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Dannin Eccles

Chapter 2: The Continuous-Time Market Model

Exercise 1. Prove: If Y is a modification of the stochastic process X and if X and Y both have continuous paths
then they are indistinguishable.

Proof. Fix a continuous stochastic process X and suppose that Y is a continuous modification of X. By definition,
we have that P{X; # Y;} = 0 for each ¢ € [0,00). Define A:={weQ | 3Ite[0,00): X¢(w) # ¥2(Q)} and observe
that, by the continuity of both X and Y, for each w € A, there exists a collection of open interval {I,} such that

w e {X; # Y} for all t € I,. Define T := {U{Iw} tw € A}. By this standard properties of R, the set that this

collection covers has a countable subcovering {I,,, }nen. By the same reasoning, for each I, there exists a countable
collection {t,, }ren C [0,00) such that, for any I, € Z with I, n 1, # @, there exists k with ¢,, € I, n 1, . I claim
that A ¢ Upen UkeN{thk Y, }. Indeed, for any w € A, there exists n € N such that I, n I, # @, and therefore

some k € N such that t,, € I, n1,,, so that we {X;, #Y:, }. It follows that PA < IP’( Unen Uken{Xt,, # Y2, }) =0,
proving that X and Y are indistinguishable.

Exercise 2. Let 7 be a stopping time and {(X;, F;) }+»0 a right-continuous (sub-)martingale. Show that under these
assumptions the stopped process {(Xiar, Ft)}t=0 IS again a (sub-)martingale.

Proof. Fix a stopping time 7. Observe that it suffices to prove the statement for locally right constant (sub-
Jmartingales. Indeed, using the fact that any right-continuous (sub-)martingale can be approximated from below by
locally right constant (sub-)martingales, the dominated convergence theorem will imply that the statement holds also
for right-continuous (sub-)martingales. To this end, fix a locally right constant martingale X = X770 ©nl[s, 4,.1)5
with t5 = 0. Note that

m—1

Xinr = @metliromy + 0. Onlireftn tnnn)}, M= max{k:t, <t},
n=0

which is F;, -measurable, and therefore F; measurable. Moreover, E[|X;\,|] < S7 E[|@n|] < co. Finally, observe

that, by induction and the fact that each ¢, and 1, ¢..,,)y are Fy, ., measurable, to prove that E[Xinr | Fs] = Xsar
for any 0 < s < t, it suffices to prove that E[X;,,,ar | Ft, ] = Xt, Ar for each n. We have that

n—1
E[ Xt nr | Fe ] =Bl Onailirsey + . Cklirefte trn)t | Ftn
k=0

n-1

= l{rztn}E[¢n+l ‘ ftn] + ]g;)‘pkl{‘ré[tk,tkafl)}

n—1

= l{rztn}Sﬁn + Z @kl{fe[tmtml)}
k=0

n-1

= @nlirsta 1} + ) Pklireltn b))
k=0

= Xt,,,/\'r~



Exercise 3. Let the process {P(t)}+>0 be defined by
P(t) =p- 6(b—%oj)t-%—o'W(t)7

where W (t) is a one-dimensional Brownian motion, p, b, o € R are real constants with o # 0.
Show:
(a) Var(P(t)) = p*e® (e”zt - 1).
(b) P(t) — i

Das. P ifb<iog?

t—oo {oo as. P ifb>Lg?
2

(¢) Compare the result of (b) with the limiting behavior of E(P(t)), Var(P(t)) for t - oo.
Proof. (a) Noting that oW (t) ~ N'(0,5?t), it follows that

[oo) 1 , m2
E(P(t)Q) :p2 [oo % . e(2b—o'2)t+20'£ e 5t de

z—20t)2
. €(2b+02)t . e_( gt 2 dx

_p? /°° 1
—oo /2wt

= p? . 2bt+a’t

From Lemma 2.25, we have that E(P(t)) = p-e”, and so

Var(P(t)) = E(P(t)%) - E(P(t))? = p* - (7 * - 1).

(b) We have that @ = lnTp +b- %JZ + a@. Now by the law of large numbers for Brownian motion, we have

that @ 2%, 0 a.s. P. Hence, @ Kndaly 10% as. P. If b> 07, it follows that In P(t) 2% o as. P,

so that P(t) 2%, o0 a.s. P. Otherwise if b < 302, then In P(t) 2%, 0 as. P, so that P(t) 2% 0 as. P.

oo ifb>0 oo ifb>-10?

2
(c) Observe that E(P(t)) = pett Lo, p ifb=0,and Var(P(t)) = p?e?* (e”2t - 1) Lo, p? ifb= —%oz.
0 ifb<0 0 ifb<-30?

O

Exercise 4. Let {(X(t),F:)}+=0 be a stochastic process with a filtration {F;}; satisfying the usual conditions. Show
that for all n € N the random variable 7(w) := inf{t >0: X (¢,w) > n} is a stopping time.

Proof. T am fairly certain we need the additional assumption that X is at least left or right path continuous a.s. P.
Since {F;}; is a complete filtration, we may assume w.l.o.g. that X is simply left or right path continuous. For the
case where X is right path continuous, note that w € {7 <t} if and only if w € X' ([n, o)) for some ¢’ € [0,¢]. By the
right continuity of ¢ — X, it follows that {7 <t} = X; " ([n, 00)) UUgegnio4] X, ([, 00)), and since X" ([n, 00)) € F
for all ¢ € [0,t], it follows that {7 <t} € F;.

For the case where X is left continuous, observe that w € {r <t} if and only if w € X' ([n, 00)) for some ¢ € [0, ],

or for each t’ > t, there exists some ¢ € (¢,#') such that w € X} ([n,00)). Take a sequence {t;}x such that ¢ ko y
and t), > t for all k. By left continuity, we see that {7 <t} = Ugegn[o,e] X; ' ([12:00)) UNk21 Upsk X! ([0, 00)). Observe

tm

that for any € > 0, there exists some k such that t < ¢, <t +¢ for all m > k, so that U,,>x X{i([n, 0)) € Frye. It
follows that Nys1 Umsk X7 ([17,00)) € Neso Frae = Fi, proving that {r <t} € 7. Thus, if X is either left or right path
continuous a.s. P, then 7 is a stopping time. O

Exercise 5. Let {(X(¢),F:)}»0 be a one-dimensional Ité process. Prove that its representation

X(t) = X(0) + [OtK(s)derfOtH(s)dW(s)

is uniquely determined. More precisely, if

X(t) =Y (0) + fot,u(s)d8+ fota(s)dW(s)

is another representation, then we have



e X(0)=Y(0) as. P
e K(s) and u(s) as well as H(s) and o(s) are equivalent with respect to A @ P.

Proof.
Lemma 1. Suppose that {(M(t), F;)}iefo,7] is a continuous martingale of the form

t T
M(t) = f v(s)ds with [ [v(s)|ds < C < oo.
0 0
Then M(t) =0 for all t € [0,7T] a.s. P.

Suppose first that v € L2[0,T]. Then for any ¢ € [0,7'] and partition 7 of [0,¢], by repeated applications of Jensen’s
inquality, we have that

;(M(tﬂl) -M(t)* = ([;i+1 v(s) ds)2

T

ti+1
< (i — 1) ft v(s)?ds
ti+1
< Z [ v(s)*ds

I
:Hwa o(s)?ds 2% o,
0

Thus, when v € L*[0,T], M has zero quadratic variation. In the case where v ¢ L?[0,T7], define vy, = v-1{yj<n}- Then

each v, € L?[0,7] and so M,(t) = fot v (s) ds has zero quadratic variation. Applying the dominated convergence
theorem to |v,| <|v|, we see that

T
sup |Mn(t)—M(t)|§f o (5) — v(s)| ds =2 0.
te[0,T] 0

Thus, M,, - M uniformly and it follows that M must also have zero quadratic variation. In particular, for any
t € [0,T] and for any partition 7 of [0,t], we have that

E[M(#)’]=E [Z(M(ttm) - M(ti))2:| 1729,

T

and it follows that M (¢) =0 a.s. P for all ¢ € [0,T].
Lemma 2. Let {(M(t),Ft)}se[o,r] be as above, but with the weakened condition:

T
/ [v(s)|ds < oo a.s. P.
0

Then M(t) =0 for all t € [0,T] a.s. P.

For each n € N, define 7, := inf{t € [0,T] : fot [v(s)|ds >n}. By Exercise 4, each 7, is a stopping time. Observe that
tATR TATh

the stopped martingale M-, = [, " v(s) ds has the property that |, [v(s)|ds < C < oo, and we can apply the

same reasoning as in Lemma 1 to conclude that M (t) =0 for all t € [0,T'A7,] a.s. P. Given that foT [v(s)|ds < oo a.s.
P, it follows that a.s. PP there exists some N(w) such that 7y =T, and Lemma 2 follows after some obvious P-null
set arguments.

Finally, suppose that for some one-dimensional 1t6 process {(X (¢), F¢) }t»0, we have two representations:
o X(t)=X(0)+ [} K(s)ds+ [y H(s)dW(s)

o X(1)=Y(0)+ [y pu(s)ds+ [y a(s)dW(s)



Then X(0) =Y (0) +0(0)Wy =Y (0) a.s. P. Now define the continuous martingale M (t) := fot H(s)-o(s)dW(s).
Observe that M(t) = /Ot,u(s) - K(s)ds a.s. P. Since fOT |pe(s) — K(s)|ds < oo for all T > 0, we can apply Lemma 2
to conclude that M(t) =0 for all ¢ € [0,00) a.s. P. It follows that H and o, as well as K and p are equivalent with
respect to A ® P. O

Exercise 6. Show that the processes M; and H; occurring in the proof of 1t6’s formula satisfy

(kZl((Mtk My, ) - f H2ds))2= (kzl((Mtk My, ,)? - f H‘st))

Proof. Define X, := (M, — M;, | )? - fttil H2ds. By the Ito isometry,

EX; = E([ HdWs)) (f H2ds)

Thus, it suffices to prove that Cov(X;, X;) =0 for ¢ # j, for then E (¥}~ X))’ = E (X5, X7). Fix i< j and observe
that

E(X;X;) =EEX:X; | F,))
=E(X:E(X; | F,))
- E(X, -0)
=0,

where the third equality follows from another application of It6’s isometry. O

Exercise 7. Let {(X(¢),F:)}»0 be an It6 process. Let 7 be a stopping time. Prove that for suitable f we have:
S SAT
[ rx@amyaxan = [T rxe)dxe.

Proof. Since X is an It6 process, there exist progressively measurable processes K and H with fot |K(s)|ds < oo and
fot H?(s)ds < o0 a.s. P for all ¢ >0, such that X (¢) = X(0) + fot K(s)ds+ fot H(s)dW(s). Thus,

X(tar) = X(0) +f0tMK(s)ds+[0tM H(s)dW (s)
- X(0) + /UtK(s)l[O,T] ds + fOtH(sn[O,T] dW (s),
and so X (t A7) is an It6 process. It follows that for suitable f we have
fosf(X(t/\T))dX(t/\T) - fosf(X(mT))K(m[Oﬂ dt + [Osf(X(mT))H(t)l[o,T] AW (1)
- [T enr@adr [T p X)) aw ()
- [T @) ax .

Exercise 8. Prove the product rule, Corollary 2.53.

Proof. Fix one-dimensional Itd processes X; and Y; with X; = X + fot K,ds + fot H,dW,, and Y; = Yy + fot s ds +
fot o, dW,. Define the two-dimensional It6 process Z; = (Xy,Y;) and let f(t,z,y) = 2y e C2([0,00) x R?). Then by
the multi-dimensional It6 formula,

t t t
Xt-Yt:X0~Y0+[ stXs+f XSdYSJrf d(X,Y),
0 0 0

t t
:XO-Y0+f nK5+XSMS+HSans+f Y. H, + X.0s dW,.
0 0



Exercise 9. Let {(W(t), F)}efo,r] be a one-dimensional Brownian motion. Show that the following processes are
martingales with respect to {F; }4:

(a) X (1) =exp(3) - cos(W(1));
(b) X(t) =exp () -sin(W(1));
(c) X(t)=(W(t)+t)-exp(-W(t)-1).
Proof. T believe Observe that W (t) is an It process, with W(t) = W(0) + [, 0ds + [y 1dW,. Define f(t,z) =

exp () - cos(z), g(t,) = exp (%) -sin(z), and h(t,z) = (z +t)-exp(-z - L). Because f,g,h € C*?([0,00) x R), we
can apply the multi-dimensional It6 formula to obtain that

(a)
exp (5 ) -cos(W(1)) = F(2. (1))
:1+%fotexp(g).cos(W(s))ds—fotexp(g).sm(vv(s))dws—%fotexp(g).cos(vv(s))ds
:1—/(;texp(§)~sin(W(s))de;
(b)
exp (5 ) sim(W(0) = F(EW ()
:%fotexp(g).sin(W(s))ds+fotexp(g).cos(vv(s))dws—%fotexp(g)-sm(vv(s))ds
= [Cew(3) costw sy

(c)
(W(t) +1) - exp (—W(t) - %) - fotexp(—W(s) - %) - %(W(s) +8)exp (—W(s) - %) ds
+ Atexp (—W(s) - %) - (W(s) +s)exp (—W(S) - g) dWs
+ % Ot -2 exp(—W(s) - g) +(W(s)+s) exp(—W(s) - g) ds

_ /Ot(l S W(s) - s)exp(—W(s) - g) AW,

Since exp (%) -sin(W(t)), exp (%) - cos(W(t)), (1-W(s) - s)exp(-W(s) - £) € L*[0,T]{#,},, and because the It6
integral maps L2[0,T] into the space of continuous {F;}; martingales with expectation equal to 0, it follows that
each of the given processes are martingales with respect to {F;}¢. O

Exercise 10. Define
t 1 t
H(e) =exp (= [ r(s)+5100) [ ds = [ 00 aW (). 6(8) = (O(0(0) - r(2)L).
0 0
(a) Show that 1/H(t) is the wealth process corresponding to the pair

(m(t),e(t)) = (o' ()0 ()(b(t) = r(£)1),0)

and an initial wealth of x = 1/H(0) = 1.



Proof. We need to verify that 1/H (t) solves the wealth equation for the given self-financing pair (r,¢). Define
the Itd process Y; := —fot r(s)+ % 16(s)? ds—fot 0(s) dW (s) and apply the Itd formula to f(x) = €™ to get that

AJH()) = = f(V) dY; + 5 F (V) d(Y ),

- 56 ((r(t>+ WO N D) + s (Moo )
- (r(t)H(t)) dt + T(b(t) r(t)l)'g—l(t)/g—l(t)((b(t) -r(t)1) dt+o’(t)dW(t))

_ (r(t) Htt) - c(t)) it + Htt) w(t)’((b(t) (1) dt + (1) dW(t)).

Thus, 1/H (¢) is the unique solution for the wealth equation corresponding to the self-financing pair (7, ¢) and
initial wealth z = 1. [

Let (m,c) € A(1) with ¢=0 and

E([ 7 (t) o () dW ( t)) [ |7 (t)?] dt < oo.

Show that if for the wealth process X (t) corresponding to (m,0) the expected value E(In(X (7)) exists then
we have
1
E(In(X(T))<E|Il .
X 22 7 )

Proof. Since X (t) is the wealth process corresponding to (m,0), X (¢) must satisfy the wealth equation:

dX(t) = (r(t)X () —c(t))dt + X(t)m(t)" ((b(t) —r(t)1) dt + o(t) AW (t)).

By the It6 formula,

An(X () = 5 450 - 32 X

= (r(t) +7(t)"(b(t) —r(t)l) - 57r(t)’or(t)a(t)’w(t)) dt +7(t) o(t) dW(t),

and it follows that
T 1 T
E(In(X(T)) = E(ln(X(O)) + /0 r(t) + () (b(t) - r(t)1) - §|\a(t)'7r(t)\|2 dt + fo () o(t) dW(t))

:E( fOTT(t)+7T(t)'(b(t)_T(t)l)‘;|0(t)'ﬂ(t)|2dt).

The same line of reasoning shows that

1 1 T _
]E(ln(H(T))):IE(ln(H(O))+fO (1) + o () (b(t) - r(£)1)]?

1 -1 2 T r_—1 !
= 5lo™ @) - r(t)1)] dt+f0 (b(t) = r(H)1)'o™(t) dW(t))

= E( ATr(t) + %Hg’l(t)(b(t) —r(t)1) HQ dt),
Hence, the problem is reduced to proving the inequality
B [ 107 (O0() - DD - 250 (1) - (1) + (1) o (1) di 20,

6



Writing 6(t) = o1 (¢)(b(t) — r(¢)1), we have

B [ o (0(60) ~ (1) 2270 (1) ~ (1) + (1) o (1)
“E [ 100 - 251 o (1)00) + (1) o0 di
- ]EfOT 16(t) - m(t) o (£) |2 dt > 0.
O

Exercise 11. Let B > —K be an Fpr-measurable random variable with KX > 0 and T > 0 fixed. Show that under
suitable assumptions there exist an initial wealth of > —K and a trading strategy ¢ such that the corresponding
wealth process X (t) satisfies

X(t) >-K for all te [0,T],
X(T)=B as. P.

Proof. Define y := ]E(H(T)(B + K)) and assume that y < oo. Then by Theorem 2.63 (2) there exists a portfolio

process w(t), t € [0,T], with (,0) € A(y) and the corresponding wealth process Y (¢) satisfies Y (T') = B+ K a.s. P.
Now define X (¢) := Y (t) - K and note that X (¢) also satisfies the same wealth equation that Y (¢) satisfies and so
by the Variation of Constants Theorem, X (¢) is the unique wealth process corresponding to the self-financing pair

(m,0) with initial wealth X(0) = Y(0) - K =y - K > —-K. Moreover, we have that X(T) =Y (T)- K = B a.s. P.

Thus, the trading strategy ¢ given by ¢;(t) := %()t()(t) suffices. =

Exercise 12. By suitable localization deduce Corollary 2.70 from the martingale representation theorem.

Proof. 1 believe Corollary 2.70 needs the further assumption that there exists a localization {7,}, for the local
Brownian martingale {(M;, F¢) }efo,7] such that M., is square integrable for each n. Thus, fix some local Brownian
martingale {(M;, ;) }iefo,7] With localization {7}, such that EM? . < oo for all ¢t € [0,7] and n € N. Then by the

tAT,
martingale representation theorem, for each n there exists some progressively measurable R™-valued process ¢(™) (1),
t €[0,T], with

T tATh
E( f Iw(”)(t)l2dt) <00, Myng, = Mo+ / V™ (s) dW (s) a.s. P.
0 0

Define the progressively measurable R™-valued process ¥ by 1(s,w) = (™ (s,w) for w € F; with s € [0, 7, (w)]. Note
that for all 0 < s < 7,1 (w),

fo ) YD () dW (1) (W) = Mgpr, 4 (W) = Mo(w) = Mypr, (w) = Mp(w) = fo ’ (@) dW (t)(w)  as. P,

and it follows that 1™ (s,w) = (™1 (s,w) a.s. P. Thus, 1 is well-defined up to some null set, and we can arbitrarily

set 1(s,w) = 0 for all s € [0,7] and all w in this null set. Now for any s € [0,T], since 7, ——> oo a.s. P, we see that
for every t € [0,T] and for a.e. w € Fy, there exists some n such that s < 7,(w), and so

M(w) = Mopr, (@) = Mo() + fo B (R) dW (h) (w) = Mo(w) + f08¢(h)dW(h)(w) as. P.

Finally, by the definition of v, we see that for all ¢ € [0,7] and w € F; either there exists some n such that
[OT [2o(s)]? ds(w) = [OT |4 ()| ds(w) < o0, or ¥(s,w) =0 for all se[0,7] and so [OT [(s)]? ds(w) = 0. O



Chapter 3: Option Pricing

Exercise 1. Under the assumptions of the Black-Scholes model determine the fair prices of the following options
given by their payoff diagrams.

(a) Butterfly spread with mean basis price 2K

Solution. The payoff diagram for the butterfly spread can be replicated by buying two calls on the security,
one with strike price K and another with strike price 3K, and selling two calls with strike price 2K. Thus, all
together we have the time T payoff B = (P(T) - K)* - 2(Pi(T) - 2K)* + (P (T) - 3K)*. Applying Corollary
3.15 followed by the Black-Scholes formula, the fair price process X (t) for the contingent claim B is therefore
given by

X(t) = Eq (exp(—ftTr(s)ds)-B | ]-"t)

:EQ(GXP(—/tTT(S)dS)~(P1(T)—K)+ | .7-})—QEQ(exp(—ftTr(s)ds)~(P1(T)—2K)+ | ]—‘t)
N IEQ(exp(—/tTr(s)ds)~(P1(T)—3K)+ | ]-‘t)

= Pi(8)(®(d1x (1)) - 28 (dr 2k (1) + B(drac (1)) ) = €T (KD (daic (1)) - 4K D (Ao 2 (1)) + BKD(daic (1)))-

(b) Straddle with basis price K

Solution. The payoff diagram for the straddle can be replicated by buying a put and a call, both with strike
price K. Thus, the time T payoff is given by B = (P1(T) - K)*+ (K - Pi(T))*. Again applying Corollary 3.15

and the Black-Scholes formula, we get that the price process X (t) for the contingent claim B is given by
X(t) = Xc(t) + Xp(t)
= P(t)(®(di(1)) - (=i (1)) ) - K - T (D(da(1)) - D(~da (1)) )
= Pr(t)sgn(dx (1) (20(Jdx (1)) - 1) = Ke T Dsgn(da (1)) (20 (|dx(1)]) - 1).

(c) Strangle with basis prices K; < K

Solution. The payoff diagram for the strangle can be replicated by buying a put with strike price K; and a
call with strike price K5. Thus, we have that the price process X (t) is given by

X(t) = Xox, (t) + Xp i, (1)
= Pu(t)(@(d1 1, (1) = (=i 1, (1)) ) = K1 - €T DD e, (8)) + Ko - e T D D(=dhy i, (1)),

(d) Bull spread with basis prices K; < Ko

Solution. The payoff diagram is replicated by buying a call with strike price K7 and selling a call with strike
price K3, resulting in the price process

X(1) = X0k, (1) = Xoyie, (1)
= P(1)(@(di i, (1) = (i 1, (1)) ) = K1 - €T DD e, (1)) + Koo - 7T DDy iy (1)),

Exercise 2. Show that in the Black-Scholes setting the price X¢(t) of a European call satisfies:
(a) Xc(t) decreases in ¢
Proof. Writing the one-dimensional Black-Scholes call price process given time ¢ and security price p as

Ft,p) =p-®(di(t)) - K - e "0 (dy(1)),



the task is to prove that f; < 0. We may assume that r > 0. Using the identities: da(t) = d1(t) —oVT -t
and Py (t)o(dy(t)) = Ke" T D p(dy(t)), where ¢ is defined to be the density function of the standard normal
distribution, we have that

od

Fult,) = P (D) (1) = e T 00 (6)) - KT ip(da(1) S (1)
- ol (1) 20 =i 000 (0) - pia () Gt )+ T )
__ 9 rKe (T )
<0.
O
(b) Xc(t) increases in r
Proof. Observe that
XD oy (1) B 1)+ (T 1) KT 00y (1)) ~ KTy (1)) 2 (1)
= (s (6) B (6) + (T - )K" TD0(d (1)) - pie () 2 (1)
= (T -t)Ke T Dd(dy(t))
> 0.
O
(¢) X¢(t) increases in P (t)
Proof. Observe that
02 _ oy (1)) + o (1) 220~ Ko T oy (1) 222 1
p P p
= 0y (1)) + (s (1)) S (1) pip (e (1) ()
P p
=®(di(t))
> 0.
O
(d) X¢(t) increases in o for o >0
Proof. Observe that
PR o (1) 2 (1) - Ko T (1) 2 (1
= e () 52 () -l () G2 () - VT =)
=pp(di(t))VT —t
>0.
O

Exercise 3. Compute the price of a European call with the help of the equivalent martingale measure in a market
model with d = 2, 0 = g 012
021 022

B = (P\(T) - K)*

, where the call is a call on the first stock, i.e. the final payment B is given by



Solution. Observe that in (2, Fr, Q) we have
dPy(t) = Py(t) - (r(t) dt + o1 AW2(t) + 012 AW (1))

Thus, by the Variation of Constants Theorem, P (t) = P;(0)-exp (]Ot r(s)ds—3(o%, +oiy)t + 011W1Q (t) + 012W2Q(t)).
By Corollary 3.15, the fair price of the contigent claim B is given by

p=Eq (exp ( [ ds) (PL(T) - K)*)

=Ko (exp(—fOTr(s)ds) (Pl(()).exp(/OTr(s)ds—;(Jfl +a$2)T+aHW1Q(T)+012W2Q(T))-K) )

E ((Pl(o)pTe-%<U?1+052>T+011Wf’ (T)+a12 WS (T) K)+)
= Q 7
pr

where we define pr := exp (fOTr(s)ds). Define Z := aquQ(T) + 012W2Q(T) and observe that since WlQ(T) and
WQQ(T) are normal i.i.d. with respect to Q, Z ~ Ng(0, (0%, + 0%,)T). Moreover,

Pl(o)pTe_%(o'fl+o-%2)T+Z -K>0
if and only if

oL (o} +05) T =K.

K
Z>IH(P1(0)Z?T) 2

Thus, we have that

5o Fo (<P1<o>pTe%<0fw%>+Z —K)*)

pr
- 1 S T -K
- f : Pi(0)e ? ()T s g - Lo —2
K \/2m(0o% +02,)T pr V (ot +01)T

oo 1 _ Gy raiyT)? 1 K
- P,(0) f PREIC E ST P ' Y . —
K \/2n(0} +0%,)T i V(0% +03,)T

=P1(0)@(2I<2+\/m)_1[(¢ ( = )2 2 211 -
V@ +o,)T pr V(o3 +03,)T
1n(P1(?()W)+;(U%1+U%2)T) 1 K(I)(ln(Pl(?{)pT)—é(U%1+U%2)T)

V(o3 +03,)T pr V(o3 +03,)T

:P1(0)<I>(

Exercise 4. Let

1 2
x
(p(t,l') = ﬁ exp (_Qt) .

(a) Show that (¢, ) is a solution of the partial differential equation

Proof. Observe that

1 __g Lt—?’/?ex _5672
2% = " or \ 9o P\ 7y

2 2
- Lt*5/2 _ 1 17312 exp _
V2T 2/ 21 2t

= Sot'
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(b) Show that the problem
u(t,x) = uge (t, ), (t,x)€[0,00) xR,
u(0,7) =g(z), =zeR,

with a bounded function g is solved by
u(t, ) :E(g(\/Q_t-Y+:E))
for some random variable Y ~ N(0,1).

Proof. Clearly u(0,z) = E[g(z)] = g(z). Observe that Z := /2t-Y +x ~ N(z,2t) and so, since g is bounded,
we can apply Dominated Convergence twice to get that
1 (z-a)?

a0 e -
ug(t,x) = a[oo g(z)me i dz
=2 [T g)e2tz-2)ds

© 1
:Zf g(z)(agom(%,z—x)) dz
2 0 2—z)2
g f 9(2) L e_% dz

B 012 Joo 4t

= Uge (t, 7).

O

Exercise 5. Prove Proposition 3.28, part (2): The price P4(t, P1(t)) of an American put with strike K > 0 satisfies
(K-Pi(t))" < Pa(t,Pi(t)) < K.

Proof. In the case Pa(t, P1(t)) > K, the strategy “sell the option at time ¢ and immediately invest the proceeds at
the riskless rate r” is an arbitrage opportunity: If the buyer of the option exercises the option at some point s € [¢,T],
the time T value of the strategy is Pa(t, P (t))e"~) + (Pa(t, Pi(t)) + Pi(t) - K)e™T=%) > 0, and if the buyer of the
option never exercises the option, the time 7" value of the strategy is Pa(t, P1(t))e” T~ > 0.

In the case (K —Py(t))* > Pa(t, P1(t)), the strategy “buy the option and immediately exercise it” yields a riskless
time ¢t gain K — Py (t) — Pa(t, P1(t)) > 0 and incurs no further costs, which is impossible in an arbitrage free market.
The desired inequality follows by the principle of no-arbitrage. O

Exercise 6. Prove Proposition 3.29, part (2): For the price Pg(t, Pi(t)) of a European put with strike price K >0
and exercise date T', we have

(e 7T DK - Pi())" < Pu(t, Py(t) < K,
if there will be no dividend payments on the stock in [0,7T].
Proof. Observe that Pgr(t, P1(t)) < Pa(t, P1(t)) < K, proving the right hand inequality. Now suppose that

(e"TDK - Pi()) > Pu(t, Py(1)).

I claim that the follows strategy constitutes an arbitrage strategy: “Take a loan of value e "(T"Y K at the riskless
rate 7, buy the put for Pg(t, Pi(t)) and one unit of stock for P;(t), and invest the positive rest e """ K — Py (t) -
Pr(t, Py(t)) at the riskless rate 7. The riskless investment leads to a capital of K —e"(T=9) (P, () + Pp(t, Pi(t))) at
t="T.

If Pi(T) < K, the option buyer exercises the put, selling their one unit of stock for the strike price K and uses
this money to close out their loan, realizing a gain of K —e"(T= (P, (t) + Pg(t, P1(t))) > 0.

If instead P, (T") > K, the option buyer sells their one unit of stock and closes out their loan, realizing a gain of
(PUT) - K) + (K - " T™D(Py(t) + Pp(t, Pi(1)))) > K — " T (Py(t) + Pg(t, Pi(t))) > 0.
Since both cases result in strictly positive gains without any initial capital, the no-arbitrage principle implies the

desired inequality. O
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Exercise 7. Prove Proposition 3.44: All martingale measures Q for Py(t),..., Py(t) which are equivalent to P

can be obtained by a Girsanov transformation with an m-dimensional progressively measurable stochastic process
{(0(t), F+) }tero,r] where for all ¢ € [0,7] we have

t
f 07(s)ds < oo as. P, fori=1,...,m
0

and where Z(t,0), defined as in Excursion 5, p. 93, is martingale with respect to P. In particular, @ is given as
Q(A) =Qr(A):=E(l4-Z(T,0)) for all Ae Fp.

Proof. Fix a martingale measure space (Q, Fr, Q) for Py(t),...,P;(t) such that Q is equivalent to P. Observe that
since @ and P are equivalent on Fr, they must also be equivalent measures on F; for all t € [0,T"]. For each t € [0,T],

define D; to be the Radon-Nikodym derivative flgl‘ﬁ . For any t € [0,T] and A ¢ F;
Ft

E(E[Dr 14| 7)) = fADT P

=Q(A)
= Qlr,(4)

- f D, dP|s,
A

:thdP
A

=E[D,-14].

It follows that for all ¢ € [0,7], E[Dr | 7] = Dy, showing that {(Dy, F¢) }ie[o,r] satisfies the martingale property.
Moreover, since P|z, and Q|z, are equivalent measures, it follows that D; > 0 a.s. P and so E|Dy| = Q(2) =1 < oo
for all ¢ € [0,T]. Thus, {D¢}te[o,7] is @ P-Brownian martingale and we can apply Corollary 2.70 to the Martingale
Representation Theorem to get that there exists an m-dimensional progressively measurable process {(¥(t), F;) }ts0,
t €[0,T], with

T
f 10 (£)]|2 dt < oo
0

and .
Dt:D0+f U(s) dW(s) as. P,
0

I claim that Dy = 1. Observe that the statement Dy = 1 is equivalent to the statement that P|z, = Q|x,, and so to
prove the statement, it suffices to verify that P(A) = Q(A) for all A € Fy. Since P and @ are equivalent measures,
this statement holds for all P-null sets. Fix some A € Fy such that P(A) # 0. Because Fy is defined to be the
completion of o{W(0)}, and W (0) is constant a.s. P, it follows that for all B € Fy, P(B) € {0,1}, and so P(A4) = 1.
Thus, P(A°) = 0= Q(A°), which implies that Q(A) =1 = P(A), and the claim follows. Hence, for all ¢ € [0,T]

t
Dt=1+f U(s) dW(s) as. P.
0

Since Q|r, and P|g, are equivalent measures, D; > 0 a.s. P for all ¢ € [0,T]. Define 6(¢t) := —%’z), so that
D;=1- fot D - 0(s) dW (s). Clearly {(0(t),F:)}tefo,r] is an m-dimensional progressively measurable stochastic
process. Moreover, if we can show that ]Ot |6(s)|?ds < oo a.s. P for all t € [0,T], it will follow by the Variation of
Constants Theorem that D; = exp(—Z}":1 fot 0;(s)dW;(s) —fot 16(s)]? ds) = Z(t,0), so that Z(t,0) is a P-martingale

and Q(A) =E[14-Dr]=E[1la-Z(T,0)] for all Ae Fr.

Need to prove: [y [0(s)]|?ds < oo a.s. P for all t € [0,T]. O

Exercise 8. Show: With the notations and assumptions of Section 3.6 we have the following equivalence for a
trading strategy o(t):

©(t) is self-financing <=

A~ d t A
X(t) = Zy > [ i(s)dP;(s) a.s. P for all t €[0,T].
Po =170

12



Proof. We have that
dP;(t) = Pi(t) (bi(t) dt + i oij(t) de(t)) ;
j=1

and, by the It6 formula
1

1 t 1
T OREl WA O

Hence, by the product rule,

dP; = dP;(t) Pol(t) + P,-(t)d(Pol(t)) + (R- , %O)t dt
_B(t) (bi(t) dt+ " 03y (1) de(t)) = )) (1) dt.

Suppose that ¢(t) is a self-financing trading strategy. Then by definition, the wealth process X (¢) corresponding to
p(t) satisfies

d t
X(t)=x+ Z [ ©i(s)dP;(s) a.s. P for all te[0,T].
=170

Another application of the product rule gives that for all ¢ € [0,7']

X(”:%+f X(S)dpo<s) otg((;)*/t(x’l}s ds
:7_2[ @i(s

t A
2y [N aR(s) as P
Po 5170

r(s) ds + Z (f 5 (8)pi(s)bi(s)ds + Z f 5 (8)pi(s)oqj(s) dW; (s))

For the other direction, suppose that ¢(t) is a trading strategy such that
. T d t N
X(t)=—+), [ ©i(s)dP;(s) a.s. P for all t € [0,T].

Po =170
Then X (t) = X (t)Py(t), and so by the product rule, we have that for all ¢ € [0, 7]
t R t t
X(0) = Zpo+ [ Po(s)dX(s)+ [ X(s)dPo(s)+ [ (X Po)ds
bo 0 0 0
d t R d t R
=03 [ P aB() + X [ o) Pilsr(s) ds

~
|
—-

=z +¢=1 (/0 ©i(s)(Py(s)bi(s) = Pi(s)r(s)) ds + i / Pi(s)pi(s)oqj(s)dW; (s)) + Z / ©i(s)Py(s)r(s)ds

d
:m+;/0 pi(s)dP;(s) a.s. P.

It follows that ¢(t) is self-financing. O

Exercise 9. In the case of a two-dimensional Black-Scholes model compute the fair price of the contingent claim
with the final payment

B =1(p,(1)>P, (1)}

Solution. By Corollary 3.15, the price process X(t) of the contingent claim B satisfies

X () =Bq (e 1p (rysra(ryy | Fr)
=e " TDQ(P(T) 2 Po(T) | Pi(t), Pa(t)).

13



Observe that Py (T) > P»(T) if and only if
pl(t)e(T-t)(r—% T5a1 015+ o (WR(D)-WE () 5 PQ(t)e(T—t)(r—% ¥2,02,)+52, agj(WJQ(T)—WJQ(t))’
if and only if

Py (t)
Py(t)

1
-3 (oot -ot) = k.

(011 —021) (WE(T) - WE()) + (012 — 022) (W2 (T) - W ()) 2 In (

Set Z := (011 — 091) (W2(T) - WE(t)) + (012 — 092) (W(T) - W2 (). As (011 — 091) (W2(T) - W2(t)) and
(012 —022) (W2Q (T) - WQQ (t)) are independent normally distributed random variables with zero mean and variances
(0'11 —021)2(T—t) and (0'12 _0—22)2(T_t), respectively, it follows that Z ~ N(O, (T—t)((012 —0'22)2 + (0'11 —021)2)).
Thus,

x

% :e—r(T—t) oo 1 exp| - i €T
A /;< V21 (T = t)((012 — 022)2 + (011 — 021)?) p( 2(T—t)((012—022)2+(011—021)2))d

P
ln(P;Eg) + %(T_t)(U% +03y — 07 _0%2))

— e*T(Tft) P

V(T = t) (012 — 022)2 + (011 — 021)?)

Exercise 10 (Black-Scholes formula with dividend rates). If a stock pays a dividend rate 6 Py (¢) for some 6 > 0 per
unit of time then its price in the Black-Scholes model is modelled as the solution of

dPi(t) = P (t)((b-0)dt + cdW(t)),
Pi(t) =p.
Show that the price C(t, P1(t)) of a European call on this stock with strike K is given by:
C(t, Pi(t) = e TP (£)®(51 (1)) — e " TV RED(62(1)),

with

n(282) + (r =0+ L) (T - 1)
ovVT -t ’
52(t) = 61(t) - oV/T —t.

61(t) =

Proof. Note that
PUT) = Pl(t)-exp((r—é— %(;2) (T=t) + o(WO(T) —WQ(t))).

By Corollary 3.15 and the independence of W®@(T) - W?(t) from F;,
C(t, P(t) = Eq (¢ " T(PU(T) - K)* | 7)
N
_ e TTOR, ((P1(t)exp ((T— £) (r 45— %UZ) +o(W(T) - WQ(t))) - K) )

P1(t)e(T7t)(75’%”2)+” - e’T(Tft)K) 6_2(?72) dx

° 1
S v

=0T | 0071 ex
ONA N p( 2T 1)

= TP () @(di(1)) - e " TIKD(d (1)) - Pu(1)(eT - 1),

~ (x-0o(T —t))z) di — TV K P (ln(PII?)) + (r -0~ %02) (T-1t)

~(r-6-10%)(T-t)

o

where K := n(rts) <WQ(T) - WO(t) if and only if K < Py(T). O

Exercise 11 (Garman-Kohlhagen model for currency options). In the Garman-Kohlhagen model the exchange rate
S(t) between the domestic and a foreign currency (e.g. Euro/Dollar) in units of the domestic currency is given as
the solution of

dS(t) = pdt +odW(t), S(0)=sfor u,oeR.

14



Let 74 denote the riskless domestic rate, r¢ the foreign riskless rate. Show that under these assumptions the price of
a call option with time to maturity 7 — ¢ and strike K on one unit of foreign currency is given by

C(t,S(t)) =exp(-ry (T = 1))S(t)®(11(t)) - K exp(-ra(T - 1))®(72(t))
with
n (D) 4+ (ry—rp + L02) (T - t)
(t) - (K)+5Tf_+t ,
Yo(t) =m(t) —oVT - t,

in the units of the domestic currency.

Proof. Observe that one unit of foreign currency appreciates at the riskless rate of r¢ per unit of time in units of the
foreign currency, which is worth r;S(¢) per unit of time with respect to the domestic currency. It follows that the
exchange rate S(t) may be interpreted as a stock paying a dividend rate rS(¢) per unit of time with respect to a
one-dimensional Black-Scholes model. The conclusion then follows directly by application of Exercise 10. O

Exercise 12. Compute the price of the “asset or nothing” option which is given by
B=Pi(T) 1(p (1)1}
in the one-dimensional Black-Scholes model.

Solution. By Corollary 3.15, the price process X(t) for the payout B = Pi(T) - 1{p, (1)K} is given by

X(t)=e " T IEQ(PUT) - Ypyryaxy | Fi)
- e (TVE,, ( Py (t)eT-0=30") 40 (WAT)-W(®) | 1{WQ(T)—WQ(t)2K})
In (282) + (1 + Lo)(T - 1)
oVT—1

Exercise 13. (a) In the one-dimensional Black-Scholes model compute both the gamma and the delta of a Euro-
pean call and a European put with maturity 7" and strike K.

=P (t)®

Solution. I computed the delta for a European call in Exercise 2(c): Agc(t) = ®(d1(t)). I will use the same
identities as in Exercise 2, namely: dy(t) = di(t) - o/T —t and P1(t)p(dy(t)) = Ke " T"Dp(Dy(t)), where ¢
is defined to be the density function of the standard normal distribution. Computing the delta of a European
put, we have that

Brt) = e T 01 P - 1)) - P (0ot 1) P
=K e‘T(T‘%(dz(t))W - ®(-dy(t)) - Pl(t)w(—dl(t))w
P P

=-0(=di(t)).
Computing the gamma of a European call, we get

Cpe(t) = %@(dﬂt))

— o) 25

__pdi(?))
P (t)oNT -t

And finally computing the gamma of a European put, we get
0
Tpp(t) = —o-®(=di(t))
dp

__p(=di(?))
P (t)oNT -t

15



(b) Assume that an investor holds one European call with strike K7 and maturity 77. Further, he can trade in
European puts with maturities T5, T3 and strikes of K5, K3. In the Black-Scholes model, determine the numbers
w1(t), p2(t) of the two different puts the investor has to hold such that the portfolio - consisting of the call and
the put position - is both delta- and gamma-neutral at time t.

Solution. Using part (a), the requirement that the portfolio is delta-neutral is equivalent to the relation that
for all ,

D1 (1)
dp
—p1(1)@(=di(t, K2,T2)) — p2(t)®(~d1(t, K3,T3) = 0,

@(dl(t, Kl,Tl)) +

Xpp(t, Ko, To) +

0o (t
90;( )XEP(t7K37T3)
P

and the requirement that the portfolio is gamma-neutral is equivalent to the relation

w(dy(t, K1,T1)) @(=di(t, K2, T3)) o(=di(t, K3,T3))

t t
P1(t)0'\/T1—t +S01() Pl(t)a\/T2—t +<P2() Pl(t)O'\/Tg—t
O (t Opa (t
_991 ) g g Ko 1)) - 222D a2, 105 1))
dp dp
%o (t 0%y (t
+ (7012( )XEP(t,K27T2) + 8022( )XEp(t,K37T3) =0.
Op Op

The possible solutions (1 (¢), p2(t)) are then determined by the general solution to the above system of second
order linear differential equations.

Exercise 14. In a Black-Scholes market show that the absolute price change of a European call as a function of the
price of the underlying stock is smaller than the absolute price change of the underlying itself.

Proof. Let C(p) be the call price for a given price p, holding all else constant. By the mean value theorem, for any
p1 < P2, there exists some p € (p1, p2) satisfying

C(p2) - C(p1) = Cp(D)(p2 — 1)
= ®(di(t,p))(p2 —p1)
<p2-Dp1.

Since C), > 0, it follows that |C'(p2) - C(p1)] = C(p2) - C(p1) < Ip2 - p1l- O
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Chapter 4: Pricing of Exotic Options and Numerical Algorithms
Exercise 1. Show that, with the notation of the proof of Proposition 4.1, we have
Iy = P (1) (g1(t), b (1))

I = K1e "M 900) (6o (1), ho(1)).

Proof. We have that
b 1
n=n) [ T O ) da,

\2m(T —t)
o e
y = f e MK §(b) da,
@ \/2m(T -t)

1 * 1,
w::U-(ln(Plp(T))—(r—2a )(T—t)),
3 aa:+ln(P]1(—(f)) +(r+ o) -T)+ (r-30°)(T-1)
“ oJT-T
ax+ln(PI1((f))+(r—%<72)(T1—t)

b:=
U\/Tl—T

)

Observe that

_(z-o(T-t))?

2T P(a)de

o 1
I, =P (t f ]
=R e e
* 1
=P(t f o(T- - Q| ——=x+p5]|d
(1) | Po(r-t),(r-1)(2) (\/Tl——Tx 6) T

n el T 102 r——02
1 ( )+( +30%)(T1-T)+( N(T-t) . Then by Lemma 4.2, I = Py (t)P(X > w, Z < 3), where

where [ := ST
o(T -t T-t ——i=

(XuZ) NN((_(U(Tt)))v( T-t 1TitT))
VTi-T VLT T

Let Y] := —\/%X+a\/T t and Y5 := VJLZ+ ‘j/(Ltt),so that

() %)

Then
i ) . VT -T a(T-1)
n-a(tm(ns = VT oL Yes e W)

= Pi(t)P(Y1 < g1(t), Ya < ha (1))
= P ()@ (g1 (t), hn (1)).

We also have that
oo 1
I, =K e’r(Tlft)f ()| ——=z+ B+ /T -T | dz
2 1 @ @0,(T t)( ) m B g 1
=Kie "M OP(X >0, Z<B+0\/T1 -T),

with .
0 T-t -

(X,Z)~N((0),(_ o ga;)).
VT -T =T




Let Y3:= ——1=X and Y; := /2L Z, so that

VT-t Ty -
)

T i T-T . o(li-T)
L=Ke™MmDply, <Yy, < +
2 1 3 i 4 Tl—tﬁ T 1

= K1e " M09 (g, (1), ha(t)).

Then

O
Exercise 2. Prove Lemma 4.2: If X and Y are independent random variables with
XNN(/vao—Q)v YNN(Ovl)v
then for Z,a, 8 € R, a >0, we have
[ Yuo2(z) ®lax+p)de=P(X >2,Y <aX +f3)
x
=P(X>%,7<p),
where
X, 2)~N[[| * ot e
’ —ap)’\~ac? 1+a%02))"
Here ¢,, »2 is the density function of the normal distribution with mean p and variance o2,
Proof. Observe that
[ Ouo2(x) (e + 3)dr = f Ouo2()P(x>22,Y <ax+ ) dr
=E[P(X >Z,Y <aX +f)]
=P(X>Z,Y<aX+p)
=P(X>%,7Z<pB),
where Z :=Y —aX. Observe that EZ = E(Y - aX) = —au, and since X and Y are independent,
var(Z) = var(Y) + a?var(X) = 1+ o202,
and
cov(X,Z) =E[X(Y - aX)] +ap® = «(E[X]* - E[X?]) = —ac?.
Thus,
x,2)~N[[ # of
’ —ap)’\-ac? 1+a2%5%])’
as required. O

Exercise 3. Compute explicitly the price of the chooser option with maturity 7" and final payment
Bep, = max (X%fl}(l (PL(T),T), X1, (P(T), T)).

Solution. Let p* > 0 be the unique price such that X%’B‘}}(l (T,p*) = lef;t& (T,p*). Observe that, since chwf:l}(l (T,p)
strictly increases in p and XTP;tKQ (T, p) strictly decreases in p, Bop, = X%f%l (T)-1(p, (1)2p*} +X%"tK2 (T)-1(p, (T)<p*3}-

Define . . .
pi= = I -2 -(r--o - .
o (n( ) -~ 3ehr-o)
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Let g1(t), g2(t), h1(t) and ha(t), p1 be defined as in Proposition 4.1 and define

In (—PII((;)) +(r+ %O'Q)(TQ —t)

hs(t) :=
3() O_m )
T-1
h4(t hg(t) O'\/TQ— )\1 = —_—.

Then for ¢t < T, we have that

Xon(t) =Eq(e ™ T By, | Pi(t))
=Eq(e " IXEN (T) 1ip,(ryspey | PL(E) +Eq(e ™ T DXE (T) - 1ip, (ry<pey | P1(1))

1 / 22 _(T-t) yCall (r-1o®)(T-t)+ox
= - e T De X T, P (t)- dx
— S (T R0 e )
1
+ —
\2m (T - t)
= P (1)@ (g1 (1), hl(t)) - _T(Tl_t)@(”l)(%(t%hz(t))

“xiw 7 (e Ky®(a) - Pu(t)e 7 E P00 (b)) da
\/27r(T t—[ 2®(a) - Au(t) ®))

fw ei%e_r(T_t)XZIf;ﬁ(z (T, P, (t) (r——a )(T—t)+az) dx

where
In(7%) - (r - 3e®)(Tr - 1) + oz
oIy =T ’
- In(A%) - (r+ 3 (T -T) - (r - 3*) (T - 1) + 0w
' oI, -T '

Applying Lemma 4.2 and through a chain of computations much like in Problem 4.1, we have that

(o) 12
f e 20 e "D LB (a) de = Koe T2 e (o (1), —ha(t)),

1
V2 (T -t)

f P(t)e=o" 2 T-Dg(b) dz = Py (£)DO) (=gy (1), ~hs(1)).

W

It follows that
Xen(t) = P )@ (g1 (£), ha () - Kie "7 = Py ()@ (—gy (£), —hs(t)) + Kae "2 (—gy (8), —ha(t)).

Exercise 4. Consider the two-dimensional Black-Scholes model. Let Q1 be the unique equivalent martingale measure
for Py(t), Pi(t), Ps(t), if Pi(t) is used as the numeraire.

(a) Determine the Radon-Nikodym density of ()7 with respect to P.

19



Solution. By Theorem 3.51, the Radon-Nikodym density Y (T') = dd% is given by
Y(T)=H(T) Pi(T)
1 ,
- P(T) eXp(— (7"+ 5na-l(b—r;)n?)T— (b-r1)o -1W(T))

o ( (bl - % (Ufl + oty + ((b1 )02~ (b2 = 1)1 )2 + ( (b2 —7)o11 = (b1 — 7)o )2))T

011022 — 012021 011022 — 012021

. (_ (b1 ~1)o9z ~ (b2~ 1)1 011) Wi(T) (— (b2 =rlow = (b ~r)om | 012) Wz(T))

011022 — 012021 011022 — 012021

:exp(— 1 (((b1 —7’)0’22 - (bg —T‘)0'12 _011) . ((bg —T‘)0'11 - (bl —7‘)0'21 _012) )T

2 011022 — 012021 011022 — 012021

_ ((b1 -1)o22 = (b2 —1)o12 011) Wi(T) - ((b2 —ron = (b “rjoa 012) W2(T))

011022 — 012021 011022 — 012021

2 T 1 T 9
(-3 [ x5 [ xiras)
i=1

= Z(T, X),

o11—-(b1-1)021
011022-012021

(bl—T‘)G'QQ—(bQ—T’)Ulz _ 0_11
where we define X :=| (713022203272 .
— 012

(b) Show that

(bl*T)O'QQ*(bQ*T)UlQ _ t
W(l)(t) — W(t) + 011022-012021 on
- (ba-1)o11-(b1-1)021 -0 t
011022-012021 12

is a Q1-Brownian motion.

Proof. Observe that by Theorem 3.51, Z (¢, X) is a P-martingale. The conclusion then follows by Grisanov’s
Theorem. O

Exercise 5. Use the notation of Proposition 4.4 and prove the following equalities

(a) X (0) = XS3(0) + Ke™™ = p1@(ds(0)) - p2®(da(0))

min min

Proof. Observe that

Bhw = (K - min(Py(T), P2(T)))"

min

= (min(P1(T), P2(T)) - K)" + K - min(P1(T), P(T))
= BCYU L K — min(P,(T), P,(T)).

min

Thus,
Xin (0) = X51(0) + e T Eq(K — min(Py(T), P(T)))
= X (0) + e K —Eq (e PU(T) - Lipyry<rucryy) — Bo (e Pa(T)(py(1y5Pa(1)))-
Define

— 02 t

) ((bl*r)o’QQ*(bQ*T)G’lz _ O'Z'l t
WO (@) =w(t)+ (( (ba-1)712—(bror)orss ) :

011022—012021
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Applying Problem 4.4, we have that

EQ(e™™ PiT)  Lpi)<P, moa2yer(1)) = PiEQULPTIEP, (moa 201 (T)})

=piQi(Pi(T) £ P (mod 2)+1(T))

hl(w) + (—1)1%((011 - 091)° + (012 - 022)>)T

\/((011 —021)%+ (012 — 022)2)T

= piQ; ((—1)1‘*1(011 — o )WNT) + (1) (012 - 002) WEN(T) <

o[ ) Gy et
o - Vo?T
=pi®(dis2).

Putting everything together, we have that

Xwh(0) = X50(0) - pr@(ds) — p2®(da).

O
(b) XSal(0) = X521 (0) + X3 (0) - X 52 (0)
Proof. Note that
Bk + B! = (max(Py(T), Px(T)) - K)* + (min(P(T), Po(T)) - K)*
=max((P(T) - K)", (P(T) - K)*) + min((P(T) - K)", (P(T) - K)7)
_ pCall Call
= B(1) + B(Q) .
Thus,
XSall(0) + XSl (0) = X G (0) + XG5 (0),
O
(€) X (0) = X[13(0) + X 557(0) = X1(0)
Proof. Note that
Brae + Bin = (K — max(Py(T), Py(T)))" + (K - min(Py(T), Po(T)))*
— min((K - Pi(T))", (K - Py(T))") + max((K - Pi(T))", (K - Py(T))")
- Bl B
Thus,
X (0) + X55(0) = X{Y(0) + X{557(0).
O

Exercise 6. Do the explicit calculations needed for the determination of the price X(%all(O) of a European down-

and-out call.

Solution. The task is to fill in the details of the explicit calculation for the down-and-out call in the section on
one-sided barrier options, where it assumed that the barrier b < p; and K < b. Fix p € R and define W (t) := W (t) + ut,
M (t) = minge,<; W(s). Observe that since the distributions of W (¢) and =W (t) are identical, applying Lemma 4.5
we have that for any p € R and z < min(w,0),

P(W(t) + ut > w, (?Slslgt(W(s) +us)>x)=P(-W(t) - pt < -w, (I)rslsaé(—W(s) - ps) < -x)

—w + ut P —w+2x+ut)
=0 ——— |- ——F .
() e (5
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It follows that the joint density function ¢y, v (w,z) is given by

0? —w + pt 9 —w + 2x + pt
- - o EETRL Y i B P
@W,M(wwx) 8w8$( ( \/ZL ) e \/f_; {z<min(w,0)}

0 (22 + pt —w)? ouw O —w+ 2z + pt
= Sl A (D) YPP-TE Sy el iy I F] .
eXp( o pe ow \/1_5 {z<min(w,0)}

1 2 o Cotut=w)? 2 o Qutpt-w)®
= ( -2z +pt- w); Eez" 2t +/ Eﬂezﬂ * )1{wSmin(w,0>}

1 2 —u2 UW—(2T—W 2
1V E(w—zx)e potRe G COY L in(,0))

2
Set = TéJ . Since P;(T) > K if and only if

1 K
W(T)+pT > = ln(—) =10,
g Y4
and, assuming o > 0, ming<s<7 P1(s) > b if and only if
i (W () + ) >~ In () =
in 8)+ps)>—In o) z,

it follows that

X3M(0) =Eq(e ™ (Pu(T) = K)* - 1(p, (tysbvte[0,7]})
= / / e (PUT) - K) =] —=(w - 23:)e’“zT/QJr”w’(%’w)z/(QT) dw dz.
& Jz TV nT

u

Since the computation of this integral is rather long and similar to the computation of X {i £(0), I will just summarize

the steps here: Substituting u = w—2x, completing the square, using the identity faoo ue~(wm*1CT) gy = T (7:’/_7? )+
(a=m)?

T\/%e_ 2T | integrating a number of terms by parts, and completing the square again on the exponents of these
terms, we get

b 26%-*—1 b 277‘2—1
XG10) = p1®(dy) —be T ®(dy —oVT) + e (b - K)®(dy — oVT) - py (—) ®(dy) +6_TT(—) ®(dy - oVT),
D1 D1
where
ln(%)+(r+%02)T 1n(p%)+(?"+%02)T
dy = y d2 = .
ol oT
Put

Exercise 7. Compute the price X; **(0) of a European down-and-out put.

Solution. Observe that if K < b, then the option is worthless. Hence, we may assume that K > b. Note that
BLUt >0 if and only if

W(T) + uT < l1n(5) i,
a b1

and
b

. 1 B
Og}slsr%r(W(s) +pus) > - ln(p—l) = 3.

Thus, using the joint density function computed in Problem 6, we find that

1 2 0 w
X£)Ut(0) = ?\ / ﬁ [ [ (’LU - 2:C)67#2T/2+,uw7(2a:7w)2/(2T) (67TTK —plegw) dw dx
1 2 0 wW—2x
= f‘ / 7T7T [ [ ue—pzT/2+u(u+2w)—u2/(2T)(e—rTK _pleo—(u+2w)) du dx
0 wW—21x w—
_ l /l f e2ne f ue_i( 2ffrT)2 (e_rTK _plea(u+2x)) du dz
T 7l Jz -z
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Focusing first on the inner integral, we have

with

and

0w epm? g (u+2x) T 2
f ue” 2T (e K —p1e? T N du =" KT - p1e”©T 1,

T

W28 (u-pt)?
Ilzf ue 2T du

x

_ (@9-22-uT)2 _(z+uT)? w -2z — pl —x - T )))
=-Tl|e 2T —e 2 —uTV2rT|® -P

=T (J) - Jo) + uT*N 21T (J3 - Js),

w-2x 2
_(u=uT)
I, = f ue 2T Uy

/\/(w—2m—uT)2—20(w—2w)T o2

(w—-22-pT)2 20 (w-22)T
=-T (6_ 2T

It follows that,

We compute,

x

2T (y+(u+0)T)d
eH (y+ (o)D) dy

_ ((E+;LT)2+2UIT
—e 2T

T

+(M+U)T\/Q7T_T(¢(\/(@—2$—MT)2—20(@—2$)T)_(I)(\/(x+uT);+2amT

—T(Js - JG) + (/1 + O')T\/ 27TT(J7 - Jg)

1 2 0
X5 =\ o7 [ IV T (= Ji) — e TTRT (- )

+p1620xT(J5 - Je) _pleQJx(M +0)TN 21T (J7r - Jg)) dx.

0 0 2 2
_ (®-20-uT)
f e2He I, dx = f e 3T T2 (g
& @

(w-pT)%+4w? 0 (z+@)?
= e‘# f e‘% dx
T
_ /ﬂei(m—uﬂ;);wﬁﬂ ((I) (Qw) % ( 2(2 + ) )) .
2 VT VT

0 0 (w+um)?
f M Iy dx = f e 2T YT g
T xr

0 _(e-um)?
:[ e 2T qx
&

:W(cb(—m/:?)—q)(f_ﬂ

_e%%(ﬁ;—%—ﬂ’
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Loe2M$J4dx:L0 2*%( :”J_"‘T) dz
8 () e
Lot ) oo o)

0 0 o 2 -
_ (w=2z-pT)% 20 (-22)T
f 21N gy = f e T *2pro)T gy

x x

po—20-u 2
o+ 5
2u2T

w2 g0l (- 2(7 w)? 0o - 2( 1 )
=€ 2u2T f e 42T dz

ol

_ 7; = gpat , sty (@(20+M(1 —w)) _@(2u2T33+20+/J(1 —w))).
2u2T T T

0
[ e2(u+0)wJ6 dx

0 (@+uT)2420Tz
/ 6_#-'—2(’“—0)1 dx
&

_[A,2T+(U+}L)2T 0 _(’I O-ﬂ‘ )2
=e 2 e dx
T

" T+(n+,¢) T o+ AT -0 —
= VarTe ((I)(_4T3/2)_(I)( AT/ ))

0 0 N _ 2 _ N
[P g [ ezww%(\/(w 20 uT)T 20(b-20)T

1 o \/(w pT)? = 2007\ aguioyig
2(p+0) T
~ /O o (11,7217“7")22;25(11;721)7“ +2(pto) d(p)

S S P \/(w HT)? = 200T \  suioyig
2(p+0) T
7wl  (w-pT)?-20wT+w? 2T —w
e el -——]-a .
Vi (7))

0 0 2
[ 62(u+0)wJ8 dr = ]: 62(u+a)wq)( (LU + :U’T) + 2O—='ET) dx

(0 -2% - uT)? - 20(w-22)T
T

(- 2% - puT)? - 20(w—22)T
T

T

1 T T)? +20&T 0 @+ur)2+200 -
= q)(MQT) — 62(’M+U)L¢’ (.’17 TH ) tio0x _ /: 6_( “T;T 2 T+2(/,I,+O’)L dx
2(p+0) T

x

o 2 o
(¢(M2T) _ 62(,11,+0')§:(I) ( (‘T + /’LT) + 2U$T)

1
C2u+o) T

o2420)T z—(u+o0)T
2rTe (@(—(u+0)\/f)—<l>((\'l;_T)))).
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Putting everything together, we have that

b—ul (-2 - uT
XPut() = e‘rTTK{i) (“”“‘) — i (W)
2

VT

B e ] ) By - CRi))
2 ((P(T)q)(ﬁ))

(M\/—)wm@(‘/ﬁ)_ 2nT(<I>(—uﬁ)+‘I)(j_MT))}

VT VT

B O (@(;Tw) @(MJ%“A’)))J(@(—MVT)—@(@;%T))}

20 —p)2 o 2z, o
+p1{ 1 _algper, ooagon (@(20+u(1 w))_q)(Qu Ti+20 + (1 w)))

uT* T T

82 T(o+)®T o+ AT -0 -p
e (q)(_4T3/2)_¢( AT/ ))}
_pl{@ (\/(w - uT)T2 - 20121T) _ eoig (\/(w 2 - MT)QT— 20 (1 - Qi)T)

R . ~ A N A 2 N
A /ﬂg‘”‘”’%*ﬂw2 (<I> (_w) _ (I,(Qx _w)) —B(W2T) - e2(u+o)§t¢)((l‘ +uT)? + QUxT)
2 VT VT T

BT T (<1> (~(u+o)T)-@ (“W)) }

Exercise 8. (a) Show that the binomial model consisting of a stock and a bond is complete. Compute the
corresponding equivalent martingale measure @Q,,.

Proof. Fix a binomial model with parameters 0 < d < e” T <u ,m,q (using the same notation as in section 4.3).
Towards computing Q,, let G;(P{™ (i) = Qn(P{™ (i+1) = uP(n)( ) | P\ (i)) and observe that the martingale
requirement gives

0-5, (AP0 A0 o
“\RGD)  R(G-DI) T

_ P"(i-1)
C Py((i- nL

— G(PM(i-1))=

(@P" G =1)us (L= a(P = 1) d)e "7 1)

e Z—d_.A
d —.q.

Observe that since d < ¢ @ < u, it follows that § € (0,1). Hence, @, ~ B(n,q) defines a valid martingale
probability measure on the binomial model. Moreover, @), is clearly equivalent to P, and has Radon-Nikodym

AU \n-U
derivative (g) (%3) = ddQFI‘, where U is the defined to be the number of "ups” for a given path.

Fix a contingent claim B in the binomial model. We need to prove that there exists an admissible trading strat-
egy (k) with corresponding wealth process X (k) such that B = X(T') a.s. P, such that X (k) = X (k)/Py(k)
is a martingale with respect to @,. Observe that for a given price Pl(n) (n-1), the system of equations

o1(n—1DuP™ (n-1) +go(n—1)e" = BuP™ (n-1))
o1(n—1)dP"™ (n-1) +go(n-1)e"" = B(dP\™ (n-1))
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has the unique solution given by
BuP™ (n-1)) - B(dP{™ (n-1))
P (n=1)(u-d)
2 dBuP"™ (n-1)) - uB(dP™ (n-1))
d-u '
Thus, since by Theorem 3.45 there exist no arbitrage opportunities in our model, the price of the option at time
n -1 must be given by 0 < X(n-1, Pl(”) (n-1)) = Pl(”) (n-1)p1(n-1)+po(n-1). Now suppose that the option

has been priced at time n — k for some k € {1,...,n — 1} by replicating the price X (n -k + l,Pl(n)(n -k+1))
via a time n — k strategy p1(n - k), po(n —k). Observe that the system of equations

p1(n-1)=

po(n-1)=e

p1(n—k- 1)uP1(n)(n— E-1)+pi(n-k- 1)eT% = X(n—k,uPl(")(n—k— 1))
o1(n—k-1)dP™ (n-k-1)+p1(n—k-1)e"" = X(n—k,dP™ (n—-k-1))
has the unique solution given by
X(n-kuP™(n-k-1)) - X(n-k,dP™(n-k-1))
P (n—k-1)(u-d)
b dX (n=k,uP{™ (n-k-1)) - uX (n-k dP{" (n- k- )
d-u
Again, due to the lack of arbitrage opportunities, the time n — k — 1 price of B must be given by 0 < X(n -
k- 1,P1(”)(n -k-1) =pi(n-k- 1)P1(n) (n—k-1)+po(n-k-1). Thus, we inductively obtain a unique

trading strategy (i) whose wealth process has the property that X (n) = B and X (4) > 0 for all i € {0,...,n}.
Moreover, due to the equation defining ¢(n -k — 1) above, we see that

pr1(n-k-1)=

po(n—k-1)=

or(n-k-1DP™"(n-k)+o1(n-k-1)e"" = X(n-k P™(n-k))
= p1(n = k)P (n=k) + po(n k),
and so ¢ is admissible. Finally, towards verifying that Xisa Q,-martingale, observe that
Eq, (X (k) | F{")) = Eq, (P (k)pu(k—1) + po(k = 1)e" =) | 7))
=PI (k- 1)pn(k — 1) + po(k— 1)e" = =D

=X(k-1).
O
Show that the price of an option B in the binomial model is given as Eg, (e™"* B).
Proof. Observe that
B, (¢ % B| P (n-1)) = 4% BuP™ (n-1))+ (1-g)e" = B{dP{™ (n-1))
1—de "% (n) ue "W -1 (n)
= WB(uP1 (n-1))+ de(alP1 (n-1))
= p1(n=1)P{"” (n~1) +go(n~1)
=X(n-1).
Now suppose that Eq, (e*TMB | .7-"7(:_12) =X(n-k) for some ke {1,...,n—1} and observe that
Eq. (7% Bl A1) = Equ(e  FEq, (7R BIFI | AL
=Eq. (7" X(n=k) | F"})
= VR (X (n-k) | B
=" (nks DX(n-k-1)
=X(n-k-1)
The statement follows by induction. O
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Exercise 9. Show by an example that in the trinomial model a European call cannot always be replicated by a
trading strategy in bond and stock.

Proof. Take the one-period trinomial model with up parameter v = 2 and let B(up1) = 3,B(p1) = 2,B(%p1) =1
Suppose for a contradiction that some trading strategy ¢ replicates B. Then ¢ must satisfy the system of equations:

2¢1p1 + 0 =3
P1p1 + o = 2
P
— +po=1.
¥1 5 0
But then we must have p; = p% = p%, a contradiction. Hence, B cannot be replicated by a trading strategy. O

Exercise 10. In the one-period trinomial model compute two different equivalent martingale measures.

Solution. Let u,qi, g2 be the parameters for the one-period trinomial model. Observe that any ¢;,d2 € (0,1) such
that ¢; + g2 <1 and

p=Eq, (¢ Pi(1))
_ . G2 N
=y (Uql o +1-q1 —CI2),
defines an equivalent martingale measure for our model. Solving, we have that

el — 1+ (u—-1)Gs
u(u—1)

a1 =

"I <y (assuming r > 0), any two choices of ¢y € (O,min(l7 L erTi_l)) will do.

Since 1<e u+l — (u=1)(u+1)

Exercise 11. Give the proof of assertions (1) and (2) in Theorem 4.18:

(1) The random variables {7,.1 — Tn }nen are independent and identically distributed. Their Laplace transform
p(A) is given by

_ cosh(po2Ay)

~ cosh(yAy)

s \/HP+2)0? 250

. 1
Wlthpﬁ:?"—itf , Y= 2 ,

p(A) =E(e?7)

Proof. Observe that
(Tns1 =) (W) =inf{s >0 |o(Weir, (w) = Wr, (w)) +5(r = 1/20%)| > Ay}.

By the strong Markov property of Brownian motion, B; = Wi,, — W, is a Brownian motion, independent of
F-.,. Since (74) is an increasing sequence of stopping times, (F;,) is an increasing sequence of o-algebras. It
follows that o(Wyr, — W, )+ s(r — 1/20?) is independent of F,, for all 0 < k < n. Since measurable functions
preserve independence, it follows that 7,.1 — 7, is independent from F,, > o(7g) for all 0 < k < n, proving
that (741 — Tn)nen are independent. Moreover, since for all n € N, By = Wy, — W, ~ N(0,t), it follows that
o(Wisr, =W,) +t(r-1/20%) g o(Wisr, =W, ) +t(r—1/202) for all n,m €N, proving that (7,41 — Tn )nen are
also identically distributed.

Towards computing their Laplace transform ¢()\) = E(e™*™), let 7’1(”) := 71 An and observe that for a twice
continuously differentiable function g € C%(y — Ay, y + Ay), the Ito6 formula yields

(n)
n - ‘r(") ! —As —As 1 —As
gV (e g+ [T AV () + g (¥ ()7 + Sag (Y ()¢ ds
()

+/01 ag (Y (s))e™ dW (s),
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where 11 := 7 - $02. By definition, Y'(s) is bounded in [O,Tl(n)] and so g’ (Y (s))e™* is also bounded on this
interval. Hence,

£(n)

IE(/O ag'(Y(s))e_’\SdW(s)):O.

This implies that

Tl(n)
E[g(Y(Tf"U)e-”f“’)]:g<y>+E[ A AV ()™ + g (V ()™ + 202" (V(s)e ™ ds | (1)

Now to determine E(e*71), we look for a g € C? with

%(729"(.%‘) +pg () - Ag(z) =0, forall ze(y-Ay,y+Ay) (2)
g(y-Ay) =1 (3)
g(y+Ay) = 1. (4)

Applying dominated convergence and boundary conditions (3) and (4), we see that

. (n) —)\‘r(") AT

Tim B (g(Y (7{"™))e ") =B (g(Y (1))e ™) = p(N),
Thus, for such g € C2, (1) and (2) imply that

9(y) = o(N).
Solving the given two-point boundary value problem for g, we get
g(w) = e 7" (Cre7* + Coe ™)
{Cle"f(erAy) + Che 1WAy - eho 2 (y+Ay)

17 W=8Y) | Oy e (W=8Y) = pno ™ (y=-Ay)

= cosh(yAy)(C1e" + Cye™ ™) = ety cosh(puo 2 Ay)
cosh(puo=2Ay)

= =@(N).
cosh(729) 9(y) = ()
O
(2) E(m) = % -tanh (£ - Ay) for p %0,
2
E(7?) = 2(E(m))? + ajﬁﬂ .tanh(%) Ay — (%) for p # 0.
Proof. See Problem 14 below. O

Exercise 12. Derive part (2) of Lemma 4.5 from part (1) with the help of Grisanov’s Theorem 3.11:

For e R, let W (t) := W(t) + pu-t and M(t) := maxgese; W (s).Then the following relation is valid:

- ~ ~ w — pt _ e w—2x — pt
P(W(t)gw,M(t)m)_cb(ﬁ) (D(ﬁ )

Proof. By Grisanov’s Theorem, for any 7" > 0, W(t) is a Brownian motion with respect to the probability measure
Qr defined by the Radon-Nikodym density Z(T, ) = e *W(D-1/2°T  Fix ¢ > 0. By part (1) of Lemma 4.5, for any
x> max(w,0),

- - w 2z —w
QT(W(t)Sw,M(t)<x):<I>(\/E)—1+<I>(\/E).
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It follows that the joint Q;-density function ¢y 5 o, (w, ) is given by

H? w 2x —w
N =——|P|—=]-1+P| ——— 1 >max(w
S"W,M,QT(wvx) 8w8$( (\/E) + ( NG )) {z>max(w,0)}

Az - 2w _(2a- w)21
fm {z>max(w,0)}*

Using this @;-density function, we compute

P(W(t) <w, M(t) < 2) = Ep (1 (12 i) <0 )

Exercise 13.

W (t)+1/2p°t
=Eq, (1{V~V(t)§w,l\;l(t)<m}eu (O+1/2p )

=Eq, (1{V"V(f)<w M(t)<T}eNW(t)_l/2u t)

[ / s 1/24° 2,47 — Qwe @i-n)? w) .
v t\/2mt

71/2,“4 t/ ell’w ‘/w Q‘T w (21 w) dxdw
V 0

1 _ _ _(2(owu)-w)2 (21 w)2
-l tf e le 2t -e dw
— 00

V27t

1 e - @2 2 - (2z—w)? 2
— eﬂw_%_1/2ﬂ t_ M= -1/2p tdﬁ]
_(@-pt)? (—(ut+2z))?
2 T dw

\/ﬁ
o

(4.21) and (4.22) we require u = 1/d.

O

(a) In the binomial model, determine the parameters u, d, ¢ if additionally to the moment conditions

Solution. To first dispense with the case ¢ = 1/2, observe that condition (4.21) forces r = 1/202 and then
(4.22) implies that u = e?VAt Now suppose that g # 1/2. From (4.21), we have that

(r—1/20%)At = In(u)q +1In(d)(1 - q)
=In(u)(2¢-1).

r— o2
It follows that u = e 22, From (4.22), we also have that

Solving for g, we find that

and

(r—1/20%)2(At)? + 02 At = In(u)?q + In(d)?(1 - q)

=1In(u)?
~(r-1/20%)%(At)?
o (2¢-1)2

(r—1/20%)VAt . 1

2/(r - 1/202)2(At) + 02 2’

q:

u = V1207 (A7 At

Cox, Ross, Rubinstein suggest the choice of

w= 60\/At, d= e—cf\/At'

Show that with this requirement, (4.21) is satisfied but not requirement (4.22). How do we have to choose the
left-hand side of (4.22) such that with the above choice of u, d (4.22) is also satisfied? How do we have to

interpret this left-hand side?
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Solution. Observe that in order for (4.21) to be satisfied, we must pick

‘- (r-1/20*)VAt +o
= o .

However, we than have
In(u)?q +In(d)*(1 - q) = o> At
+ (r—1/20%)%(At)? + 02 At,

and so (4.22) would be satisfied if and only if the riskless interest rate is given by r = 1/202. That is, if and
only if the price process has no drift component.

Exercise 14. Let 7y be defined as in Section 4.5. Determine E(7;) and E(73).

Solution. From Exercise 11, we computed

cosh(puo2Ay)

=FE(e ) =
e(A) =E(e"™) cosh(129)

E(Tl) = —E(d

Observe that if g # 0, then this expression is smooth in some neighborhood of 0, and
dX

e—)\'rl)
A=0
=-¢'(0)

_ cosh(uo2Ay)
cosh?(vAy)

Ay

VEZ+2X0? |

sinh(yAy)

= Ay tanh(puo?Ay).

|1
e—>\T1 )
A=0

Ay

A) tanh(vAy) ————
(w( ) tanh(yAy) u2+2Ao2)
Ay 1 (Ay)2 9
— —p(0)—————|—) +¢(0)tanh A
ol O s () @ e ay)
o?Ay
|uf?

We also have that

2 &
E(Tl ) = E(dAz

=¢"(0)
_a
T dA

A=0
o’ Ay
|l

= ¢'(0) tanh(po " Ay)

1 Ay\? _
S W 1) S
(Tl) cosh2(ua‘2Ay) 1 (,LLO’ y)

o?Ay _ (Ay)2
|uf? plo

= 2E(71)? + tanh(puo?)
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Chapter 5: Optimal Portfolios

Exercise 1. Use the martingale method to solve the portfolio problem (5.2) in the case of constant market coefficients
and with the utility functions
1
Ui(t,x) =Us(x) = —27  for v€(0,1) fixed.
Y

Solution. Using the same notation as in Section 5.2, we have that
Li(ty) = Io(y) =y OV,

Setting p := %, we compute
T
) =E( [ HORCH0) s BB
T ol 0l
-E (fo YOV H(4) 7 dt + y1/<71>H(T)w—1)

T
= y/0-D) (fo E (e—rpt—pHW(t)—%p92t) dt+F (e—rpT—pGW(T)_;peaT))

0

1 1
(o).
K K

where we define x :=p (%Hzﬁ - r) (and assume for now that x # 0). Given initial wealth = > 0, Theorem 5.8 tells

_ MG ( Ji T otp(rib62(1-p) gy o eTp<r+;02<1p>)>)

us that the optimal terminal wealth is given by
B* = L(x ' (z)H(T))
xH(T)l/(vfl)
e L
and the optimal consumption is
(1) = Li(t, X~ (2)H(t))

cH ()Y
(iener 1

Towards applying Theorem 5.9, we compute

T T T s P P
}&QE([ H@k%@dMJﬂTﬂr|ﬂ):Hé;p(i+ngﬁ_i(ﬁ‘E(gzw @+E(Z%?))
: (Leneo s
A7 (L+1) et -1
= FLW (D)),

Moreover, there exists a portfolio 7* with corresponding wealth process X=7¢" guch that X””’“*’c*(T) = B* as.
Since x(y) < oo for all y >0, f(0,0) = x, and one can easily check that f € C*?([0,T]xR), Theorem 5.9 implies that
the optimal portfolio is given by

70 = e WD)
- 1) 2 D COH
__9

o(1-7)
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Now, dealing with the edge case = 0, we see from above that in this case x(y) = y*/"D(T + 1), and the optimal

1/(v-1) 1/(v-1)
terminal wealth and consumption are given by B* = %, and ¢*(t) = %

is then X*7™ ¢ (t) = %, and the optimal portfolio is again 7*(t) = ﬁ.

. The optimal wealth process

Exercise 2. Use the martingale method to solve the consumption problem (5.8) with the utility functions
1
Ui(t,z) = Ze Py, e (0,1), B>0 fixed.
v

How do the optimal strategies (7%, c¢*) depend on 87

Solution. Again using the notation from Section 5.2, we have that

)

Lity) = e%tyl/('y—l) = B-Dtyp-1

with p:= . Thus, using « := p(26%(p-1) —r) (and assuming for now that S(p—-1) + k # 0),
v-1 2

T
x(y) =E (fo H(t)I(t,yH(t)) dt)
= yl’—l fOT PP-Ditp (H(t)P) dt

= yP! /T (Bp=1)+r)t 1y
0
o1 eBl-1)+r)T _q

Bp-1)+k
=y? ' Cr.

=Y

By Corollary 5.10, the optimal consumption is given by

() = Li(t,x" (x)H (1))
Bp-1)t

xre

——H(t)"?
Cr (t)

cH (P (B(p—1) + k)@ D

cB-DT _1

_ 2B D) =K) (1p)((reo>-m)trow (1))

L= cBir-D+m)T

Now solving the edge case f(p—1)+r = 0, we get that x(y) = y*~ 1T, so that c¢*(t) = %e(l_p)(“w?_ﬁ)tww(t)). Observe
that, in both cases,
E(c*(t)) = CE (e(l—p)((T'+92—ﬂ)t+9W(t))) = 0P (r+67=5-5(1-p)*0%)t

for some constant C. Thus, if B < r + 6% - %(1 - p)26? then expected optimal consumption increases with time. If
these two quantities are equal, expected optimal consumption remains constant in time, and if 8 > r+62— %(1 -p)262,
then expected optimal consumption decreases with time.

Exercise 3. Consider the example “logarithmic utility” of Section 5.3 with an option with the final payoff
B=|P(T)-K|.
(a) Determine the price of B and the corresponding replicating trading strategy U(t) = (Vo (t), ¥1(t)).
Solution. Observe that B = BIC(“” + Bﬁ“t, and so the price process f corresponding to payoff B is
F(8) = XEUH(E) + X (1),

where X[(g“” and X Ilz“t are defined to be the price processes for a European call and put option with strike
price K, respectively. Thus, the replicating trading strategy is given by

(Wo(1), Wi(t)) = (Ke (1~ 20 (da(1))), 20(d:1 (1)) - 1).
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(b) Show that with the above option Theorem 5.11 remains valid if (with the usual notations) we set

()= | BB D 20,
0 otherwise.

Proof. Let & be the optimal stock-bond trading strategy with corresponding wealth process X¢, take ¢ to be
the optimal consumption process, and let X®(t) = po(t)Po(t) + ¢1(t) f(t) be the wealth process corresponding
to the option-bond trading strategy

3 _
o0 - (FOZADI o, ).

Let 7, be the option portfolio process associated to (. Observe that, from the definition of ¢, we have that

XE(t) -1 (1) (1)
Po(t)

It follows that X¥(0) = X¢(0) =  and for all ¢t € [0,T], X¥(t) = X¢(t) > 0. Moreover, assuming ¢ is a valid
trading strategy, we immediately get that J(z;7,,c) = J(z;me, ¢). Hence, to complete the proof, it suffices to
verify that ¢ is a self financing trading strategy. Towards verifying that ¢ satisfies stochastic integrability, note
that by the It6 formula,

X?(t) = Po(t) + o1 (t) f(t) = X5(t), forall te[0,T].

df (4, PL(t)) = (ft(t) + PO (B)r + %UQP1(t)fpp(t)) dt + o Py (£) 01 () dIV (1),

and so

S o= [ o (02 P d
T
<o? fo E(0)2P (1) dt <00 as.

Towards proving that ¢ is self financing, we use the fact that f solves the Black-Scholes PDE,
1
ft+rpfp+502p2fpp—rf20, f(T,p)=|p—K|,

to compute that

XE() -1 (S (1)
Po(t) TP()(t) dt

L0y ) (£ + PO + 30> PL (0 1y (1) it + o PL(OWL(0) AW (1)) = (1) de

©o(t) dPy(t) + 1 (t) df (t) —c(t) dt =
£1()
v, (1)

— rXE(8) dt + o1 (¢) ( Fi(8) + P (00 () + %ﬁpl(t)? Fop(t) -7 f(t)) dt + 061 (H)PL(E) dW () - o(t) dt

=& (t)Po(t) dt + r& ()P (t) dt + o& (¢) P (t) dW (t) — c(t) dt

=&o(t) dPy(t) + & (t) dPi(t) — e(t) dt

= dX*(t)

_ dX?(b).

+

O

(c) For fixed t € [0,T] regard the optimal portfolio process mop:(t) as a function of P;(¢). What happens at that
value of Py(t) for which Wy (¢) vanishes?

Solution. Observe that Wy(¢) =0 if and only if d;(¢) = 0, if and only if

Py(t) = Ke (#3207 )(T-1)
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Hence, by monotone dependence of ¥y (t) on Pi(¢) and the continuity of ®(do(t)) with respect to Pi(t), as
\111 (t) - O,

() = PL ()01 (1) + Ke T D (1= 28(dy (1)) » Ke " T (1 - 28(-0VT - 1)) > 0.

It follows that, for the case b+ r,

_ () f(@)
SO

_ §1 () f(1)Lw=0y

W1 () po(t) Po(t) + &1 () f(#)1{w=0y
_ G@rf@)
= 7@1(”)«0(” {¥,#0}
_b-r f()

0'2 \Ifl(t)Pl(t)
L)oo s Ui(t) 40

—00, as \Ifl(t) TO

1w, 20y

In the case where b=r, & (t) =0 and so mp(t) = 0.

Exercise 4. For T > 0 solve the following stochastic control problem
T

m(i?]Eo’w (f (MX(s)*+Nu(s)?) ds + DX(T)2)

u(- 0
with

dX(s) = (AX(s) + Bu(s))ds + o dW(s),
X(0)=ze€R,

and M,N,D >0, A,B,0€R, and U =R.

Solution. The HJB-equation corresponding to this stochastic control problem admits the form
1
miﬂg {vt + 502119;95 + (Az + Bu)v, + Ma? + Nu2} =0, (t,x)e[0,T]xR
ue

o(T,z) = Dz, xeR.
Formal minimization yields the following candidate for the optimal control:

Bu,(t, X
U*(t) - _ ’Ul(t7 (t))
2N
Inserting this candidate into the HJB-equation results in the PDE
v+1 e + Azv B2U2+M1’2 0, (t,z)e[0,T]xR
50 Uz z = a7V =Y, ) ’
"2 AN
o(T,z) = Dz, xeR.
To solve this PDE, we use the ansatz v(t,2) = f(t)x? + g(t). This transforms the PDE into the ordinary differential
equation
B2
(#0200~ 5102 0) ) 210 =0, (1) e [0.7) xR

f(T)x? +g(T) = Da?, zeR.
Since this equation has to hold for all z € R, this differential equation breaks into the following system of differential
equations:
F1@) +2A1(8) - B2 f(0)2+ M =0, te[0,T]
f(T)y=D.
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g () +a%f(t) =0, te[0,T]
9(T) =0.

Thus, given f, we obtain g via g(t) = o ftT f(s)ds. Towards solving the first of these equations, define a : ,]3\]2‘ ,

b:=2A and c:= M, and let 71,y be the real roots of the polynomial az? + bz + ¢ and A > 0 the discriminant. Solvmg

via partial fractions gives
- / dt = f _a
af?+b f +c

f (f- Tl)(f—rz)

1
f\/ \/Af—7“2
1 —7‘1
=

This suggests the solution
D-ry , —VA(t-T)

T —Tr2po, €
F(t) = _ D-r1 ,—VA(t-T)
D—TQ

and plugging this back into u* gives

B(rl—rgD r1 —\F(t—T))

* _ D-ry
u (t)_ N(]. g 1 —f(t T))

Observe that since e V2¢T) > 1 and ID)%:; > 1, it follows that w*(¢) is a smooth function on the bounded interval
[0,T]. Thus, the SDE for X is linear with bounded coefficients and so by the variation of constants theorem, this
equation has a unique solution X* with respect to the control u*. The moment condition (5.13) for u* is satisfied by
the boundedness of u*, and the moment condition (5.14) for X* follows by Lemma 3.23. Finally, since f is smooth,
g is also smooth and so v € C*? and clearly satisfies the polynomial growth condition by the boundedness of f(t).
Thus, by Theorem 5.17, u* is an optimal control and v coincides with the value function.

Exercise 5. For T > 0 solve the stochastic control problem

rgng(X (1)7)

with
dX (t) = au(t) dt + u(t) dW (t)
X(0)=x2>0

and a e R, 0<y<1, U=R, O=(0,00). In particular, show that the optimal strategy u*(¢) and the value function
V (t,z) have the forms

' (t) = ﬁxm,

V(t = — (T -1t 4
() =esp (5 s (70}
Solution. The HJB-equation corresponding to this stochastic control problem admits the form

1
min {vt T auvm} =0, (t,x)eq@,
ueR 2

o(T,z)=2", x>0
for @ :=[0,7) x O. Formal minimization yields the following candidate for the optimal control:

avy (t, X (t))

= X))
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Inserting u*(t) into the HJB-equation results in the partial differential equation

2,2
a~v,

:Oa (t,$)EQ

V¢ —
2V

v(T,xz)=a", x>0.

To solve this PDE, we choose the ansatz v(¢,2) = f(¢)”. This transforms the partial differential equation into the
ordinary differential equation for f(t)

/ ¥ 2 Y v o_ c
f'@®)z" +a 72(1_7)]“@)30 =0, (t,x)eQ

A1) =1.
Solving, we obtain f(t) = e 205 (T and o* (t) = ﬁX(t). Thus, if we can show that the conditions of Theorem
5.17 are satisfied, then it will follow that «* is an optimal control and V (¢, z) = v(t,x) = exp (azﬁ(T - t)) 27, asre-

quired. To this end, observe that the SDE corresponding to the control u* for X, given by dX (t) = X (t) (% dt + ﬁ dW(t))

is linear with constant coefficients, and therefore has a unique solution X* by the variation of constants theorem.
Moreover, this solution X * satisfies moment condition (5.14) by Lemma 3.23, and moment condition (5.13) immedi-
ately follows as

ty
E([ lu*(s)[* ds) < ltlan’x( sup |X(s)|k) <oo, VkeN.
0 -y

s€[0,t1]

Finally, since v € C1?(Q) and obviously satisfies the polynomial growth condition on @, all the conditions of Theorem
5.17 hold, and the conclusion follows.

Exercise 6. Show that in the market with constant coefficients and an infinite horizon the problem

max Em(/(;mefﬁtU(c(t))dt), B8>0,

(m,c)eA’(x)

admits the optimal solution pair of the form
7 (t) =7 e RY,

c*(t) = 6X (t), for suitable constants 7 € R%, § > 0 if and only if we have
U(x)=ax”+d
for suitable v € (0,1),a,d > 0.

Proof. Towards proving the ”if” direction, fix a,d > 0, v € (0,1) and set U(z) = ax” + d. Using the notation of
Section 5.4, the HJB-equation corresponding to this choice of U admits the form

1
max {*U&O’U’Ulv”(x) +((r+uf(b-rl))z—ug)v' (x) + qug +d - ﬂv(x)} =0, xz>0.
(u1,uz)efar,a]4x[0,00) 2

Formal maximization suggests the following choices for u; and us:

Wi (1) = ~(00") (b - 1) D)

v (z)’

(1) = (alvv'(x))”ll .

Inserting this choice of u} and uj into the HJB-equation results in the differential equation in v(z)

(a(alv)wwl ~ (al’y)llv)v,(m)j_l _ ;(b—1"1)'(00')_1(1?—7“1)2,52)2 +rv'(x)z - Bv(z) +d=0, z>0.

The requirement of the polynomially bounded solution in the verification theorem suggests the ansatz

1
v(z)=—-Kz" + Ky
Y
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for some choice of constants K > 0, Ky € R. Inserting this ansatz into the above differential equation results in the
equation

((a(al)“—(1)”)K#-l-;(b-m)'(aa')1(b—r1) i1+r—61)Kx7+(d—6K0):0, 250,
Y ary 0 0

Since this equation must hold for all x > 0, we must choose Ky = %. Inserting this choice of K and then dividing
out by Kz7 yields the solution

K = (oz(ozlﬂy)wz1 - (alfy)l_lw)l_ﬂy (Q(fyl_l)(b—rl)'(aa')_l(b—rl) -+ 5)7_1 :

Plugging this finding back into u] and u3, we find that

uj(t) = ﬁ(oo')fl(b— rl) e RY

. K\Y(-D)
wi(t) = (a) X(8).

1/(y-1
Observe that (o% /6=y

the verification theorem, and the ”if” direction follows.

> 0 for suitable 8. It is clear that constant u] and linear u; satisfies all the conditions of

Towards proving the "only if” direction, suppose that 7*(¢) = 7 € R? and ¢*(t) = §X(¢) for some § > 0. Then
(7*,¢*) maximizes the HIB-equation

1
max {fuioa'ulx%"(x) +((r+7'(b=-r1))x —uz)v' (z) + U(uz) - ﬁv(m)} =0, z>0.
(u1,u2)e[ar,az]¢x[0,00) {2

It follows that the partial derivatives evaluated at (7*,c¢*) are zero for all > 0. Thus, 0 = —v'(z) + U'(c*) for all
x>0, and so
U'(6x) =v"(z), x>0.

For convenience, set s? := 7’co’m and i := r+7’(b-71)~0. Then substituting in the optimal controls, the HJB-equation
collapses to

%s2x2v"(x) +pxv'(z) + U(dz) - Bu(z) =0, >0.

Differentiating with respect to z, substituting U’(dz) = v'(x), and setting w(x) := v'(x), we arrive at the following
ODE in w(x)

1
iszxzw"(m) + (52 + p)zw'(x) + (p+0 - Bw(z) = 0.
Using the ansatz w(z) = Cz7~!, the equation is transformed into
1
(552(7- D(y=-2)+(s*+p)(y-1) + (u+5—ﬁ)) Cz""'=0, z>0.

Dividing out by Cz?~!, we can solve for 7, subject to suitable §. Thus, we have that
U'(x) =v'(2/0)
= w(z/5)
=C(x/8) L
The conclusion follows after integrating this expression. O

Exercise 7. Solve the terminal wealth maximization problem (5.7) via the stochastic control approach in the case
of constant coefficients for d =m =1,

if instead of the bond a stock with price

Py(t) = po exp ((bot - %03) t+ JOW(t))

is traded.
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Solution. Note that P, satisfies the following SDE
dp()(t) = P() (bo dt + (o)} dW(t)) .

Let the ”original” risky asset have constant drift term g and constant volatility term o. Then if we define 7(t) to
be the time ¢ proportion of wealth invested in the ”original” risky asset, then we arrive at the following family of
wealth SDEs controlled by

AX™(t) = X”(t)((bo + () (p - bo)) dt + (ao +7(t) (o - ao)) dW(t)).
Using this controlled wealth SDE and the valuation function
1
J(0,z;7m) = E** (fX’T(T)V)
v
yields the HJB-equation

1
max{i(oo +7(0 = 00))22% Ve + (bo + (1 — bo) )Ty + vt} =0, x,t>0,

1
o(T,z)==2", x>0.
v
Formally maximizing and using the standard separable ansatz v(t,x) = %m”eC(T_t) yields the candidate

at = g0 " /j/_bO
o-00 (0-00)*(1-7)

Inserting this choice for 7* and the given ansatz, and then dividing out the common term z7e®(T*) results in the
following equation

2 (0 -00)(1-7) o-09  (0-00)*(1-7) v

Simplifying and solving for C, we find that

_ 2 _ R
1 (200+/“Lb0) (1—7)+b0+00(# bo) + (1 —bo) _lc’:o'

yoo (4 —bo) . v(p = bo)?
(c-00))  2(c-00)%(1-7)

The standard arguments show that all the conditions for the verification theorem are satisfied, and so the optimal
portfolio is given by

C=-2v(1-7)o2 +bg -

* _ g0 M_bo
T = + B .
oc—-09 (0-00)%(1-7)

Exercise 8. Show that the market model of Exercise 7 is complete (without using Theorem 3.47).

Proof. Fix a contingent claim B in the market model of Exercise 7. Define a new asset 7 corresponding to the

portfolio
09

T

g —0p

Observe that the price process for this asset is determined by the SDE

AP (t) = P;r(t)((bo +7(p=bo) ) dt + (09 + (0~ 00)) dW(t))
= P7(t)(bo + 7 (p = bo)) dt.
Hence 7 replicates a riskless bond with interest rate

T:b0+7’:l'(/i—b0).
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By Theorem 3.7, the market consisting of a bond with interest rate r and a stock with price process Py (t) is complete.
Since P;(t) is equal to a measurable function of Py(t) and P (t), and similarly Py(t) is equal to a measurable function
of Pz (t) and P (t), it follows that o(Pz(T), P1(T)) = o(Po(T), Pi(T)). Thus, B is a contingent claim in the market
consisting of the riskless bond with price process P;(¢) and the stock with price process P;(t). By completeness,
there exists a unique replication strategy ¢ = (¢z,¢1). Pick the trading strategy

B (A =7)px(t)Px(1) Tz (1) Px(t)
9—(90(15)’91@))—( Po(t) ’@1(t)+131(15))'
Then
Oo(t)Po(t) +01(t)Pi(t) = (1= 7)pz(t) Pr(t) + o1 (1) Pr(t) + Tz () P ()
=z (1) Pr(t) + o1 (t) Pr(t).
Moreover,

01(t) dPo(t) + 01(t) dPy(t) = (1 = T)pa(ey (1) P (t) (bo dt + 00 AW (1)) + o1 (t) dP1(t) + 7oz (8) P (t) (ndt + o AW (1))
= px (D) P=(1)((bo + 7(1 = bo)) dt + (00 + 7(0 = 030)) AW (1)) + 1 () APy (1)

=z (t) dPz(t) + ¢1(t) dPi(t)
= X(1).

It follows that 6 is a self-financing replication strategy for B, proving the the market model of Exercise 7 is complete.
O

39



