Rd,

c∗(t) = δX(t), for suitable constants π ∈ Rd, δ > 0 if and only if we have

U(x) = αxγ + d

for suitable γ ∈ (0,1), α, d > 0.

Proof. Towards proving the ”if” direction, fix α, d > 0, γ ∈ (0,1) and set U(x) = αxγ + d. Using the notation of
Section 5.4, the HJB-equation corresponding to this choice of U admits the form

max
(u1,u2)∈[α1,α2]d×[0,∞)

{
1

2
u′1σσ

′u1v
′′
(x) + ((r + u′1(b − r1))x − u2)v

′
(x) + αuγ2 + d − βv(x)} = 0, x > 0.

Formal maximization suggests the following choices for u1 and u2:

u∗1(t) = −(σσ
′
)
−1
(b − r1)

v′(x)

xv′′(x)
,

u∗2(t) = (
1

αγ
v′(x))

1
γ−1

.

Inserting this choice of u∗1 and u∗2 into the HJB-equation results in the differential equation in v(x)

⎛

⎝
α(

1

αγ
)

γ
γ−1

− (
1

αγ
)

1
1−γ ⎞

⎠
v′(x)

γ
γ−1 −

1

2
(b − r1)′(σσ′)−1(b − r1)

v′(x)2

v′′(x)
+ rv′(x)x − βv(x) + d = 0, x > 0.

The requirement of the polynomially bounded solution in the verification theorem suggests the ansatz

v(x) =
1

γ
Kxγ +K0
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for some choice of constants K > 0,K0 ∈ R. Inserting this ansatz into the above differential equation results in the
equation

⎛

⎝

⎛

⎝
α(

1

αγ
)

γ
γ−1

− (
1

αγ
)

1
1−γ ⎞

⎠
K

1
γ−1 −

1

2
(b − r1)′(σσ′)−1(b − r1)

1

γ − 1
+ r − β

1

γ

⎞

⎠
Kxγ + (d − βK0) = 0, x > 0.

Since this equation must hold for all x > 0, we must choose K0 =
d
β
. Inserting this choice of K0 and then dividing

out by Kxγ yields the solution

K =
⎛

⎝
α(

1

αγ
)

γ
γ−1

− (
1

αγ
)

1
1−γ ⎞

⎠

1−γ

(
1

2(γ − 1)
(b − r1)′(σσ′)−1(b − r1) − r +

β

γ
)

γ−1

.

Plugging this finding back into u∗1 and u∗2, we find that

u∗1(t) ≡
1

1 − γ
(σσ′)−1(b − r1) ∈ Rd

u∗2(t) = (
K

αγ
)

1/(γ−1)
X(t).

Observe that ( K
αγ
)
1/(γ−1)

> 0 for suitable β. It is clear that constant u∗1 and linear u∗2 satisfies all the conditions of

the verification theorem, and the ”if” direction follows.

Towards proving the ”only if” direction, suppose that π∗(t) ≡ π ∈ Rd and c∗(t) = δX(t) for some δ > 0. Then
(π∗, c∗) maximizes the HJB-equation

max
(u1,u2)∈[α1,α2]d×[0,∞)

{
1

2
u′1σσ

′u1x
2v′′(x) + ((r + π′(b − r1))x − u2)v

′
(x) +U(u2) − βv(x)} = 0, x > 0.

It follows that the partial derivatives evaluated at (π∗, c∗) are zero for all x > 0. Thus, 0 = −v′(x) + U ′(c∗) for all
x > 0, and so

U ′(δx) = v′(x), x > 0.

For convenience, set s2 ∶= π′σσ′π and µ ∶= r+π′(b−r1)−δ. Then substituting in the optimal controls, the HJB-equation
collapses to

1

2
s2x2v′′(x) + µxv′(x) +U(δx) − βv(x) = 0, x > 0.

Differentiating with respect to x, substituting U ′(δx) = v′(x), and setting w(x) ∶= v′(x), we arrive at the following
ODE in w(x)

1

2
s2x2w′′(x) + (s2 + µ)xw′(x) + (µ + δ − β)w(x) = 0.

Using the ansatz w(x) = Cxγ−1, the equation is transformed into

(
1

2
s2(γ − 1)(γ − 2) + (s2 + µ)(γ − 1) + (µ + δ − β))Cxγ−1 = 0, x > 0.

Dividing out by Cxγ−1, we can solve for γ, subject to suitable δ. Thus, we have that

U ′(x) = v′(x/δ)

= w(x/δ)

= C(x/δ)γ−1.

The conclusion follows after integrating this expression.

Exercise 7. Solve the terminal wealth maximization problem (5.7) via the stochastic control approach in the case
of constant coefficients for d =m = 1,

U2(x) =
1

γ
xγ ,

if instead of the bond a stock with price

P0(t) = p0 exp((b0t −
1

2
σ2
0) t + σ0W (t))

is traded.

37



Solution. Note that P0 satisfies the following SDE

dP0(t) = P0 (b0 dt + σ0 dW (t)) .

Let the ”original” risky asset have constant drift term µ and constant volatility term σ. Then if we define π(t) to
be the time t proportion of wealth invested in the ”original” risky asset, then we arrive at the following family of
wealth SDEs controlled by π

dXπ
(t) =Xπ

(t)
⎛

⎝
(b0 + π(t)(µ − b0))dt + (σ0 + π(t)(σ − σ0))dW (t)

⎞

⎠
.

Using this controlled wealth SDE and the valuation function

J(0, x;π) = E0,x
(
1

γ
Xπ
(T )γ)

yields the HJB-equation

max
π
{
1

2
(σ0 + π(σ − σ0))

2x2vxx + (b0 + π(µ − b0))xvx + vt} = 0, x, t > 0,

v(T,x) =
1

γ
xγ , x > 0.

Formally maximizing and using the standard separable ansatz v(t, x) = 1
γ
xγeC(T−t) yields the candidate

π∗ ≡
σ0

σ − σ0
+

µ − b0
(σ − σ0)2(1 − γ)

.

Inserting this choice for π∗ and the given ansatz, and then dividing out the common term xγeC(T−t), results in the
following equation

−
1

2
(2σ0 +

µ − b0
(σ − σ0)(1 − γ)

)

2

(1 − γ) + b0 +
σ0(µ − b0)

σ − σ0
+

(µ − b0)
2

(σ − σ0)2(1 − γ)
−
1

γ
C = 0.

Simplifying and solving for C, we find that

C = −2γ(1 − γ)σ2
0 + b0 −

γσ0(µ − b0)

(σ − σ0))
+

γ(µ − b0)
2

2(σ − σ0)2(1 − γ)
.

The standard arguments show that all the conditions for the verification theorem are satisfied, and so the optimal
portfolio is given by

π∗ ≡
σ0

σ − σ0
+

µ − b0
(σ − σ0)2(1 − γ)

.

Exercise 8. Show that the market model of Exercise 7 is complete (without using Theorem 3.47).

Proof. Fix a contingent claim B in the market model of Exercise 7. Define a new asset π̃ corresponding to the
portfolio

π̃ ≡ −
σ0

σ − σ0
.

Observe that the price process for this asset is determined by the SDE

dPπ̃(t) = Pπ̃(t)
⎛

⎝
(b0 + π̃(µ − b0))dt + (σ0 + π̃(σ − σ0))dW (t)

⎞

⎠

= Pπ̃(t)(b0 + π̃(µ − b0))dt.

Hence π̃ replicates a riskless bond with interest rate

r = b0 + π̃(µ − b0).
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By Theorem 3.7, the market consisting of a bond with interest rate r and a stock with price process P1(t) is complete.
Since Pπ̃(t) is equal to a measurable function of P0(t) and P1(t), and similarly P0(t) is equal to a measurable function
of Pπ̃(t) and P1(t), it follows that σ(Pπ̃(T ), P1(T )) = σ(P0(T ), P1(T )). Thus, B is a contingent claim in the market
consisting of the riskless bond with price process Pπ̃(t) and the stock with price process P1(t). By completeness,
there exists a unique replication strategy φ = (φπ̃, φ1). Pick the trading strategy

θ = (θ0(t), θ1(t)) = (
(1 − π̃)φπ̃(t)Pπ̃(t)

P0(t)
, φ1(t) +

π̃φπ̃(t)Pπ̃(t)

P1(t)
) .

Then

θ0(t)P0(t) + θ1(t)P1(t) = (1 − π̃)φπ̃(t)Pπ̃(t) + φ1(t)P1(t) + π̃φπ̃(t)Pπ̃(t)

= φπ̃(t)Pπ̃(t) + φ1(t)P1(t).

Moreover,

θ1(t)dP0(t) + θ1(t)dP1(t) = (1 − π̃)φπ̃(t)(t)Pπ̃(t)(b0 dt + σ0 dW (t)) + φ1(t)dP1(t) + π̃φπ̃(t)Pπ̃(t)(µdt + σ dW (t))

= φπ̃(t)Pπ̃(t)((b0 + π̃(µ − b0))dt + (σ0 + π̃(σ − σ0))dW (t)) + φ1(t)dP1(t)

= φπ̃(t)dPπ̃(t) + φ1(t)dP1(t)

=X(t).

It follows that θ is a self-financing replication strategy for B, proving the the market model of Exercise 7 is complete.

39


